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Abstract This paper describes training recurrent neural networks (RNNs) which are 
able to learn features and long-range dependencies from sequential data. Although 
training RNNs is mostly plagued by the vanishing and exploding gradient problems, 
but there is a RNN architecture so called long short-term memory (LSTM) to address 
these issues. To demonstrate the impact of nonlinearity of activation functions on 
training recurrent neural networks, the limitations of the LSTM algorithm on speech 
recognition technology are presented in this study. 

1 Introduction 

Recurrent neural networks (RNNs) which have attracted great attention have been 
widely studied from 1986 and were based on David Rumelhart’s work for modeling 
time series. These networks are used for different machine learning tasks which can 
modelize sequential data. 

Recurrent neural networks have many applications, especially when the input and 
output have variable lengths such as handwriting recognition, speech recognition, 
and image to text. 

The layers of connected units called artificial neurons make artificial neural net-
works (ANNs). The shallow network of ANN includes an input layer, an output layer, 
and at most a hidden layer without a recurrent connection. Recurrent connections in 
ANNs make them recurrent neural networks (RNNs), and the increase of complexity 
of network depends on the number of layers. More number of layers or recurrent 
connections generally increases the depth of the network and empowers it to pro-
vide various levels of data representation and feature extraction, referred to as deep 
learning [ 1]. The difference between these networks and higher layer ones is related 
to their units. The structure of hidden states causes RNNs to store, remember, and 
process past complex signals for long time periods and works as the memory of the 
network and state of the hidden layer at a time which is conditioned on its previous 
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state [ 2]. Mapping the input sequence at the current timestep to the output sequence 
which is prediction the sequence in the next timestep is the another capability of 
RNNs. Artificial neurons and the feedback loops which are recurrent cycles over 
time or sequence make RNNs as a class of supervised machine learning models [ 3]. 
In this model, for training the RNNs, the dataset of input-target pairs needs to be 
trained, and the goal is minimizing the difference between output and target pairs 
via optimizing the weights of the network. This work is based on training recurrent 
neural network [ 1] and error bound for approximations [ 4]. 

Definition 1.1 (Neural Network) Let  d, L ∈ N. A neural network U with input 
dimension d and L layers is a sequence of matrix-vector tuples 

U = ((A1, b1), (A2, b2), . . . , (AL , bL )) 

where N0 = d and N1, . . . ,  NL ∈ N and where 

AL := NL × 
L−1Σ

k=0 

NK , 

and bL ∈ RNL . (Note that NL is the definition of the output layer of U ) 

2 A Simple Recurrent Neural Network 

Recurrent cycles over time are called feedback loops. In the neural network litera-
ture, artificial neurons with one or more global feedback are referred to as recurrent 
networks [ 1]. RNNs are a class of supervised machine learning models. Learning 
capability of the RNNs and its performance depends on the amount of feedback loops.
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Also where the output of a neuron is fed back into its own input, the network 
has self-feedback. Moreover in the situation that neural network contains nonlinear 
units, feedback loops include particular branches unit time delay operators (denoted 
by Z−1 in the figure). 

2.1 Model Architecture 

Recurrent neural network architectures can have many different forms. The layer of 
input, recurrent hidden, and layer of output are three layers in simple RNNs. 

A sequence of vectors through time {. . . ,  xt−1, xt , xt+1, . . .} such that xt = 
{x1, x2, . . . ,  xN } makes the input of input layer. 

In a fully connected RNN, the input units are connected to the hidden units. 
In this layer, a weight matrix WIH defines the connections. The hidden units 
ht = {h1, h2, . . . ,  hN } cause the hidden layer to connect with recurrent connections 
through time. The stability and performance of the network depend on the initializa-
tion of the hidden units with small elements. The state space (memory) of the system 
is defined by hidden layer as 

ht = fH(Ot ) (2.1) 

such that fH(.) is the activation function and 

Ot = WIHxt + WHHht−1 + bh 

In the hidden units, bh is the bias vector. In the third layer which is output layer, the 
units are computed as 

yt = fO(WHOht + b0) 

where fO(.) is activation function and b0 is the bias in this layer. Weighted connections 
WHO connect the hidden layer to the output layer. A set of values which summarizes 
all the unique necessary information of the previous states of the network through
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the time is hidden state of a RNN. These hidden states make accurate predictions 
at the output layer according to input vector. If a simple RNN is trained well, the 
network will be capable for modeling rich dynamics; however in every units, simple 
activation function is used [ 1]. 

2.2 Activation Function 

In the output layer for training a classification model, an activation function is applied. 
The activation function must be continuous in order to meet differentiability require-
ments. Sigmoidal nonlinear functions are examples of a continuously differentiable 
nonlinear activation functions which are used in multi-layer perceptrons. 

Some popular activation functions are rectified linear unit (ReLU) , “tanh”, and 
“sigmoid”. These functions (“tanh” and “sigmoid”) are two forms of sigmoidal non-
linear functions. 

Both the nature of the machine learning problem and the training dataset are two 
important factors for choosing the proper activation function. The activation function 
typically takes the form of a hyperbolic tangent function which is defined as 

tanh(x) = 
e2x − 1 
e2x + 1 

or logistic(sigmoid) function which is known as common choice activation function 

σ(x) = 1 

1 + e−x 

The domain of this function is real numbers, and its range is [0, 1]. These two 
activation functions which fastly saturate the neuron and cause the gradient to be 
vanished are related as 

σ(x) = 
tanh

(
x 
2

) + 1 
2 

Obviously, the scaled version of sigmoid activation function is tanh. The ReLU 
activation function which works on positive input values is defined as 

ρ(x) = max(x, 0) 

Although comparison between ReLU activation function and another two activation 
functions indicates that in ReLU activation function, the acceleration of the conver-
gence of stochastic gradient descent (SGD) is greater than tanh and sigmoid, but due 
to the lack of resistance of ReLU function against growing the weight matrix and the 
large gradient, neuron may be inactive by using of this type of activation function 
during training.



Overview of Incorporating Nonlinear Functions … 107

3 Training Recurrent Neural Network 

Training the RNN in which the training loss being minimized is a main issue in such 
networks. Optimizing the algorithm in order to tune the weights and instantiating 
them are the main approaches used for minimizing the training loss. The main focus 
in optimizing the machine learning algorithm is on the convergence and reducing 
the complexity of training section of the algorithm which needs a large number of 
iterations. There are many approaches for training RNNs. In this paper, we study acti-
vation functions in gradient-based machine learning algorithms and their modified 
forms. 

3.1 Gradient-Based Learning Methods 

One of the most common approaches to optimize neural network is gradient descent 
(GD). Although this method causes the total loss to minimized, but for large datasets, 
this method is computationally expensive and is not appropriate for training the mod-
els as inputs arrive (i.e., online training). Basically in this way by computing the error 
function derivative with respect to each member of the weight matrices, the weights 
of the model are set. Assuming that the activation function is nonlinear and differen-
tiable, in order to minimize the total loss, the gradient descent alters at each weight. 
In GD, each iteration of optimization for doing an update follows of this formula: 

θt+1 = θt − 
λ 
U 

UΣ

k=1 

∂ Lk 

∂θ 

where λ is the rate of training and U is the extent of training set and θ is the set 
of parameters. The gradient for whole dataset is computed by GD so GD is con-
sidered as batch GD. In other words, by GD method, we follow the direction of 
the slope of the surface created by the objective function downhill until we reach 
a valley [ 5]. Since the time is not considered in GD and RNNs include recurrent 
cycles over time, so this method does not work properly for training the network. 
For solving this problem, an extended version of GD through time is needed. It is 
called backpropagation through time (BPTT). Basically, backpropagation is a spe-
cific technique for implementing gradient descent in the weight space for a multi-
layer perception [ 6]. In RNN, the connections between parameters and the dynamics 
are unstable, this makes computing error-derivatives through time complicated, and 
GD method is thus inadequate. Another shortcoming of GD is due to the difficulty 
in recognizing the dependencies as they increase in magnitude. The only parameter 
which is considered by loss function derivative with respect to weights is the dis-
tance between the updated output and its consistent target as the history of weights 
information is not applied. The vanishing gradient is another deficiency of applying 
GD method for training RNN. The exponential decay of backpropagated gradient
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causes RNNs not to learn long-term temporal dependencies. In a reverse situation, 
GD method may lead to explode gradient issue which is due to exponentially blow-
up of backpropagated gradient. This result is in unstable learning process. We are 
going to discuss these challenges and provide an architecture for solving these prob-
lems. 

3.1.1 Backpropagation Through Time (BPTT) 

The simplest type of neural network is the feedforward neural network. This network 
has no loop, and the information moves from input nodes, via hidden ones and finally 
output nodes (i.e., in only one direction). For feedforward networks, the method 
“BPTT” is used to train the network. BPTT is the generalization of backpropagation. 
In this method, the idea is making the network unfolded in time, and the signals of 
error propagate backwards through time [ 2]. 

In this network, the parameters can be considered as the set 

θ = {WHH, WIH, WHO, bh, bI, bO} (3.1) 

These parameters affect the loss function in the previous timesteps. The gradients of 
loss function with respect to this set are 

∂ L 
∂θ 

= 
TΣ

t=1 

∂ LT 

∂θ 

where for the loss function L , we have  

∂ Lt 

∂θ 
= 

tΣ

k=1

(
∂ Lt 

∂ht 
. 
∂ht 
∂hk 

. 
∂h+ 

k 

∂θ

)
, 

where ht is the hidden state of network at time t and ∂h
+ 
k 

∂θ is the “immediate” partial 
derivative. For propagating the error signals backward in timestpes t and k which is 
k < t , we have  

∂ht 
∂hk 

= 
tΠ

i=k+1 

∂hi 
∂hi−1 

,
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and so according to Eq. (2.1) and using the Jacobian matrix for the hidden state we 
have: 

tΠ

i=k+1 

∂hi 
∂hi−1 

= 
tΠ

i=k+1 

W T HHdiag| f '
H(hi−1)|. 

As we see the participation of the hidden states in the network through time is 
obvious. In terms of the contribution of inputs and corresponding hidden states over 
time, two types of hidden state contribution are recognizable, such as long-term 
contribution (for time k ≪ t ) and short time contribution for another time. 

By considering the above figure, it is evident that when the new input are admitted 
to the network, the sensitivity of units vanishes (decreasing the contribution of the 
inputs xt−1 through time), the activation in hidden units is overwritten by BPTT 
(increasing the contribution of the loss function value Lt+1 w.r.t ht+1 in BPTT trough 
time) [ 1]. 

3.1.2 Vanishing Gradient Problem 

The vanishing gradient problem causes some defects for RNNs. This is because 
of strong nonlinearity which is used for making complex pattern of data. When 
the gradient propagates back through time, its magnitude decreases exponentially. 
Subsequently, the long-term correlations are neglected by the network, which causes 
an issue in learning process of dependencies among distant events. There are two 
possible explanations for this: 

1. The gradient of nonlinear functions which is close to zero. 
2. While the gradient propagates back through time, recurrent matrix increases the 

gradient magnitude. 

For the less than one eigenvalues of the recurrent matrix, after five to ten times of 
running backpropagation algorithm, the rate of convergence of gradient increases. In 
the RNNs learning process with extended sequences and small weights, the gradient 
shrinks as well. Long-term components explode in the recurrent weight matrix WHH
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when its spectral radius becomes more than 1 and t → ∞  . Because product of matri-
ces can lead to shrinkage/explosion along several directions. In order to generalize 
this to nonlinear function f '

h(.) in Eq. (2.1), we can bound it with γ ∈ R s.t

||diag( f '
H (hk))|| ≤  γ 

And since we have 

tΠ

i=k+1 

∂hi 
∂hi−1 

= 
tΠ

i=k+1 

W T HHdiag| f '
H(hi−1)| 

so ||||||||
∂hk+1 

∂hk

|||||||| ≤ ||||W T HH

|||| .
||||diag( f ''

H(hk))
|||| ≤ 1 

Now for δ ∈ R, if we consider || ∂hk+1 

∂hk
|| ≤  δ <  1 for loss function component, we 

have
||||||||||
∂ Lt 

∂ht

)
t−1Π

i=1 

∂hi+1 

∂hi

)|||||||||| ≤ δt−k||∂ Lt 

∂ht
||

in different timesteps. Since δ <  1, increasing t − k leads to vanishing gradient prob-
lem. Generally in recurrent matrix WHH, if for the largest singular value λ1 we have 
λ1 < 1 

γ , the gradient vanishing problem happens. 

3.1.3 Exploding Gradient Problem 

As its mentioned, the process of training RNNs with BPTT may be exposed by 
exploding problem. In training recurrent neural networks on long sequences, increas-
ing the weights causes the norm of gradient to increase and gradients are subsequently 
exploded. This is a different necessary condition in comparison to the vanishing gra-
dient problem in which for the largest singular value of recurrent matrix WHH (i.e., 
λ1), we have λ1 > 1 

γ . 

4 Long Short-term Memory 

As mentioned before, the main shortcoming of BPTT method pertains to error signals 
flowing backwards in time. This causes gradients to vanish or explode through time 
which turns out to more difficulties in learning long-term dependencies. To tackle this 
problem, some methods have been proposed. One of the most successful techniques 
to strengthen the long-term dependencies is known to be the long short-term memory
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(LSTM). In this method, the sigmoid or tanh hidden units are replaced with “memory 
cell”. This change leads to more controlled behavior of backpropagated gradients. 
In this approach, the input and output values of the cell memory are controlled by 
gates. Each cell is also matched with a forget gate that controls the decay rate of 
its stored values [ 7]. In this way, the memory cell holds its stored values during the 
periods that the input and output gates are off, and the forget gate is not causing 
decay [ 1]. Therefore, the gradient of the error with respect to its stored value, when 
backpropagated over those periods, stays constant [ 8]. Depending on the training 
application, there are varieties of LSTM structures developed by many researchers. 
In the following chapter, standard LSTM approach will be illustrated, and then, we 
will focus on bidirectional LSTM in particular to suit our applications. 

4.1 Standard LSTM 

As its shown in above figure, each typical memory cell has its own input, output, and 
forget gate and a cell activation component that provide continuous analogs of write, 
read, and reset operations for the cells. More precisely, the input, forget, and output 
gate are trainable to learn, respectively, what information to store in the memory, how 
long to store it, and when to read it out [ 9]. The activation of the cell is controlled 
by the designed multipliers. The input to the cells is multiplied by the activation of 
the input gate, the output to the net is multiplied by that of the output gate, and the 
previous cell values are multiplied by the forget gate. The net can only interact with 
the cells via the gates [ 10]. The input gate of LSTM is defined as 

gin t = σ(WIgin xt + WHginht−1 + Wgcgin g
c 
t−1 + bgin ) (4.1) 

where W... is the weight matrix as below 

• WIgin : input layer → input gate
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• WHgin : hidden state → input gate 
• Wgcgin : cell activation → input gate 
• bgin : bias of the input gate 
• forget gate : 

gf t = σ(WIgf xt + WHgfht−1 + Wgcg f g
c 
t−1 + bgf ) (4.2) 

where 

• WIgf : input layer → forget gate 
• WHgf : hidden state → forget gate 
• Wgcgf : cell activation → forget gate 
• bgf : bias of the forget gate 
• cell gate: 

gc t = gin t tanh(WIgc xt + WHgcht−1 + bgc ) + gf t g
c 
t−1 (4.3) 

where 

• WIgc : input layer → cell gate 
• WHgc : hidden state → cell gate 
• bgc : bias of the cell gate 
• output gate: 

gout t = σ(WIgout xt + WHgoutht−1 + Wgcgout g
c 
t + bgout ) (4.4) 

where 

• WIgout : input layer → output gate 
• WHgout : hidden state → output gate 
• Wgcgout : cell activation → output gate 
• bgout : bias of the output gate 
• hidden state: 

ht = gout t tanh(gc t ) (4.5) 

The LSTM gates can prevent the rest of the network from modifying the contents 
of the memory cells for multiple timesteps [ 1]. 

4.2 Bidirectional LSTM 

In order to train data, looking at the previous context and future context is important 
and has many applications such as speech recognition Bidirectional RNN (BRNN) 
considers all available input sequence in both the past and future for estimation of 
the output vector [ 11]. To enhance the capability of BRNNs through stacking hidden 
layers of LSTM cells in space, deep bidirectional LSTM (BLSTM) can be applied. 
BLSTM networks are more powerful than unidirectional LSTM networks [ 1]. This
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means that the bidirectional nets and the LSTM nets did not take significantly more 
time to train per epoch than the unidirectional or RNN [ 10]. During computation, 
BLSTM includes all information of input sequences. Like BRNN, BLSTM model can 
solve the vanishing gradient problem and extend the model. But biggest difference 
between BRNN and BLSTM is related to their training time. The convergence of 
BRNN is more than eight times as long respect to BLSTM. 

We consider an extended LSTM layer in multi-layer net, and the pseudocode for 
the forward pass is described. 

4.2.1 Notation 

• S input sequence 
• τ time 
• xk(τ ) network input to unit k at the time τ 
• yk(τ ) the activation of the network input 
• E(τ ) output error at the time τ 
• tk(τ ) training target at output unit k at time τ 
• N set of all units (input units, bias units) 
• Wi j  weight from unit i to unit j 
• ι input gate 
• φ forget gate 
• ω output gate 
• c elements of the set of cells C 
• sc state value of cell c 
• f is a function of gate 
• g cell input function 
• h output function 

Note that for each memory block, the LSTM equations are written, and these 
calculations can be repeated for each block. The error gradient is calculated with 
online BPTT, i.e., after every sequence BPTT shrink to input sequence length with 
the weight updates [ 10]. 

4.2.2 Forward Pass 

• Re-adapt the activation to 0, 
• Feed in the inputs and update the activation functions. All hidden layer and output 
activation functions at every timestep need to be stored, 

• The activation functions are updated as: 
Input Gates
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xt =
Σ

j∈N 
ωιj y j (τ − 1) +

Σ

c∈C 
ωιcsc(τ − 1) 

yι = f (xι) 

Forget Gates 

xφ =
Σ

j∈N 
ωφ j y j (τ − 1) +

Σ

c∈C 
ωφcsc(τ − 1) 

5 Application of LSTM in Speech Recognition 

5.1 Speech Recognition 

Since RNNs are the structure through time and the signals of speech and audio change 
continuously over time, so RNNs can be an ideal model to learn features. Also speech 
recognition prediction uses the past and future sequential data, so BRNN is suitable in 
this field. Later applications of the connectionist temporal classification (CTC) func-
tion contributed to promote the RNNs in speech recognition. Connectionist temporal 
classification (CTC) is an objective function that allows an RNN to be trained for 
sequence transcription tasks without requiring any prior alignment between the input 
and target sequences [ 12]. CTC model has iterations like the sequence transducer 
and neural transducer. This property enables a second RNN to perform as a language 
model. This eventually leads to do the task such as online speech recognition. So by 
these argumentation, based on linguistic feature and prior transcriptions, the model 
can make the prediction. 

5.2 Speech Emotion 

Another application of RNNs is speech emotion. In this field, the segment of speech is 
organized as an emotion. Since in speech emotion recognition, the progress proceeds 
from the same way as that of speech recognition so the speech emotion recognition is 
much the same to speech recognition. Several methods have been proposed in speech 
application such as hidden Markov model (HMMs) and Gaussian mixture models 
(GMMs). With RNNs establishment, the trend of learning has improved. Because 
the networks were able to learn the features on their own. So RNN models have been 
applied for performing speech emotion recognition. LSTM–RNN has been success-
fully applied to speech recognition. Because in LSTM network, long-range depen-
dencies are modelized better in order to capture the emotions. Also deep bidirectional 
LSTMs can capture more data through taking them in large number of frames.
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5.3 Speech Synthetic 

Another type of speech application is speech synthetic. In this field, long-term 
sequence learning is needed as well. HMM-based models and deep MLP neural 
networks can synthesize speech. However, these models have some problems. For 
example, in HMM-based models, statistical averaging during the training phase leads 
to overly smooth trajectories so the sound is not natural or MLP neural network takes 
each frame as an independent entity from its neighbors and fails to take into account 
the sequential nature of speech [ 13]. Introducing the RNNs in speech synthesis col-
laborates to leverage the sequential dependencies. 

Speech synthesis also requires long-term sequence learning. HMM-based models 
can often produce synthesized speech, which does not sound natural. This is due 
to the overly smooth trajectories produced by the model, as a result of statistical 
averaging during the training phase [ 13]. 

Following that, LSTM performs better than RNNs. Also the ability of BLSTM 
model to integrate the relationship with neighboring frames in both future and past 
time steps [ 14, 15] make this model very effective in learning long-term sequential 
dependencies. 
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