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Role of Phenolic Metabolites in Salinity 1 6
Stress Management in Plants
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Abstract

Abiotic stress has emerged as a major threat to food security, accounting for the
majority of crop and agricultural product losses worldwide. Salinity is one of the
primary key variables that inhibit plant growth and productivity among other
abiotic stresses. lonic stress, osmotic stress, and the formation of reactive oxygen
species (ROS) are all negative effects of high salt levels in the soil. Detoxification
of ROS may play a vital role in improving the salinity stress (SS) tolerance of
plants. Plants use their receptors to detect risk and activate a protective native
defence system to resist ROS. The accumulation of certain protective secondary
metabolites such as phenolic compounds (PCs), terpenes, and alkaloids is one of
these defensive mechanisms. PCs, in particular, operate as potent antioxidants
and are essential for the plant’s survival under salt stress. Enhanced PC synthesis
ensures the plants’ survival, tenacity, competitiveness, and endurance against SS.
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16.1 Introduction

Stress is defined as any unfavourable condition or substance that negatively impacts
plant growth, metabolism, development, or productivity. Plants are subjected to a
variety of environmental stresses (both biotic and abiotic), which inhibit their growth
and alter the quality and amount of agricultural produce (Basu et al. 2016; Wang
et al. 2016a, b; Anjum et al. 2017; Hussain et al. 2018). Abiotic stressors, such as
drought, salt, cold, and high temperatures, affect 90% of arable lands, resulting in
yield losses of up to 70% in the major food crops (Wagqas et al. 2019). Drought is
expected to reduce production by 17%, salinity by%, high temperature by 40%, low
temperature by 15%, and other factors by 8% (Rehman et al. 2005; Ashraf et al.
2008). According to the estimates based on the combination of climate change and
agricultural yield models, important crops such as rice, wheat, and maize will lose
productivity even further, posing a serious threat to food security (Tigchelaar et al.
2018).

Salinity is one of the most important abiotic stresses, especially in arid and
semiarid environments, where it causes several socio-economic concerns. According
to reports, nearly 20% of the world’s agricultural land is affected by salt (Martinez
et al. 2016; Hussain et al. 2019). By 2050, it is anticipated that 50% of cultivable
land will be affected by salinity (FAO 2008). A high concentration of soluble salts
containing chlorides (Cl—) and sulphates of sodium (Na,SO,), calcium (CaSO,),
and magnesium (MgSO,) characterises salinity (MgSO,). Among them, sodium
chloride (NaCl) is the most pervasive, soluble, and superabundant salt on the planet
(Munns and Tester 2008; Fageria et al. 2012). Excess salt causes biochemical,
morphological, physiological, and molecular alterations in plants, all of which
have a negative impact on productivity and plant growth. SS causes disruption in
ion!! homoeostasis and osmotic stress and results in the excess generation of ROS
and subsequently oxidative damage (Ivanova et al. 2015; Zhu 2016). Plants have
evolved an antioxidant defence mechanism that consists of enzymatic and
non-enzymatic components that assist scavenge ROS to decrease the toxic effects
of ROS accumulation. Among the enzymatic components, glutathione reductase
(GR), peroxidase (POX), catalase (CAT), and superoxide dismutase (SOD) are the
most important, while the non-enzymatic components mainly include carotenoids,
PCs, and flavonoids (Almeselmani et al. 2006; Rivero et al. 2014). In plants, PCs
play an important part in their response to SS (Lopez-Martinez et al. 2020). PCs have
a strong ROS scavenging capacity, and their build-up is usually thought to be a
beneficial self-protection mechanism in plants when they are exposed to salt-induced
oxidative stress (Ahanger et al. 2017; Zhao et al. 2015). Honeysuckle leaf PCs, such
as chlorogenic acid, were found to be enhanced as a mechanism for acclimatisation
to SS was indicated in several studies (Yan et al. 2017). An increase in
hydroxycinnamic acid content was reported in tomato plants exposed to SS
(Martinez et al. 2016), although the precise role of PCs in combating oxidative
stress during SS is still not clear. Therefore, much information about the protective
role of plant PCs associated with the SS has been discussed in this chapter.
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16.2 Soil Salinity

Soils containing excessive number of water-soluble salts carrying positive charge
includes Mg?*, Ca**, K*, and Na* along with negative charge ions such as CO3>",
HCO37, NO37, SO427, and Cl™ in the root zones are termed as salt-affected soils
(Rhoades and Miyamoto 1990). Soluble salts are present in all soils and natural
water, and the amount of salts present in the root zone determines whether the soil is
normal or salt-affected. When salt concentrations in the root zone approach critical
levels, it has a negative impact on seed germination, plant growth, and yield
(Conway 2001; Denise 2003). Highly soluble salts like NaCl, Na,SO,4, NaHCOs,
and MgCl, result in more plant stress when compared to less soluble salts such as
CaCOj3;, MgS0O,, and CaSO,. Saline soils can be classified into five major groups
based on their salinity levels (Table 16.1). Studies reported that higher NaCl
concentrations (200 mM) affected the growth of rapeseed sprouts (Falcinelli et al.
2017). Kaymakanova (2009) also found that germination %, seedlings growth, and
respiration rate were decreased in response to NaCl and Na,SO, treatment in bean
cultivars.

16.3 An Overview of Salinity Issues Globally

The land surface of the earth is nearly 13.2 x 10° ha, out of which only 7 x 10” ha is
arable. At present, the total cultivated area is 1.5 X 10° ha, out of which 0.34 x 10° ha
(23%) is saline and 0.56 X 10° ha (37%) is sodic (Massoud 1981). The salinity
problem is dynamic, affecting over 100 countries worldwide; no continent is
completely free of salinity (Fig. 16.1). Abrol et al. (1988) reported in FAO soils
bulletin 39 for different continents, presenting 932.2 Mha of salt-affected soils in the
world (Table 16.2).

The majority of countries affected by salinisation are located in arid and semiarid
regions, where poor-quality groundwater is used for agriculture (Massoud 1974;
Ponnamperuma 1984). The Aral Sea basin in Central Asia, the Indo-Gangetic basin
in India, the Indus basin in Pakistan, the Yellow River basin in China, the Euphrates
basin in Syria and Iraq, the Murray-Darling basin in Australia, and the San Joaquin
valley in the United States are just a few of the prominent regions where salinisation
has been widely reported (Qadir et al. 2014). In Asia, salinity affects around 20% of
India’s cultivable land, primarily in coastal Gujarat, Rajasthan, and the

Table 16.1 Classification of saline soils

Non- Weak Moderate Strongly Very strongly
Depth of soil salinity salinity salinity salinity salinity
0-60 cm (0— 2 dS/m 24dS/m | 4-8dS/m 8-16 dS/m >16 dS/m

2 ft)

60-120cm (- | <4dS/m | 4-8dS/m | 8-16 dS/m 16-24 dS/m | >24 dS/m
4 fo)

dS deci-Siemens, pH of saline soil <8.5
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Salt Affected countries on World Map
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Fig. 16.1 World map depicting countries with salinity problems (adapted and modified from
Pavuluri 2014)

Table 16.2 Worldwide

distributi ¢ salt-affected Area Sodic soils Saline soils Total Percent
istribution of salt-atiected " ore 29 78 308 330
areas (Mha)
Africa 26.9 53.5 80.4 8.60
America 69.3 77.6 146.9 15.8
Asia 121.9 194.7 316.5 33.9
Australasia 340.0 17.6 357.6 384
World 581.0 351.2 932.2 100

Source: Abrol et al. (1988)

Indo-Gangetic plains. According to the ICAR-Central Soil Salinity Research Insti-
tute, Karnal database, India has a salinity problem of 6.74 million hectares, with 3.78
million hectares of sodic soils and 2.96 million hectares of saline soils (Mandal et al.
2010). Table 16.3 shows the extent and distribution of salt-affected soils in various
Indian states. Gujarat (2.20 Mha) and Uttar Pradesh (1.37 Mha) are the Indian states
with the most salt-affected soils.

16.4 Causes of Soil Salinity

Because of its negative influence on agricultural production and sustainability, soil
salinity is a critical global issue. Salinity issues can occur in any climate and can be
caused by both natural and human-induced activities (Flowers 2004; Zaman et al.
2018). Many factors contribute to salinisation, including salt content, soil chemistry,
climate, ground topography, and anthropogenic impacts (Blumwald 2000). Also, the
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Table 16.3 Distribution of the salt-affected areas in India

State Coastal saline soil (ha) | Alkali soils (ha) | Saline soils (ha) | Total (ha)
West Bengal 441,272 0 0 441,272
Uttar Pradesh 0 1,346,971 21,989 1,368,960
Tamil Nadu 13,231 354,784 0 368,015
Rajasthan 0 179,371 195,571 374,942
Punjab 0 151,717 0 151,717
Orissa 147,138 0 0 147,138
Madhya Pradesh |0 139,720 0 139,720
Mabharashtra 6996 422,670 177,093 606,759
Kerala 20,000 0 0 20,000
Karnataka 586 148,136 1307 150,029

J & K* 0 17,500 0 17,500
Haryana 0 183,399 49,157 232,556
Gujarat 462,315 541,430 1,218,255 2,222,000
Bihar 0 105,852 47,301 153,153
A & N islands 77,000 0 0 77,000
Andhra Pradesh | 77,598 196,609 0 274,207
Total 1,246,136 3,788,159 1,710,673 6,744,968

Source: Mandal et al. (2010)

intensity of soil salinisation relies on the type and amount of salts, their relative
abundance in the soil, degree of solubility, and effect on soil pH (Dheeravathu et al.
2018). Inherent soil salinity (weathering of rocks, parent material); use of poor-
quality irrigation water as well as poor drainage; unsustainable irrigation practices
(heavy irrigation); high evaporation; previous exposure of land to seawater; and
dumping of industrial brine into the soil are just a few of the main causes of salinity
(Shrivastava and Rajesh 2015).

16.5 Salinity Effects on Plants

Salinity in soil and water is major stress induced by higher levels of salts, particularly
high Na* and Cl. Salt reduces plant growth and productivity at low concentrations,
but at higher concentrations, it can inhibit plant growth (Parida and Das 2005). The
detrimental effects of SS on the plant are related to low water potential, ion
imbalance, nutritional imbalance, and toxicity. They all have negative physiological,
biochemical, and molecular effects on plants (Banerjee and Roychoudhury 2018).
Ion imbalance is caused by the accumulation of Na* and Cl™ in tissues/plants
exposed to elevated NaCl concentrations, resulting in an altered Na*/K* ratio.
External Na* limits the uptake of K+, a critical ingredient for plant growth and
development, resulting in lower productivity and even death. Changes in K+ can
disrupt osmotic equilibrium, stomatal function, and the operation of certain enzymes
(James et al. 2011; Igbal et al. 2015). Salinity has been shown to increase Na+ and
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CI" concentrations while decreasing the K+/Na+ ratio in Vicia faba in previous
studies (Gadallah 1999). Under SS, the mangrove, Bruguiera parviflora, showed a
significant rise in Na* and C1~ content (Parida and Das 2004). Salinity induces the
production of ROS such as singlet oxygen ('0,), hydroxyl radical (*OH), H,O,
(hydrogen peroxide), and superoxide (O, ™) which are toxic to plant metabolism.
Salinity-induced ROS generation interferes with the cellular functions of plants and
can cause oxidative damage in various macromolecules such as nucleic acids,
proteins, and lipids (Gupta and Huang 2014; Del-Rio 2015). Na* concentrations
above 100 mM are hazardous to cell metabolism, causing critical enzyme inhibition,
membrane instability, and osmotic imbalance. SS reduces the quantum efficiency of
PSII and Rubisco activity by affecting physiological and metabolic processes such as
the photosynthetic pathway, photosynthetic pigments such as chlorophyll, and total
carotenoid content. Other physiological functions such as respiration, glycolysis,
soluble protein, nitrogen fixation, and disruption of the electron transport system
(ETS) in chloroplasts and mitochondria are also affected by SS (Khan et al. 2009;
Mittal et al. 2012; Igbal et al. 2015). Disturbances in photosynthetic ETS due to SS
induced the production of ROS into the cells resulting in photoinhibition and
photooxidative damages (Gururani et al. 2015). Degradation of chlorophyll in
crops like Thymus species can also indicate the negative effects of salt (Bistgani
et al. 2019). Under high SS, the aminolevulinic acid synthase enzyme, which is the
major precursor of chlorophyll production, is altered, resulting in a decrease in
chlorophyll concentration (Santos 2004). Growth and metabolism are suppressed
by SS, but tolerance limits and growth rate reduction at various toxic salt
concentrations vary among plant species (Parida and Das 2005).

16.6 Salt Tolerance in Plants

A plant’s ability to develop and complete its life cycle in a medium with a high
concentration of soluble salts is known as salt tolerance. During the growth season,
salt tolerance is usually quantified as the relative yield of a certain crop in salty soil
compared to nonsaline circumstances (Munns 2002). Glycophytes are crop species
that are extremely sensitive to soil salt and cannot grow at 100 mM NaCl. On the
other hand, halophytes are highly tolerant to SS. They are native to saline soils and
can grow at 250 mM NaCl (Hernandez and Almansa 2002; Flowers and Colmer
2015; Parida and Das 2005). Plants vary widely in terms of their tolerance to salinity
with different growth stages. Barley (Hordeum vulgare), for example, is the most
tolerant cereal, whereas rice (Oryza sativa) is the most sensitive. Plants that are
sensitive to salt are divided into four categories: sensitive, moderately sensitive,
moderately tolerant, and tolerant (Table 16.4).

Salinity tolerance is a complex feature that results from a combination of physio-
logical, biochemical, and molecular interactions (Tang et al. 2015). Any changes in
morphological appearance during SS are not sufficient to identify the effect and
consequently design the management approaches (Ahanger et al. 2017). Plants adopt
a variety of physiological, biochemical, and molecular mechanisms to deal with SS
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Table 16.4 Classification of some crops based on salt tolerance

Sensitive Tolerant Moderately tolerant Moderately sensitive
Rice Barley Sorghum Chickpea

Sesame Canola Soybean Corn and corn (forage)
Black bean Cotton Sunflower Peanut

Pigeon pea Guar Wheat Sugarcane

Walnut Oats and forage oats Barely (forage) Alfalfa

Mango Rye and forage rye Guinea grass Berseem

Banana Triticale Dhaincha Cowpea (forage)
Apricot Sugar beet Rhodes grass Clover

Banana Asparagus Pineapple Lablab bean
Blackberry Date palm Wild rye Foxtail millet

Carrot Jojoba Squash Sesbania

Grapefruit Salt grass, desert Olive Cassava

Avocado Bermuda grass Coconut Broccoli

Apple Wheatgrass, tall Artichoke Spinach

Orange Natal plum Safflower Sweet potato

to limit toxicity and increase yield (Koyro 2006; Stepien and Johnson 2009). To
understand which physiological systems are responsible for plant salinity tolerance,
it’s necessary to know if the osmotic effect of salt in the soil or the toxic effect of salt
within the plant suppresses growth (Munns and Tester 2008). Separation of ions,
osmotic adjustment, generation of suitable solutes (proline, glycine betaine), salt
exclusion or salt secretions, induction of plant hormones, induction of antioxidant
enzymes (SOD, CAT, POX, GR), and accumulation of PCs are some of the
biochemical techniques used (Parida and Das 2005; Zheng et al. 2010; Sharma
et al. 2019). Few halophytes (Atriplex, Plumbago) and some mangrove species
(Avicennia and Acanthus) bear multicellular salt glands which secrete excess salts
at leaf surfaces (Hasanuzzaman et al. 2013). Studies on Brassica napus cultivars
showed increased accumulation of proline during SS (Rezaei et al. 2017). A positive
correlation has been noticed between the accumulation of glycine betaine and
polyamine in stress tolerance in quinoa varieties (Adolf et al. 2013). Activities of
different enzymes such as ascorbate peroxidase (APX), POX, CAT, and glutathione
S-transferase (GST) are upregulated in response to SS in Chenopodium quinoa
(Causin et al. 2020).

Changes in the plant transcriptome, metabolome, and proteome are among the
molecular processes of salt tolerance (Banerjee and Roychoudhury 2018). Different
families of transcriptional factors, such as activator protein (AP2), basic leucine
zipper (bZIP), ERF, MYB, and WRKY, all show strong relationships with SS
(Kumar et al. 2017). Several studies noted that different transcriptional factors
induce the overexpression of many genes in response to SS. Enhanced expression
of GmDREB2, MtCBF4 in Arabidopsis thaliana (Chen et al. 2007), bZIP gene in
Tamarix hispida (Wang et al. 2010) provides tolerance against SS.
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16.7 PC Accumulation Under SS

PCs are a diverse group of plant secondary metabolites. PC and its derivatives
including anthocyanins, coumarins, isoflavonoids, flavonoids, tannins, and lignins
play pivotal roles throughout the life cycle of the plant (Tomar and Agarwal 2013).
PCs are aromatic molecules with one or more hydroxyl groups that come from
diverse developmental phases and environmental influences, such as shikimate and
phenylpropanoid (PP) pathways (Tomar et al. 2015; Patra et al. 2013). Plants rely on
PCs for growth, development, and reproduction. They act as defence compounds
against abiotic and biotic stresses (Lattanzio 2013). During abiotic stress conditions,
the biosynthesis of most PCs such as phenolic acids, flavonoids, lignin, and tannins
increases, which helps the plant cope with environmental constraints. Under abiotic
stress conditions (drought, heavy metals, salt, high/low temperature, and ultraviolet
radiations), the PP biosynthetic pathway is activated, resulting in the accumulation
of different PCs that can alleviate oxidative stress and scavenge damaging ROS
(Rossi et al. 2016; Borges et al. 2017). Plants under SS vary in composition and PC
content, which is both genetically and environmentally controlled (Awika and
Rooney 2004). A literature survey reported the increase in PCs in different plant
tissues during SS (Table 16.5). The higher PC contents and antioxidant activities
were noticed in Salvia mirzayanii and red pepper plants in response to SS (Navarro
et al. 2006; Valifard et al. 2014). Environmental factors have an impact on PC
biosynthetic pathways, as their regulation and gene expression are altered in
response to various stresses. In the case of SS, the altered activity of various key
enzymes in the shikimate and PP pathways governs PC production (Lattanzio 2013;
Martinez et al. 2016; Sanchita 2018). A detailed discussion on how plants manage
SS through the accumulation of PCs is discussed in the following section.

16.8 Mechanism of Action of PCs in Salinity Stress Management

SS causes the production of ROS like H,O,, O, ", and *OH and requires a strong
antioxidant system to combat the ROS propagation (Taibi et al. 2016). During SS,
PCs act as powerful antioxidants and participate in plant protection against ROS
(Bistgani et al. 2019) (Fig. 16.2).

PCs displayed an antioxidant activity by preventing the breakdown of
hydroperoxides into free radicals or by deactivating the free radicals (Valifard
et al. 2014). Furthermore, the changed activities of numerous important enzymes
in PC biosynthetic pathways govern PC production in response to SS (Rossi et al.
2016). Upregulation of enzymes is followed by increased transcript levels of genes
encoding important biosynthetic enzymes such as F3RT (flavonoid 3-O-
rhamnosyltransferase), F3GT (flavonoid 3-O-glucosyltransferase), FLS (flavanol
synthase), F3’H (flavonoid-3’-hydroxylase), F3H (flavanone3-hydroxylase), CHI
(chalcone isomerase), CHS (chalcone synthase), C3H (cinnamate 4-hydroxylase),
4CL (4-coumarate coenzyme A ligase), C4H (cinnamate 4-hydroxylase), PAL
(phenylalanine-ammonia lyase), SK (shikimate kinase), SDH (shikimate
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Table 16.5 Phenolic compounds in salinity stress management

Plant/crop

Hypericum pruinatum
Salvia mirzayani

Rice (Oryza sativa L.)
Thymus vulgaris L.
Honeysuckle (Lonicera

Jjaponica Thunb.)
Artichoke (Cynara

scolymus L.)
Amaranthus tricolor
Asparagus aethiopicus
Carthamus tinctorius
Chenopodium quinoa
Cynara cardunculus
Hordeum vulgare
Mentha piperita
Ocimum bascilicum
Olea europaea

Salvia mirzayanii
Solanum lycopersicon
Solanum villosum
White cabbage (Brassica

oleracea var. capitata)

Rapeseed (Brassica
napus var. oleifera)

Achillea fragrantissima

Response of endogenous phenolics during
salinity stress

Increase of PCs, namely, chlorogenic acid,
rutin, quercitrin, isoquercitrin, and hyperoside
Accumulation of PCs and antioxidant activity

Cell wall-bound PC ferulic acid and
4-hydroxycinnamic acid were increased
Increase of PC content and radical scavenging
activity

Increased production of chlorogenic acid and
luteolosid

Caffeic and chlorogenic acid accumulation
increased

Gallic acid, vanillic acid, ferulic acid,
isoquercitrin content increased

Increased chlorogenic acid, caffeic acid, and
rutin content

Total PC and flavonoid content increased
Total PC and flavonoid content increased
Increased gallocatechin, quercitrin, and
leucocyanidin content

Increased total phenolic content
Increased total phenolic content

Increased caffeic acids, cinnamyl malic acid,
and quercetin

Total phenolics, kaempferol, and quercetin
Increased total phenolic content

Increased total caffeoylquinic acid content
Increased caffeic acid, total phenolic, and
quercetin

Increased hydroxycinnamic acids

Increase in contents of PCs

Increase in contents of PCs
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Fig. 16.2 Flow chart
indicating phenolic salinity
stress tolerance mechanisms
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|

[ Reduced oxidative damage ]

Salt
Tolerance

dehydrogenase), and DAHPS (3-deoxy-D-arabino-heptulosonate) (Fig. 16.3). The
enzyme DAHPS is highly upregulated under all stresses including salinity and is a
key determinant governing the carbon flow into the shikimate pathway (Zhang et al.
2015). The other enzymes SHD and SK of shikimate pathway as well as the
expression level of their transcripts were also upregulated. L-phenylalanine, an
essential amino acid for the formation of hydroxycinnamic acids, is produced by
the shikimate pathway. The amino acid L-phenylalanine is generated higher during
SS (Hoque et al. 2020). This is also in agreement with the levels of L-phenylalanine
produce several folds higher than in control in tomato plants under SS (Martinez
et al. 2016). Following the shikimate pathway, L-phenylalanine is transformed into
cinnamic acid, which leads to the creation of other phenolic compounds (Fig. 16.3,
PP pathway). Several key enzymes, such as PAL, C4H, and 4CL, participate in the
synthesis of cinnamic acid, p-coumaric acid, and p-coumaryl-CoA from
L-phenylalanine (Besseau et al. 2007; Ferrer et al. 2008). The major enzyme in the
PP pathway, PAL, transforms phenylalanine to cinnamic acid and is significantly
upregulated in response to a variety of environmental stressors. In olive trees, the
number of PAL and their transcripts increases in response to SS, according to studies
(Rossi et al. 2016). Under SS, the expression levels of several enzymes such as PAL,
C4H, and 4CL were many times greater and were also strongly linked with the
concentrations of various substances such as cinnamic acid, p-coumaric acid, and p-
coumaryl-CoA (Martinez et al. 2016). p-Coumaryl-CoA produced in PP pathway is



16 Role of Phenolic Metabolites in Salinity Stress Management in Plants 363

&
SHIKIMATE PATHWAY

Phosphoenol pyruvate -

DAHPS SDH SK

i ey Bl g g B g v
Erythrose-4-phosphate

4CL C4H P\l}
P yI-CoA { »p fcacid e [ Cinnamic acid e L

= g
& derivatives
K PHENYLPROPANOID PATHWAY 4/

o +3- Malonyl- CoA FLAVONOID BRANCH PATHWAY |

F3'H

‘H - — — — — —
S| —— g T pereon |
L = J L J L : J L =

FLS FIGT FLS
DAHPS: 3-deoxy-7-phosphobeptulonate synthase  CHS: Chalcone synthase F3RT
SDH  : Shikimate dehydrogenase CHI : Chalcone isomerase
SK : Shikimate kinase F3H: Flavanone 3-hydroxylase
PAL  : Phenylalanine-smmonia liase F3'H: Flavonoid-3'-hydroxylase _Kaempferol | Quercetin ]
C4H : Cinnamate 4- hydroxylase lavonol synthase
4CL & d-coumaratecoenzyme A ligase FIGT: Flavoneid 3-O-glucesyltransferase
C3IH : Cinnamate 3-hydroxylase F3RT: Flavonoid 3-O-glucoside rhamnosyltransferase

Fig. 16.3 Schematic representation of the regulation of phenol metabolism in response to salinity
stress (adapted and modified from Martinez et al. 2016)

used as a substrate for the synthesis of hydroxycinnamic acids or flavonols (flavonol-
branched pathway). With the help of the enzyme C3H, p-coumaryl-CoA is
transformed into hydroxycinnamic acids and derivatives (Ferrer et al. 2008). SS
induces the upregulation of enzyme C3H and resulted in overaccumulation of
hydroxycinnamic acids and derivatives. The major factor for flavonoid production
is chalcone synthase (CHS). This enzyme CHS catalyses the conversion of p-
coumaryl-CoA and three molecules of malonyl-CoA into naringenin chalcone,
starting the flavonoid production process (Fig. 16.3, Flavonoid branch pathway).
From naringenin chalcone, production of other compounds like naringenin,
flavonols, and other derivatives is regulated by different enzymes like CHI, F3H,
FLS, F3GT, and F3RT, respectively. Studies reported that higher amounts of PCs
like quercetin, caffeic, ferulic, and apigenin are accumulated in response to salinity
stress in Thymus species (Bistgani et al. 2019). Salicylic acid plays a function in
increasing salinity tolerance mechanisms in a variety of crops, including Vicia faba,
Brassica juncea, Medicago sativa, and V. radiata (Jini and Joseph 2017; Khan et al.
2015).
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16.9 Conclusion and Future Prospective

Salinity has become a major environmental issue that has a negative impact on plant
growth and development. Because SS impacts plant cellular activity, agricultural
output suffers and the farmer loses money. A recent salt stress study has shown that
PCs such as phenols, polyphenols, flavonoids, anthocyanin, and phenolic acids
increase plant tolerance. PCs protect plants from salt stress in a variety of ways,
including reactive oxygen species detoxification, physiological and metabolic pro-
cess regulation, and cell integrity maintenance. Aside from the vast amount of
information available on PCs, more study is needed to determine the involvement
of specialised PCs in response to salinity stress and to define the intimal molecular
process that switches from primary metabolism to activation of the PP pathway in
response to SS.
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