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Abstract In the present work we analyse the structure of the Hamiltonian field
theory in the neighbourhood of the wave equation qtt = qxx . We show that,
restricting to “graded” polynomial perturbations in qx , p and their space derivatives
of higher order, the local field theory is equivalent, in the sense of the Hamiltonian
normal form, to that of the Korteweg-de Vries hierarchy of second order. Within this
framework, we explain the connection between the theory of water waves and the
Fermi-Pasta-Ulam system.

1 Introduction

The present work aims to treat the perturbations of a linear string in the framework
of classical Hamiltonian field theory. The unperturbed base model we have in mind,
the linear string, is described by the one-dimensional wave equation

qtt = c2qxx , (1)

where q : R × D → R : (t, x) → q(t, x) is the unknown, real-valued field, and
c is a real, positive parameter, the speed of the wave. As usual, partial derivatives
are denoted by subscripts, i.e. qt = ∂tq , qx = ∂xq and so on. Concerning the
space domain D and the boundary conditions of the field q , we here focus on the
1-periodic case, namely D = T := R/Z (the L-periodic case, with D = R/(LZ),
can always be reduced to the case L = 1 by rescaling both the independent variables
to x ′ = x/L, t ′ = t/L).
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Solving Eq. (1), for any initial condition q(0, x), qt (0, x) defined on T and
regular enough, is a standard exercise in Fourier analysis. Indeed, substituting
q(t, x) = ∑

k∈Z q̂k(t)e
ı2πkx (ı is the imaginary unit) into (1), one gets

d2q̂k

dt2
= −4π2c2k2 q̂k ,

which implies q̂k(t) = ake
ıωkt + ā−ke

−ıωk t , where the ak are complex constants
(the bar denoting complex conjugation), and

ωk := 2πc|k| ; k ∈ Z . (2)

Observe that ω−k = ωk , which implies q̂k = q̂−k , i.e. q is real. Relation (2)
defines the dispersion relation of the wave equation. A given space periodic system,
characterised by a certain dispersion relation k → ωk , is said to be non dispersive
if ωk+1 − ωk is piecewise constant, i.e. if ωk is piecewise linear in k and this is
clearly the case for the wave equation. One can check that the solution q(t, x) of the
problem is time periodic for all initial conditions, the period being 2π/ω1 = 1/c.

It is almost impossible to give a complete account of physical phenomena that,
to the first linear approximation, are described by the wave equation. Let us just
mention, to have in mind concrete examples that we are going to analyse later,
wave propagation in fluids and long-wavelength vibrations of interacting particle
chains. In all these problems, the need to go beyond the first approximation arises,
in order to take into account the effects of both nonlinearity and dispersion, typically
determining whether some interesting form of energy localisation may take place,
as opposed to a fast energy spreading among the degrees of freedom of the system.
One is thus led to look for a general treatment of the possible perturbations of
Eq. (1) regardless of the specific physical problem giving rise to it. This in turn
calls for the restriction to a mathematical context where the possible perturbations
constitute a well-defined ordered class of objects. We do this within the framework
of Hamiltonian field theory, at the price to exclude, among others, all the dissipative
effects from the theory (no claim is made here about their irrelevance: the other
way around. See, for example, the enlightening discussion made by Nekhoroshev in
[33]). Moreover, we consider nonlinear and dispersive perturbations depending on
qx , p and their higher order derivatives, but not on q . Indeed, all systems made of
interacting particles, such as solids, fluids and gasses, in absence of external forces,
and on a sufficiently large space scale, are described by a certain wave equation
at the linear level, with perturbations depending, in principle, only by the space
derivatives of the field (and its momentum, possibly). This is due to the fact that
interactions in matter depend on differences of coordinates, which in the continuum
approximation corresponds to derivatives.

On the other hand, considering smooth perturbations of the wave equation
depending on q (not only through derivatives) would be interesting as well. For
example, as shown by Bambusi and Nekhoroshev and by Nekhoroshev [6, 7, 33],
the smooth perturbations of the wave equation depending on q only (no derivatives)
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give rise to very nice, long-lasting localisation phenomena. Whether be possible to
include such a class of problems in our treatment, drawing meaningful conclusions,
looks unclear, at present.

Although we decided to focus on one-dimensional systems, it is worth mention-
ing that the techniques presented here can be generalised to study problems in higher
space dimension. In this case one can predict, for example, energy localisation for a
certain class of anisotropic rectangular lattices [22].

The paper is organised as follows. In Sect. 2 we introduce the Hamiltonian
formalism of classical field theory, at the end of which we provide an informal
presentation of the main results. Section 3 contains the elements of perturbation
theory framed in the more general context of Poisson systems, which is the one
appropriate to our purposes. Section 4 contains the formal statements and proofs
of the results. The application of such results to the FPU problem and to the water
wave problem is treated in Sect. 5. Finally, a short list of open problems is provided
in Sect. 6.

2 Outline of the Method and Results

2.1 Hamiltonian Field Theory

For the sake of completeness, we report here a short review on what is meant by
Hamiltonian field theory. The reader is referred to the monographs [16, 25], and
[32], for details and/or a more extensive treatment of the subject.

In Hamiltonian field theory the dynamical variables (e.g. coordinates and
conjugate momenta) are points in a certain function space, the phase space of the
system, and the observables, including the Hamiltonian, are functionals, admitting
a density, defined on the phase space.

In order to specify the notations used below, let us first consider the space of
smooth functions, or fields u : T → R. A functional F [u], with density F
depending on x and on u(x) and its derivatives up to a given order, is defined as

F [u] =
∮

F (x, u, ux, uxx, . . . ) dx , (3)

where here and in the sequel we make use of the short hand notation
∮ := ∫

T
. The

functional derivative (or variational derivative) of F with respect to u, denoted by
δF/δu, is defined by the relation

δF [u, δu] := d

dε
F [u + εδu]∣∣

ε=0 =
∮

δF

δu
δu dx , (4)
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for any smooth finite increment δu defined on T. Through repeated integrations by
parts and erasing the boundary terms one finds

δF

δu
=

∑

j≥0

(−1)j
dj

dxj

∂F

∂(∂
j
x u)

= ∂F

∂u
− d

dx

∂F

∂ux

+ d2

dx2

∂F

∂uxx

+ · · · , (5)

the sum above being finite if F is a polynomial in u and its derivatives up to
a given finite order (as will be in our case). Relation (4) defines the Gateaux, or
weak differential of the functional F at u with increment δu, which under further
requirements coincide with the Fréchet, or strong differential of F ; see e.g. [39].
The functional derivative is also referred to, in the mathematical literature, as the
L2-gradient of F with respect to u. Indeed, in the Hilbert space L2(T) of square
integrable functions onT, endowedwith the usual scalar product 〈f, g〉 := ∮

fg dx,
one can rewrite (4) as δF = 〈δF/δu, δu〉 := 〈∇F, δu〉, identical in form to its finite-
dimensional counterpart.

In the Hamiltonian field theory considered in the present paper, the phase
space Γ of the system is the space of two components, smooth, real-valued fields
(q(x), p(x)) defined on T. The observables of the theory are the functionals F :
Γ → R admitting a densityF which is a polynomial in q(x), p(x) and their space
derivatives up to a finite order, with coefficients possibly depending on x. One then
selects, among the observables, the Hamiltonian defining the given system, namely

H [q, p] :=
∮

H (x, q, p, qx, px, . . . ) dx . (6)

The motion of the system, a certain curve γ : [t1, t2] 	 t 
→ (q, p)(t) ∈ Γ , is then
specified by a stationary action principle, as in the finite-dimensional case. Indeed,
defining the action functional S[q, p] as

S[q, p] :=
∫ t2

t1

[〈p, qt 〉 − H
]
dt =

∫ t2

t1

∮

[pqt − H ] dt dx , (7)

one defines the actual motion of the system as the critical point of S in the space
of smooth curves (q(t, x), p(t, x)) in Γ with fixed ends on the first component:
q(t1, x) := q1(x), q(t2, x) := q2(x), q1 and q2 being two assigned fields on T. The
smooth increment curves (δq, δp)(t) must then satisfy the condition δq(t1, x) =
δq(t2, x) = 0.With the notation just introduced, and performing simple integrations
by parts, one gets the differential δS of the action S, namely

δS =
∫ t2

t1

∮ [(

qt − δH

δp

)

δp −
(

pt + δH

δq

)

δq

]

dt dx . (8)
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This is zero for any increment (δq, δp)(t) if and only if the following Hamilton
equations hold:

qt = δH

δp
; pt = −δH

δq
. (9)

This is the Hamilton principle of stationary action in classical field theory.
In this work, we restrict our attention to scalar fields q and p defined on the

(flat) unit circle T. However, all the above construction and most of the results
presented below can be extended to vector fields defined on any multi-dimensional
space domain (not necessarily a torus).

Consider now a functional F [q, p] := ∮
F (x, q, p, qx, px, . . . )dx. Its time

derivative along the solutions of the Hamilton equations (9) associated with H is
computed by means of repeated integrations by parts with respect to x. The result
can be written as dF/dt = {F,H }q,p, where

{F,H }q,p :=
∮ (

δF

δq

δH

δp
− δF

δp

δH

δq

)

dx := 〈∇F, J2∇H 〉 (10)

is the Poisson bracket of the functionals F and H . In the second definition above,

J2 :=
(

0 1
−1 0

)

is the standard 2 × 2 symplectic matrix, ∇F =
(

δF/δq

δF/δp

)

and the

same for H . The product ξT J2η = ξ1η2 − ξ2η1, for any pair of vectors ξ, η ∈ R
2,

defines the symplectic 2-form. The Poisson bracket (10) defines a bilinear, skew-
symmetric product on the algebra of functionals defined on Γ , and it satisfies the
Jacobi identity {{F,G}q,p,H }q,p + {{G,H }q,p, F }q,p + {{H,F }q,p,G}q,p ≡ 0
and the Leibniz rule {FG,H }q,p = F {G,H }q,p + {F,H }q,pG for any triple of
functionals F , G, H . The algebra of functionals on Γ endowed with the Poisson
bracket becomes a Poisson algebra and is typically referred to as the algebra of
observables.

Remark 1 Given any skew-symmetric bilinear product on an algebra, the Jacobi
identity characterises it as a Lie bracket. The latter, by further assuming the Leibniz
rule, becomes a Poisson bracket (by definition). Thus, a Poisson algebra is a Lie
algebra of Leibniz type.

The fundamental Poisson brackets of the Hamiltonian field theory on T are

{q(x), p(y)}q,p = δ(x − y) ; {q(x), q(y)}q,p = {p(x), p(y)}q,p = 0 , (11)

where δ(x) is the Dirac delta distribution on T. This is proved by considering
the identity

∮
δ(x − y)f (y)dy = f (x), valid for any continuous function on T,

from which δf (x)/δf (y) = δ(x − y) follows. As a consequence, the Hamilton
equations (9) can be written in the form

qt = {q,H }q,p ; pt = {p,H }q,p . (12)
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2.2 Results: Informal Presentation

Within the Hamiltonian formalism just introduced, we study a well-defined class of
problems, defined as follows. We introduce a “bookkeeping parameter” λ and give
a weight λ2 to both qx and p, weighting any successive derivative ∂x of them by λ.
Defining r := qx , this amounts to assume a “grading” (perturbative ordering of the
dynamical variables and their derivatives) r ∼ p  rx ∼ px  rxx ∼ pxx . . . ,
and (rx)2 ∼ r3, where, in a loose notation, ∼ and  mean “of the same order of”
and “of an order smaller than”, respectively. For the sake of simplicity, we assume
the smooth density H of H to be a function of qx , p and their space derivatives
up to order four. Such a limitation is due to the fact that, in the present paper, we
do not consider λ-expansions of the Hamiltonian H to degree higher than four, and
with the chosen grading, derivatives of qx and p of order higher than four enter the
perturbative problem from degree five on (in λ). The parameter λ is formal: it is
necessary to define the grading and to trace the perturbative ordering, and it can be
set to one at the end of the computations.

Definition 1 The class of problems considered in the present work is defined by the
family of Hamiltonians of the form

Hλ := 1

λ4

∮

H (λ2qx, λ
2p, λ3qxx, λ

3px, . . . , λ
6qxxxxx, λ

6pxxxx) dx , (13)

with the condition

(
∂2H

∂q2
x

∣
∣
∣
λ=0

) (
∂2H

∂p2

∣
∣
∣
λ=0

)

> 0 . (14)

By Taylor expanding H in powers of λ, close to λ = 0, and assuming without
loss of generality that H |(q,p)=0 = 0, one gets a perturbative ordering of the
Hamiltonian of the form

Hλ = H0 + λH1 + λ2H2 + λ3H3 + λ4H4 + · · · . (15)

We here observe that the absence of a term proportional to 1/λ2 in the latter
expansion is due to the conservation of the total momentum

∮
p dx, which can

be always set to zero.
The main results are now presented in an informal way, their precise statements

and proofs being provided below. The condition (14), which characterises the
elliptic nature of the fixed point q = p = 0, implies that there exists a canonical
transformation bringing the unperturbed Hamiltonian H0 into the standard wave
form

K0 :=
∮

p2 + (qx)
2

2
dx , (16)
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and leaving the perturbative expansion (15) unaltered. The equations of motion
associated with the latter Hamiltonian are qt = p, pt = qxx , i.e. in second-order
form, the wave equation qtt = qxx .

Now, in terms of the variables r := qx and p, the expanded Hamiltonian (15)
reads K0 + λH1 + λ2H2 + · · · , where K0 = 1

2

∮
(p2 + r2)dx, and the Hj are

functionals whose density is a homogeneous polynomial of “grade” j in r , p and
their derivatives. One then conveniently performs the change of field variables
(r, p) 
→ (u, v) defined by u = (r + p)/

√
2, v = (r − p)/

√
2, in terms of

which K0 = 1
2

∮
(u2 + v2)dx, and its flow separates the left from right wave:

ut = ux , vt = −vx , so that u and v are simply the left and right translation of
the corresponding initial datum, respectively.

The key idea is now to decouple the left from the right dynamics to higher orders.
To such an end, we build up an explicit transformation of the field variables

Tλ : (u, v) 
→ (ũ, ṽ) ,

λ-close to the identity, which sets the Hamiltonian H = K0 + λH1 + λ2H2 + · · ·
(expressed in the (u, v) variables) into normal form to order 1 ≤ s ≤ 4 with respect
to K0. This means, by definition, that H ◦ T −1

λ = K0 + λZ1 + λ2Z2 + · · · is such
that the Zj are first integrals of K0, for 1 ≤ j ≤ s.

The results proved below are the following. In the general case, i.e. no further
hypotheses being added to the Definition 1, we show that the normal form
Hamiltonian to order s = 2 has the form K0 + λ2Z2 + · · · , and the corresponding
dynamics of the variables ũ, ṽ reads

{
ũt = clũx + alκ3(ũ) + · · ·
ṽt = −cr ṽx − arκ3(ṽ) + · · · . (17)

On the other hand, in certain relevant cases, such as the “mechanical” one, where
H = p2/2 + U (qx, qxx, . . . , qxxxxx), or that of the water waves, one has H1 =
H3 ≡ 0. In such situations the normal form Hamiltonian to order s = 4 has the form
K0 + λ2Z2 + λ4Z4 + · · · , whose associated dynamics reads

{
ũt = clũx + alκ3(ũ) + blκ5(ũ) + · · ·
ṽt = −cr ṽx − arκ3(ṽ) − brκ5(ṽ) + · · · . (18)

In systems (17) and (18) al/r , bl/r and cl/r are certain constants (depending on the
model, on the parameter λ and on the initial condition), whereas κ3 and κ5 are the
vector fields of the first and second integral in the KdV hierarchy [1], namely

κ3(w) = γwwx + wxxx = ∂x
δI3

δw
, (19)

κ5(w) = 5

6
γ 2w2wx + 10

3
γwxwxx + 5

3
γwwxxx + uxxxxx = ∂x

δI5

δw
. (20)
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Here γ ∈ R is a parameter, whose value is explicitly determined by the first order
normal form transformation, whereas the first two integrals I3 and I5 of the KdV
hierarchy are given by

I3 =
∮ (

γ

6
w3 − 1

2
(wx)2

)

dx , (21)

I5 =
∮ (

5γ 2

72
w4 + 5γ

12
w2wxx + 1

2
(wxx)

2
)

dx . (22)

The conclusion is that both in the general and in the special case, the dynamics of
the perturbed wave equation is integrable in the KdV hierarchy sense to the second
perturbative order included.

Remark 2 The standard Hamiltonian normal form construction to leading order
always leads to (17). On the other hand, in order to get (18), the second step of
Hamiltonian normalisation is not enough, in general. With the aid of Hamiltonian
transformations, we generally succeed in decoupling equations of motion for the
two independent variables to higher orders but, in general, this is not enough to
conjugate the equations of motion to those of the KdV integrable hierarchy. It is
remarkable that, at this point, each of the two decoupled equations of motion falls
in a class that was analysed by Kodama [26, 29–31] (and whose results have been
extended to equations on the torus in [23]).Without entering the details, which could
deserve an entire work, the idea is the following. One starts from a PDE of the form

ut = F(u) := F0(u) + λF1(u) + λ2F2(u) + O(λ3) (23)

and one considers the effect of a change of variables u 
→ u + λG(u). Denoting
with [·, ·] the commutator of two vector fields, the effect of the transformation on
the RHS of the PDE (23) is

F(u) 
→ eλ[G,·]F(u) =F0(u) + λ
(
F1(u) + [G,F0](u)

)

+λ2
(

F2(u) + [G,F1](u) + 1

2
[G, [G,F0]](u)

)

+ O(λ3) .

(24)

The latter conjugation of the vector field F holds in general, i.e. for any G. The
Kodama transformation consists in making use of the natural grading of the KdV
equation in order to choose a G consisting of a finite sum of monomials and
satisfying two fundamental requirements. The first one is [G,F0] = 0, which allows
to leave F1 in the KdV hierarchy, as it is given by the normal form construction. The
second one consists just in “forcing” F2 + [G,F1] to fit the KdV hierarchy, even
though F2 does not. This part of the theory is only sketched in the present review
and we refer to [23, 26] for details.
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Remark 3 The treatment of the general case to orders s = 3 and s = 4 requires
three and four perturbative steps, respectively, and is currently in progress.

3 Abstract Setting: Perturbation Theory in Poisson Systems

In order to treat our problem, we need to frame our Hamiltonian field theory in the
more general context of Poisson systems [32, 36]. Such a short digression is adapted
to our present purposes and does not aim at any generality.

3.1 Poisson Formalism
Definition 2 Let Γ be the phase space of the system and let A (Γ ) be the algebra
of real-valued smooth functions defined on Γ . A binary application, or product,
{·, ·} : A (Γ ) × A (Γ ) → A (Γ ) is called a Poisson bracket on Γ if it satisfies the
following properties

(i) Skew-symmetry: {F,G} = −{G,F };
(ii) Left-linearity: {αF + βG,H } = α{F,H } + β{G,H };
(iii) Jacobi identity: {F, {G,H }} + {G, {H,F }} + {H, {F,G}} = 0;
(iv) Leibniz rule: {FG,H } = F {G,H } + {F,H }G,

∀F,G,H ∈ A (Γ ) and α, β ∈ R. The pair (A , { , }) is called Poisson algebra.
Remark 4 The bracket {·, ·}q,p defined in (10) satisfies axioms (i)-(iv) in the above
definition. Thus, the axiomatic definition above contains both the usual Hamiltonian
mechanics and the field theory (as well as quantum mechanics).

For the sake of concreteness, let us consider the case where Γ is the space of two
components, smooth, real-valued fields u(x) = (u1(x), u2(x))T defined on T (what
we show can be exported to the case of n components, complex-valued fields on a
d-dimensional domain D).

By analogy with the standard case (10), a bilinear, skew-symmetric, Leibniz
bracket on such a space is defined by the formula

{F,G}J := 〈∇F, J∇G〉 :=
∮ 2∑

i,j=1

δF [u]
δui

Jij [u]δG[u]
δuj

dx , (25)

where Jij [u] is a tensor valued operator, skew-symmetric with respect to the L2
scalar product 〈 , 〉, functionally dependent on u. Notice that with the choice J = J2,
and denoting u1 = q , u2 = p, (25) coincides with (10). On the other hand,
the bracket (25) does not satisfy the Jacobi identity (hypothesis (iii) above), in
general. We state without proof the following Proposition [32], which characterises
the Poisson brackets of the form (25).
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Proposition 1 The bracket (25) satisfies the Jacobi identity, so that it is a Poisson
bracket, if and only if the skew-symmetric tensor J [u] satisfies the Schouten identity

2∑

s=1

(
JisDus Jjk + JjsDus Jki + JksDus Jij

) = 0 (26)

for all u and all i, j, k = 1, 2.

Here Dus denotes the weak partial derivative with respect to us , defined in the usual
way:

(
Dus f

)
h := d

dε
f [us + εh])

∣
∣
∣
ε=0

, (27)

for any f functionally dependent on u. Observe that, for example, Du1u1 = 1,
Du2∂xu2 = ∂x and so on. Thus, any skew-symmetric tensor J [u] satisfying the
identity (26) is a Poisson tensor, i.e. it defines through (25) a Poisson bracket. An
obvious but fundamental consequence of Proposition 1 is the following

Corollary 1 Any skew-symmetric tensor J independent of u (i.e. constant on the
phase space) is a Poisson tensor.

Remark 5 One does not require J [u] to be non-degenerate, so that J is allowed to
have a nontrivial kernel. The functionals F such that J∇F = 0 are called Casimir
invariants of the given Poisson structure and represent constants of motion for all
Hamiltonian systems: {H,F } = 0 for any H ∈ A (Γ ).

Within this framework, fixing a Hamiltonian H [u] in the given Poisson algebra, the
associated dynamics is defined in the usual way, namely

ut = {u,H }J = J∇uH , (28)

to be read by components, ∇uH being the functional gradient of H [u]. Of course,
any functional F evolves along the solutions of (28) according to Ft = {F,H }J .
Hamiltonian dynamical systems, in the generalised Poisson sense, have the form
(28), which includes the standard (symplectic) case.

The fundamental feature of generalised Hamiltonian systems is their invariant
character under any change of variables.

Proposition 2 Any smooth change of variables f : u 
→ ũ = f [u] maps the
Hamiltonian system ut = J∇uH into the Hamiltonian system ũt = J̃∇ũH̃ , where
H̃ = H ◦ f −1, whereas the transformed Poisson tensor J̃ is given by

J̃ [ũ] := (Duf )J (Duf )T
∣
∣
∣
u=f −1[ũ] . (29)
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The corresponding Poisson brackets are related, for any F,G ∈ A (Γ ), by

{F,G}J ◦ f −1 = {F ◦ f −1,G ◦ f −1}J̃ . (30)

In the latter formula, Du denotes the weak Jacobian of u, as defined in (27). The
proof of the above Proposition is direct and not reported. The important point is
the following: if J is a Poisson tensor, its transformed J̃ under any f is a Poisson
tensor. Of course, the Hamilton equations are not invariant in form under f , which
happens if and only if J̃ = J . Canonical transformations are then defined as
those transformations f leaving the Poisson tensor invariant. In order to check the
canonicity of a transformation f , it is easier to make use of (30) which, with J = J̃ ,
yields {F,G}J ◦ f −1 = {F ◦ f −1,G ◦ f −1}J .
Remark 6 If J = J2, the transformation law (29), together with the canonicity
condition J̃ = J , yields the requirement that the Jacobian Duf be symplectic.

The equation of motion (28) can be rewritten as ut = LHu, where the operator
LH · = {·,G}J , such thatLHF = {F,H }J for any F , is the Lie derivative of F in
the direction of the Hamiltonian vector field J∇H . One can then formally solve the
equation by exponentiation, which defines the flow Φt

H of the system, namely

u(t) = etLH w := Φt
H (w) , (31)

where w = u(0) is an arbitrary initial condition. Of course the exponential operator
above is defined, as usual, by its formal series

etLH = 1 + tLH + t2

2
L 2

H + O(t3) . (32)

Now, since the evolution equation Ft = {F,H }J = LHF of any functional F

is solved by etLH F (w), which must equal F [u(t)] = F [Φt
H (w)] for any initial

condition w, one gets the useful relation

etLH F = F ◦ Φt
H , (33)

which is known as the exchange Lemma; we will make use of it below.
The Hamiltonian flow Φt

H : Γ → Γ represents a one-parameter family of
canonical transformations of Γ into itself (the family is a group if the flow is global).

Proposition 3 For any t such that Φt
H exists, and any pair of functionals F and G,

one has

{F,G}J ◦ Φt
H = {F ◦ Φt

H ,H ◦ Φt
H }J . (34)
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Proof Define Δ(t) the difference between the left and the right-hand side of (34),
and observe that Δ(0) ≡ 0. Making use of relation (33), and of the Jacobi
identity, one gets dΔ(t)/dt = {Δ(t),H }J = LHΔ(t), whose solution is Δ(t) =
etLH Δ(0) ≡ 0. ��
Remark 7 In the above treatment, the Hamiltonian H is arbitrary. It follows that
any functional G, regarded as a Hamiltonian, generates a one-parameter family
of canonical transformations, which is given by its flow Φs

G = esLG , where
LG = { ,G}J . In the jargon, G is called the generating Hamiltonian, and LG =
dΦs

G/ds|s=0 the generator of the transformation.

As a final point of this section, we state a simple version of the Nöther theorem in
the Poisson framework.

Theorem 1 If the Hamiltonian H [u] is invariant with respect to the flow esLK of
generatorLK = { ,K}J , i.e. esLKH = H for any s close to zero, then {H,K}J =
0.

Proof The derivative of esLKH = H with respect to s, at s = 0, gives the result.
��

In the practice, one usually “sees” a certain symmetry of H , i.e. one is able to write
down a certain transformation Ψ s such that Ψ 0 = 1 and H ◦ Ψ s = H for any s

around zero. Then, if Ψ s is a Hamiltonian flow, its generating Hamiltonian K is a
constant of motion of the given system.

3.2 Perturbation Theory

The target of Hamiltonian perturbation theory, which goes back to Poincaré and
Birkhoff, is the following. Given a Hamiltonian

H = H0 + λH1 + λ2H2 + O(λ3) , (35)

formally ordered with respect to the small parameter λ, one looks for a canonical
transformation, λ-close to the identity, erasing completely or in part the perturbation
terms Hj≥1 up to a given order (possibly infinite, as in the KAM theory). As is
well known, the complete removal of the perturbation terms, even to the first few
orders, is not possible, in general. The best one can do is instead to find a canonical
transformation setting H in normal form, according to the following definition.

Definition 3 The Hamiltonian H0 + λZ1 + · · · + λnZn + O(λn+1) is said to be in
normal form to order n ≥ 1 with respect to H0 if LH0Zj = {Zj,H0} = 0 for any
j = 1, . . . , n.

Observe that Zj ≡ 0 fits the normal form requirement, which means that the
definition includes the possibility of complete removal of some perturbation terms.
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The canonical transformation bringing the Hamiltonian (35) into normal form
with respect to H0, to order λ2 included, is given by composing the flows of two
unknown Hamiltonians G1 and G2, namely

u 
→ ũ = e−λ2L2e−λL1u , (36)

where Lj := LGj , j = 1, 2. The inverse transformation maps the Hamiltonian
(35) into

H̃ = eλ2L2eλL1H = H0 + λ (L1H0 + H1) +

+λ2
(

L2H0 + L1H1 + 1

2
L 2

1 H0 + H2

)

+ O(λ3) ,
(37)

which is obtained by expanding the exponentials. The two generating Hamiltonians
are then found by imposing that, according to the Definition 3, the quantities

Z1 := H1 + L1H0 ,

Z2 := L2H0 + L1H1 + 1

2
L 2

1 H0 + H2

(38)

be first integrals of H0. Observing that LjH0 = −LH0Gj , the latter two equations
for the four unknowns Zj and Gj , can be rewritten in the form

LH0G1 := H1 − Z1 ,

LH0G2 := L1H1 + 1

2
L 2

1 H0 + H2 − Z2 .
(39)

These equations have one and the same structure, namely

LH0Gj = Sj − Zj , (j = 1, 2) (40)

with obvious definitions of the Sj .

Remark 8 Looking for a transformation to an arbitrary order n, one finds at any
order j = 1, . . . , n an equation of the form (40), where Sj is a known quantity if all
the equations up to order j − 1 have been solved.

Equation (40) is known as the homological equation of order j , which has to be
solved determining the unknowns Zj and Gj under the conditionLH0Zj = 0.

In what follows we suppose that the flow Φs
H0

of H0 is global (i.e. it exists for all
s ∈ R) and uniformly bounded with respect to s.



218 M. Gallone and A. Ponno

Definition 4 The time average of any F along the unperturbed flow of H0 is
denoted by

〈F 〉0 := lim
t→∞

1

t

∫ t

0
F ◦ Φs

H0
ds . (41)

If the flow of H0 is τ -periodic, i.e. Φτ
H0

= 1, then 〈F 〉0 = 1
τ

∫ τ

0 F ◦ Φs
H0

ds.

Lemma 1

LH0〈F 〉0 = 0 . (42)

Proof Composing the left and right-hand side of (41) with the flow Φr
H0
, one

gets, on the right-hand side, lim 1
t

∫ t

0 F ◦ Φs+r
H0

ds = lim 1
t

(∫ 0
r + ∫ t

0 + ∫ t+r

t

)
F ◦

Φa
H0

da = lim 1
t

∫ t

0 F ◦ Φa
H0

da. Thus 〈F 〉0 ◦ Φr
H0

= F , which implies (42), and
vice versa. ��
Lemma 2 The solution of the homological equation (40) is given by

Zj = 〈Sj 〉0 ; Gj = 〈Gj 〉0 + lim
t→∞

1

t

∫ t

0
(s − t)esLH0

(
Sj − 〈Sj 〉0

)
ds . (43)

If the flow of H0 is τ -periodic, Gj = 〈Gj 〉0 + 1
τ

∫ τ

0 s esLH0
(
Sj − 〈Sj 〉0

)
ds.

Proof Applying esLH0 to Eq. (40), taking into account the invariance of Zj (by
the definition of normal form), and taking the time average, one gets the first of
(43) in the limit. By the latter result, the homological equation becomesLH0Gj =
Sj − 〈Sj 〉0. Applying (s − t)esLH0 to the latter equation and time averaging, one
gets the second of (43) in the limit. ��
Remark 9 The generating Hamiltonians Gj solving the homological equation are
defined up to their average along the flow of H0, i.e. up to an arbitrary constant
of motion of H0. Thus, both the normal form Hamiltonian and the transformation
bringing to it are not unique. In the sequel, we make the choice 〈Gj 〉0 ≡ 0.

Theorem 2 (Averaging Principle) The canonical transformation

u 
→ ũ = e−λ2L2e−λL1u ,
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generated by

G1 = lim
t→∞

1

t

∫ t

0
(s − t)esL0 (H1 − 〈H1〉0) ds ;

G2 = lim
t→∞

1

t

∫ t

0
(s − t)esL0 (S2 − 〈S2〉0) ds ;

S2 :=H2 + 1

2
{H1,G1} + 1

2
{〈H1〉0,G1} ,

(44)

maps the perturbed Hamiltonian H = H0 + λH1 + λ2H2 + O(λ3) into the normal
form H̃ = eλ2L2eλL1H = H0 + λZ1 + λ2Z2 + O(λ3), explicitly given by

H̃ = H0 + λ〈H1〉0 + λ2
(

〈H2〉0 + 1

2
〈{H1,G1}〉0

)

+ O(λ3) . (45)

Proof By Lemma 2, solving the first of the homological equations (39) yields Z1
and G1. By substituting L1H0 = Z1 − H1 = 〈H1〉0 − H1 into the right-hand
side of the second of the homological equations (39), one gets the latter in the form
LH0G2 = S2 − Z2, with S2 as in (44). Solving by Lemma 2 again yields Z2 and
G2. ��
Remark 10 As a matter of fact, in order to get the normal form Hamiltonian
(45), one does not need to compute G2. This is a general fact: Zj+1 depends on
G1, . . . ,Gj .

4 Hamiltonian Field Theory Close to qtt = qxx

We now come back to our problem and solve it by applying all the tools introduced
in the previous section.

Let us start by considering a Hamiltonian H = ∮
H dx, whose densityH does

not depend explicitly on t and x and is an analytic function of qx , p and their spatial
derivatives up to a certain finite order, in the neighbourhood of the origin. SinceH
is invariant under time, space and q translations, Theorem 1 (Nöther) applies.

Proposition 4 H = ∮
H dx, I = ∮

qxp dx and P = ∮
p dx are the three first

integrals corresponding to the symmetries t → t + s, x → x + s and q → q + s,
respectively. Moreover, {I, P } = 0, so that the three first integrals are in involution.

Proof The conservation of H is obvious. The Hamilton equations for I at time s

are: qs = qx and ps = px , whose solution is q(t, x + s) and p(t, x + s), clearly
corresponding to the x-translation. The Hamilton equations for P are qs = 1, ps =
0, solved by q(t, x) + s and p(t, x), corresponding to the q-translation. Finally,
observe that {I, P }q,p = ∮

(δI/δq)(δP/δp)dx = − ∮
px dx = 0. ��
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Remark 11 One can always restrict the dynamics to the submanifoldP = ∮
p dx =

0 by the canonical transformation q = q ′, p = P + p′.

For the sake of convenience, we repeat below the definition of the class of
Hamiltonian functionals considered, with the appropriate grading.

Definition 5 The perturbative ordering of the Hamiltonian H is defined by the
following scaling:

Hλ := 1

λ4

∮

H (λ2qx, λ
2p, λ3qxx, λ

3px, . . . , λ
6qxxxxx, λ

6pxxxx) dx . (46)

By Taylor expanding in powers of λ, close to λ = 0, assuming without loss of
generality thatH |(q,p)=0 = 0, and taking into account Remark 11, one gets

Hλ = H0 + λH1 + λ2H2 + λ3H3 + λ4H4 + · · · , (47)

where

H0 =
∮

ap2 + b(qx)
2

2
dx + cI (48)

with a, b and c some constants and I = ∮
qxp dx;

H1 =
∮

d1qxpx dx ; (49)

H2 =
∮ [

e1(qx)
3 + e2p

3 + e3(qx)
2p + e4qxp

2 + e5(qxx)
2+

+ e6(px)
2 + e7qxxpx

]
dx ; (50)

H3 =
∮ [

f1(qx)
2px + f2qxxp

2 + f3qxxpxx

]
dx ; (51)

H4 =
∮ [

g1(qx)
4 + g2p

4 + g3(qx)
2p2 + g4(qx)

3p + g5qxp
3 +

+ g6(qxx)
2qx + g7(qxx)

2p + g8(px)
2qx + g9(px)2p +

+ g10qxxxp
2 + g11(qx)

2pxx + g12(qxxx)
2 + g13(pxx)

2 +
+ g14qxxxxpx ] dx , (52)

and so on. Here d1, e1, . . . , g14 are given constants.
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Remark 12 SinceH is independent of x, the density of each Hj is independent of
x. It follows that {I,Hj } = 0 for any j ≥ 0.

Proposition 5 If the constants a := ∂2H /∂p2|0 and b := ∂2H /∂(qx)
2|0

appearing in (48) are different from zero and have the same sign, there exists a
time-dependent canonical transformation which brings the Hamiltonian H0 in the
canonical wave equation form K0 = 1

2

∮ [p2+ (qx)
2]dx and preserves the structure

of the perturbations Hj to any order j ≥ 0.

Proof Let a = σ |a| and b = σ |b|, with σ = ±1. One first performs the
canonical rescaling q = √|a| q ′, p = √|b| p′, H = σ |ab|H ′, t = σ t ′,
which brings H0 into K0 + c′I , where c′ = σc/

√|ab|. Then one performs the
transformation (q ′, p′) = Φt

c′I (q
′′, p′′) = Φc′t

I (q ′′, p′′), where Φt
I denotes the flow

of I = ∮
qxp dx. The latter transformation is canonical and erases c′I . Clearly,

both transformations do not change the structure of any Hj nor the value of the
coefficients of the Hamiltonians H1, . . . , H4. Observe that the flow of I is the left
translation of (q, p), so that it is global and preserves the regularity of the initial
condition. ��
Remark 13 Consider K0 + λH1 = 1

2

∮ [p2 + (qx)
2 + 2λd1qxpx ]dx. Its Hamilton

equations read

qt = p − λd1qxx ; pt = qxx + λd1pxx .

Both q and p satisfy the linear Boussinesq equation

utt = uxx + (λd1)
2uxxxx .

The condition on a and b in the Proposition 5 above identifies the elliptic
fixed points in the given class of Hamiltonians. One is then left with the problem
of simplifying the dynamics of K0 + λH1 + λ2H2 + · · · . The perturbations to
various order have the structure listed above and no further simplification can be
made, in general. However, there is a relevant class of Hamiltonians that display
a much simpler structure, namely the class of mechanical Hamiltonians of the
form H = p2/2 + U , where U depends only on qx and its derivatives. Such
Hamiltonians usually arise as the continuum limit of some lattice system, the notable
case being just that of the vibrating string.

Proposition 6 Suppose that H = p2/2 + U (qx, qxx, . . . , qxxxxx). Then, if the
condition b := ∂2U /∂(qx)

2|0 > 0 holds, H0 can be brought in the canonical wave
form K0, H1 = H3 ≡ 0, and

H2 =
∮ [

α1(qx)
3 + α2(qxx)

2
]

dx ;
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H4 =
∮ [

β1(qx)
4 + β2(qxx)

2qx + β3(qxxx)
2
]

dx .

Proof The momentum p cannot appear out of H0, by definition. Notice that in this
case there is no term proportional to I in H0. ��
In the latter significant case one can obviously rename H2 → H1 and H4 → H2,
λ2 → λ.

4.1 Traveling Waves

The equations of motion associated with K0 = ∮ p2+(q2x )

2 dx reduce to the wave
equation for the field q:

qt = p ; pt = qxx , ⇐⇒ qtt = qxx . (53)

In order to simplify the analysis of perturbations of the wave equation, it is
convenient to perform a change of variables that maps the functions (q, p) into
the Riemann invariants (u, v):

u = qx + p√
2

; v = qx − p√
2

. (54)

The equations of motion for u and v are the left and right translation equation,
respectively:

{
ut = ux

vt = −vx

. (55)

Indeed, the solution of the above system corresponding to the initial condition
(u0(x), v0(x)) is (u0(x + t), v0(x − t)), i.e. a rigid translation of the initial profiles.
The flow of the wave equation, that is used to compute normal forms, is particularly
manageable in these new variables, being a left translation for u and a right
translation for v (at positive times).

The change of variables (54) is not canonical and it maps the standard Poisson
tensor J2 into the Gardner tensor [24]

J =
(

∂x 0
0 −∂x

)

. (56)
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In particular, as can be checked, formula (29) for the transformation (54) reads

Dq,p(u, v)

(
0 1

−1 0

)

DT
q,p(u, v) =

(
∂x 0
0 −∂x

)

.

The Hamiltonian K0, expressed in terms of (u, v), reads K0 = ∮
u2+v2

2 dx, so that
the translation equations for u and v are the Hamilton equations associated with K0
in the Gardner structure.

The explicit expression of the Hamiltonians (48)–(52) in the (u, v) variables is:

K0 =
∮

u2 + v2

2
dx ; (57)

H1 =
∮

d1√|ab|uvx dx ; (58)

H2 =
∮ { 1

23/2

[(
e1

|b|3/2 + e2
|a|3/2 + e3

|b|√|a| + e4
|a|√|b|

)
u3

+ (
e1

|b|3/2 − e2
|a|3/2 − e3

|b|√|a| + e4
|a|√|b|

)
v3

+ ( 3e1
|b|3/2 − 3e2

|a|3/2 + e3
|b|√|a| − e4

|a|√|b|
)
u2v

+ ( 3e1
|b|3/2 + 3e2

|a|3/2 − e3
|b|√|a| − e4

|a|√|b|
)
uv2

]
+

+ 1

2

[(
e5|b| + e6|a| + e7√|ab|

)
u2x+

+ (
e5|b| + e6|a| − e7√|ab|

)
v2x

]}
dx .

(59)

4.2 The Generic Case

In order to perform a canonical transformation as stated in Proposition 2, one has to
compute time averages, as required in Theorem 2. General formulas applying to the
case of an unperturbed flow consisting of left/right translations are provided in the
next lemma.

Lemma 3 Suppose that f and g are continuous functions on T. Then

∮ ∮

f (x ± s) dx ds =
∮

f (x) dx ; (60)

∮ ∮

f (x ± s)g(x ∓ s) dx ds =
∮

f (x) dx

∮

g(y) dy ; (61)
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∫ 1

0

∮

s f (x ± s)g(x ∓ s) dx ds =

= 1

2

∮

f (x) dx

∮

g(y) dy ± 1

2

∮

g(x) ∂−1
x f (x) dx , (62)

where ∂−1
x f (x) denotes the unique primitive of f with zero average on T.

Proof All these proofs consist of straightforward computations in Fourier space.
First, we prove (61):

∮ ∮

f (x ± s)g(x ∓ s) dx ds =
∫ 1

0

∫ 1

0

∑

k,k′∈Z
f̂k ĝk′e2πık(x±s)e2πık′(x∓s) dx ds

=
∑

k,k′∈Z
f̂k ĝk′δk+k′,0δk−k′,0 = f̂0ĝ0 .

From here, (60) follows by choosing g = 1. In order to prove (62), we Fourier
transform the LHS:

∫ 1

0

∮

s f (x ± s)g(x ∓ s) dx ds =
∑

k∈Z
f̂kĝ−k

∫ 1

0
se±4πıks ds .

It remains to notice that

∫ 1

0
se±4πıks ds = δk,0

∫ 1

0
s ds+(1−δk,0)

∫ 1

0
se±4πıks ds = 1

2
δk,0± 1

2

1

2πık
(1−δk,0)

and to recognise that 1/(2πık) is the Fourier-multiplier corresponding to the
operator ∂−1

x . ��
Proposition 7 There exists a (formal) near-to-identity, canonical transformation
(u, v) 
→ (ũ, ṽ) mapping Hλ into

H̃λ = K0 + λ2Z2 + O(λ3) , (63)

where

K0 =
∮

ũ2 + ṽ2

2
dx ; (64)
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Z2 =
∮ { 1

23/2

[(
e1

|b|3/2 + e2
|a|3/2 + e3

|b|√|a| + e4
|a|√|b|

)
ũ3+

+ (
e1

|b|3/2 − e2
|a|3/2 − e3

|b|√|a| + e4
|a|√|b|

)
ṽ3

]
+

+ 1

2

[(
e5|b| + e6|a| + e7√|ab| − d2

1
2|ab|

)
ũ2x+

+ (
e5|b| + e6|a| − e7√|ab| − d2

1
2|ab|

)
ṽ2x

]}
dx .

(65)

Proof First perturbative step: Using (45) and (61) one has Z1 = 0:

Z1 =
∫ 1

0
esLH0H1 ds

=
∫ 1

0

∮
d1√|ab|u(x + s)vx(x − s) dx ds

(61)= d1√|ab|
∮

u(x) dx

∮

vy(y) dy = 0,

where in the last step we used that the vy has zero average.

Additional term at second order: We need the expression of G1 to compute Z2.
Using (45) and (62) we have

G1 =
∫ 1

0
sesLH0H1 ds

= d1√|ab|
∫ 1

0

∮

s u(x + s)vx(x − s) dx ds

(62)= − d1

2
√|ab|

∮

uv dx .

The computation of functional derivatives yields:

δG1

δu
= − d1

2
√|ab|v ; δG1

δv
= − d1

2
√|ab|u ;

δH1

δu
= d1√|ab|vx ; δH1

δv
= − d1√|ab|ux ,
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and one finally obtains

{H1,G1} =
∮ (

δH1

δu
∂x

δG1

δu
− δH1

δv
∂x

δG1

δv

)

dx

= − d2
1

2|ab|
∮ (

v2x + u2x

)
dx .

Computation of the second-order normal form: Using (45), one has to time average
(with respect to the unperturbed flow of K0) the following expression:

H2 + 1

2
{H1 − Z1,G1} =

∮ { 1

23/2

[(
e1

|b|3/2 + e2
|a|3/2 + e3

|b|√|a| + e4
|a|√|b|

)
u3

+ (
e1

|b|3/2 − e2
|a|3/2 − e3

|b|√|a| + e4
|a|√|b|

)
v3 + ( 3e1

|b|3/2 − 3e2
|a|3/2 + e3

|b|√|a| − e4
|a|√|b|

)
u2v

+ ( 3e1
|b|3/2 + 3e2

|a|3/2 − e3
|b|√|a| − e4

|a|√|b|
)
uv2

]
+

+ 1

2

[(
e5|b| + e6|a| + e7√|ab| − d21

2|ab|
)
u2x + (

e5|b| + e6|a| − e7√|ab| − d21
2|ab|

)
v2x

]}
dx .

As a consequence of (61) and under the assumption of
∮

u dx = ∮
v dx = 0:

∫ 1

0

∮

u2(x + s)v(x − s) dx ds =
(∮

u2(x) dx

) (∮

v(x) dx

)

= 0 ;

∫ 1

0

∮

u(x + s)v2(x − s) dx ds =
(∮

u(x) dx

) (∮

v2(x) dx

)

= 0 .

Moreover

∫ 1

0

∮

u3(x + s) dx ds =
∮

u3(x) dx ;

∫ 1

0

∮

v3(x + s) dx ds =
∮

v3(x) dx ;

∫ 1

0

∮

u2x(x + s) dx ds =
∮

u2x(x) dx ;

∫ 1

0

∮

v2x(x + s) dx ds =
∮

v2x(x) dx ,

and this completes the proof. ��
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Remark 14 H̃λ is always the Hamiltonian of a pair of counter-propagating
Korteweg-de Vries equations (up to a small remainder), i.e. its vector field J∇H̃λ

is of the form (17). Such a result is somehow expected from, and in agreement
with the existing results treating particular cases in the literature, among which
those concerning the FPU problem (starting with the seminal work of Zabusky and
Kruskal [37]) and the propagation of surface water waves (where the first deduction
of the KdV equation goes back to Boussinesq [13]).

4.3 The Mechanical Case

For mechanical Hamiltonians of the form H = p2/2 + U , where U depends on
qx and its derivatives, starting from Proposition 6 and repeating the analysis made in
the general case, we perform the change of variables (q, p) 
→ (u, v), which yields

K0 =
∮

u2 + v2

2
dx , (66)

H2 =
∮ [ α1

23/2

(
u3 + 3u2v + 3uv2 + v3

)
+ α2

2

(
(ux)

2 + 2uxvx + (vx)2
)]

dx ,

(67)

H4 =
∮ {

β1

[
u4 + 4u3v + 6u2v2 + 4uv3 + v4

4

]

+ β2

[
(ux)

2 + 2uxvx + (vx)2

2

]
u + v√

2

+ β3

2
[(uxx)

2 + 2uxxvxx + (vxx)2]
}

dx .

(68)

Proposition 8 There exists a (formal) near-to-identity, canonical transformation
(u, v) 
→ (ũ, ṽ) mapping Hλ into

H̃λ = K0 + λ2Z2 + λ4Z4 + O(λ6) , (69)

where

K0 =
∮

ũ2 + ṽ2

2
dx , (70)

Z2 =
∮ [ α1

23/2
(ũ3 + ṽ3) + α2

2
(ũ2x + ṽ2x)

]
dx , (71)
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Z4 =
∮ {(β1

4
− 9α2

1

16

)
(ũ4 + ṽ4) +

( β2

23/2
− 3α1α2√

2

)[
ũ(ũx)

2 + ṽ(ṽx)2
]+

+
(β3

2
− α2

2

2

)[
(ũxx)

2 + (ṽxx)
2]}

dx +
(3β1

2
− 9α2

1

2

)
〈ũ2〉〈ṽ2〉+

+ 9α2
1

16

(〈ũ2〉2 + 〈ṽ2〉2)
.

(72)

Proof First perturbative step: using Proposition 2 we have

Z2 =
∫ 1

0
esLH0H2 ds

(61)=
∮ { α1

23/2
(u3 + v3) + α2

2
[(ux)

2 + (vx)2]
}

dx

+ 3α1

23/2
(〈u2〉〈v〉 + 〈u〉〈v2〉) ;

here the last term vanishes because 〈u〉 = ∮
u dx = 0 and 〈v〉 = ∮

v dx = 0.

Generator of the first order transformation:

G2 =
∫ 1

0
sesLH0 (H2 − Z2) ds

=
∫ 1

0

∮

s
{ 3α1

23/2
[
u2(x + s)v(x − s) + u(x + s)v2(x − s)

]

+ α2ux(x + s)vx(x − s)
}

dx ds

(62)= 3α1

25/3
(〈u2〉〈v〉 + 〈u〉〈v2〉) + 3α1

25/2

( ∮

v2∂−1
x u dx +

∮

v∂−1
x u2 dx

)

+ α2

2

∮

uvx dx

= 3α1

25/2

( ∮

v2∂−1
x u dx +

∮

v∂−1
x u2 dx

)
+ α2

2

∮

uvx dx ,

where in the last step we used 〈u〉 = 0 and 〈v〉 = 0. Making use of the functional
derivatives

δG1

δu
= 3α1

23/2

[
− u∂−1

x v − 1

2
∂−1
x v2

]
+ α2

2
vx ;

δG1

δv
= 3α1

23/2

[1

2
∂−1
x u2 + v∂−1

x u
]

− α2

2
ux ;
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δ(H2 − Z2)

δu
= 3α1

23/2
[
2uv + v2

] − α2vxx ;

δ(H2 − Z2)

δv
= 3α1

23/2
[
u2 + 2uv

] − α2uxx ,

we can compute the Poisson bracket

{H2 − Z2,G2} =
∮ [δ(H2 − Z2)

δu
∂x

δG2

δu
− δ(H2 − Z2)

δv
∂x

δG2

δv

]
dx .

Since we do not need its full expression, we can use (61) to simplify computations
and consider only those terms that do not vanish after taking the average with respect
to the flow of K0. We obtain

〈
{H2 − Z2,G2}

〉

0
=

∮ [
− 9α2

1

16

(
u4 + v4

) − 3α1α2√
2

(
u2xu + v2xv

)+

− α2
2

2

(
(uxx)

2 + (vxx)
2)]

dx + 9α2
1

16

(〈u2〉2 + 〈v2〉2)

− 9α2
1

2
〈u2〉〈v2〉 ,

whereas

〈H4〉0 =
∮ {β1

4

(
u4 + v4

) + β2

23/2
[
u(ux)2 + v(vx)2

] + β3

2

[
(uxx)

2 + (vxx)
2]}

dx

+ 3β1

2
〈u2〉〈v2〉 .

Summing the right-hand sides of the two previous equations we get

Z4 =
∮ {(β1

4
− 9α2

1

16

)
(u4 + v4) +

( β2

23/2
− 3α1α2√

2

)[
u(ux)2 + v(vx)2

]+

+
(β3

2
− α2

2

2

)[
(uxx)

2 + (vxx)
2]}

dx +
(3β1

2
− 9α2

1

2

)
〈u2〉〈v2〉

+ 9α2
1

16

(〈u2〉2 + 〈v2〉2)
.

��
Here, as in the generic case, Z2 is in the KdV hierarchy, i.e. the vector field
J∇(K̃0+λ2Z2) has the form of the right-hand side of (17). On the other hand,Z4 is
not, in general, in the KdV hierarchy: the two components of its vector field J∇Z4
are not proportional to κ5 (as defined in (20)), which is due to the impossibility to fit
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all the required constraints on its parameters, in general. However, it is still possible
to get a dynamics within the KdV hierarchy to order λ4 by applying the Kodama
normalisation procedure to the vector field J∇(K̃0 + λ2Z2 + λ4Z4). Although
such a normalisation is noncanonical, in principle, it actually yields a system of
equations in the form (18). Neglecting the remainder, these equations turn out to
be Hamiltonian a fortiori, with the correct Gardner-Poisson tensor (56). The deep
reason behind this fact is far from being deeply understood, at present.

Concrete examples are discussed in the next Sect. 5, where we also provide an
explicit example of Kodama transformation.

5 Applications

5.1 The Fermi-Pasta-Ulam Problem

The Fermi-Pasta-Ulam (FPU) chain consists of N identical (unit) masses connected
by nonlinear springs to their nearest neighbours. The dynamics is generated by the
Hamiltonian

H =
∑

j∈ZN

[
p2

j

2
+ φ(qj+1 − qj )

]

, (73)

where ZN := Z/(NZ), and φ is the potential

φ(z) := z2

2
+ α

z3

3
+ β

z4

4
+ O(z5) , (74)

and α,β,. . . are the parameters measuring the strength of the nonlinear terms. One
usually refers to the α-model if α is the only non-zero parameter; to the β-model if
β is the only non-zero parameter; to the α + β-model if both α and β are non-zero,
and to the generalised FPU model if the lowest degree of the nonlinearity is greater
than or equal 5.

When all the parameters in the nonlinearity are set to zero, the Hamiltonian (73)
reduces to that of a harmonic chain, where particles interact through linear forces
only. The latter system is integrable in the sense of Liouville, and the Hamiltonian
is diagonalised by the (discrete) Fourier transform

pj = 1√
2N

N∑

k=−N

p̂ke
ıπ

jk
N , (75)

and similarly for qj . The integrals of motion are the energies of the Fourier modes

Ek = |p̂k|2 + ω2
k |q̂k|2

2
, k = −N, . . . , N − 1 , (76)
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where ωk := 2
∣
∣ sin

(
kπ
2N

)∣
∣ are the proper frequencies of oscillation. Observe that

Ek = E−k , for all k.
The nonlinear model (73) was introduced by Fermi, Pasta and Ulam (FPU),

supported by Tsingou [18], with the purpose of analysing its thermalisation process.
The authors expected that the interaction between the Fourier modes due to the
nonlinear terms, and the consequent energy sharing between them, would have
brought the system to reach the thermal equilibrium on a short time scale. In
particular, as a detector of thermal equilibrium, they expected to observe the
“equipartition of energy”, i.e. a final state of the system where, on time average,
all Fourier energies have almost the same value, i.e. Ek � E/N , where E is the
total energy. Their numerical simulations showed instead a completely different
scenario: by initially exciting the lowest frequency mode (k = 1), within their
available computation time, energy sharing was observed to effectively take place
only among the first few modes and, instead of a continuous trend to equipartition,
the dynamics showed an almost recurrent behaviour. The first explanation of the
latter phenomenon goes back to Zabusky and Kruskal [37], who approximated
the traveling wave dynamics of the system by the KdV equation, and based their
argument on the recurrent behaviour of its solitons. On the Hamiltonian side, the
first correct computation of the resonant normal form of the lattice system, in action
angle-variables, is due to [35]. Such a construction was only later recognised to
include that of Zabusky and Kruskal [8, 10].

Nowadays, it is well known that a key role in the explanation of the FPU
phenomenon, or paradox, is played by the integrability of the resonant normal form
either of the lattice system or of its infinite-dimensional approximation (we refer to
[4, 19] and the references therein). Indeed, the KdV equation admits a complete set
of (infinitely many) integrals of motion, whose conservation prevents a fast energy
sharing among the Fourier modes. Moreover, the preservation of the analyticity of
the initial condition causes an exponential decay of its Fourier energies [28]. These
two aspects resemble very much the observations in the FPU experiment.

In fact, the connection FPU-KdV can be made rigorous using the normal form
construction of Theorem 2, as follows. As a preliminary step, we perform the
canonical change of variables (q, p) 
→ (s, r) defined by the generating function

F(q, s) =
∑

j∈ZN

sj (qj − qj+1) , (77)

which gives

rj = − ∂F

∂sj
= qj+1 − qj ,

pj = ∂F

∂qj

= sj − sj−1 .

(78)
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In terms of the new variables (s, r) the Hamiltonian (73) reads

H =
∑

j∈ZN

[
(sj+1 − sj )

2

2
+ φ(rj )

]

, (79)

whose equations of motion are

ṡj = ∂H

∂rj
= φ′(rj ) ,

ṙj = −∂H

∂sj
= sj+1 + sj−1 − 2sj .

(80)

Remark 15 The periodicity of the qj implies
∑

j∈ZN
rj = 0, whereas the periodic-

ity of the sj implies
∑

j∈ZN
pj = 0.

We now assume the existence of a pair of analytic functions R, S : T × R → R

such that

sj (t) =
√

ε

h
S(x, τ )|x=hj,τ=ht

rj (t) = √
εR(x, τ )|x=hj,τ=ht .

h := 1

N
. (81)

Notice that the choice of the functions R and S is not unique. For example,
one can add to them any linear combination of the form

∑
m∈Z cm sin(πmx/h),

which vanishes at the lattice sites x = hj . Having in mind long-wavelength
initial conditions, a natural choice consists in restricting R and S to the Fourier
polynomials supported on the first few harmonics at τ = 0, and in regarding the
discrete system as a sampling of the continuous one at any τ > 0. This is allowed
by the following proposition.

Proposition 9 Consider the Hamiltonian functional

H [S,R] =
∮ [1

ε
φ(

√
εR(x, τ )) − 1

2
S(x, τ )ΔhS(x, τ )

]
dx , (82)

where

Δh := 4

h2
sinh2

(
h

2
∂x

)

= ∂2x + h2

12
∂4x + O(h4) (83)

is the discrete Laplacian. Then, its Hamilton equations restricted to the lattice
coincide with the FPU equations (80).
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Proof Considering (S,R) as a canonical pair coordinate-momentum, one has

Sτ =δH

δR
= 1√

ε
φ′(

√
εR) ,

Rτ = − δH

δS
= ΔhS .

(84)

The latter equations, restricted to the lattice, i.e. to the points x = hj , coincide with
those obtained by substituting (81) into (80). ��

One thus embeds the dynamics of the FPU lattice (80) within that of the infinite-
dimensional Hamiltonian system (84). The latter consists of a system of nonlinear
dispersive Hamiltonian PDEs for any expansion to finite order of the discrete
Laplacian (83). Moreover, making use of the latter expansion and of the explicit
expression (74) of φ, one observes that the Hamiltonian (82) has the grading of
Definition 5 with

λ ∼ √
ε ∼ h2 . (85)

Let us see in which sense KdV equation allows us to explain rigorously, in
the case of the α-chain, the FPU phenomenon, namely the fact that, if one low-
frequency mode is initially excited, then the energy quickly flows to a small packet
of modes whose energy, on time average, decreases exponentially with the mode
index. The main result is conveniently formulated in terms of the quantities

κ := k

N
; Eκ := Ek

N
, (86)

denoting the specific mode index (or wave number) and the corresponding specific
energy, respectively. We are interested in the evolution of initial data supported on
one harmonic mode of long wavelength, i.e. specific index κ0 = k0/N  1.

Theorem 3 (Bambusi-Ponno [8]) Consider an initial condition of the form

Eκ0(0) = C0μ
4, Eκ(0) = 0, ∀κ �= κ0 , (87)

where C0 is any fixed constant and μ := κ0 := k0/N  1.
Then, for any fixed time Tf there exist positive constants μ∗, σ , C1 and C2

(dependent on C0 and Tf ) such that, for all κ , μ < μ∗ and |t| ≤ Tf /μ3

(i)

Eκ(t) ≤ μ4C1e
−σκ/μ ; (88)
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(ii) there exists a sequence of almost periodic functions {Fn(t)}n∈N and an associ-
ated specific sequence

Fκ = μ4Fn , if κ = nκ0 ; Fκ = 0 otherwise , (89)

such that

|Eκ(t) − Fκ(t)| ≤ C2μ
5 . (90)

The proof of this theorem is based on the fact that a solution of the KdV equation
with an analytic initial datum on the torus remains analytic for all times [28]. In
particular, analyticity implies the exponential decay of Fourier coefficients, which
in turn implies the exponential decay of the Fourier coefficients for the FPU system.

On the other hand, technical difficulties arise when comparing the dynamics of
the discrete system with the dynamics of the continuous one, due to the contribution
of the singular remainder of the discrete Laplacian that contains higher-order
derivatives. The latter problem is overcome by a combined use of the analyticity
property of the KdV flow, closeness to the identity of the canonical transformation
and Grönwall lemma [8].

However, when comparing the above result with the numerical simulations and
with the recent results on relating the FPU dynamics to that of the Toda lattice [5],
one realises that it is not optimal: the time scale of closeness to the KdV dynamics
numerically observed turns out to be longer than t ∼ μ−3 ∼ ε−3/4. In fact, there
is an actual hope to improve the latter result which rests on the fact that the normal
form of the FPU problem is in the KdV hierarchy not only to the first but also to
the second perturbative order. Then, an extension of Theorem 3 could work with a
second-order normal form transformation yielding the (presumably) optimal result
of localisation of the Fourier spectrum on time scales ∼ μ5 ∼ ε−5/4.

Within this context, we present below the normal form construction of the FPU
problem, including the Kodama transformation.

Proposition 10 The Hamiltonian (82) can be mapped into the normal form

H̃ = K0 + Z1 + Z2 + . . . , (91)

with

K0 =
∮

ũ2 + ṽ2

2
dx (92)

Z1 = h2

4!2
∮ [

4α
√
2ε

h2

(
ũ3 + ṽ3

) + ũũxx + ṽṽxx

]

dx (93)

Z2 = 3
20

h4

(4!)2
∮ [(

β

α2 − 1
2

)
240α2ε

h4
(ũ4 + ṽ4) + 20α

√
2ε

h2

(
ũ2ũxx + ṽ2ṽxx

)
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+(ũxx)
2 + (ṽxx)

2
]
dx +

(
3βε
8 − α2ε

4

)( ∮

ũ2 dx
)( ∮

ṽ2 dx
)

+

+α2ε

32

(
〈ũ2〉2 + 〈ṽ2〉2

)
(94)

Proof By introducing the Riemann variables

u := Sx + R√
2

; v := Sx − R√
2

, (95)

the result is actually a Corollary of Proposition 8, with the substitutions α1 = α
√

ε

6
√
2
,

α2 = − h2

4!2 and β1 = βε
4 . ��

Remark 16 The equations of motion of K0 + Z1 are those of two counter-
propagating KdV equations, i.e. of the form (17), for any α. On the other hand,
the equations of motion of K0 + Z1 + Z2 are not in the KdV hierarchy, i.e. in the
form (18), unless the special condition β = 5α2/6 holds.

In order to bring the continuous FPU equations of motion into the KdV hierarchy
form (18), one must look for a suitable Kodama transformation, as sketched in
Remark 2 [20].

Proposition 11 The Kodama transformation

ũ = w + g(w) ; ṽ = z + g(z) , (96)

where

g(w) :=h2

4!
(
7

2
− 9

2

β

α2

)

wxx + α
√

ε√
2

(
13

12
− 3

2

β

α2

) (

w2 −
∮

w2 dx

)

+

−1

6

(

wx∂−1
x w −

∮

w2 dx

)

,

(97)

maps the equations of motion of the Hamiltonian normal form (91) into the
integrable KdV form (18).

Proof The proof consists in a long, though direct computation. Details can be found
in [20]. Observe that, according to the grading (85), g ∼ λ, which does not affect
the first order normal form. ��

A natural question arises now, namely whether it is possible to construct a normal
form transformation, including the Kodama procedure, conjugating the continuous
FPU equations to those of the KdV hierarchy to perturbative orders higher than the
second one. This is an open problem for initial data generically supported on lower
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modes, but it has recently been addressed for initial data close to the traveling wave.
In [23] it is proved that for almost-traveling waves, the conjugation to the third-
order works only if the parameters correspond to a curve in the space of parameters
containing the Toda lattice.

In general, it is expected that the FPU normal form is in the KdV hierarchy to a
finite perturbative order, depending on the model. This is easily seen by considering
the family of generalised FPU-systems [9] defined by a Hamiltonian of the form
(73) with

φ(z) = z2

2
+ zp

p
, p ≥ 3 . (98)

Instead of fixing a model and going on with the perturbative order, we here consider
how the first order normal form depends on the exponent p. The Hamiltonian (82)
with potential (98) reads

H =
∮ [R2

2
+ γ ε

p−2
2

Rp

p
+ 1

2
(Sx)2 − h2

12
(Sxx)

2
]
dx + O(h4) . (99)

Passing to the (u, v) variables (95), one gets H = K0 + H1, where

K0 =
∮

u2 + v2

2
dx , (100)

H1 =
∮ [

γ ε
p−2
2

(u − v)p

2p/2p
− h2

24

(
(ux)

2 + 2uxvx + (vx)2
)
]

dx . (101)

Averaging H1 (using (61)) one computes the normal form H̃ = K0 + Z1 + · · · of
the system, where

Z1 = 〈H1〉 =
∮

γ ε
p−2
2

2p/2p

(
up + (−v)p

) − h2

24

(
(ux)2 + (vx)2

)
dx

+ γ ε
p−2
2

2p/2p

p−1∑

j=1

(−1)j
(

p

j

)( ∮

up−j dx
)( ∮

vj dx
)

.

(102)

For p = 3 one finds that K0 + Z1 is the Hamiltonian of two uncoupled KdV
equations, as expected. For p = 4, the so-called β-model, K0 + Z1 is the
Hamiltonian of two uncoupled modified KdV (mKdV) equations. Thus, the first
order normal form is integrable for p = 3, 4. On the other hand, for p ≥ 5 the
first order normal form Hamiltonian is that of two generalised, nonintegrable KdV
equations, that are also nonlinearly coupled for p ≥ 6. For this class of models the
integrability of the normal form, and the consequent FPU phenomenon of energy
localisation due to closeness to integrability, are lost to first order if the degree of
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nonlinearity is high enough (p ≥ 5). More than this, in [9] it is suggested that the
blow-up of solutions characterising the nonintegrable KdV equations might play a
relevant role in the problem.

As a last point, we stress that the method of infinite-dimensional perturbation
theory allows to analyse the FPU system, treated in Proposition 10, in the singular
limit h → 0 with fixed, small specific energy ε. Such a limit is justified on the short
term, where dispersion is expected to play a minor role with respect to nonlinearity,
which explains why the normal modes start to effectively share their energy. Taking
the limit h → 0, at fixed ε, of the FPU terms (92), (93) and (94), one finds

H = K0 + Z1 + Z2 + . . . (103)

with

K0 =
∮

u2 + v2

2
dx , (104)

Z1 = α
√

ε

2
√
2

∮
u3 + v3

3
dx , (105)

Z2 =
( β

α2 − 1

2

)α2ε

4

∮
u4 + v4

4
dx . (106)

The equations of motion associated with this normal form Hamiltonian consist of a
pair of uncoupled, generalised Burgers equations, whose solution displays a gradient
catastrophe at a finite shock time ts . It has recently been proved that the Fourier
energy spectrum of such a system displays a power law decay characterised by the
universal exponent−8/3 exactly at ts . Such a prediction fits very well the numerical
spectrum of the FPU system [21]. Of course, the dynamics on times longer than
ts cannot be described in this limit and dispersive effects must be re-included, in
agreement with the grading (85).

5.2 Water Waves

Consider an ideal fluid occupying, at rest, the domain

Ω0,L := {
(x, z) ∈ [0, L] × R : −h < z < 0

}
, (107)

with L > 0. We study the evolution of the free surface under the action of gravity, in
the irrotational regime. Thus, given a periodic function η : [0, L] → R, we define
the domain

Ωη,L := {
(x, z) ∈ [0, L] × R : −h < z < η(x)

}
. (108)
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Irrotationality makes it possible to describe the velocity of the fluid u as gradient of
a function called velocity potential by u = ∇φ. This problem admits a Hamiltonian
formulation [14, 15, 38] and the conjugated variables are the wave profile η(x) and
the trace of the velocity potential at the free surface:

ψ(x) := φ(x, η(x)) . (109)

The Hamiltonian of the system is

H(η,ψ) =
∮ (1

2
gη2 + 1

2
ψG(η)ψ

)
dx, (110)

where G(η) is the Dirichlet-to-Neumann operator defined as follows. Given a
function ψ(x) and consider the boundary value problem

Δφ = 0 , (x, z) ∈ Ωη,L (111)

φz

∣
∣
∣
z=−h

= 0 (112)

φ(0) = φ(L) (113)

φ

∣
∣
∣
z=η(x)

= ψ (114)

and let φ be its solution. Then

G(η)ψ :=
√
1 + η2x∂nφ

∣
∣
z=η(x)

= (φz − ηxφx)
∣
∣
z=η(x)

, (115)

where ∂n denotes the derivative in the direction normal to z = η(x).
We are interested in solutions of the form

η(x) = μ2h3
√
2η̃(μx) , ψ(x) = μ

√
2ghh2ψ̃(μx) , μ = 1/L  1 ,

(116)

that corresponds to a canonical transformation when rescaling time to

t̃ = t

μ
√

gh
(117)

and the physical space becomes the torus of unitary length.
Note that the dependence on η of the Dirichlet-to-Neumann operator causes

the Hamiltonian (110) not to fall within the class of mechanical Hamiltonians of
Sect. 4.3.
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The small parameter of the theory is λ = (hμ)2. Expanding the Hamiltonian in
λ one gets1

H = H0 + λH1 + λ2H2 + O(λ3) (118)

with H0 being in the same form of (92) but with renamed variables:

H0 =
∮

η̃2 + ψ̃2
y

2
dy , (119)

H1 = 1

2

∮ (
− 1

3
ψ̃2

yy + √
2η̃ψ̃2

y

)
dy , (120)

H2 = 1

2

∮ ( 2

15
ψ̃2

yyy − √
2η̃ψ̃2

yy

)
dy . (121)

Note that, the Hamiltonian contains terms with the product of η̃ and ψ̃ and thus
does not fit the definition of mechanical Hamiltonian given above. Anyway, as for
the FPU problem, it is convenient to use characteristic variables (u, v) defined as

η̃(y, t) = u(y, t) + v(y, t)√
2

, (122)

ψ̃y(y, t) = u(y, t) − v(y, t)√
2

(123)

we then obtain

K0 =
∮

u2 + v2

2
dy , (124)

H1 =
∮ (

− 1

12
(u2y + v2y) + u3 + v3

4
+ uyvy

6
− u2v + uv2

4

)
dy , (125)

H2 =
∮ (1

2

u2yy + v2yy

15
− 1

4
(uu2y + vv2y ) − 1

15
uyyvyy (126)

−1

4
(uv2y − 2uuyvy + vu2y − 2vuyvy)

)
dy . (127)

1 This step is far from being a trivial Taylor expansion as it involves the asymptotic expansion of
the Dirichlet-to-Neumann operator (see [3] for details).
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Applying the techniques of Theorem 2 one has

Proposition 12 Within the normal form procedure outlined above, Hamiltonian
(118) can be mapped into the normal form

H̃ = K̃0 + λZ1 + λ2Z2 + . . . (128)

with

Z1 =
∮ [

ũ3 + ṽ3

4
− 1

12

(
ũ2y + ṽ2y

)
]

dy , (129)

Z2 =
∮ [

1

64

(
ũ4 + ṽ4

) + 7

48

(
ũ2ũyy + ṽ2ṽyy

) + 29

720

(
ũ2yy + ṽ2yy

)
]

dy

+1

8
〈ũ2〉〈ṽ2〉 . (130)

Proof This result is proved computing normal form Proposition 8.

First perturbative step: We use (61) to average H1 along the flow of H0 obtaining
the expression for Z1 in (129). The Hamiltonian generating the canonical transfor-
mation can be computed using (62):

G1 = −
∮ [

1

12
vyu + 1

8
u2∂−1

y v − 1

8
v2∂−1

y u

]

dy .

We can therefore compute the L2-gradient of G1 and of H1 − Z1 obtaining

δG1

δu
= − 1

12
vy − 1

4
u∂−1

y v − 1

8
∂−1
y v2 ,

δG1

δv
= 1

12
uy + 1

8
∂−1
y u2 + 1

4
v∂−1

y u ,

δ(H1 − Z1)

δu
= −1

6
vyy − 1

2
uv − 1

4
v2 ,

δ(H1 − Z1)

δv
= −1

6
uyy − 1

2
uv − 1

4
u2 .

Second perturbative step:We use (61) to average H2 and {H1 − Z1,G1} obtaining:
〈{H1,G1}

〉
0 = 1

8

∮ [1

9
(u2yy + v2yy) + 1

3
(u2uyy + v2vyy) + 1

4
(u4 + v4)

]
dy

1

4
〈u2〉〈v2〉 ,
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〈H2〉0 =
∮ [u2yy + v2yy

30
+ 1

8

(
u2uyy + v2vyy

)]
dy .

We obtain Z2 = 〈H2〉0 + 1
2 〈{H1,G1}〉0 that is precisely (130). ��

As for equations of the FPU lattice, these Hamiltonians are not in the Korteweg-
de Vries hierarchy. Exactly as in the previous case, Kodama’s theory solves the
problem and with a close-to-identity change of variables maps the Hamiltonian into:

HNF(u, v) = K0(u) + λK1(u) + λ2c2K2(u) + K0(v) + λK1(v) + λ2c2K2(v)

(131)

with c2 being some explicit constant.
In case μ is a small free parameter not related to L and the water waves are

studied on the whole real line (that is, x ∈ R and thus, imposing limx→∞ φ(x) = 0
instead of φ(0) = φ(L) in (113)), the following result holds

Theorem 4 (Bambusi [3]) For any s′, there exists λ∗ > 0 and s, s′′, s.t., if 0 <

λ < λ∗, then there exists a map Tλ : Bs
1 → Ws ′′,1 × Ws ′′,1, with the following

properties

(i) sup(u,v)∈Bs
1
‖Tλ(u, v) − (u, v)‖

Ws′′ ,1×Ws′′ ,1 ≤ Cλ,

(ii) Let Iλ be an interval containing the origin and z(·) = (u(·), v(·)) ∈ C1(Iλ; Bs
1)

be a solution of the Hamiltonian system (131) with c2 = 299
389 define

za = (ua, va) := Tλ(u, v) . (132)

Then there exists R ∈ C1(Iλ,Ws ′,2 × Ws ′,2) s.t. one has

ża = J∇H(za(t)) + λ3R(t) ∀t ∈ Iλ , (133)

where H is the Hamiltonian of water waves problem in the variables u and v.

An interesting non-trivial dynamical information one can obtain from this
Theorem concerns the goodness of the approximation of the normal form dynamics.
That is, for smooth enough initial data, it is possible to go back to the original non-
scaled variables and to get the estimate on the wave profile

sup
|t |≤T ∗/μ3

√
gh

‖η(t) − ηa(t)‖L∞ ≤ Cμ6 . (134)

Note that the difference between wave profiles can be proved to be small only for
times in which the second perturbative correction is negligible. Thus, as for the FPU
system, an interesting open problem is the understanding which results can hold for
larger time scales.

We are confident that these two results can be proved also in the periodic setting
presented above.
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6 Conclusions and Open Problems

In the framework of Hamiltonian field theory, the continuum limit of the FPU chain
for long-wavelength excitations and the Hamiltonian of water waves belong to the
same wider class of perturbations of the wave equation. This is not the case of other
lattice models, such as the Klein-Gordon, for which one has to take into account the
presence of the mass term.

Recently, the analysis of lattice model using the machinery of water waves has
received a certain interest especially for systems in two spatial dimensions [22, 27]
or for the analysis of higher-order normal forms for one-dimensional systems [23].

As a comparison, water waves are now a hot topic in research. The main goals
in the field are results on well-posedness as well as regularity result for solutions
or existence of quasi periodic or traveling wave solutions (see e.g. the recent results
[2, 11, 12, 17]).

In this sense, many open questions remain open and can hopefully be addressed
in the next future:

• The analysis at second order performed in Subsec. 5.1 does not allow us to
conclude that the dynamics of the integrable system is close to the dynamics of
the original system. Actually, it is known how to obtain a result on the dynamics,
but only over times over which the effects of the second-order term is invisible.
One of the open major problems is to understand how to go beyond the time scale
of Theorem 3.

• From the point of view of statistical physics, the regime on which Theorem 3
is proved is not significant as the specific energy of the system ε ∼ 1/N4. The
thermodynamic limit would require ε to be constant and independent of the size
of the system. This is read, in terms of the normal form construction, as a zero-
dispersion limit of the Korteweg-de Vries equation. It would be interesting to
study the effect of this limit.

• Last, small attention has been given to the analysis of the FPU model when the
dispersion is neglected (see [34]). An interesting question to address would be
if Eqs. (103)–(106) can be used to explain some properties of the dynamics,
especially for short time scales, low Fourier modes or in the regime of high
specific energy.
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