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Abstract In this note, we give an alternative proof of the theorem on soliton
selection for small-energy solutions of nonlinear Schrödinger equations (NLS)
studied in (Cuccagna and Maeda, Anal PDE 8(6):1289–1349, 2015; Cuccagna and
Maeda, Ann PDE 7:16, 2021). As in (Cuccagna and Maeda, Ann PDE 7:16, 2021),
we use the notion of refined profile, but unlike in (Cuccagna and Maeda, Ann PDE
7:16, 2021), we do not modify the modulation coordinates and do not search for
Darboux coordinates.

1 Introduction

In this note, we give an alternative and simplified proof of the selection of small-
energy standing waves for the nonlinear Schrödinger equation (NLS)

i∂tu = Hu + g(|u|2)u, (t, x) ∈ R
1+3, (1)

where H := −Δ + V is a Schrödinger operator with V ∈ S(R3,R) (Schwarz
function) and g ∈ C∞(R,R) satisfies g(0) = 0 and the growth condition:

∀n ∈ N ∪ {0}, ∃Cn > 0, |g(n)(s)| ≤ Cn〈s〉2−n where 〈s〉 := (1 + |s|2)1/2. (2)

We consider the Cauchy problem of NLS (1) with the initial condition u(0) =
u0 ∈ H 1(R3,C). It is well known that the NLS (1) is locally well posed (LWP)
in H 1 := H 1(R3,C), see, e.g., [2, 7]. It is also easy to conclude, by mass and
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energy conservation, that for small initial data u0 ∈ H 1 the corresponding solution
is globally defined.

The aim of this chapter is to revisit the study of asymptotic behavior of small (in
H 1) solutions when the Schrödinger operator H has several simple eigenvalues. In
such situation, it has been proved that the solutions decouple into a soliton and a
dispersive wave [3, 11, 13]. More recently, in [4], we have introduced the notion of
refined profile, which simplifies significantly the proof of the result in [3]. In this
note, we exploit the notion of refined profile of [4], but we give an alternative proof
of the result in [4] that does not exploit directly the Hamiltonian structure of the
NLS. In this sense, in this chapter, we are closer in spirit to Soffer and Weinstein
[11] and Tsai and Yau [13], but our proof is at the same time simpler and with
stronger results.

To state our main result precisely, we introduce some notation and several
assumptions. The following two assumptions for the Schrödinger operator H hold
for generic V .

Assumption 1 0 is neither an eigenvalue nor a resonance of H . 
�
Assumption 2 There exists N ≥ 2 s.t.

σd(H) = {ωj | j = 1, · · · , N}, with ω1 < · · · < ωN < 0,

where σd(H) is the set of discrete spectra of H . Moreover, we assume all ωj are
simple and

∀m ∈ Z
N \ {0}, m · ω = 0, (3)

where ω := (ω1, · · · , ωN). We set φj to be the eigenfunction of H associated to the
eigenvalue ωj satisfying ‖φj‖L2 = 1. We also set φ = (φ1, · · · , φN). 
�
Remark 1 The cases N = 0, 1 are easier and are not treated it in this chapter.
Unfortunately, Assumption (2) excludes radial potentials V (r), for r = |x|, where
in general we should expect eigenvalues with multiplicity higher than one.

As it is well known, the φj ’s are smooth and decay exponentially. For s ≥ 0, γ ≥
0, we set

Hs
γ := {u ∈ Hs | ‖u‖Hs

γ
:= ‖ cosh(γ x)u‖Hs < ∞}.

The following is well known.

Proposition 1 There exists γ0 > 0 s.t. for all 1 ≤ j ≤ N; we have φj ∈ ∩s≥0H
s
γ0
.

Using γ0 > 0, we set

Σs := Hs
γ0

if s ≥ 0, Σs := (H−s
γ0

)∗ if s < 0,

Σ0− := (Σ0)∗ and Σ∞ := ∩s≥0Σ
s.
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We will not consider any topology in Σ∞, and we will only consider it as a set.
In order to introduce the notion of refined profile, we need the following

combinatorial setup, exactly that of [4].
We start with the following standard basis of R

N , which we view as “non-
resonant” indices,

NR0 := {ej | j = 1, · · · , N}, ej := (δ1j , · · · , δNj ) ∈ Z
N,

δij the Kronecker delta.
(4)

More generally, the sets of resonant and non-resonant indices R, NR, are

R := {m ∈ Z
N |

∑
m = 1, ω · m > 0},

NR := {m ∈ Z
N |

∑
m = 1, ω · m < 0},

(5)

where
∑

m := ∑N
j=1 mj for m = (m1, · · · ,mN) ∈ Z

N .

From Assumption 2, it is clear that {m ∈ Z
N | ∑

m = 1} = R ∪ NR and
NR0 ⊂ NR. For m = (m1, · · · ,mN) ∈ Z

N , we define

|m| := (|m1|, · · · , |mN |) ∈ Z
N, ‖m‖ :=

∑
|m| =

N∑

j=1

|mj | (6)

and introduce partial orders � and ≺ by

m � n ⇔def ∀j ∈ {1, · · · , N}, mj ≤ nj ,

m ≺ n ⇔def m � n and m = n,
(7)

where n = (n1, · · · , nN ). We define the minimal resonant indices by

Rmin := {m ∈ R |  ∃n ∈ R s.t. |n| ≺ |m|}. (8)

We also consider NR1, formed by the non-resonant indices not larger than resonant
indices:

NR1 := {m ∈ NR | ∀n ∈ Rmin, |n| ≺ |m|}. (9)

Both Rmin and NR1 are finite sets, see [4] for the elementary proof.
We now introduce the functions {Gm}m∈Rmin ⊂ Σ∞ that are crucial in our

analysis. For m ∈ NR1, we inductively define φ̃m(0) and gm(0) by

φ̃ej (0) := φj , gej (0) = 0, j = 1, · · · , N, (10)
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and, for m ∈ NR1 \ NR0, by

φ̃m(0) := −(H − m · ω)−1gm(0), (11)

gm(0) :=
∞∑

m=1

1

m!g
(m)(0)

∑

(m1,··· ,m2m+1)∈A(m,m)

φ̃m1(0) · · · φ̃m2m+1(0), (12)

where

A(m, m) :=
{
{mj }2m+1

j=1 ∈ (NR1)
2m+1 |

m∑

j=0

m2j+1 −
m∑

j=1

m2j = m,

2m+1∑

j=0

|mj | = |m|
}
.

(13)

Remark 2 For each m ≥ 1 and m ∈ NR1, A(m, m) is a finite set. Furthermore, for
sufficiently large m, we have A(m, m) = ∅. Thus, even though we are expressing
gm(0) in (12) by a series, the sum is finite.

For m ∈ Rmin, we define Gm by

Gm :=
∞∑

m=1

1

m!g
(m)(0)

∑

(m1,··· ,m2m+1)∈A(m,m)

φ̃m1(0) · · · φ̃m2m+1(0). (14)

Remark 3 gm(0) and Gm are defined similarly. We are using a different notation to
emphasize that gm(0) has m ∈ NR1, while Gm has m ∈ Rmin.

The following is the nonlinear Fermi Golden Rule (FGR) assumption essential
in our analysis.

Assumption 3 For all m ∈ Rmin, we assume

∫

|k|2=m·ω
|Ĝm(k)|2 dS = 0, (15)

where Ĝm is the distorted Fourier transform associated to H . 
�
Remark 4 In the case N = 2 and ω1 + 2(ω2 −ω1) > 0, we have Gm = g′(0)φ1φ

2
2 ,

which corresponds to the condition in Tsai and Yau [14], based on the explicit
formulas in Buslaev and Perelman [1] and Soffer and Weinstein [10]. These works
are related to Sigal [9]. More general situations are considered in [3], where however
the Gm are obtained after a certain number of coordinate changes, so that the relation
of the Gm and the φj ’s is not discussed in [3] and is not easy to track.
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In [4], it is proved that for a generic nonlinear function g, the condition (15) is a
consequence of the following simpler one, which is similar to (11.6) in Sigal [9],

∫

|k|2=m·ω
|φ̂m(k)|2 dS = 0 for all m ∈ Rmin, (16)

using again the distorted Fourier transform and where φm := ∏
j=1,...,N φ

mj

j .
Specifically, in [4], the following is proved.

Proposition 2 Let L = sup{‖m‖ − 1

2
: m ∈ Rmin}, and suppose that the operator

H satisfies condition (16). Then there exists an open dense subset Ω of RL s.t. if
(g′(0), . . . ., g(L)(0)) ∈ Ω such that Assumption 3 is true for (1).

For z = (z1, · · · , zN) ∈ C
N , m = (m1, · · · ,mN) ∈ Z

N , we define

zm := z
(m1)
1 · · · z(mN)

N ∈ C, where z(m) :=
{

zm m ≥ 0

z̄−m m < 0,
and (17)

|z|k := (|z1|k, · · · , |zN |k) ∈ R
N, ‖z‖ :=

∑
|z| =

N∑

j=1

|zj | ∈ R. (18)

We will use the following notation for a ball in a Banach space B:

BB(u, r) := {v ∈ B | ‖v − u‖B < r}. (19)

The refined profile is of the form φ(z) = z · φ + o(‖z‖) and is defined by the
following proposition, proved in [4].

Proposition 3 (Refined Profile) For any s ≥ 0, there exist δs > 0 and Cs > 0 s.t.
δs is nonincreasing w.r.t. s ≥ 0, and there exist

{ψm}m∈NR1 ∈ C∞(BRN (0, δ2
s ), (Σ

s)�NR1), � (·) ∈ C∞(BRN (0, δ2
s ),R

N)

andR ∈ C∞(BCN (0, δs),Σ
s),

s.t. � (0, · · · , 0) = ω, ψm(0) = 0 for all m ∈ NR1 and

‖R(z)‖Σs ≤ Cs‖z‖2
∑

m∈Rmin

|zm|, (20)

where BX(a, r) := {u ∈ X | ‖u − a‖X < r}, and if we set

φ(z) := z · φ +
∑

m∈NR1

zmψm(|z|2) and zj (t) = e−ij(|z|2)t zj , (21)
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then, setting z(t) = (z1(t), · · · , zn(t)), the function u(t) := φ (z(t)) satisfies

i∂tu − Hu − g(|u|2)u = −
∑

m∈Rmin

zmGm − R(z), (22)

where {Gm}Rmin ⊂ (Σ∞)�Rmin is given in (14). Finally, writing ψm = ψ
(s)
m , � =

� (s) andR = R(s), for s1 < s2, we have ψ
(s1)
m (| · |2) = ψ

(s2)
m (| · |2), � (s1)(| · |2) =

� (s2)(| · |2), andR(s1) = R(s2) in BRN (0, δs2).

Remark 5 Notice that solitons, or standing waves, are exact solutions to the NLS
generated from the refined profile setting

φj (zj ) := φ(zj ej ) for zj ∈ BC(0, δs). (23)

So the refined profile fails to be an exact solution precisely when there are at least
two nonzero coordinates in z, which, under our hypotheses, make the defect on the
right-hand side of (22) nonzero. Notice in particular that (20) states that the error
term R(z) is not just small, but that it has a specific combinatorial structure. A
monomial of the form zj |zj |2N cannot be a term in R(z), since it does not have the
required combinatorial structure. These zj |zj |2N terms are in the left-hand side of
(22) and cancel out because the refined profile encodes the standing waves, as

φj (zj ) = φ(zj ej ) =
[
z · φ + zej ψej (|z|2)

]∣∣∣
z=zj ej

.

We give now several formulae related to the refined profile. Let X be a Banach
space and F ∈ C1(BCN (0, δ),X) for some δ > 0. For z ∈ BCN (0, δ) and w ∈ C

N ,
we set

DzF(z)w := d

dε

∣∣∣∣
ε=0

F(z + εw).

For z(t) given by the 2nd equation of (21), that is zj (t) = e−ij(|z|2)t zj , we have

i∂t z = � (|z|2)z, where � (|z|2)z := (1(|z|2)z1, · · · ,N(|z|2)zN).

Thus, i∂tφ(z(t)) = iDzφ(z(t))(−i� (|z(t)|2)z(t)), and we have the following
formula, identically satisfied by φ(z),

iDzφ(z)(−i� (|z|2)z) = Hφ(z) + g(|φ(z)|2)φ(z) −
∑

Rmin

zmGm − R(z). (24)
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Furthermore, differentiating (24) w.r.t. z in any given direction z̃ ∈ C
N , we obtain

H [z]Dzφ(z)̃z =iD2
z φ(z)(−i� (|z|2)z, z̃) + iDzφ(z)

(
Dz(−i� (|z|2)z)̃z

)
(25)

+
∑

m∈Rmin

Dz(zm)̃zGm + DzR(z)̃z,

where the operator H [z] is defined by

H [z]f := Hf + g(|φ(z)|2)f + 2g′(|φ(z)|2)Re
(
φ(z) f

)
φ(z) (26)

and is self-adjoint for the inner product 〈u, v〉 = Re
∫
R3 uvdx.

As mentioned above, the refined profile φ(z) contains as a special case the small
standing waves bifurcating from the eigenvalues, when they are simple.

Corollary 1 Let s > 0 and j ∈ {1, · · · , N}. Then, φ
(
z(t)ej

)
solves (1) if z ∈

BC(0, δs) and z(t) = e−ij(|zej |2)t z.

Proof Since (zej )
m = 0 for m ∈ Rmin, we see that from (20) and (22), the

remainder terms
∑

m∈Rmin
z(t)mGm + R(z(t)) are 0 in (22). Therefore, we have

the conclusion. 
�
Remark 6 If the eigenvalues of H are not simple, the above does not hold anymore
in general. See Gustafson–Phan [6].

The main result, which we have first proved in [3], is the following.

Theorem 4 Under Assumptions 1, 2 and 3, there exist δ0 > 0 and C > 0 s.t. for all
u0 ∈ H 1 with ε0 := ‖u0‖H 1 < δ0, and there exists j ∈ {1, · · · , N}, z ∈ C1(R,C),
η+ ∈ H 1, and ρ+ ≥ 0 s.t.

lim
t→∞ ‖u(t) − φj (z(t)) − eitΔη+‖H 1 = 0, (27)

with C−1ε2
0 ≤ ρ2+ + ‖η+‖2

H 1 ≤ Cε2
0 and

lim
t→+∞ |z(t)| = ρ+ . (28)

When written in the modulation parameters, the NLS appears like a complicated
system where some discrete modes are coupled to radiation. The discrete modes
tend to produce complicated patterns, similar to the ones of a linear system
with eigenvalues. However, asymptotically in time, the nonlinear interaction is
responsible of spilling of energy into radiation that disperses at space infinity and
to the selection of a unique nonlinear standing wave. Theorem 4 is the same of the
main theorem in [4] and is very similar to the main theorem in [3]. The proofs here
and in [4] are much simpler than in [3] or in earlier papers containing early partial
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results, such as [11, 13]. In [3], in order to detect the nonlinear redistribution of
the energy, it was necessary to make full use of the Hamiltonian structure of our
NLS, by first introducing Darboux coordinates and by then considering a normal
forms argument. The discovery of the notion of refined profile made in [8] and
its further development in [4] allows to forgo the normal forms argument because
an almost optimal system of coordinates is provided automatically by the refined
profile. In [4], we introduced Darboux coordinates in a way much simpler than in
[3]. Undoubtedly, Darboux coordinates are quite natural for a Hamiltonian system,
and in [4], they contribute to simplify the system. In the present note however, we
provide a different proof that, except for the information that mass and energy are
constant, thus guaranteeing the global existence of our small H 1 solutions, does not
make explicit use of the Hamiltonian structure of the equations.

2 The Proof

We start from constructing the modulation coordinate. First, we have the following.

Lemma 1 There exist δ > 0 and z ∈ C∞(BΣ−1(0, δ),CN) s.t.

∀̃z ∈ C
N, 〈i (u − φ(z(u))) ,Dzφ(z(u))̃z〉 = 0.

Proof Standard. 
�
We set

η(u) := u − φ(z(u)). (29)

In the following, we write η = η(u) and z = z(u). Substituting u = φ(z) + η to (1)
and using (24), we have

i∂tη + iDzφ(z)
(
∂tz + i� (|z|2)z

)
= H [z]η +

∑

Rmin

zmGm + R(z) + F(z, η),

(30)

where

F(z, η) = g(|φ(z) + η|2)(φ(z) + η) − g(|φ(z)|2)φ(z) − g(|φ(z)|2)η
−2g′(|φ(z)|2)Re

(
φ(z)η

)
φ(z).
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Given an interval I ⊆ R, we set

Stzj (I ) := L∞
t H j (I) ∩ L2

t W
j,6(I),

Stz∗j (I ) := L1
t H

j (I) + L2
t W

j,6/5(I), j = 0, 1,
(31)

where H 0 = L2 and W 0,p = Lp, and use Yajima’s [15] Strichartz inequalities, for
t0 ∈ I ,

‖e−itHPcv‖Stzj (R) � ‖v‖Hj ,

‖
∫ t

t0

e−i(t−s)HPcf (s) ds‖Stzj (I ) � ‖f ‖Stz∗j (I ), j = 0, 1.
(32)

Under the assumptions of Theorem 4, we have ‖u‖L∞H 1(R) � ε0 from energy and
mass conservation. Since ‖u‖H 1 ∼ ‖z‖ + ‖η‖H 1 , we conclude

‖z‖L∞
t (R) + ‖η‖L∞

t H 1(R) � ε0.

Theorem 5 (Main Estimates) There exist δ0 > 0 and C0 > 0 s.t. if ε0 =
‖u0‖H 1 < δ0, we have

‖η‖Stz1(I ) +
∑

m∈Rmin

‖zm‖L2
t (I ) + ‖∂t z + i� (|z|2)z‖L2

t (I ) ≤ Cε0, (33)

for I = [0,∞) and C = C0.

Notice that (33), Eq. (30) satisfied by η, estimate (20) for R(z), and Lemma 2 below
for F(z, η) allow to prove in a standard and elementary fashion that η(t) scatters as

t → +∞, i.e., there exists η+ ∈ H 1 such that ‖η(t) − eitΔη+‖H 1
t→+∞−−−−→ 0. From

(33), we have ‖η+‖H 1 ≤ Cε0.
Using mass conservation, we have

‖φ(z(t))‖2
L2 =

‖u0‖2
L2 − 2〈φ(z(t)), eitΔη+〉 − 2〈φ(z(t)), η(t) − eitΔη+〉 − ‖η(t)‖2

L2

t→+∞−−−−→ ‖u0‖2
L2 − ‖η+‖2

L2 .

So, by ‖φ(z(t))‖2
L2 = ‖z(t)‖2 + o(‖z(t)‖2), we get lim

t→+∞ ‖z(t)‖2 = ρ2+ for some

0 ≤ ρ+ ≤ 2Cε0.
The fact that zm ∈ L2(R+) and, as it is easy to see, ∂t (zm) ∈ L∞(R+) ∩

C0([0,∞) implies zm t→+∞−−−−→ 0 for any m ∈ Rmin. This implies zk
t→+∞−−−−→ 0

for all k except at most for one, yielding the selection of one coordinate j in the
statement of Theorem 4. The proof that Theorem 5 implies Theorem 4 is like in [3].
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By complete routine arguments discussed in [3], (33) for I = [0,∞) is a
consequence of the following proposition.

Proposition 4 There exists a constant c0 > 0 s.t. for any C0 > c0, there is a value
δ0 = δ0(C0) s.t. if (33) holds for I = [0, T ] for some T > 0, for C = C0, and for
u0 ∈ BH 1(0, δ0), then in fact for I = [0, T ] the inequalities (33) hold forC = C0/2.

In the remainder of the paper, we prove Proposition 4.

2.1 Estimate of the Continuous Variable η

In the following, we set ε0 = ‖u0‖H 1 . Further, when we use �, the implicit constant
will not depend on C0. We start from the estimate of the remainder term F .

Lemma 2 Under the assumption of Proposition 4, we have

‖F(z, η)‖Stz∗1(I ) � C0ε
3
0 . (34)

Proof By (2), we have the pointwise bound

|F(z, η)| + |∇xF (z, η)| �
(

1 + |η|2
)

(|φ(z)| + |∇xφ(z)| + |η|) |η| (|η| + |∇xη|) .

(35)

Using this, we obtain the conclusion by Hölder and Sobolev estimates. 
�
We set

Hc[z] := {v ∈ L2 | ∀̃z ∈ C
N, 〈iv,Dzφ(z)̃z〉 = 0}. (36)

Notice that for u ∈ H 1, η(u) ∈ Hc[z(u)] ∩ H 1. Following Gustafson, Nakanishi,
and Tsai [5], we can construct an inverse of Pc on Hc[z].
Lemma 3 There exists δ > 0 s.t. there exists

{ajA}j=1,··· ,N,A=R,I ∈ C∞(BCN(0,δ),Σ
1) s.t.

‖ajA(z)‖Σ1 � ‖z‖2, j = 1, · · · , N, A = R, I (37)

and

R[z] := Id −
N∑

j=1

(〈·, ajR(z)〉φj + 〈·, ajR(z)〉iφj

)
, (38)

satisfies R[z]Pc|Hc[z] = Id|Hc[z], PcR[z]|PcL2 = Id|PcL2 .
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Proof A proof is in [3]. 
�
We set η̃ = Pcη. By Lemma 3, we have η = R[z]̃η and ‖η‖Stz1 ∼ ‖η̃‖Stz1 .

Applying Pc to (30), we have

i∂t η̃ =Hη̃ − iPcDzφ(z)
(
∂t z + i� (|z|2)z

)
+

∑

m∈Rmin

zmPcGm (39)

+ PcR(z) + PcF(z, η) + Pc (H [z] − H)η.

Lemma 4 Under the assumption of Proposition 4, we have

‖η‖Stz1(I ) � ε0 + C(C0)ε
3
0 +

∑

m∈Rmin

‖zm‖L2(I ). (40)

Proof Obviously, from ‖η‖Stz1 ∼ ‖η̃‖Stz1 , it is enough to bound the latter. By
Strichartz estimates (32) and Lemma 2, we easily obtain

‖η̃‖Stz1(I ) � ε0 + C(C0)ε
3
0 + ‖PcDzφ(z)

(
∂t z + i� (|z|2)z

)
‖L2(I )

+
∑

m∈Rmin

‖zm‖L2(I ).

Using the fact that ‖PcDzφ(z)‖Σ1 = O
(‖z‖2

)
, we obtain (40). 
�

We set Z(z) := − ∑
m∈Rmin

zmR+(m·ω)PcGm and ξ := η̃+Z, where R+(λ) :=
(H − λ − i0)−1. Using the identity

(
Dzzm)

(iωz) = im · ω zm (41)

with, in the left-hand side, ωz := (ω1z1, · · · , ωNzN), we see that Z satisfies

− i∂tZ(z) + HZ(z) =
∑

m∈Rmin

zmPcGm + RZ(z), (42)

where

RZ(z) = i
∑

m∈Rmin

Dz
(
zm) [ (

∂tz + i� (|z|2)z
)

+
(

iωz − i� (|z|2)z
) ]

R+(m · ω)PcGm.
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Substituting η̃ = ξ − Z(z) into (39), we obtain

i∂tξ = Hξ − iPcDzφ(z)
(
∂tz + i� (|z|2)z

)
+ PcR(z) + PcF(z, η)

+ Pc (H [z] − H)η + RZ(z).
(43)

Lemma 5 Under the assumption of Proposition 4, we have

‖ξ‖L2Σ0−(I ) � ε0 + C0ε
3
0 .

Proof By ‖ · ‖L2Σ0− � ‖ · ‖Stz0 and Strichartz estimates (32), we have

‖ξ‖L2Σ0− ≤ ‖η̃(0)‖L2 + ‖e−itHZ(z(0))‖L2Σ0−

+ ‖
∫ t

0
e−i(t−s)HRZ(z(u(s))) ds‖L2Σ0−

+ ‖iPcDzφ(z)
(

ż + i� (|z|2)z
)

− R(z) − F(z, η) − (H [z] − H)η‖Stz∗0,

(44)

where z(t) = z(u(t)). One can bound the contribution of the 2nd line of (44) by
� C(C0)ε

3
0 using, as in Lemma 4, ‖PcDzφ(z)‖Σ1 = O

(‖z‖2
)

and

Dz
(
zm)

i
(
ω − � (|z|2)

)
z = im ·

(
ω − � (|z|2)

)
zm = O

(
‖z‖2

)
zm (45)

by (41) and � (|z|2)|z=0 = ω. Similarly, the first term in the r.h.s. of (44) can be
bounded by � ε0. For the 2nd and 3rd terms in the r.h.s. of (44), we will now use
the estimate

‖e−itHR+(m · ω)Pcf ‖Σ0− � 〈t〉−3/2‖f ‖Σ0 . (46)

By (46), we have

‖e−itHZ(z(0))‖L2Σ0−(I ) �
∑

m∈Rmin

|zm(0)| ‖〈t〉−3/2‖L2‖Gm‖Σ0 � ε0,

and

‖
∫ t

0
e−i(t−s)HRZ(z(u(s))) ds‖L2Σ0−(I )

≤
∑

m∈Rmin

∥∥∥
∫ t

0
‖e−i(t−s)HR+(m · ω)PcGm‖Σ0−
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( ∣∣∣Dz
(
zm)

(s)
(
∂t z(s) + i� (|z(s)|2)z(s)

)∣∣∣

+
∣∣∣Dz

(
zm)

(s)i
(
ω − � (|z(s)|2)

)
z(s)

∣∣∣
)
ds

∥∥∥
L2(I )

�
∑

m∈Rmin

‖ε2
0

∫ t

0

(
|∂tz(s) + i� (|z|2(s))z(s)| + |zm(s)|

)
〈t − s〉−3/2‖L2(I )

� C(C0)ε
3
0 ,

where we have used (45) in the 2nd inequality and Young’s convolution inequality
in the 3rd inequality. Therefore, we have the conclusion. 
�

2.2 Estimate of Discrete Variables

We next estimate the quantities ‖∂tz + i� (|z|2)z‖L2 and
∑

m∈Rmin
‖zm‖L2 . To do

so, we first compute the inner product 〈(30),Dzφ(z)̃z〉 for any given z̃ ∈ C
N . First,

notice that by η ∈ Hc[z], we obtain the orthogonality relation

〈i∂tη,Dzφ(z)̃z〉 = −〈iη,D2
z φ(z)(∂tz, z̃)〉.

Second, applying the inner product 〈η, ·〉 to Eq. (25), we have

〈H [z]η,Dzφ(z)̃z〉 = 〈iη,D2
z φ(z)(� (|z|2)z, z̃)〉

+
∑

m∈Rmin

〈η,
(
Dz

(
zm)

z̃
)
Gm〉 + 〈η,DzR(z)̃z〉,

where we exploited the self-adjointness of H [z] and the orthogonality in Lemma 1.
Thus, applying 〈·,Dzφ(z)̃z〉 to Eq. (30) for η and using the last two equalities, we
obtain

〈iDzφ(z)(∂tz + i� (|z|2)z),Dzφ(z)̃z〉 =
〈iη,D2

z φ(z)
(
∂t z + i� (|z|2)z, z̃

)
〉

+ 〈η,DzR(z)̃z〉 +
∑

m∈Rmin

〈η,
(
Dz

(
zm)

z̃
)
Gm〉

+
∑

m∈Rmin

〈zmGm,Dzφ(z)̃z〉 + 〈R(z),Dzφ(z)̃z〉 + 〈F(z, η),Dzφ(z)̃z〉.

(47)

Using z̃ = ej , iej , we have the following.
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Lemma 6 Under the assumption of Proposition 4, we have

∂tzj + ij(|z|2)zj = −i
∑

m∈Rmin

zm〈Gm, φj 〉 + rj (z, η), (48)

where rj (z, η) satisfies

‖rj (z, η)‖L2(I ) � C(C0)ε
3
0 .

In particular, we have

‖∂tz + i� (|z|2)z‖L2(I ) �
∑

m∈Rmin

‖zm‖L2(I ) + C(C0)ε
3
0 . (49)

Proof First since Dzφ(0)̃z = z̃ · φ, we have

〈iDzφ(z)(∂t z + i� (|z|2)z),Dzφ(z)̃z〉 =
N∑

j=1

Re(i(∂tzj + ij(|z|2)zj )̃zj ) + r(z, z̃),
(50)

where

r(z, z̃) =〈i (Dzφ(z) − Dzφ(0)) (∂tz + i� (|z|2)z),Dzφ(z)̃z〉 (51)

+ 〈iDzφ(0)(∂tz + i� (|z|2)z), (Dzφ(z) − Dzφ(0)) z̃〉.

Since ‖Dzφ(z) − Dzφ(0)‖L2 � |z|2 � ε2
0 , by the assumptions of Proposition 4, we

have

‖r(z, z̃)‖L2(I ) � C(C0)ε
3
0 for all z̃ = e1, ie1, · · · , eN, ieN . (52)

Setting

r̃(z, z̃, η) :=〈iη,D2
z φ(z)

(
∂tz + i� (|z|2)z, z̃

)
〉 + 〈η,DzR(z)̃z〉

+
∑

m∈Rmin

〈η,
(
Dz

(
zm)

z̃
)
Gm〉

+
∑

m∈Rmin

〈zmGm, (Dzφ(z) − Dzφ(0)) z̃〉

+ 〈R(z),Dzφ(z)̃z〉 + 〈F(z, η),Dzφ(z)̃z〉,

(53)
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by the assumptions of Proposition 4, we have

‖̃r(z, z̃, η)‖L2(I ) � C(C0)ε
3
0 for all z̃ = e1, ie1, · · · , eN, ieN . (54)

Therefore, since Dφ(0)ikej = ikφj (k = 0, 1), we have

−Im
(
∂t zj + ij(|z|2)zj

)
=

∑

m∈Rmin

〈zmGm, φj 〉 − r(z, ej ) + r̃(z, ej , η),

Re
(
∂t zj + ij(|z|2)zj

)
=

∑

m∈Rmin

〈zmGm, iφj 〉 − r(z, iej ) + r̃(z, iej , η).

Since Gm (as can be seen from the proof in [4]) and φj are R-valued, we have

∂t zj + ij(|z|2)zj = −i
∑

m

〈Gm, φj 〉zm − r(z, iej ) + ir(z, ej )

+ r̃(z, iej , η) − ĩr(z, ej , η).

Therefore, from (52) and (54), we have the conclusion with rj (z, η) = −r(z, iej )+
ir(z, ej ) + r̃(z, iej , η) − ĩr(z, ej , η). 
�

Having estimated η and ∂tz+ i� (|z|2)z in terms of
∑

m∈Rmin
‖zm‖L2(I ), we need

to estimate the latter quantity. Here we use the Fermi Golden Rule.

Lemma 7 Under the assumption of Proposition 4, we have

∑

m∈Rmin

‖zm‖L2 � ε0 + (C0ε0)ε0. (55)

Proof We substitute z̃ = i� (|z|2)z in (47), and we make various simplifications.
First, by 〈f, if 〉 = 0, the right-hand side of (47) can be rewritten as

〈iDzφ(z)(∂t z + i� (|z|2)z),Dzφ(z)i� (|z|2)z〉 =
〈iDzφ(z)(∂t z),Dzφ(z)i� (|z|2)z〉.

(56)

Next, we consider the 3rd line of (47), which we rewrite as

〈
∑

m∈Rmin

zmGm + R(z),Dzφ(z)i� (|z|2)z〉 =

〈
∑

m∈Rmin

zmGm + R(z),Dzφ(z)
(
∂t z + i� (|z|2)z

)
〉

− 〈
∑

m∈Rmin

zmGm + R(z),Dzφ(z)∂tz〉.

(57)
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The term in the 1st line of the r.h.s. of (57) can be written as

〈
∑

m∈Rmin

zmGm,Dzφ(0)
(
∂t z + i� (|z|2)z

)
〉 + R1(z), (58)

where

R1(z) =〈
∑

m∈Rmin

zmGm, (Dzφ(z) − Dzφ(0))
(
∂tz + i� (|z|2)z

)
〉

+ 〈R(z),Dzφ(z)
(
∂tz + i� (|z|2)z

)
〉,

satisfies

∫ T

0
|R1(z(t))| dt � C2

0ε4
0 . (59)

Using the stationary refined profile equation (24), the last line of (57) can be written
as

−〈Hφ(z) + g(|φ(z)|2)φ(z),Dzφ(z)∂tz〉
+ 〈Dzφ(z)(i� (|z|2))z, iDzφ(z)∂tz〉.

(60)

Notice that the 2nd term of (60) coincides with the right-hand side of (56), which
lies in the left-hand side of (47), so that the two cancel each other. On the other
hand, we have

〈Hφ(z) + g(|φ(z)|2)φ(z),Dzφ(z)∂t z〉 = d

dt
E(φ(z)). (61)

Therefore, from (47) with z̃ = i� (|z|2)z, (56), (57), (58), (60) and (61), we have

d

dt
E(φ(z)) −

∑

m∈Rmin

m · ω〈η, izmGm〉

=
∑

m∈Rmin

〈zmGm,Dzφ(0)
(
∂t z + i� (|z|2)z

)
〉 + R2(z, η),

(62)
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where

R2(z, η) = R1(z) + 〈iη,D2
z φ(z)

(
∂t z + i� (|z|2)z, i� (|z|2)z

)
〉

+ 〈η,DzR(z)i� (|z|2)z〉
+

∑

m∈Rmin

(� (|z|2) − ω)〈η, zmGm〉 + 〈F(z, η),Dzφ(z)i� (|z|2)z〉,
(63)

satisfies

∫ T

0
|R2(z(t), η(t))| dt �

(
C2

0ε2
0 + C5

0ε5
0

)
ε2

0 . (64)

By Lemma 6 and Dzφ(0)̃z = z̃ · φ, the 1st term of right-hand side of (62) can be
written as

∑

m∈Rmin

〈zmGm,φ ·
(
∂t z + i� (|z|2)z

)
〉

=
∑

m,n∈Rmin

N∑

j=1

〈zmGm, φj

(−izngn,j + rj (z, η)
)〉

=
∑

m,n∈Rmin
m =n

N∑

j=1

Re
(
izmzn

)
gm,j gn,j +

∑

m,n∈Rmin

N∑

j=1

〈zmGm, rj (z, η)φj 〉,

where we have set gm,j := 〈Gm, φj 〉 and used the fact that 〈zmGm,−izmφj 〉 = 0
due to Gm and φj being R-valued. Now, for m = n, we have

∂t (znzm) =i(m − n) · ωznzm + i(m − n) ·
(
� (|z|2) − ω

)
znzm

+ Dz(zn)(∂t z + i� (|z|2z))zm + znDz(zm)((∂tz + i� (|z|2z))).

Thus, since (m − n) · ω = 0 from Assumption 2, we have

znzm = 1

i((m − n) · ω)
∂t (znzm) + rn,m(z), (65)

where

rn,m(z) = − (m − n) · (
� (|z|2) − ω

)

(m − n) · ω
znzm + i

(m − n) · ω
(
Dz(zn)(∂tz + i� (|z|2z))zm + znDz(zm)((∂tz + i� (|z|2z)))

)
.
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Then, by the hypotheses of Proposition 4, we have

∫ T

0
|rm,n(z)| dt � C2

0ε4
0 . (66)

Thus, we have

∑

m,n∈Rmin
m =n

N∑

j=1

Re
(
izmzn

)
gm,j gn,j = ∂tA1(z) + R3(z),

where

A1(z) =
∑

m,n∈Rmin
m =n

N∑

j=1

1

(n − m) · ωRe(zmzn)gm,j gn,j , and

R3(z) =
∑

m,n∈Rmin
m =n

N∑

j=1

Re
(
irn,m(z)

)
gm,j gn,j .

Thus,

∑

m∈Rmin

〈zmGm,φ ·
(
∂tz + i� (|z|2)z

)
〉 = ∂tA1(z) + R4(z, η),

where

R4(z, η) = R3(z) +
∑

m,n∈Rmin

N∑

j=1

〈zmGm, rj (z, η)φj 〉.

By (66) and Lemma 6, we have

∫ T

0
|R4(z(t), η(t))| dt � C2

0ε4
0 .
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Substituting η = R[z]ξ − (R[z] − 1)Z(z) − Z(z) into the 2nd term of the l.h.s. of
(62), we have

∑

m∈Rmin

m · ω〈η, izmGm〉 =

−
∑

m∈Rmin

m · ω|zm|2〈R+(m · ω)PcGm, iGm〉

−
∑

m,n∈Rmin
m =n

m · ω〈znR+(n · ω)PcGn, izmGm〉

+
∑

m∈Rmin

m · ω〈R[z]ξ − (R[z] − 1)Z(z), izmGm〉.

(67)

By (65), the 2nd term of the r.h.s. of (67) can be written as

−
∑

m,n∈Rmin
m =n

m · ω〈znR+(n · ω)PcGn, izmGm〉 = ∂tA2(z) + R5(z),

where

A2(z) = −Re
∑

m,n∈Rmin
m =n

m · ω
i (m − n) · ω

znzm〈R+(n · ω)PcGn, iGm〉,

R5(z) = −
∑

m,n∈Rmin
m =n

m · ω〈rn,m(z)R+(n · ω)PcGn, iGm〉,

with

∫ T

0
|R5(z(t))| dt � C2

0ε4
0 .

The last term of r.h.s. of (67) can be written as

∑

m∈Rmin

m · ω〈R[z]ξ, izmGm〉 + R6(z),

with R6(z) satisfying

∫ T

0
|R6(z(t))| dt � C2

0ε4
0 .
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Therefore, we have

d

dt
(E(φ(z)) − A1(z) − A2(z)) =

−
∑

m∈Rmin

m · ω|zm|2〈R+(m · ω)PcGm, iPcGm〉

+
∑

m∈Rmin

m · ω〈R[z]ξ, izmGm〉 + R7(z, η),

(68)

where R7(z, η) = R2(z) + R4(z) + R5 + R6.
Now, by R+(ω · m) = P.V. 1

H−ω·m + iπδ(H − ω · m) and formula (2.5) p. 156
[12] and Assumption 3, we have

〈iGm, (H − ω · m − i0)−1Gm〉 = 1

16π
√

ω · m

∫

|k|2=ω·m
|Ĝm(k)| dS(k) � 1,

with Ĝm(k) like in Assumption 3. Thus, we have

‖zm‖2
L2(I )

� ε2
0 + δ−1‖ξ‖2

L2Σ0−(I )
+ δ‖zm‖2

L2(I )
+ C2

0ε4
0 ,

where we have used Schwarz inequality. Taking δ so that the ‖zm‖2
L2(I )

� ε2
0 +

δ−1‖ξ‖2
L2Σ0−(I )

+ C2
0ε4

0 and using ‖ξ‖L2Σ0−(I ) � ε0 by Lemma 5, we obtain (55).

�
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