
Overview of Incorporating Nonlinear
Functions into Recurrent Neural
Network Models

Farzaneh Nikbakhtsarvestani

Abstract This paper describes training recurrent neural networks (RNNs) which are
able to learn features and long-range dependencies from sequential data. Although
training RNNs is mostly plagued by the vanishing and exploding gradient problems,
but there is a RNN architecture so called long short-term memory (LSTM) to address
these issues. To demonstrate the impact of nonlinearity of activation functions on
training recurrent neural networks, the limitations of the LSTM algorithm on speech
recognition technology are presented in this study.

1 Introduction

Recurrent neural networks (RNNs) which have attracted great attention have been
widely studied from 1986 and were based on David Rumelhart’s work for modeling
time series. These networks are used for different machine learning tasks which can
modelize sequential data.

Recurrent neural networks have many applications, especially when the input and
output have variable lengths such as handwriting recognition, speech recognition,
and image to text.

The layers of connected units called artificial neurons make artificial neural net-
works (ANNs). The shallow network of ANN includes an input layer, an output layer,
and at most a hidden layer without a recurrent connection. Recurrent connections in
ANNs make them recurrent neural networks (RNNs), and the increase of complexity
of network depends on the number of layers. More number of layers or recurrent
connections generally increases the depth of the network and empowers it to pro-
vide various levels of data representation and feature extraction, referred to as deep
learning [1]. The difference between these networks and higher layer ones is related
to their units. The structure of hidden states causes RNNs to store, remember, and
process past complex signals for long time periods and works as the memory of the
network and state of the hidden layer at a time which is conditioned on its previous

F. Nikbakhtsarvestani (B)
Department of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
e-mail: farzaneh.nikbakht@ontariotechu.ca

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
S. D. Jabeen et al. (eds.), Soft Computing and Optimization, Springer Proceedings
in Mathematics & Statistics 404, https://doi.org/10.1007/978-981-19-6406-0_9

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-6406-0_9&domain=pdf
farzaneh.nikbakht@ontariotechu.ca
 854
57657 a 854 57657 a

https://doi.org/10.1007/978-981-19-6406-0_9
https://doi.org/10.1007/978-981-19-6406-0_9
https://doi.org/10.1007/978-981-19-6406-0_9
https://doi.org/10.1007/978-981-19-6406-0_9
https://doi.org/10.1007/978-981-19-6406-0_9
https://doi.org/10.1007/978-981-19-6406-0_9
https://doi.org/10.1007/978-981-19-6406-0_9
https://doi.org/10.1007/978-981-19-6406-0_9
https://doi.org/10.1007/978-981-19-6406-0_9
https://doi.org/10.1007/978-981-19-6406-0_9
https://doi.org/10.1007/978-981-19-6406-0_9

104 F. Nikbakhtsarvestani

state [2]. Mapping the input sequence at the current timestep to the output sequence
which is prediction the sequence in the next timestep is the another capability of
RNNs. Artificial neurons and the feedback loops which are recurrent cycles over
time or sequence make RNNs as a class of supervised machine learning models [3].
In this model, for training the RNNs, the dataset of input-target pairs needs to be
trained, and the goal is minimizing the difference between output and target pairs
via optimizing the weights of the network. This work is based on training recurrent
neural network [1] and error bound for approximations [4].

Definition 1.1 (Neural Network) Let d, L ∈ N. A neural network U with input
dimension d and L layers is a sequence of matrix-vector tuples

U = ((A1, b1), (A2, b2), . . . , (AL , bL))

where N0 = d and N1, . . . , NL ∈ N and where

AL := NL ×
L−1Σ

k=0

NK ,

and bL ∈ RNL . (Note that NL is the definition of the output layer of U)

2 A Simple Recurrent Neural Network

Recurrent cycles over time are called feedback loops. In the neural network litera-
ture, artificial neurons with one or more global feedback are referred to as recurrent
networks [1]. RNNs are a class of supervised machine learning models. Learning
capability of the RNNs and its performance depends on the amount of feedback loops.

Overview of Incorporating Nonlinear Functions … 105

Also where the output of a neuron is fed back into its own input, the network
has self-feedback. Moreover in the situation that neural network contains nonlinear
units, feedback loops include particular branches unit time delay operators (denoted
by Z−1 in the figure).

2.1 Model Architecture

Recurrent neural network architectures can have many different forms. The layer of
input, recurrent hidden, and layer of output are three layers in simple RNNs.

A sequence of vectors through time {. . . , xt−1, xt , xt+1, . . .} such that xt =
{x1, x2, . . . , xN } makes the input of input layer.

In a fully connected RNN, the input units are connected to the hidden units.
In this layer, a weight matrix WIH defines the connections. The hidden units
ht = {h1, h2, . . . , hN } cause the hidden layer to connect with recurrent connections
through time. The stability and performance of the network depend on the initializa-
tion of the hidden units with small elements. The state space (memory) of the system
is defined by hidden layer as

ht = fH(Ot) (2.1)

such that fH(.) is the activation function and

Ot = WIHxt + WHHht−1 + bh

In the hidden units, bh is the bias vector. In the third layer which is output layer, the
units are computed as

yt = fO(WHOht + b0)

where fO(.) is activation function and b0 is the bias in this layer. Weighted connections
WHO connect the hidden layer to the output layer. A set of values which summarizes
all the unique necessary information of the previous states of the network through

106 F. Nikbakhtsarvestani

the time is hidden state of a RNN. These hidden states make accurate predictions
at the output layer according to input vector. If a simple RNN is trained well, the
network will be capable for modeling rich dynamics; however in every units, simple
activation function is used [1].

2.2 Activation Function

In the output layer for training a classification model, an activation function is applied.
The activation function must be continuous in order to meet differentiability require-
ments. Sigmoidal nonlinear functions are examples of a continuously differentiable
nonlinear activation functions which are used in multi-layer perceptrons.

Some popular activation functions are rectified linear unit (ReLU) , “tanh”, and
“sigmoid”. These functions (“tanh” and “sigmoid”) are two forms of sigmoidal non-
linear functions.

Both the nature of the machine learning problem and the training dataset are two
important factors for choosing the proper activation function. The activation function
typically takes the form of a hyperbolic tangent function which is defined as

tanh(x) =
e2x − 1
e2x + 1

or logistic(sigmoid) function which is known as common choice activation function

σ(x) = 1

1 + e−x

The domain of this function is real numbers, and its range is [0, 1]. These two
activation functions which fastly saturate the neuron and cause the gradient to be
vanished are related as

σ(x) =
tanh

(
x
2

) + 1
2

Obviously, the scaled version of sigmoid activation function is tanh. The ReLU
activation function which works on positive input values is defined as

ρ(x) = max(x, 0)

Although comparison between ReLU activation function and another two activation
functions indicates that in ReLU activation function, the acceleration of the conver-
gence of stochastic gradient descent (SGD) is greater than tanh and sigmoid, but due
to the lack of resistance of ReLU function against growing the weight matrix and the
large gradient, neuron may be inactive by using of this type of activation function
during training.

Overview of Incorporating Nonlinear Functions … 107

3 Training Recurrent Neural Network

Training the RNN in which the training loss being minimized is a main issue in such
networks. Optimizing the algorithm in order to tune the weights and instantiating
them are the main approaches used for minimizing the training loss. The main focus
in optimizing the machine learning algorithm is on the convergence and reducing
the complexity of training section of the algorithm which needs a large number of
iterations. There are many approaches for training RNNs. In this paper, we study acti-
vation functions in gradient-based machine learning algorithms and their modified
forms.

3.1 Gradient-Based Learning Methods

One of the most common approaches to optimize neural network is gradient descent
(GD). Although this method causes the total loss to minimized, but for large datasets,
this method is computationally expensive and is not appropriate for training the mod-
els as inputs arrive (i.e., online training). Basically in this way by computing the error
function derivative with respect to each member of the weight matrices, the weights
of the model are set. Assuming that the activation function is nonlinear and differen-
tiable, in order to minimize the total loss, the gradient descent alters at each weight.
In GD, each iteration of optimization for doing an update follows of this formula:

θt+1 = θt −
λ
U

UΣ

k=1

∂ Lk

∂θ

where λ is the rate of training and U is the extent of training set and θ is the set
of parameters. The gradient for whole dataset is computed by GD so GD is con-
sidered as batch GD. In other words, by GD method, we follow the direction of
the slope of the surface created by the objective function downhill until we reach
a valley [5]. Since the time is not considered in GD and RNNs include recurrent
cycles over time, so this method does not work properly for training the network.
For solving this problem, an extended version of GD through time is needed. It is
called backpropagation through time (BPTT). Basically, backpropagation is a spe-
cific technique for implementing gradient descent in the weight space for a multi-
layer perception [6]. In RNN, the connections between parameters and the dynamics
are unstable, this makes computing error-derivatives through time complicated, and
GD method is thus inadequate. Another shortcoming of GD is due to the difficulty
in recognizing the dependencies as they increase in magnitude. The only parameter
which is considered by loss function derivative with respect to weights is the dis-
tance between the updated output and its consistent target as the history of weights
information is not applied. The vanishing gradient is another deficiency of applying
GD method for training RNN. The exponential decay of backpropagated gradient

108 F. Nikbakhtsarvestani

causes RNNs not to learn long-term temporal dependencies. In a reverse situation,
GD method may lead to explode gradient issue which is due to exponentially blow-
up of backpropagated gradient. This result is in unstable learning process. We are
going to discuss these challenges and provide an architecture for solving these prob-
lems.

3.1.1 Backpropagation Through Time (BPTT)

The simplest type of neural network is the feedforward neural network. This network
has no loop, and the information moves from input nodes, via hidden ones and finally
output nodes (i.e., in only one direction). For feedforward networks, the method
“BPTT” is used to train the network. BPTT is the generalization of backpropagation.
In this method, the idea is making the network unfolded in time, and the signals of
error propagate backwards through time [2].

In this network, the parameters can be considered as the set

θ = {WHH, WIH, WHO, bh, bI, bO} (3.1)

These parameters affect the loss function in the previous timesteps. The gradients of
loss function with respect to this set are

∂ L
∂θ

=
TΣ

t=1

∂ LT

∂θ

where for the loss function L , we have

∂ Lt

∂θ
=

tΣ

k=1

(
∂ Lt

∂ht
.
∂ht
∂hk

.
∂h+

k

∂θ

)
,

where ht is the hidden state of network at time t and ∂h
+
k

∂θ is the “immediate” partial
derivative. For propagating the error signals backward in timestpes t and k which is
k < t , we have

∂ht
∂hk

=
tΠ

i=k+1

∂hi
∂hi−1

,

Overview of Incorporating Nonlinear Functions … 109

and so according to Eq. (2.1) and using the Jacobian matrix for the hidden state we
have:

tΠ

i=k+1

∂hi
∂hi−1

=
tΠ

i=k+1

W T HHdiag| f '
H(hi−1)|.

As we see the participation of the hidden states in the network through time is
obvious. In terms of the contribution of inputs and corresponding hidden states over
time, two types of hidden state contribution are recognizable, such as long-term
contribution (for time k ≪ t) and short time contribution for another time.

By considering the above figure, it is evident that when the new input are admitted
to the network, the sensitivity of units vanishes (decreasing the contribution of the
inputs xt−1 through time), the activation in hidden units is overwritten by BPTT
(increasing the contribution of the loss function value Lt+1 w.r.t ht+1 in BPTT trough
time) [1].

3.1.2 Vanishing Gradient Problem

The vanishing gradient problem causes some defects for RNNs. This is because
of strong nonlinearity which is used for making complex pattern of data. When
the gradient propagates back through time, its magnitude decreases exponentially.
Subsequently, the long-term correlations are neglected by the network, which causes
an issue in learning process of dependencies among distant events. There are two
possible explanations for this:

1. The gradient of nonlinear functions which is close to zero.
2. While the gradient propagates back through time, recurrent matrix increases the

gradient magnitude.

For the less than one eigenvalues of the recurrent matrix, after five to ten times of
running backpropagation algorithm, the rate of convergence of gradient increases. In
the RNNs learning process with extended sequences and small weights, the gradient
shrinks as well. Long-term components explode in the recurrent weight matrix WHH

110 F. Nikbakhtsarvestani

when its spectral radius becomes more than 1 and t → ∞ . Because product of matri-
ces can lead to shrinkage/explosion along several directions. In order to generalize
this to nonlinear function f '

h(.) in Eq. (2.1), we can bound it with γ ∈ R s.t

||diag(f '
H (hk))|| ≤ γ

And since we have

tΠ

i=k+1

∂hi
∂hi−1

=
tΠ

i=k+1

W T HHdiag| f '
H(hi−1)|

so ||||||||
∂hk+1

∂hk

|||||||| ≤ ||||W T HH

|||| .
||||diag(f ''

H(hk))
|||| ≤ 1

Now for δ ∈ R, if we consider || ∂hk+1

∂hk
|| ≤ δ < 1 for loss function component, we

have
||||||||||
∂ Lt

∂ht

)
t−1Π

i=1

∂hi+1

∂hi

)|||||||||| ≤ δt−k||∂ Lt

∂ht
||

in different timesteps. Since δ < 1, increasing t − k leads to vanishing gradient prob-
lem. Generally in recurrent matrix WHH, if for the largest singular value λ1 we have
λ1 < 1

γ , the gradient vanishing problem happens.

3.1.3 Exploding Gradient Problem

As its mentioned, the process of training RNNs with BPTT may be exposed by
exploding problem. In training recurrent neural networks on long sequences, increas-
ing the weights causes the norm of gradient to increase and gradients are subsequently
exploded. This is a different necessary condition in comparison to the vanishing gra-
dient problem in which for the largest singular value of recurrent matrix WHH (i.e.,
λ1), we have λ1 > 1

γ .

4 Long Short-term Memory

As mentioned before, the main shortcoming of BPTT method pertains to error signals
flowing backwards in time. This causes gradients to vanish or explode through time
which turns out to more difficulties in learning long-term dependencies. To tackle this
problem, some methods have been proposed. One of the most successful techniques
to strengthen the long-term dependencies is known to be the long short-term memory

Overview of Incorporating Nonlinear Functions … 111

(LSTM). In this method, the sigmoid or tanh hidden units are replaced with “memory
cell”. This change leads to more controlled behavior of backpropagated gradients.
In this approach, the input and output values of the cell memory are controlled by
gates. Each cell is also matched with a forget gate that controls the decay rate of
its stored values [7]. In this way, the memory cell holds its stored values during the
periods that the input and output gates are off, and the forget gate is not causing
decay [1]. Therefore, the gradient of the error with respect to its stored value, when
backpropagated over those periods, stays constant [8]. Depending on the training
application, there are varieties of LSTM structures developed by many researchers.
In the following chapter, standard LSTM approach will be illustrated, and then, we
will focus on bidirectional LSTM in particular to suit our applications.

4.1 Standard LSTM

As its shown in above figure, each typical memory cell has its own input, output, and
forget gate and a cell activation component that provide continuous analogs of write,
read, and reset operations for the cells. More precisely, the input, forget, and output
gate are trainable to learn, respectively, what information to store in the memory, how
long to store it, and when to read it out [9]. The activation of the cell is controlled
by the designed multipliers. The input to the cells is multiplied by the activation of
the input gate, the output to the net is multiplied by that of the output gate, and the
previous cell values are multiplied by the forget gate. The net can only interact with
the cells via the gates [10]. The input gate of LSTM is defined as

gin t = σ(WIgin xt + WHginht−1 + Wgcgin g
c
t−1 + bgin) (4.1)

where W... is the weight matrix as below

• WIgin : input layer → input gate

112 F. Nikbakhtsarvestani

• WHgin : hidden state → input gate
• Wgcgin : cell activation → input gate
• bgin : bias of the input gate
• forget gate :

gf t = σ(WIgf xt + WHgfht−1 + Wgcg f g
c
t−1 + bgf) (4.2)

where

• WIgf : input layer → forget gate
• WHgf : hidden state → forget gate
• Wgcgf : cell activation → forget gate
• bgf : bias of the forget gate
• cell gate:

gc t = gin t tanh(WIgc xt + WHgcht−1 + bgc) + gf t g
c
t−1 (4.3)

where

• WIgc : input layer → cell gate
• WHgc : hidden state → cell gate
• bgc : bias of the cell gate
• output gate:

gout t = σ(WIgout xt + WHgoutht−1 + Wgcgout g
c
t + bgout) (4.4)

where

• WIgout : input layer → output gate
• WHgout : hidden state → output gate
• Wgcgout : cell activation → output gate
• bgout : bias of the output gate
• hidden state:

ht = gout t tanh(gc t) (4.5)

The LSTM gates can prevent the rest of the network from modifying the contents
of the memory cells for multiple timesteps [1].

4.2 Bidirectional LSTM

In order to train data, looking at the previous context and future context is important
and has many applications such as speech recognition Bidirectional RNN (BRNN)
considers all available input sequence in both the past and future for estimation of
the output vector [11]. To enhance the capability of BRNNs through stacking hidden
layers of LSTM cells in space, deep bidirectional LSTM (BLSTM) can be applied.
BLSTM networks are more powerful than unidirectional LSTM networks [1]. This

Overview of Incorporating Nonlinear Functions … 113

means that the bidirectional nets and the LSTM nets did not take significantly more
time to train per epoch than the unidirectional or RNN [10]. During computation,
BLSTM includes all information of input sequences. Like BRNN, BLSTM model can
solve the vanishing gradient problem and extend the model. But biggest difference
between BRNN and BLSTM is related to their training time. The convergence of
BRNN is more than eight times as long respect to BLSTM.

We consider an extended LSTM layer in multi-layer net, and the pseudocode for
the forward pass is described.

4.2.1 Notation

• S input sequence
• τ time
• xk(τ) network input to unit k at the time τ
• yk(τ) the activation of the network input
• E(τ) output error at the time τ
• tk(τ) training target at output unit k at time τ
• N set of all units (input units, bias units)
• Wi j weight from unit i to unit j
• ι input gate
• φ forget gate
• ω output gate
• c elements of the set of cells C
• sc state value of cell c
• f is a function of gate
• g cell input function
• h output function

Note that for each memory block, the LSTM equations are written, and these
calculations can be repeated for each block. The error gradient is calculated with
online BPTT, i.e., after every sequence BPTT shrink to input sequence length with
the weight updates [10].

4.2.2 Forward Pass

• Re-adapt the activation to 0,
• Feed in the inputs and update the activation functions. All hidden layer and output
activation functions at every timestep need to be stored,

• The activation functions are updated as:
Input Gates

114 F. Nikbakhtsarvestani

xt =
Σ

j∈N
ωιj y j (τ − 1) +

Σ

c∈C
ωιcsc(τ − 1)

yι = f (xι)

Forget Gates

xφ =
Σ

j∈N
ωφ j y j (τ − 1) +

Σ

c∈C
ωφcsc(τ − 1)

5 Application of LSTM in Speech Recognition

5.1 Speech Recognition

Since RNNs are the structure through time and the signals of speech and audio change
continuously over time, so RNNs can be an ideal model to learn features. Also speech
recognition prediction uses the past and future sequential data, so BRNN is suitable in
this field. Later applications of the connectionist temporal classification (CTC) func-
tion contributed to promote the RNNs in speech recognition. Connectionist temporal
classification (CTC) is an objective function that allows an RNN to be trained for
sequence transcription tasks without requiring any prior alignment between the input
and target sequences [12]. CTC model has iterations like the sequence transducer
and neural transducer. This property enables a second RNN to perform as a language
model. This eventually leads to do the task such as online speech recognition. So by
these argumentation, based on linguistic feature and prior transcriptions, the model
can make the prediction.

5.2 Speech Emotion

Another application of RNNs is speech emotion. In this field, the segment of speech is
organized as an emotion. Since in speech emotion recognition, the progress proceeds
from the same way as that of speech recognition so the speech emotion recognition is
much the same to speech recognition. Several methods have been proposed in speech
application such as hidden Markov model (HMMs) and Gaussian mixture models
(GMMs). With RNNs establishment, the trend of learning has improved. Because
the networks were able to learn the features on their own. So RNN models have been
applied for performing speech emotion recognition. LSTM–RNN has been success-
fully applied to speech recognition. Because in LSTM network, long-range depen-
dencies are modelized better in order to capture the emotions. Also deep bidirectional
LSTMs can capture more data through taking them in large number of frames.

Overview of Incorporating Nonlinear Functions … 115

5.3 Speech Synthetic

Another type of speech application is speech synthetic. In this field, long-term
sequence learning is needed as well. HMM-based models and deep MLP neural
networks can synthesize speech. However, these models have some problems. For
example, in HMM-based models, statistical averaging during the training phase leads
to overly smooth trajectories so the sound is not natural or MLP neural network takes
each frame as an independent entity from its neighbors and fails to take into account
the sequential nature of speech [13]. Introducing the RNNs in speech synthesis col-
laborates to leverage the sequential dependencies.

Speech synthesis also requires long-term sequence learning. HMM-based models
can often produce synthesized speech, which does not sound natural. This is due
to the overly smooth trajectories produced by the model, as a result of statistical
averaging during the training phase [13].

Following that, LSTM performs better than RNNs. Also the ability of BLSTM
model to integrate the relationship with neighboring frames in both future and past
time steps [14, 15] make this model very effective in learning long-term sequential
dependencies.

Acknowledgements The author would like to thank the University of Ontario Institute of Tech-
nology and the University of Manitoba for their support with this study.

References

1. Salehinejad, H., Sankar, S., Barfett, J., Colak, E., Valaee, S.: Recent Advances in Recurrent
Neural Networks. arXiv:1801.01078v3 [cs.NE, 22 Feb 2018]

2. Mikolov, T., Joulin, A., Chopra, S., Mathieu, M., Ranzato, M.: Learning longer memory in
recurrent neural networks. arXiv:1412.7753 (2014)

3. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall PTR (1994)
4. Yarotsky, D.: Error bounds for approximations with deep ReLU networks. Neural Netw. 94,

103–114 (2017)
5. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv:1609.04747 (2016)
6. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momen-

tum in deep learning. In: International Conference on Machine Learning, pp. 1139–1147 (2013)
7. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM

(1999)
8. Le, V., Jaitly, N., Hinton, G.E.: A simple way to initialize recurrent networks of rectified linear

units. arXiv:1504.00941 (2015)
9. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and

other neural network architectures. In: IJCNN 2005 Conference Proceedings. Published Under
the IEEE Copyright (2014)

10. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and
other neural network architectures Neural Networks, vol. 18, no. 5, pp. 602–610 (2005)

11. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. 45(11), 2673–2681 (1997)
12. Graves, A., Fernandez, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification:

labelling unsegmented sequence data with recurrent neural networks. in: Proceedings of the
23rd International Conference on Machine Learning. ACM, pp. 369–376 (2006)

arXiv:1801.01078v3
 6597 35490 a 6597 35490 a

arXiv:1412.7753
 9810 37625 a 9810 37625 a

arXiv:1609.04747
 25251 41816 a 25251 41816 a

arXiv:1504.00941
 1983 48220 a 1983 48220
a

116 F. Nikbakhtsarvestani

13. Fan, K., Wang, Z., Beck, J., Kwok, J., Heller, K.A.: Fast second order stochastic backpropa-
gation for variational inference. In: Advances in Neural Information Processing Systems, pp.
1387–1395 (2015)

14. Fan, Y., Qian, Y., Xie, F.-L., Soong, F.K.: TTs synthesis with bidirectional LSTM based recur-
rent neural networks. In: Fifteenth Annual Conference of the International Speech Communi-
cation Association (2014)

15. Fernandez, R., Rendel, A., Ramabhadran, B., Hoory, R.: Prosody contour prediction with long
short-term memory, bi-directional, deep recurrent neural networks. In: Interspeech, pp. 2268–
2272 (2014)

	 Overview of Incorporating Nonlinear Functions into Recurrent Neural Network Models
	1 Introduction
	2 A Simple Recurrent Neural Network
	2.1 Model Architecture
	2.2 Activation Function

	3 Training Recurrent Neural Network
	3.1 Gradient-Based Learning Methods

	4 Long Short-term Memory
	4.1 Standard LSTM
	4.2 Bidirectional LSTM

	5 Application of LSTM in Speech Recognition
	5.1 Speech Recognition
	5.2 Speech Emotion
	5.3 Speech Synthetic

	References

