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Abstract

Natural ecosystems are progressively vulnerable to a number of multiple anthro-
pogenic stressors, particularly with water, ozone, air pollutants, pesticides, heavy
metals (HMs), deforestation, artificial lightening, agriculture intensification, and
land use pattern changes. All of them have risen in ecosystem imbalance, climate
change, global warming, and many other natural disasters as abiotic stresses.
These stressors cause imbalance in physiological, biochemical, and molecular
traits at different levels and under different environmental components, which
they are subjected. Therefore, to diminish the catastrophic consequences on
ecological sustainability, the present chapter focuses on the role and mechanisms
of secondary metabolites (SMs) especially phenolic compounds (PCs) for envi-
ronmental robustness diagnostics via adaption or avoidance from these stressors.
The prime objective of this chapter tends to explore the functions and responses
of PCs in respect to elevated CO2 (eCO2), heavy metal (HM) stress, salinity,
pollutant translocations, and transformations in ecosystem. For instance, it will
help in understanding the different anthropogenic stressors, their impact on
environmental components, PC response, and pathway or mechanisms by
which these PCs nullify the drastic consequences of anthropogenic stressors.
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18.1 Introduction

Human developmental activities such as overpopulation, industrialization, urbaniza-
tion, transportation, pharmaceutical, cosmetic industry, mining, manufacturing,
energy industry, fishing and farming (use of fertilizer and pesticide), infrastructure
building, and drainage of factory and municipal influence the biophysical
environments, leading to a change in ecosystem, natural resources, and biodiversity
(https://en.wikipedia.org/wiki/Humanimpactontheenvironment). In addition to
these, deforestation and mining, intensified agriculture, altered land use pattern,
excess artificial lightening (AL), and excess pesticides and fertilizers magnify the
concentrations of pollutants in water, soil, and atmosphere, becoming the determin-
ing factors in affecting the environmental sustainability (Morand and Lajaunie
2017). These factors are known as anthropogenic stressors, and substantially disturb
the natural environment by altering the ecosystem services and functions of terres-
trial as well as of aquatic one, which leads to ecological imbalances, climate change,
global warming, and other abiotic stresses (heat, chilling, freezing, high irradiation,
salinity, drought, flooding, and mineral deficiency) (Dukhovskis et al. 2003;
Midgley and Thuiller 2011; Häder and Gao 2015).

The plethora of these stresses leaves some pessimistic consequences on biodiver-
sity, human health, as well as plant’s survival and also impairs the basic structure,
mechanisms, and functions of plants (Dukhovskis et al. 2003). Considering the
drastic impacts of growing anthropogenic stress, scientists are continuously working
to find the mechanism and novel strategies to mitigate/ameliorate its impacts on
ecosystem. The common mechanism, followed by all the plants during stress
conditions, is the production of reactive oxygen species (ROS) or oxidative stress.
This condition can be mitigated by improving defense mechanism of plants or by
improving the level of antioxidant compounds. These compounds have the dexterity
to boost up the plant’s immune system in coping both biotic and abiotic stresses.
Antioxidant compounds such as PCs, terpenes, and alkaloids participate in defense
mechanism which are developed by plants in a wide range, under the adverse
situation (Isah 2019). In this consequence, phenols are ubiquitous in plant’s king-
dom, helping in overwhelmed stress constraints and survival under suboptimal
conditions. The antioxidant properties and nature of phenolics are by virtue of the
ring structure containing phenolic hydroxyl groups and effective against multiple
stresses (Edreva et al. 2008). Considering the discussed facts, this chapter covers the
response of various anthropogenic stressors such as deforestation, mining,
pesticides, fertilizers, and artificial light on plant system and mechanism involved
in amelioration of these stressors, especially by phenolic compounds.

https://en.wikipedia.org/wiki/Humanimpactontheenvironment
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18.2 Effect of Various Anthropogenic Stressors on Plant System

18.2.1 Deforestation and Mining

Removing of forest (vegetation) from any part of the planet for agriculture, industri-
alization, and urbanization purpose leads to diminishing carbon sequestration, and
causes imbalance in atmospheric gases by overemission of greenhouse gases espe-
cially CO2 that has increased from 280 to 405 ppm (Houghton 2005; IPCC 2014).
This imbalance in gaseous concentration leads to degradation of air quality, acid
deposition, ozone hole, sea-level rise, alterations in rainfall, and storm pattern
(Keller et al. 1991). These changes are endangered for flora and fauna biodiversity
and have drastic impacts on all living organisms. Water scarcity and other unfavor-
able conditions due to climate change impact on agriculture production system and
food security associated with damaging the crops and irrigation systems (Lawrence
and Vandecar 2015). Mining of natural resources such as fuels, coals, and ore of
metals is a profitable activity for promoting industrial development, but it causes the
accumulation of hazardous gases, surface logging, and deforestation (Anonymous
2011; Chakravarty et al. 2012).

18.2.2 Pesticide and Heavy Metal (HM) Accumulation

Due to industrialization, urbanization, and modern agricultural practices, several
toxic chemicals like pesticides, herbicides, insecticides, fungicides, and HMs are
applied for crop productions in excess quantities (Rashid et al. 2010; Kumar et al.
2021). The use of pesticide significantly increased with time, and it is estimated that
2 MT of pesticides is utilized annually, which can be increased up to 3.5 million tons
by 2020. Excess use of pesticides can alter the plant’s physiological and biosynthetic
reactions and molecular composition. Moreover, it can influence the growth of
beneficial rhizosphere microorganism interactions and hampers the soil fertility
and productivity (Sharma et al. 2019).

Heavy metals like Cd, Hg, As, Pb, Ni, Cu, Zn, Cr, Co, and Se are highly toxic,
and act as nondegradable pollutants and become hazardous for plants as well as
humans, even at minute concentrations (Nagajyoti et al. 2010; Singhal et al. 2022).
Nevertheless, some metals are essential for normal metabolic activities of plants and
considered as micronutrients (Fe, Zn, Mn, Cu, and Mo), which are required in very
trace amounts (Hänsch and Mendel 2009). HMs emanate from natural sources such
as volcanic eruption, weathering of rocks, and biogenic sources and anthropogenic
sources such as industrial waste, burning of fossil fuels, application of fertilizer and
pesticide, municipal and agriculture wastewater, and mining and accumulated in
soil, water, and air by physical and chemical processes (Mohammed et al. 2011).
Heavy metals can be absorbed by crops’ rhizosphere, and their accumulation and
toxicity are affected by a variety of factors including sand, silt, clay proportions in
soil, temperature, cation exchange capacity, pH, organic and inorganic matter
content, etc. (Kim et al. 2012).
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The native soil fauna is altered by heavy metals which ultimately affects the
ability of soil microorganisms to carry out the mineralization process and subsequent
nutrient availability. Heavy metal caused oxidative damage and alters membrane
permeability and modulates sugar and protein metabolism (Fryzova et al. 2017).
Germination of seeds, root and shoot elongation, fresh and dry weight, soluble sugar
content, α-amylase enzyme activity, and protein content in various crops are affected
by toxic levels of heavy metals resulting in disruption in plant metabolism and
growth (Goyal et al. 2020).

18.2.3 Rise of Pollutants in Water, Soil, and Air

Pollution is a widespread problem affecting environmental health. Various
substances are responsible for rising pollution (i.e., pollutant) and that have unde-
sired and adversely effects the usefulness of a resource, introducing from various
anthropogenic sources like industries by product and sewage seepage, transportation
contaminant and agricultural waste disposal, which congregated and remained for
ever since in soil, air, and water (Popescu and Ionel 2010; Gheorghe and Ion 2011).
Pollutant can be alienated in several categories includes Hg and other HMs, persis-
tent organic pollutants such DDT, polychlorinated biphenyls (PCB), polychlorinated
dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF) (Kodavanti et al. 2017; Rose
and Fernandes 2017), ozone (O3), particulate matter (PM), persistent pharmaceutical
pollutants such as tetracycline, ciprofloxacin, ibuprofen, diclofenac, carbamazepine,
cetirizine, polycyclic aromatic hydrocarbons (PAHs) like naphthalene, fluorene,
anthracene (Maliszewska-Kordybach and Smreczak 2000), secondary metabolites
like terpenoids and volatile organic molecules like alkanes, alkenes, alcohols, esters,
etc. (Kesselmeier and Staudt 1999). These pollutants are bioaccumulated in the
environment and enter in the food web and drastically affect the livings (She et al.
2016).

Discharge of above waste can be excess in soil and water bodies (eutrophication)
causes acidity and negatively influences soil and water microorganism and
associated plants (Porter et al. 2013). Pollutants have several detrimental effects on
plants, including germination and leaf and root damage, which interrupt photosyn-
thetic properties and ultimately caused stunted growth and poor biomass production.
Pollutants are also responsible for obstruction in stomata, respiration, and damage
which appears in the form of chlorosis, bronzing, and mottling at severe conditions
(Maliszewska-Kordybach and Smreczak 2000; Pourkhabbaz et al. 2010; Kreslavski
et al. 2017).

18.2.4 Use of Artificial Lightening

The process of photosynthesis can be always affected by a specific spectrum of light
within a notable time period, although plants are exposed with a wide range of
visible spectrum of light over the lifespan that are responsible for their normal
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growth and functions; however, excessive visible and UV radiation impairs plant
productivity (Häder and Gao 2015). Disturbance in natural cycle of diurnal rhythm
affects arguably the ecosystem (Singhal et al. 2019a; Meravi and Kumar Prajapati
2020; Singhal et al. 2021b). Artificial lighting emits a variable intensity of light
(Darko et al. 2014). When plants are exposed with continuous street light during
dark hours, plants experience stress, and Fv/Fm value of photosystem II was lower
(Meravi and Kumar Prajapati 2020). Light pollution strongly depends on source and
emission color of light (Falchi et al. 2011). Light pollution significantly influences
germination, vegetative growth, and flowering of crop plants (Singhal et al. 2019b;
Meravi and Kumar Prajapati 2020; Sodani et al. 2021).

18.2.5 Increase in Agriculture Intensification and Change in Land
Use Pattern

Agriculture-intensifying practices promote to fulfill the demand of increasing popu-
lation (Rodriguez Garcia et al. 2018) by increasing productivity per unit area
(Byerlee et al. 2014). As a consequence of intensifying production practices, the
demand of inputs like fertilizers, pesticides, water for irrigation, farm machinery, and
labor has been increased. Intensification of crops like wheat, rice, and cowpea leads
to land sparing (Folberth et al. 2014; Garcia et al. 2020), causing mineral deficit.
Emission of CO2 and N2O is increased by intensive agriculture practices and leads to
global climate change and loss of biodiversity. Altered land use pattern due to
overpopulation can lead to alteration in surface temperature (Chakraborti et al.
2019), loss of groundwater quality (Sarkar et al. 2020), and nutrient criteria (Liu
et al. 2018), which influence climate (Llopart et al. 2018).

18.3 Modulations of Physiological, Biochemical, and Molecular
Traits by Anthropogenic Activity

Release of injurious gases, HMs, and other chemicals such as pesticides into the
environment from anthropogenic activities disrupts physiological processes and
metabolic functions of plants by forming anthropogenic and natural stress
circumstances. Higher dose of pesticides and HMs also acts as stressor and affects
the nontargeted plants (Shakir et al. 2018).

According to various reports, these stresses adversely affect crop yield-related
attributes and amplify ROS generation which alter the cellular redox homeostasis
and affect plant’s immune system, causing damage of cell organelles, resulting in
hindrance of many physiological functions in plants (Fryzova et al. 2017; Shakir
et al. 2016, Shakir et al. 2018). Oxidative stress perturbs the photosynthetic process
by generation of singlet oxygen in chloroplasts. Mitochondrial activities also
influenced ROS production, where H2O2 is rapidly generated (Asati et al. 2016).
These ROS also decline phospholipid and saturated fatty acid contents, thus causing
membrane damage by lipid peroxidation (Asati et al. 2016; Shakir et al. 2018)
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among various other biomacromolecular assembly disruptions (Gill and Tuteja
2010).

Nevertheless, plants have evolved several mechanisms at the morphological,
physiological, biochemical, and molecular levels to protect themselves via adapta-
tion or avoidance against these unfavorable circumstances and sustain their lifecycle.
To diminish the adverse effects of these stresses, plants need to improve their
performance and tolerance to these stresses by enhancing antioxidant defense system
(Shakir et al. 2018), supporting in detoxifying ROS with using superoxide dismutase
(SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione
reductase (GR), glutathione peroxidase (GPX), glutathione S-transferase (GST),
monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase
(DHAR), and quinine reductases (QR) enzymes (Ahmad et al. 2008; Das and
Roychoudhury 2014; Shakir et al. 2018). Likewise, nonenzymatic antioxidant
compounds such as ascorbate (AsA), glutathione (GSH), carotenoids, ascorbate,
amino acids like proline and proteins like LEA protein, dehydrins (DHN),
antifreezing proteins, mRNA-binding protein, and chaperons (Akula and
Ravishankar 2011) stimulate the enduring capability of the system to face the
destructive effects of oxidative stress.

Secondary metabolites, consisting PCs like flavonoids, isoflavonoids, and
terpenoids, and nitrogen-containing metabolites like alkaloids (dos Reis et al.
2012) are found to contribute in stress-tolerant mechanism (Kumar et al.
2020a, b, c). Plants under stress condition also respond through synthesizing some
specific, endogenous, and low-molecular-weight stress hormones such as salicylic
acid, jasmonic acid, ethylene, and abscisic acid (Fujita et al. 2006; Hayat et al. 2014).
Higher accumulation and activities of these antioxidants in plant tissue impart stress
tolerance directly or indirectly (Sharma et al. 2019; Kumar et al. 2020).

18.4 Role and Mechanisms of SMs Especially PCs
in Environment Robustness Diagnostics Via Adaption
or Avoidance from Stresses

Basic cellular process requires energy and oxygen saturation environment for normal
functioning. The energy demand and oxygen are derived from the primary
metabolites which are accumulated through photosynthesis and later on yield ATP
and oxygen via respiration (Hussein and El-Anssary 2018). Apart from primary
metabolites, there are also other low-molecular-weight compounds which do not
participate in basic cellular constitution and thermodynamics. The later are known as
secondary metabolites and can be often seen as the derived products of primary
metabolism (Thirumurugan et al. 2018). Responses to changing environmental cues
are mediated by secondary metabolites which make the plants eligible to withstand
climate adversaries, and even the plants can maintain optimal growth and develop-
ment (Isah 2019; Tyagi et al. 2020; Tak and Kumar 2020; Wagay et al. 2020).

Secondary metabolites involve in defense mechanism against pathogens and
abiotic stresses such as atmospheric pollution and extreme environmental conditions
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which represents the main array of innate immune system of plants; these properties
of SMs make it essential as primary metabolites (Kliebenstein 2013).

Secondary metabolites involve in several important processes, representing phys-
iological, metabolic, and reproductive ones, and improve biomass production of
plants. However, metabolites do not take part directly in growth and developmental
processes but execute their roles in signaling, in stimulating and inhibiting enzy-
matic activities, and in defense mechanism and also involve in an interaction with
other organisms too. Secondary metabolites have a wide-ranging importance includ-
ing pharmaceuticals, agrochemicals, food additives, flavors, fragrances, colors, and
other industrial materials and are applicable as antioxidants, bioremediation agents,
allelochemicals, plant growth regulators, and metal ion chelators (Tiwari and Rana
2015). Besides antioxidants, it has also an antimicrobial activity and inhibitory role
on lipid peroxidation and carcinogenesis (Mojzer et al. 2016). Phenolic compound
influences several processes such as seed germination, cell division, growth and
development process, and photosynthetic activity of plants. Alteration in germina-
tion and photosynthetic activity occurs due to change in germinating enzyme’s
activity such as amylase, peroxidase, and chlorophyll content. Plant phenolics act
as regulatory signal for modulating both physiological and developmental phases
through regulation at transcription and translation levels, signal transduction, and
modification in membrane dynamics. Taken all together these series of regulation
can bring about the tolerance against abiotic and biotic stresses (Cheynier et al.
2013). Phenolic and flavonoid have potential to scavenge free radicals (Chan et al.
2008).

During chemical stress, plants trigger synthesis of phenolics like isoflavones,
phenolic acid, and hydroxycinnamic acid derivatives (Akula and Ravishankar 2011).
These PCs have potential to inhibit the germination as well as growth process of
plants by reducing leaf water and stomatal conductance. The higher production of
PCs in plant tissue induces stress condition which inhibits the growth of plants via
two ways, either by inhibition of chlorophyll biosynthesis or via accelerating
chlorophyll degradation, both of which lead to retardation of photosynthesis and
decrease in photosynthates with decreased net assimilation rate (NAR). Phenolic
compound is derived primarily from the phenylpropanoid pathway (Dixon and Paiva
1995); during stress situation the activity of phenylpropanoid pathway is emanated;
hence, the synthesis of phenolic acid is increased to intensify the detoxifying activity
of PCs (Mahdavi et al. 2015). Phenylalanine is involved in biosynthesis of phenolic
antioxidant, but under stress condition, a transient decline in phenylalanine is
exhibited, which significantly rises at later stage. Similarly, shikimic acid also
decreases due to overuse at early phase of stress, which is an essential component
of the shikimate pathway (Dixon et al. 2002).

Primary metabolites, having more carbon and nitrogen, may be used for the
generation of various SMs as per demand, opting related pathways through
phenylpropanoid, mevalonate, glucose, amino acid, and acetate-malonate via acting
as a sink, depending upon the requirement; further it can also be recycled again in
primary metabolites through the degradation process (Collin 2001). Chemical elici-
tation also can induce stress responses and stimulate synthesis and accumulation of
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SMs in plant tissue (Naik and Al-Khayri 2016). Exogenous application of Ca++

affects PC metabolism and influences the activities of enzymes such as phenylala-
nine ammonia-lyase (PAL), polyphenol oxidase (PPO), and peroxidase (POD) in
tobacco (Nicotiana tabacum L.) leaves under normal condition (Ruiz et al. 2003),
while in wheat, the expression of phenylalanine ammonia-lyase (PAL), 4-coumaric
acid-CoA ligase (4CL), cinnamic acid 4-hydroxylase (C4H), caffeic acid
O-methyltransferase (COMT), and p-coumarate 3-hydroxylase (C3H) is noted to
influence under UV-B radiation, and phenolic contents either free or in bound form
significantly increased during germination, which in turn contributes to improved
antioxidant capability (Chen et al. 2017, 2019a, b).

18.5 Function and Responses of Phenolic Compounds
in Respect to Elevated CO2, Heavy Metal Stress, Salinity,
Pollutant Translocations, and Transformations
in Ecosystem

During stressful condition SM content is raised, which indeed confers higher
tolerance to plant against stressful situation. Under these stresses, plants have
potential to synthesize additional SMs especially phenolic compounds through
upregulation of genes conferring synthesis of regulatory enzymes of
phenylpropanoid pathway, which are capable of scavenging free radicals and
preventing cell membrane damages by peroxidation (Koopmann et al. 1999; Selmar
2008).

18.5.1 Response of Phenolics Under Elevated CO2 and Their Role

A major portion of available fixed carbon are diverted to form carbon-based second-
ary metabolites, while the remaining carbon increases the intracellular CO2 concen-
tration (Becker and Kläring 2016; Huang et al. 2017; Sabagh et al. 2021). Elevated
CO2 affects important plant traits by generating ROS and improves the level of
defensive compound (total phenolics) which positively correlated with leaf C:N ratio
(Karowe and Grubb 2011). Accumulation of PCs under enriched CO2 levels is due
to the upregulation of phenol biosynthetic (phenylpropanoid pathway) enzymes
including PAL, β-glucosidase, and flavanone-3-hydroxylase (Peltonen et al.
2005). Elevated CO2 and UV-B radiation in combination lead to a significant
increase in the allocation of carbon between biomass and secondary metabolites
(phenolic acids, flavonoids, condensed tannins), due to interrelation of primary and
secondary metabolism and triggered by the enzyme activity such as phenylalanine
ammonia-lyase (PAL), peroxidase, and PPO (Mattson et al. 2005). Enhanced PCs
and flavonoids by elevated CO2 and UV light levels have indirect and direct impacts
on the insect performance and behavior, herbivory rates, and pathogen attack
(Bidart-Bouzat and Imeh-Nathaniel 2008).
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The enzymatic activity of PAL, biomass production, and lignin content in four
plant species, namely, Spergula arvensis, Poa annua, Senecio vulgaris, and
Cardamine hirsuta, are indicated to alter under elevated CO2 (Hartley and Jones
2003). Penuelas et al. (1996) observed that in leaves of wheat, the phenolic concen-
tration was increased, while it reduced in pine and no significant change was noted in
orange, under enrichment of CO2, and they also indicated an inverse linear relation
between PC content and biomass production. Flavonoid (quercetin, rutin, catechin,
epicatechin, kaempferol, naringenin, fisetin, and morin) and phenolic acid (gallic
acid, vanillic acid, ferulic acid, tannic acid, cinnamic acid, and salicylic acid) profiles
were influenced by elevated carbon dioxide (400–1200 μmol mol-1 CO2), which
might upregulate the antioxidant activity in three varieties (alata, pumila, and
lanceolata) of Malaysian Labisia pumila (Myrsinaceae) (Jaafar et al. 2012). Kim
et al. (2005) noted that UV exposure and other environmental factors have critical
impacts on cellular damage and aging via working through free radicals and ROS;
they further reported that metabolic excess of carbon also rises flavonoid content in
Acer palmatum and in wheat leaves (isoorientin and tricin concentration) at high
CO2. Impacts of elevated CO2 and modulation of plant traits and PCs are presented
in Table 18.1.

18.5.2 Responses of Phenolic Under Heavy Metal and Their Role

Anthropogenic activity introduces heavy metals (HMs) as one of the persistent
abiotic stress factors through overaccumulation which causes oxidative stress by
producing ROS that leads to disorganization of lipids in cell membrane and alters
physiological and metabolic processes, thus ultimately reducing in growth. How-
ever, protective mechanism initiated in that condition enhanced the production of
stress-related proteins, antioxidants, SMs, hormone, and signaling molecules (Ghori
et al. 2019). Accumulation of phenolic compounds such as flavonoid and phenolic
acid in plants has been an effective defense response to heavy metal stress, and the
protective role of these compounds might be associated with their ability to scavenge
ROS (Izbiańska et al. 2014; Chen et al. 2019a, b). Under HM stress condition, an
excess amount of flavonoids and polyphenols was observed in various crops such as
in alfalfa treated with Pb (Sima et al. 2012; Maslennikov et al. 2018) and
isoflavonoids (like anthocyanin) in cabbage (Posmyk et al. 2009).

Higher synthesis of phenolic compound is depending on the upregulation of PAL
and chalcone synthase (CHS) activity, stimulated by HM stress (Winkel-Shirley
2002). Silicon and selenium (Se) enhanced the production of phenolic compound in
maize and rice, respectively (Mihaličová Malčovská et al. 2014; Chauhan et al.
2017). Shikimate dehydrogenase (SKDH), peroxidase, glucose-6-phosphate dehy-
drogenase (G6PDH), PAL, cinnamyl alcohol dehydrogenase (CAD), caffeic acid
peroxidase (CA-POD), chlorogenic acid peroxidase (CH-POD), PPO, and
b-glucosidase (b-GS) also increase in metal stress condition; these enzymes are
associated with synthesis of PCs as well as lignin accumulation (Ali et al. 2006).
Flavonoid has the ability to chelate metals (Keilig and Ludwig-Müller 2009) and
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Table 18.1 Highlight the impacts of elevated CO2 on phenolic content and modulation of plant
traits

Plants Trait influenced Change in phenolic contents References

Dactylis Biomass, nonstructural Increase in phenolic acid Castells
glomerata and
Bromus erectus

carbohydrates (gallic acid) et al. (2002)

Labisia pumila
Benth

Increasing radical
scavenging activity and
ferric reducing antioxidant
potential

Increase in phenolic acid and
flavonoid (gallic acid, caffeic
acid, pyrogallol and
quercetin, myricetin,
kaempferol, rutin, and
naringenin) and enhanced
PAL activity

Jaafar et al.
(2012)

Strawberry
(Fragaria x
ananassa
Duch.)

Alteration in ascorbic acid
(AsA), glutathione (GSH),
altered ratios of AsA to
dehydroascorbic acid
(DHAsA) and GSH to
oxidized glutathione
(GSSG), reduced content of
DHAsA with elevated ROS
absorbance activity

High anthocyanin and
phenolic content
(p-coumaroyl glucose,
dihydroflavonol, quercetin
3-glucoside, quercetin
3-glucuronide, and
kaempferol 3-glucoside
contents, cyanidin
3-glucoside, pelargonidin-3-
glucoside, and pelargonidin-
3-glucoside-succinate
content

Wang et al.
(2003)

Soybean
(Glycine max L)

Changes in antioxidant
enzyme and growth
attributes

Increase in isoflavones like
genistein and daidzein and
the flavonols like quercetin
and kaempferol, and
naringenin

O’Neill
et al. (2010)

Malaysian herb
Kacip Fatimah
(Labisia pumila
Blume)

High ROS production,
higher GSH, GSSG, soluble
carbohydrate, and
antioxidant activities
observed

Increase in total phenolics
and total flavonoids

Ibrahim and
Jaafar
(2011)

Labisia pumila
Benth.

Decrease in chlorophyll
content, total soluble sugar,
starch, and TNC

Upregulation in SM
production via shikimic acid
pathway and increased
starch content

Ibrahim
et al. (2014)

Rice (Oryza
sativa L.)

Change in C:N ratio and
total nonstructural
carbohydrates

Increase in total PC and
flavonoid contents under
elevated CO2 at maturity but
decrease during germination
and flowering stage and total
nonstructural carbohydrate
contents are increased

Goufo et al.
(2014)

Strawberry Increase in antioxidants like
SOD

Increases in total polyphenol
such as catechin,
pelargonidin-3-glucoside,
quercetin-3,4-di-glucoside,
p-coumaric, ferulic acid,

Balasooriya
et al. (2019)
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Table 18.1 (continued)

Plants Trait influenced Change in phenolic contents References

Lettuce Modulation of antioxidant
enzymes and SMs

Increase in flavonoid,
quercetin-3-O-glucoside,
quercetin-3-O-glucuronide,
luteolin-7-O-glucoside,
kaempferol, myricetin,
chlorogenic, chicoric, gallic,
protocatechuic, caffeic, and
p-coumaric, vanillic,
syringic acids

Pérez-López
et al. (2018)

provide protection against HMs (Kidd et al. 2001). Hydroxyl (–OH) and carboxylic
acid (–COOH) of PCs help in binding metals (Michalak 2006). Impacts of HMs on
plant’s growth traits and PCs are represented in Table 18.2.

18.5.3 Responses of Phenolic Compounds Under Salinity
and Their Role

Salinity is the consequence of accumulation of salts by anthropogenic activities; it is
a major constraint on the survival and synthesis of bioactive compounds of plants
(Isah 2019; Singhal et al. 2021a; Sabagh et al. 2021). Salinity intensifies overpro-
duction of ROS that induces oxidative stress and causes alteration in the defense
responses and production of antioxidants including plant’s SMs (Gill and Tuteja
2010). They have an influential scavenging property to ROS in plant under salt
stress. Moreover, the induction of secondary metabolic pathway gets initiated by salt
stress, resulting in higher production of SMs that have potential antioxidative
capacity.

Biosynthesis of PCs enhanced by the overexpression of transcriptional regulator
(gene) such as VvbHLH1 in Arabidopsis thaliana (Wang et al. 2016), NtMYB4
mediate NtCHS1 in tobacco (Chen et al. 2019a, b) and NHX in Olea europaea
(Rossi et al. 2016); results in upregulation of key genes of the phenylpropanoid
pathway PAL, cinnamate-4-hydroxylase (C4H), 4-coumarate-CoA ligase (4CL),
chalcone synthase (CHS) and chalcone isomerase (CHI); DFR, FLS, and ANS
(Wang et al. 2016; Rossi et al. 2016) that significantly enhanced the biosynthesis
and accumulation of flavonoid like kaempferol and quercetin (Wang et al. 2016).
Bistgani et al. (2019) reported that total phenolic contents increased up to 20%, leaf
flavonoid (38.6%), cinnamic acid (31.4%), gallic acid (20.4%), rosmarinic acid
(27.6%), in Thymus vulgaris and Thymus daenensis after application of 60 mM
NaCl and suggested that increased PCs associated with enhanced antioxidant prop-
erty under salinity stress. Similarly, Linić et al. (2019) suggested that PCs are
associated with short-term adaptation to salinity tolerance, although it is species
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Table 18.2 represents the impacts of heavy metal on phenolic contents and modulation of plant
traits

Heavy
metal Plant Growth trait Phenolic contents Reference

Chromium
(Cr)

Rice (Oryza
sativa)

High MDA, high
proline, increased
antioxidant enzymes
such as GST, APX,
and SOD including
DPPH

Higher phenolic and
flavonoid content
evaluation

Dubey
et al.
(2018)

Lead (Pb) Lupine
(Lupinus
luteus L.)

Significant increase in
the root length and
accumulation of both
H2O2 and O2 and
TBARS content

Increased flavonoid
contents

Izbiańska
et al.
(2014)

Copper
(Cu)

Cabbage
(Brassica
oleracea)

Enhanced in TBARS
content, and SOD,
CAT, POX, APX,
GPX, and GR

Levels of anthocyanin
and sinapoyl
derivatives

Posmyk
et al.
(2009)

Cadmium
and zinc
(Cd and
Zn)

Kandelia
obovata

Effects on antioxidant
capacity and growth

Increase in phenolic
acids including
pyrogallic acid,
coumaric acid,
protocatechuic acid,
chlorogenic acid, and
salicylic acid

Chen et al.
(2020)

Copper
(Cu) stress

Pepper
(Capsicum
annuum L.)

Decrease in the plant
growth

Increase in SKDH and
peroxidase, and
isoperoxidases,
PRX-B, and PRX-A3

Diaz et al.
(2001)

Aluminum
and
cadmium

Blueberry
(Vaccinium
corymbosum
L.)

Increase in MDA and
H2O2 contents and
antioxidant SOD

Increase in PCs (gallic,
chlorogenic and ellagic
phenolic acids)

Manquián-
Cerda
et al.
(2018)

Lead (Pb) Prosopis
farcta shoots

Increase in aspartic
acid and glycine
content but glutamic
acid significantly
decreased

Enhanced PAL
activity, increase in
phenolic acids and
flavonoids; daidzein,
vitexin, ferulic acid,
and SA

Zafari
et al.
(2016)

Zn and Cd Arabidopsis
thaliana

Reduced antioxidant
enzyme

Induction of phyto-
chelation genes
(AtPCS1, AtPCS2) by
flavonoid (quercetin
and naringenin)

Keilig and
Ludwig-
Mueller
(2009)

Copper
(Cu)

Panax
ginseng

Increased cysteine,
NPSH contents and
DPPH activity; the
induced activities of
substrate-specific
peroxidases like caffeic

Increase in activities of
G6PDH, SKDH, PAL,
and CAD; increase in
accumulation of
phenolics (phenolic

Ali et al.
(2006)



Plant Growth trait Phenolic contents

acid peroxidase, and
CA-POD; chlorogenic
acid peroxidase
(CH-POD),
polyphenol oxidase
(PPO) and
b-glucosidase (b-GS)

acid and flavonoids)
and lignin
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Table 18.2 (continued)

Heavy
metal Reference

specific. Effects of salinity stress on plant functional traits and PCs are represented in
Table 18.3.

18.5.4 Responses of Phenolics by Pollutant and Their Role

Systemic pesticide generates the chemical stress in soybean that triggers the produc-
tion of phenolic compound, and it is observed that total phenols in leaf, shoot, and
fruit are noted to increase by 114 and 220% at vegetative stage and 50, 166, and
163% at late fruiting stage (Siddiqui and Ahmed 2006). Nitrogen and phosphorus are
key nutrients, and both play an imperative role in the plant growth and development
and application of nitrogenous and phosphoric fertilizers, which have potential to
change the flavonoid content in St. John’s Wort plant (H. perforatum) (Azizi 2004).
Impacts of different pesticides on plant traits and PCs are represented in Table 18.4.

Furlan et al. (1999) reported that the valley of Piloes River (no air pollution) and
valley of Mogi River (severely affected by air pollutions) showed the increase in N,
leaf palatability and nutrition value and a decrease in SMs (phenol and tannins)
production in valley of Mogi River weaken the defense capacity and future fitness. In
Lotus corniculatus L., Trifolium montanum L., T. pratense L. and T. repens L. While
the leaves were subjected to pollution, generated by human activities and cement
factories, then the accumulation of PCs in epidermis, assimilatory mesophyll, and
vascular tissue is noted to be associated with ensuring tolerant capacity, and plants
have shown less injury (Gostin 2009). Similarly, it was suggested that a progressive
shift in ozone-treated leaves leads to a faster senescence, and most surface phenolic
compounds showed a declining trend, although some metabolic shift toward few
phenolics is associated with higher antioxidant capacity (Saviranta et al. 2010;
Khoddami et al. 2013). Herbicide and nitrate enrichment are major problems of
aquatic ecosystem and affect plant growth, structural integrity, and PCs (Nuttens
et al. 2016). Acid rain influences physiological, biochemical, and molecular change
and leads to degradation of pigments, cellular components, and structure by the
overproduction of ROS. This kind of digastric effects can be coped with the
accumulation of vitamin C, carotenoids, and phenols and exogenous application of
polyamines, salicylic acid, and β-aminobutyric acid (Xalxo and Sahu 2017).
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Table 18.3 highlights the impacts of salinity stress on plant traits and phenolic compounds

Plant Plant trait influenced Phenolic compounds References

Phaseolus
vulgaris L.

Decreased biomass and
photosynthetic pigment,
increased MDA content,
antioxidant enzymes, and
ascorbic acid

Increase in amounts of total
flavonoids

Taïbi et al.
(2016)

Sesuvium
portulacastrum
L.

Accumulated high contents
of proline

Higher polyphenols,
anthocyanins and
carotenoids at moderate
salinity

Slama et al.
(2017)

Roselle
(Hibiscus
sabdariffa L.)

Decreased plant height, fresh
weight of shoot and flower

Increase phenolic and
anthocyanin content

Hashemi
and
Shahani
(2019)

Lettuce High antioxidant enzymes
SOD, POD, CAT; and
enhanced carotenoid

Increase in phenolics
biosynthesis (phenolic acids
and flavonoids);

Mahmoudi
et al.
(2010)

Thymus
vulgaris L. and
T. daenensis
Celak)

Decreased plant dry matter
production

Increased total phenolic and
flavonoid content (Cinnamic
acid, gallic acid)

Bistgani
et al.
(2019)

Lettuces p-Hydroxybenzoic and
syringic acids, caffeic acid,
gallic, protocatechuic,
caffeic, p-coumaric, and
ferulic acids

Induce flavonoids quercetin,
quercetin-3-O-glucoside,
quercetin-3-O-glucuronide
and quercitrin.

Sgherri
et al.
(2017)

Amaranthus
tricolor

Enhanced pigments
(anthocyanins, carotenoids,
β-cyanin, β-xanthin, and
betalain); β-carotene, vitamin
C

Increase in phenolic acids
and flavonoids (Salicylic
acid, vanilic acid)

Sarker and
Oba (2018)

Clary sage
(Salvia sclarea
L.)

Decrease in fatty acid such as
palmitic, stearic, and
arachidic acids; linolenic at
appreciable percentage

Increase in total phenolic
contents

Taârit et al.
(2012)

Salvia
mirzayanii

Higher in amount of volatile
oil components, oxygenated
monoterpenes comprising of
α-terpinyl acetate,
1,8-cineole, and
sesquiterpene hydrocarbons

Increase in total phenolic
content

Valifard
et al.
(2014)

Rapeseed
(Brassica
napus)

Reduced growth and yield
attributes

Increase in total phenolics,
non-flavonoids

Falcinelli
et al.
(2017)
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Table 18.4 Impacts of different pesticides on phenolic compounds and plant’s growth traits

Plant/
vegetation

Emamectin
benzoate,
alpha-
cypermethrin,
and
imidacloprid

Tomato
(Solanum
lycopersicum)

Decline in secondary
metabolic synthesis

Loss in cell viability
and decrease in total
soluble sugar (TSS)
and total soluble
proteins (TSP).
Higher cell injury due
to high ROS (H2O2)
production and
TBARS content.
Increases in
antioxidant activities
SOD, CAT, GR,
POD, APX, and
proline

Shakir
et al.
(2018)

Topsin,
benlate,
Demacron,
and
chlorsulfuron

Soybean
(Glycine max)

Total phenol contents
increased leaf
(114%) and shoot
(220%)

Decrease in leaf area
ratio, leaf area index,
specific leaf area, net
assimilation rate, leaf
weight ratio, leaf area
duration, RGR, CGR
Increase in total
phenolic

Siddiqui
and
Ahmed
(2006)

Pyridine; IPP Wheat
(Triticum
aestivum L.)

Modulation of
polyphenol oxidase
activity

Increase
thiobarbituric acid
(TBA), PPO, total
protein, water-soluble
carbohydrate

Wang
et al.
(2014)

Imidacloprid
(IMI)

Brassica
juncea L.

Modulation of the
expression of
nonylphenol isomers,
(1E)-1-ethylidene-7a
methyloctahydro-
1H-indene

Synthesis of
phytochemicals such
as nonylphenol
isomers, linoleic acid,
ethyl
2-isopropylphenyl
ester, oxalic acid, etc.

Sharma
et al.
(2015)

Diazinon Rice (Oryza
sativa L.)

Expression of valine,
ferulic acid, sinapic
acid, and
phenylalanine

Biosynthesis and
metabolism of
30 sugars, amino
acids, organic acids,
and
phenylpropanoids,
31 metabolites
including
(hydroxybenzoic acid
and ferulic acid)

Mahdavi
et al.
(2015)

Therefore, different atmospheric pollutants influence plant traits, and PC modulation
helps in tolerance capacity up to a certain extent.
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18.6 Summary

Human activity will exacerbate climatic conditions. Allelopathic nature of phenolic
compounds could solve numerous ecological problems with respect to sustainable
development of agriculture, forestry, natural resources, and environmental conser-
vation. Every stress condition produces highly reactive oxygen species, responsible
for oxidative stress. These PCs have potential to reduce the drastic adverse effects of
oxidative stress in various plant species by elevating antioxidant defense. However,
PCs are ubiquitous compounds generated during stress situations, and their higher
expressions provide tolerance capacity. Although PCs are very less studied in this
respect, more research should be carried out to understand the molecular
mechanisms of these PCs. This chapter signifies on PCs under various anthropo-
genic stresses and concludes the mechanism of tolerance under this circumstance.
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