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Preface 

The essence of the world is nonlinear, and practical control systems are always 
impacted by nonlinearity. Non-smooth and nonlinear characteristics exist broadly in 
the practical plants, such as dead zone, saturation and hysteresis, which may dete-
riorate the system performances and even at worst may become a source of insta-
bility. Consequently, the control problem of nonlinear systems under nonlinearity 
attracts much attention in the control community. On the other hand, time delays are 
inevitable, which is usually arose by the detection, computation and transmission 
of signals and the reaction time of actuators. The existence of time delays will also 
impose a negative effect on the control performances. The interaction of non-smooth 
nonlinear characteristics and time delays make it very difficult to design the learning 
controllers for such systems. Hence, there are few results reported in literatures. 

This book, in turn, investigates the adaptive iterative learning control problems 
for parametric nonlinear time-delay systems, nonparametric, nonlinear time-delay 
systems, nonlinear time-delay systems with unknown control direction and nonlinear 
time-delay systems with only output measurable in a logical order from easy to 
difficult and from shallow to deep, and proposes a series of adaptive iterative learning 
control schemes, eventually solving the adaptive iterative learning controller design 
problems under an unified framework. 

As a treatise focusing on iterative learning control methods of nonlinear time-
delay systems, this book has a good professionalism and pertinence, and also has 
great theoretical significance and academic value to the study and promotion of 
learning control theory, and so it may offer beneficial reference for scholars and 
engineers working on researches on related theories and technologies. 

The publication of this book has been sponsored by Defense Technology Book 
Publishing Fund of National Defense Industry Press and Shandong Natural Science 
Foundation (ZR2017QF016). Moreover, the publication is also supported by the 
College of Weapons Engineering, Naval University of Engineering. The authors 
gratefully acknowledge these supports. 

We would like to give thanks to authors of the referenced materials in this book.
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Wuhan, China 
Yantai, China 
Wuhan, China 
May 2021 
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Hong Wang 
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About This Book 

The iterative learning control problem of nonlinear time-delay systems is investi-
gated in this book. On the basis of deep investigation of previous works, we inno-
vatively propose a class of adaptive iterative learning control schemes and solve 
a series of adaptive iterative learning control design problems for nonlinear time-
varying systems with unknown nonlinear input characteristics and time delays under 
a unified framework, step by step, from easy to difficult. The book includes six chap-
ters. In Chap. 1, the research background and significance of the book are discussed; 
moreover, the developments of iterative learning control, especially adaptive iter-
ative learning control, are deeply analyzed. In Chap. 2, a novel adaptive iterative 
learning control scheme is proposed for a class of nonlinear parameterized systems 
with dead-zone input and unknown time-varying delays. In Chap. 3, neural network 
approximation method is employed to design the adaptive iterative learning control 
scheme for a class of uncertain nonparameterized, nonlinear time-varying systems 
with unknown dead-zone input and time-varying state delays. In Chap. 4, the neural 
network method and Nussbaum gain method are comprehensively integrated to estab-
lish the adaptive iterative learning control scheme for a class of nonlinear systems 
with unknown time delays and control direction preceded by backlash-like hysteresis. 
In Chap. 5, the adaptive iterative learning control problem for nonlinear time-delay 
systems with unmeasurable states is studied; two different adaptive iterative learning 
schemes are put forward based on state observer and tracking error observer, respec-
tively. In Chap. 6, the research for plants with unmeasurable states and unknown 
control gain is carried out by taking manipulator as investigation object, and a kind 
of state observer-based adaptive iterative learning control scheme is presented. 

As a book discussing the iterative learning control problems of nonlinear time-
delay systems, it may be referential to the scholars and engineering technicians who 
engage in relevant research works.
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Chapter 1 
Introduction 

1.1 Background 

The history of science and technology has witnessed a rapid development in the twen-
tieth century. The great achievements of science and technology have completely 
changed the appearance of the world. In this process, control science plays an essen-
tial role, just as what Dr. Hsue-shen Tsien has pointed out in the Preface of Engi-
neering Cybernetics (3rd Edition): we can declare unequivocally that relativity theory, 
quantum theory and Cybernetics are three great achievements in the first half of the 
twentieth century from the perspective of scientific theory which can be called as 
three revolutions in the natural sciences and are three big leaps about the knowledge of 
the objective world [1]. In twentieth century, the developments of many technologies 
that can be called as technical revolution, for example, nuclear technology, electronic 
computer technology, astronautical technology and life technology, all have a direct 
connection to Cybernetics. Therefore, in Dr. Hsue-shen Tsien’s opinion, Cybernetics 
as the technical science has a profound meaning to the research on engineering tech-
nology, bioscience, economic science and social sciences, which is not less than 
the effects of relativity theory quantum theory on the human beings [1]. Nowadays, 
control technologies have a wide application in all kinds of fields, such as industrial 
manufacture, transportation, aerospace and so on, from airplanes, missiles, aircraft 
carriers, warships to mobiles, computers, air conditioners that are closely related to 
daily life, control technologies are everywhere and make great contributions to the 
progress of human civilization. 

In the development of science and technology, they supplement each other and 
are inextricably intertwined. The developments of technology promote the births 
of new scientific principal, in turn new science theory can promote great progress 
of technology and will be tested by production practice and scientific experiments. 
Before a few years of the birth of Cybernetics, V-1 and V-2 missile had come out, 
and it is in the technical engineering practice of designing the guidance and control 
system of modern missiles, the idea of Cybernetics gradually grew up. But the elec-
tromechanical guidance systems of V-1 and V-2 were very simple and crude, which

© National Defense Industry Press 2022 
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2 1 Introduction

results in a low accuracy. However, the guidance systems of intercontinental missile 
that are designed by using engineering Cybernetics can achieve a high accuracy less 
than the CEP of tens of meters after a flight of thousands of kilometers. During the 
latter half of the twentieth century, the control theory were greatly improved by the 
requirements of control technology. Since the Cybernetics was proposed by Wiener 
in 1948, control science has gone through three stages of development: classical 
control theory, modern control theory, postmodern control theory. 

Classical control theory was developed during the 1940s and 1950s when Berta-
lanffy finished his book “General system theory” and Wiener wrote the famous 
“Cybernetics” in 1948, which marked the formation of the rounded system of clas-
sical control theory. Classical control theory takes single-input single-output (SISO) 
linear time-invariant system as the research subject and use the input-output char-
acteristic that is mainly described by transfer function as mathematical model to 
analyze the system performance (transient performance and steady-state perfor-
mance), or designs control devices according to performance and chooses controllers 
that are economical, highly reliable and easily realized in engineering, where the 
frequently-used analysis and design method include time response method, root 
locus method and frequency response method. Therefore, classical control theory 
essentially neglects the inner characteristics of the control system which leads to the 
fact that it is only applicable to SISO time-invariant systems and difficult to optimize 
the systems performance index. In this way, classical control theory can hardly meet 
the needs for modern industrial process and space technology which is impetus for 
promoting the development of modern control theory. 

The control scholars initiated the research on modern control in 1960s, which 
investigated the problem for multi-variables linear systems and nonlinear systems. 
Modern control theory uses time domain method, especially state-space method, as 
the main research method, furthermore uses linear algebra and differential equation 
as the main analytical method. Modern control theory breaks through many limi-
tations of classical control theory that leads to its wider range of research objects 
compared with classical control theory and satisfies the control needs for complex 
systems in modern industrial control, aerospace industry and so on, to a certain extent. 
However, modern control theory is established on the basis of the fact that the studied 
systems are known. But strictly speaking, for all kinds of plants in various industrial 
manufacture process and aerospace vehicles, it is difficult to build an accurate model 
to describe the dynamic characteristics. On the other hand, the characteristics of the 
plant itself will change with operating conditions and environment. Consequently, 
it is almost impossible to build an accurate mathematical model for a controlled 
system and there inevitably exist errors between the established model and the actual 
dynamic characteristics of the system. Meanwhile, the systems are usually influ-
enced by external unknown disturbances when operating. Therefore, in engineering 
practice, for more and more complex systems, such as hypersonic vehicles that are 
difficult to be modeled precisely but require more accurate and faster control systems, 
the controllers that are designed by modern control theory is difficult to acquire the 
desired control performance and sometimes even can’t guarantee the system stability. 
Moreover, as the controlled objects become more and more complex, modern control
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theory already has no ability to deal with some strong-nonlinear dynamics. In this 
case, control scholars introduced the uncertainty into system models and started 
researching the analysis and synthesis (design) problem for dynamic systems with 
uncertainties and strong-nonlinearities. Subsequently, post-modern control theory 
developed gradually. 

In classical and modern control theories, the researches on the control theory of 
linear systems have gradually matured. However, all the systems in the real world 
are nonlinear in nature and linear models are nothing but the linearized results of 
nonlinear systems in the neighborhood of some specified points. The main research 
objects of post-modern control theory are various nonlinear systems in the real world. 
The post-modern control theory is a joint name of many advanced control methods, 
such as robust control, adaptive control, variable structure control, backstepping, 
intelligent control and so on. In particular, on account of the development of computer 
technology, neural network (NN) theory and fuzzy theory in 1980s, the NN and 
fuzzy system were introduced into controller design, which enriched and promoted 
nonlinear control theory. 

In the development of post-modern control, inspired by artificial intelligence, 
control scholars have been always exploring how to endow the controller certain 
intelligences which enable it to improve constantly by learning in the control process 
and eventually achieve perfect control performance. As early as 1960s, Sklansky 
put forward the ideology of control system learning. In the early 1970s, Chinese 
American scholar Fu proposed the concept of learning control [2]. Since then the 
researches on learning control have been active and a variety of learning control 
schemes have been presented successively. Especially in 1980s, as the rapid devel-
opment of computer technology and artificial intelligence, the researches about the 
learning control theory ushered in a new breakthrough. Nowadays, learning control 
theories have developed into an important branch. 

In the learning control theory, iterative learning control (ILC) is a branch of 
rigorous mathematical descriptions. The basic principle of traditional ILC is to 
generate current control action by exploiting information collected from previous 
executions based on a learning mechanism in order to improve control performance 
from iteration to iteration, and eventually realize highly accurate tracking of the 
system states or output to the desired reference trajectories within a finite time 
interval after a few times of learning. The basic idea of ILC was proposed by Japanese 
scholar Uchiyama [3]. In 1984 Arimoto theorized and systematized the idea of ILC 
and put forward two ILC algorithms with convergence analysis for the first time 
[4]. Arimoto’s work attracted much attention from control peers and opened up a 
wide development prospection. Hereafter, ILC obtained rapid development in theo-
retical research and practical applications and developed into a hot topic in the field 
of intelligent control. Because of its simpleness, easy realization, intelligence and 
broad application prospects in industrial robots and manipulators, the researches 
on ILC theory and the learning controller design to solve the tracking problems for 
uncertain systems that repeated running on a finite interval are of important academic 
significance and application value.
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In a lot of actual physical systems, the current states of the system may be affected 
by past states, in other words, the change rate of current states is not only related 
to current states but also dependent on the states of some time or an interval in the 
past, this kind of characteristic is called as time-delay. In control systems, time delay 
exists widely and it may be caused by many factors, such as signal detection time of 
detection equipment, transmission time of control signals, response time of actuators. 
The existence of time-delay may degrade the system dynamic performance and cause 
oscillation, in the worst case, it will even destroy the system stability. Therefore, 
the research on the control problem for time-delay systems has great theoretical 
significance and application value. Since 1960s, the research on the control problems 
of time-delay systems developed continuously and has formed an important subject 
and is still a hot topic at present in field of control theory. 

In essence, all the systems in the real world are nonlinear, which is not only 
determined by the nonlinearity of the physical laws that the system, but also because 
of the influence of various nonlinear characteristics, for example, saturation, dead-
zone, friction, hysteresis and so on. These nonlinearities exist widely in practical 
physical systems. Just like time-delay, nonlinearities will also degrade the control 
system performance and destroy the system stability in the worst situation. So, it 
is necessary to consider the influence of nonlinear characteristic in the controller 
design for nonlinear systems which is of research significance and application value 
as well. 

In conclusion, because of the wide existence of time-delay and nonlinear charac-
teristics and the difficulty of theoretical analysis, it is necessary to investigate the ILC 
problem for nonlinear systems with unknown nonlinearities and time-delays. Mean-
while, we should recognize that the research on this type nonlinear systems is not a 
simple combination of the respective research results for nonlinearity, time-delay and 
ILC, but a deep investigation for the problems arising. In this book, we lucubrate the 
problem of ILC theory of time-delay systems and systematically propose an adaptive 
iterative learning control (AILC) scheme to solve a series of control problems for 
several kinds of time-delay systems with nonlinearities under an uniform framework, 
which try to provide some reference for the further research and relative engineering 
practice of similar problems (especially the AILC problem for time-delay systems). 

1.2 Research Status of ILC 

In 1978, Uchiyama published the paper about the idea of ILC in Japanese, so the 
works didn’t attract much attention from other control scholars until Arimoto system-
atized Uchiyama’s thought and published it in English in 1984. Throughout thirty 
years of development, ILC has formed three main frames of research work: contrac-
tion mapping theorem based classical ILC, composite energy function based AILC 
and 2-D theorem based ILC.
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1.2.1 Contraction Mapping Theorem Based Classical ILC 

The so-called classical ILC is the control algorithm proposed in the stages of ILC 
research. Unlike other methods that starts with linear systems, ILC takes nonlinear 
systems as research object at the beginning, i.e., robotic systems [4], furthermore, its 
control objective is very high, i.e., driving the system output to track the desired trajec-
tory yd (t) ∈ C1[0, T ] on a finite interval [0, T ] completely. Consider the following 
nonlinear dynamical system that is globally Lipschitz continuous 

ẋk = f (xk, uk, t), yk(t) = g(xk, uk, t) (1.1) 

Classical ILC uses the previous control experience and control errors to obtain 
the control actions for current iteration. Specifically, after an iteration, the control 
signal uk−1(t) (the subscript “k-1” denotes the times of iteration) and tracking error 
ek−1(t) (the system output is indicated as yk−1(t) and ek−1(t) is defined as ek−1(t) = 
yd (t)− yk−1(t)) are obtained. When executing the control task once again, the control 
signals should be constructed based on error feedback and the control signals of the 
previous running, i.e., 

uk(t) = uk−1(t) + qek (t) (1.2) 

where, q > 0 is the feedback gain and is also the learning gain. The block diagram 
of this type ILC algorithm is presented in Fig. 1.1. 

According to the analysis in [5], the term uk−1(t) in learning algorithm (1.2) 
plays a role of feedforward in uk(t), the  term  qek(t) works as feedback and at the 
same time plays a role of error correction. From the viewpoint of learning, the 
previous control experience uk−1(t) is used effectively to make up for the shortage 
of current control effect. This is similar to the learning process of human beings 
that practices and corrects a movement over and over again in order to get the right 
way. From the viewpoint of control, through learning the feedforward has taken the 
place of feedback as the leading role in the control process of ILC algorithm (1.2). 
From Fig. 1.1 it can be seen that algorithm (1.2) is closed loop due to the feedback

Memory 

Controller Plant 

1ku − 

ku 

++ 
+− 

( )dy t ( )ky t( )ke t  

Fig. 1.1 The block diagram of ILC 
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Fig. 1.2 The block diagram of open-loop ILC 

function. So, the algorithm with form of (1.2) can be referred to as Closed-Loop ILC. 
Correspondingly, Open-Loop ILC has the following form: 

uk(t) = uk−1(t) + qek−1(t) (1.3) 

The block diagram of Open-Loop ILC is shown in Fig. 1.2. 
In Open-Loop ILC, the feedback term has been removed and the feedforward 

bears the responsibility alone. Here “q” is only the learning gain, which avoids the 
problem that it is difficult to reasonably balance the feedback stability and learning 
convergence when “q” plays both roles of feedback gain and learning gain in Closed-
Loop ILC. 

The theoretical core of learning convergence of classical ILC is to ensure 
the geometrical convergence of tracking error in the pointwise manner by using 
contraction mapping methodology, i.e., ||ek(t)|| ≤ γ ||ek−1(t)||, 0 < γ <  1, 
∀t ∈ [0, T ]. For the ILC algorithms (1.2) and (1.3) for system (1.1), in order to 
achieve learning convergence, the system should satisfy the convergence condition 
[5]:

|
|1 − q∂g

/

∂uk
|
| ≤ γ . Then it is obvious that we just need to know the upper and 

lower bounds of ∂g
/

∂uk and then we can choose approximate gain “q” to guarantee 
that the convergence condition holds. 

The ILC algorithm (1.3) is the simplest expression of ILC. Since (1.3) only 
contains the proportional term of error, so it is called as P-type ILC algorithm. 
Accordingly, if there exist the integral or differential term of tracking error in the 
ILC algorithm, then it is called as integral-type or differential-type ILC algorithm. 
Moreover, in learning algorithm design, integral signals and differential signals will 
also be incorporated with proportional signals to form mixed-type ILC algorithm, 
such as PI-type, PD-type, and PID-type. 

In practical applications, the performance of open-loop ILC and closed-loop ILC 
are both unsatisfactory, as closed-loop ILC may cause oscillation because of signal 
lag caused by the sampler, while open-loop ILC is not robust because of absence of 
feedback term. Besides, although closed-loop ILC has the problem that it is difficult 
to reasonably balance the feedback gain and learning gain, they are not contradictory. 
Moreover, the feedback signals enable the control system to obtain better dynamical
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performance and accelerate the convergence speed. Consequently, for the purpose of 
complementing each other, some scholars combined the characteristics of open-loop 
ILC and closed-loop ILC and further put forward Open-Closed-Loop ILC method. 
Through comparative study, Xu [6] found that Open-Closed-Loop ILC can achieve 
better control performance than pure Open-Loop ILC or pure Closed-Loop ILC and 
enhance the robustness. 

Now that the usage of previous control information can obtain better control 
effect in the control process, then will it be improved further if we use the control 
information of more than one iteration? Based on this idea, South Korean scholar 
Bien proposed high-order ILC algorithm for the first time in 1989 and derived the 
advantage of accelerating convergence speed for high-order ILC [7]. The general 
form of high-order ILC can be expressed as 

uk = 
n

.

i=1 

ai uk−i (t) + 
n

.

i=1 

bi ek−i (t), 1 ≤ n ≤ k − 1 (1.4)  

But through research Xu found that if the control information of the past multi-
iterations were simply combined linearly, high-order ILC may not be able to speed 
up the convergence [8]. The reason lies in that in the information of past multi-
iterations only the latest one can accurately describe the situation of iterative conver-
gence and a simple linear combination of the earlier information that is not accurate 
for the current iteration may degrade control performance. Norrlöf carried out the 
comparative research of first-order ILC algorithm and second-order ILC algorithm 
through an industrial manipulator. He found out that second-order ILC algorithm 
can’t achieve better performance than first-order ILC algorithm, but if there exist 
uncertainties in the plant the control effects of second-order ILC are better than 
first-order ILC. Moreover, he also discovered that second-order ILC can obtain more 
smooth control effects [9]. In Xu’s book [10], he has proved theoretically by using 
min–max and Q-factor method that first-order ILC had faster convergence speed 
from the viewpoint of Q-factor. But Xu pointed out simultaneously that the investi-
gation of the performance of first-order and high-order ILC using other performance 
index remains an open problem, so there has been no corresponding conclusion about 
it. In fact, when there exist zero-mean disturbances and measurement noises along 
iteration axis, since high-order ILC plays a role of average operator for disturbances 
and noises, it can obtain better control performance compared with first-order ILC. 
The control community has been continuously studying high-order ILC schemes 
since it was proposed. Many scholars have designed a great number of high-order 
ILC algorithms for various ILC problems, aiming at improving control performance, 
accelerating convergence speed and enhancing the robustness of control systems. 

If the system is not affected by disturbances or noises, ILC algorithm is able to 
achieve perfect control performance. But in practice the control systems are inevitably 
influenced by disturbances or noises. Consequently, the control performance of Open-
Closed-Loop ILC algorithm is unsatisfactory, the learning errors always decrease 
early and then increase. The main reason for this lies in that ILC is a typical integrator
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along iteration axis. If the noise is fixed and repeatable ILC can learn it together, 
but conversely, if the noise is not repeatable, the compensation signal will become 
higher and higher as the iteration continues which eventually leads to the problem of 
snowball effect and learning divergence [5]. To address this problem, ILC scholars 
came up with the method of filters, then the ILC expression is changed to 

uk(t) = A(t)uk−1(t) + B(t)ek−1(t) + C(t)ek(t) (1.5) 

where, A(t), B(t) and C(t) represents various kinds of filter. The simplest form of 
(1.5) is adding a forgetting factor, i.e., 

uk(t) = puk−1(t) + q1ek−1(t) + q2ek(t) (1.6) 

where, 0 < p ≤ 1 is the forgetting factor. One drawback of this method is that it 
will forget all the signals, whether they are useful or useless. To avoid this problem, 
we can choose A(t) as a low pass filter which can retain the useful low-frequency 
signal and filter out high frequency noise. If the controlled plant is linear system, we 
can employ Kalman filter method to determine the filter in (1.5). 

Except the aforementioned classical ILC laws, many other ILC laws were 
proposed for different problems from different angles. For example, for linear systems 
model predictive control and optimal control have been extended to ILC methods 
in which the optimal ILC law were determined by defining objective function and 
finding its extrema. The research result of Amann shows that the prediction function 
in control law can speed up convergence and improve interference rejection [11]. 
Until now, a few kinds of predictive ILC algorithms has been proposed and applied 
to practical control systems [12, 13]. Moreover, D-type methods are not suitable for 
practical applications, which lies in the following reasons: firstly, the differential 
signal is not measurable and usually obtained by differentiating the position signals; 
secondly, differential signals are sensitive to high frequency noises. Since the upper 
bound of tracking error is proportionate to the magnitude of noise, the existence 
of noises will degrade the effect and accuracy of D-type algorithms. As for P-type 
algorithm (1.2), the error convergence can be guaranteed only in the case without 
uncertainties and disturbances. To overcome above contradiction, anticipatory ILC 
scheme [14] was proposed and gained a series of developments [15, 16]. Further-
more, in order to speed up learning speed and improve control effect, Xu put forward 
two kinds of nonlinear ILC laws: Newton-type ILC law [17] and secant ILC law 
[10]. 

Through above analysis, we can conclude that classical ILC don’t need any infor-
mation about the system, neither state variables nor state space, it deals with high 
uncertainty and strong nonlinearity using the simples learning law. But classical ILC 
is limited to the system that satisfies global Lipschitz continuous condition, otherwise, 
it may escape in finite time, then contraction mapping theorem is not applicable. Thus, 
it greatly restricts the application range of ILC. Besides, classical ILC hardly ever 
takes full advantage of system information and usually neglects the system dynam-
ical characteristics. But in practical control system design, although we can’t obtain
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accurate model of the system, we can build the nominal model, which means we 
can obtain partial information of the plant. Obviously, the controllers using known 
information are able to improve control performance and speed up convergence. 
Additionally, classical ILC takes contraction mapping theorem but not Lyapunov 
method as the key of design and analysis, which makes it difficult to incorporate 
with advanced nonlinear control methods, such as adaptive control, sliding mode 
control, NN control, fuzzy control and so on. Hence, it is necessary to consider the 
combination of above nonlinear control methods and the idea of ILC, and introduce 
the Lyapunov based stability analysis method into the learning convergence analysis. 
Inspired by above motivations, adaptive ILC (AILC) is developed. 

1.2.2 Composite Energy Function Based Adaptive ILC 

The first task of AILC is rightly to deal with locally Lipschitz continuous controlled 
object, and secondly, consider the systems uncertainties, including parameterized 
uncertainties and non-parameterized uncertainties. Take the following first-order 
system as example 

ẋ(t) = f (x, t) + u(t) (1.7) 

If the expression of f (x, t) is f (x, t) = θ (t)ξ (x), where θ (t) is unknown time-
varying parameter that is independent of states, ξ (x) is the nonlinear function of x , 
for example ξ (x) = x2 or ξ (x) = x sin(x), then the (1.7) is called as parameterized 
uncertain system. On the contrary, if f (x, t)1.7 can’t be decomposed as the product 
of a known function of states and an unknown parameter, Eq. (1.7) is referred as  
to non-parameterized system, for example, f (x, t) = x2 sin(x cos t). In nonlinear 
control theories, adaptive control and robust control are used to deal with above two 
kinds of uncertainties respectively. So AILC should not only handle above two kinds 
of uncertainties, but also succeed the advantage of ILC in achieving learning conver-
gence in iteration domain. Meanwhile, the Lyapunov method of modern nonlinear 
control theories needs to be employed in the stability analysis of AILC. 

French directly introduced adaptive control methodology when studying the 
learning problem for parameterized systems running in finite interval and used 
Lyapunov analysis method. The designed parameter adaptive learning law and 
Lyapunov function are as follows: 

˙̂
θk(t) = qξ (x)ek(t), t ∈ [0, T ] (1.8) 

V
(

θ̃k, t
)

= e2 k (t) + θ̃ 2 k (t) (1.9)
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where, θ̂k(t) denotes the estimated value of θ (t) at the k-th iteration, θ̃k(t) = θ (t) − 
θ̂ (t), ek(t) = xk(t) − xr (t), q is the parameter learning gain. It can be seen that 
differential-type parameter adaptive law (1.8) is exactly the same as that of adaptive 
control for each iteration in finite interval. But since the system runs in a finite 
interval, this method can’t ensure the asymptotic convergence along time axis as 
adaptive control method. For this problem, French’s solution was to link up the 
initial value and final value of the contiguous iterations, which is specified by 

θ̂k(0) = θ̂k−1(T ) (1.10) 

This method can be regarded as the transitional form of learning control and 
adaptive control. However, differential-type adaptive law can only estimate unknown 
constant parameter, so it is not suitable for the system (1.7) whose unknown parameter 
is time-varying. Moreover, this method works depending on the condition that the 
control system can guarantee the stability in time domain. For the plants that are 
difficult to design control systems in time domain, this method is not applicable. 

Qu’s team firstly studied the learning control problem of time-varying parametric 
systems and put forward the following parameter iterative learning law and Lyapunov 
functional in American Control Conference in 1995 [18]: 

θ̂k(t) = θ̂k−1(t) + qξ (x)ek(t), t ∈ [0, T ] (1.11) 

V
(

θ̃k, t
)

= 
t.

0 

θ̃ 2 k (σ )dσ, t ∈ [0, T ] (1.12) 

Based on this kind of idea, Xu and Qu designed a robust ILC algorithm by 
combining ILC and robust control [19] and demonstrated the stability condition using 
Lyapunov direct method, which guaranteed the global asymptotic stability by using 
variable structure control and the iterative convergence through estimating unknown 
parameter along iterative axis. Two control schemes complement each other. Where-
after, they solved the control problem for some classes of parameterized nonlinear 
systems by using this kind of integral-type Lyapunov performance index [20–22]. On 
the basis of summarizing previous result results, Xu proposed a kind of Composite 
Energy Function (CEF) design method which are given by [23] 

Ek(t) = V (ek(t)) + 
t.

0 

θ̃ 2 k (σ )dσ (1.13) 

where, V (ek(t)) is the standard Lyapunov function containing the quadratic term of 
tracking error. From (1.13), it can be seen that CEF contains not only the information 
of state tracking along time axis, but also the information of parameter learning 
performance along iteration axis. In other words, the CEF simultaneously considers
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the dynamical process in both time domain and iteration domain which enables us 
to obtain the stability for single run along time axis and the learning convergence of 
tracking error along iteration axis with the boundedness of all the closed-loop signals. 
The AILC design method based on CEF is a milestone in the development of ILC, 
it normalizes the main idea of controller design, stability and convergence analysis 
for AILC and provides an important reference to the ILC problem of various time-
varying parameterized systems. Based on this design idea, Xu and other scholars 
carried out a series of theoretical research of AILC for various nonlinear systems 
and the AILC problems of many nonlinear systems. 

Take the following parameterized dynamical system running in finite time interval 
[0, T ] repeatedly for example: 

ẋk(t) = θ (t)ξ (xk) + uk(t) (1.14) 

As mentioned above, θ (t) is unknown time-varying parameter, ξ (xk) is known 
continuous smooth function, tracking error id defined as ek(t) = xk(t) − xr (t), 
t ∈ [0, T ], then the control law for the k-th iteration can be designed as 

uk(t) = −Kek(t) + ẋr (t) − θ̂k(t)ξ (xk) (1.15) 

where, K > 0 is design parameter. According to the AILC design method, design 
adaptive iterative updating law for unknown time-varying parameter as

.

θ̂k(t) = θ̂k−1(t) + qξ (xk)ek(t) 
θ̂0(t) = 0, t ∈ [0, T ] 

(1.16) 

According to Eq. (1.13), choose CEF as 

Ek(t) = 
1 

2 
ek(t) + 

1 

2q 

t.

0 

θ̃k(σ )dσ (1.17) 

Employing CEF analysis method, it can be derived that

.Ek(t) = Ek(t) − Ek−1(t) ≤ −  
t.

0 

(ek(σ ))2 dσ <  0 (1.18) 

Furthermore, we can derive that 

lim 
k→∞ 

T.

0 

(ek(σ ))2 dσ = 0 (1.19)



12 1 Introduction

Hence, as k → ∞, the system state xk(t) converges to the reference signal xr (t) 
on [0, T ]. 

Xu’s works on many problems of ILC improved greatly the relative researches 
and even initiated some works, which attracted much attention of peers. In [24], Xu 
investigated the ILC problem of uncertain time-varying systems, which considered 
two cases that unknown parameter was time-varying and time-invariant and designed 
difference-type and differential-type parameters for them respectively. Additionally, 
Xu discussed the problem that the desired reference trajectories vary with iterations 
as well. In [25], Xu mainly addressed the problem of initial condition for ILC, under 
the framework of Lyapunov analysis method, where they discussed the relation of 
five typical kinds of initial conditions and corresponding learning convergence condi-
tions that carried out based on the AILC problem for a class of simple nonlinear time-
varying parameterized system. Input nonlinearities are common in control problems. 
In [26] and [27], Xu designed AILC schemes for nonlinear systems with input satura-
tion based on Lyapunov-like CEF method. In addition, for the nonlinear system with 
input uncertainty Xu put forward a kind of ‘dual-loop’ ILC scheme [28, 29], where 
‘loop 1’ is intended to stabilize the nominal model of the system and ‘loop 2’ deals 
with input uncertainty through learning algorithm. On the basis of above results, 
Xu’s team further studied the problem that unknown time-varying parameters also 
varied with iterations [30, 31]. To address this problem, they built the inner model of 
unknown time-varying parameter along iteration axis and described the change along 
iteration as an autoregressive process, then they designed corresponding high-order 
learning law for unknown parameter and control algorithm based on inner model 
and analyzed the learning convergence property of the control system by utilizing 
CEF method. In paper [32], Xu created a new CEF, named Barrier CEF (BCEF), by 
employing Barrier Lyapunov in CEF, and designed a new ILC scheme for a class 
of n-order SISO system with limited output by using backstepping technique. Here, 
they considered both parameterized and non-parameterized uncertainties, therein, 
non-parameterized uncertainty was handled through local Lipschitz condition and 
unknown time-varying parameter was estimated by difference-type learning algo-
rithm, finally, the convergence of tracking errors was proven by using the BCEF 
under the alignment initial condition (i.e., xk(0) = xk−1(T )). 

Prof. Zhongsheng Hou’s research team of Beijing Jiaotong University obtained a 
series of research results for ILC [33–38]. They mainly investigated the ILC problem 
for discrete nonlinear systems [33, 34] and expanded the CEF based AILC design 
method to discrete nonlinear systems. In the design of adaptive learning laws for 
unknown parameters, they designed recursive least-squares method to adjust the 
learning gain along iterative axis. In their works, they also considered the problem of 
initial condition and iteration-varying desired reference trajectories. Moreover, they 
discussed the AILC problem for nonlinear parameterized systems with input satura-
tion as well [35, 36], where they obtained the parameterized form by using parameter 
separation technique and further designed AILC (including feedback term and satu-
ration adaptive learning term) and saturation difference updating laws for parame-
ters. To prove the learning convergence of control schemes, in [35] and [36], they 
constructed time weighted Lyapunov-like CEF and Lyapunov–Krasovskii-like CEF
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respectively. In [37], they expanded the scheme in [36] to the control of brake process 
of high-speed trains which was described as a nonlinear parameterized system with 
speed lag and input saturation nonlinearity, whereafter, they designed AILC scheme 
for high-speed trains. In the latest results [38], they put forward a NN based adaptive 
terminal ILC method in which NN was used to approximate the initial states. In the 
adaptive learning law for neural weight, dead-zone model was employed to ensure 
that adaptation and learning are performed only if the terminal tracking error exceeds 
the predefined range. 

Prof. Mingxuan Sun’s team in Zhejiang Technical University deeply studied the 
nature of ILC and obtained a great deal of innovative results [39–46]. In the researches 
on AILC, they proposed a finite-time dead-zone ILC methods for several kinds of 
parameterized systems. To relax the requirement of identical initial condition, initial 
rectified attractor was introduced, which allowed the initial positions to be set arbi-
trarily without assuming the bound on the repositioning errors to be small enough. In 
controller design, they constructed a finite time-varying dead-zone that includes the 
proposed initial rectified attractor to drive the tracking error converge to the region 
defined by the dead-zone and achieve complete tracking in finite time interval. In [41], 
Sun and Liu put forward robust ILC based on time weighted Lyapunov-like method, 
where robust component was used to guarantee the boundedness of all closed-loop 
systems and ILC component was used to improve the tracking performance and 
achieve perfect tracking. In [42], Sun and Chen investigated the ILC problem for a 
class of SISO nonlinear non-minimum-phase systems, they firstly transformed the 
uncertain zero-dynamic of the non-minimum-phase system to asymptotically stable 
subsystem through redefining the output variable and then designed two controllers 
by using partially saturated and fully saturated ILC algorithms. To deal with unknown 
time-varying parameters, Sun’s team came up with a new method [43, 44] which 
transformed the unknown time-varying parameter to unknown constant parameters 
by using Taylor expansion and designed differential-type adaptive learning law and 
alignment method to estimate unknown constant parameters. On this basis, they 
designed the AILC algorithm in which the hyperbolic tangent function was employed 
to deal with the influence of remainder term of Taylor expansion on tracking perfor-
mance, meanwhile, restraining the chattering problem. Additionally, they introduced 
a convergent sequence to guarantee the learning convergence along iteration axis. 
In recent years, they studied ILC problems for error tracking systems [45, 46], 
where they considered different cases of unknown constant parameters, time-varying 
parameters and mixed (constant and time-varying) parameters, and designed AILC 
schemes based on Lyapunov-like method with non-saturated, partially saturated or 
completely saturated parameter learning laws. The proposed methods relaxed the 
requirements for initial positioning for ILC and allowed the initial values to be set 
arbitrarily. 

The Prof. Chiang-Ju Chien’s team in Taiwan Huafan University has devoted them-
selves to the study of ILC theory and published a great number of papers [47–59]. The 
creative works of Chiang-Ju Chien’ team mainly include the following aspects. (1) In 
order to deal with identical initial condition of ILC, Chien presented a boundary layer 
function method. By employing a decreasing boundary layer function using exponent 
function, they introduced an auxiliary error variable by redefining the tracking error



14 1 Introduction

and imposed the zero initial error condition on the auxiliary error, thus relaxing the 
limitation of zero initial tracking error and allowing the initial states to be placed in 
an arbitrary position within the predefined range. Moreover, the property of boundary 
layer function makes it possible to replace the sign function with saturation func-
tion in the robust learning term design of some control schemes, which can smooth 
control signals in a certain degree and avoid the chattering problem when using sign 
function. (2) For uncertainties in the plants, they utilized fuzzy approximation tech-
nique and used fuzzy logic systems [48, 52], fuzzy NNs [50, 56, 57], Output-recurrent 
Fuzzy Neural Network (ORFNN) [53] to approximate the uncertainties, which trans-
formed unknown functions to the parameterized form. Eventually, it facilitated the 
AILC design. (3) On the basis of Qu’s works, they proposed difference-differential 
mixed type parameter adaptive learning law [50–53, 59] which is given by 

(1 − γ ) ̇̂θk(t) = −γ θ̂k(t) + γ θ̂k−1(t) + qξ (x)ek(t) (1.20) 

where, γ ∈ [0, 1] is adjustable parameter. It can be seen that for γ = 0, (1.20) 
changes to pure differential type adaptive learning law which coincides with (1.8); 
for γ = 1, (1.20) reduces to pure difference type adaptive learning law which is 
specified by (1.11); for 0 < γ  <  1, (1.20) is exactly the difference-differential 
mixed type. Obviously, (1.20) unifies adaptive learning laws (1.8) and (1.11), thus 
(1.8) and (1.11) become the special form of (1.20). This kind of parameter updating 
form is similar to the σ-modification method in adaptive control, and consequently it 
can enhance the robustness in a certain extent. Chien presented a specific discussion 
on this parameter adaptive learning law in [51]. Furthermore, in order to obtain 
learning convergence, Chien designed new index of estimation error in CEF for this 
parameter adaptive learning law. (4) They improved the proof process for a class of 
CEF-based stability analysis and added the discussion on dynamical performance 
except for the proof of boundedness of close-loop signals and learning convergence. 
Their works played an important role in the development of AILC. Except the above-
mentioned works, they also investigated deeply the AILC problem for only output 
measurable nonlinear systems [54–57] and manipulator systems [58, 59]. 

The research team of Prof. Jun-min Li in Xidian University further improved 
the development of AILC in more kinds of nonlinear systems [60–73]. For a few 
classes of nonlinear parameterized systems, they used parameter separation tech-
nique and signal replacement method to reconstruct the system equation under 
the assumption of locally Lipschitz condition and designed differential-type and 
difference-type adaptive learning laws for unknown constant parameter and time-
varying parameter respectively. The learning convergence of the control system in 
iteration domain is obtained through CEF analysis method [60, 61]. Further they 
expanded the above methods to time-delay systems [62–64] and designed AILC 
schemes after dealing with the time-delay functions by using Lyapunov–Krasovskii 
functional (L-K for short). In their works, for strict-feedback nonlinear systems, 
a salient feature of the controlled object is that time-varying nonlinear parameter-
ized uncertainties are matched, this is decided by the characteristic of backstepping
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method. For the strict-feedback systems that don’t satisfy the matched condition, 
i.e., time-varying uncertainties are un-matched, they referred to the Sun’s method 
[43, 44] and used Fourier series expansion to transform the unknown time-varying 
parameters to constant parameters, which makes it possible to carry out the controller 
design by using backstepping technique [66, 67, 69, 70]. For the remainder term, 
they also employed the hyperbolic tangent function and a convergent sequence to 
guarantee the learning convergence along iteration axis [66–72]. In addition, they 
also conducted the research on the AILC problem for multi-agent systems [71, 72]. 
In [71] they used fuzzy logic method to approximate the unknown dynamics of the 
follower agent and designed differential-difference mixed type adaptive learning law. 
Whereas, differential type adaptive learning law was applied in [72]. 

Except for the above research teams, other scholars also studied the AILC problem 
for different kinds of nonlinear uncertain systems using similar idea and designed 
differential-type, difference-type and mixed type adaptive learning laws according 
to different situations [74–82]. Additionally, NN is another important approximation 
tool besides fuzzy approximation technique. Therefore, it is necessary and significa-
tive to introduce neural approximation technique into AILC design. In [83] and [84], 
the application of wavelet in ILC was discussed. Actually, similar to the parameter 
adaptive technique above, adaptive NN control method can be combined with ILC. 
In [85], Jiang proposed a kind of distributed NN structure which was composed of 
a series of local NNs and it approximated the unknown function on the finite time 
interval in the form that each local NN approximated the unknown function on a 
small fixed interval. Li further proved the realizability of this type NN by the way 
of mathematical analysis [85]. The distinguishing characteristic of this type NN is 
that the approximation accuracy depends on the number of local NNs. From the 
perspective of ILC, Sun proposed a kind of time-varying NN [86, 87] whose optimal 
weight was time varying and proved the convergence of approximation error using 
least square method. By using time-varying NN, they designed AILC schemes for 
several classes of systems [88–90] and used difference-type adaptive updating law 
to estimate the optimal weight. For nonlinear parameterized systems, Li relaxed the 
assumption of local Lipschitz condition and proposed a new iterative NN. The basic 
idea was that: firstly, estimating the unknown time-varying parameter via adaptive 
iterative learning law, and then taking the estimated value and state information as 
the input of NN to approximate the unknown function with time-varying parameter. 
By using this kind iterative NN, Li conducted research on several classes of strict-
feedback systems and designed difference-type, differential-type, mixed type adap-
tive learning laws for unknown time-varying parameter, NN weight, unknown upper 
bound respectively. On this basis, they designed adaptive iterative learning controller 
containing NN learning term and robust term by making use of backstepping tech-
nique, where they introduced tracking-differentiator to obtain the differential signal 
of virtual control instead of differentiating it directly. But this method remained to be 
discussed further, because the usage of tracking-differentiator implied introducing a 
dynamical system into the original closed-loop system, but the influence of tracking-
differentiator on the original system was not considered. It is worth pointing out that 
each research team in the field of ILC has their own special skills, but it doesn’t mean
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they develop independently along their own research directions, on the contrary, they 
will learn from each other and improve the development of ILC theory. 

In a word, the design methods for Lyapunov-like CEF based AILC have 
witnessed a great progress and produced a series of research results through the 
efforts of learning control scholars over the past decades. However, compared with 
other control theories that have been developed for several decades, the develop-
ment of AILC has not matured. Particularly, the research on AILC for nonlinear 
systems with unknown input nonlinearity characteristics and time-delay needs further 
improvement. 

1.2.3 2-D Theory Based ILC 

When ILC system is running iteratively, it presents two kinds of dynamical process: 
time domain and iteration domain. In other words, it is in nature a two-dimensional 
dynamical process. This characteristic enlightened some researchers to apply 2-D 
methodology to ILC. The basic idea of 2-D theory based ILC is to describe the 
ILC system as 2-D system (generally 2-D Roesser model) and then use 2-D system 
theory to obtain the necessary and sufficient conditions of learning convergence. This 
method is very effective, simple and feasible. It not only inherits the advantages of 
classical ILC, but also reduces the limitations of convergence condition. Therefore, 
in the past decades, many scholars conducted the researches on 2-D theory based 
ILC and got a great deal of results [91–99]. However, 2-D theory based ILC is based 
on 2-D Roesser linear model. So one notable drawback is that it is only applicable 
to linear systems or the nonlinear systems that can be linearized. Therefore, the 
researches on modelling methods based on 2-D theory and 2-D theory based ILC for 
nonlinear systems needs to be further studied. 

In the previous section, we summarize briefly the development of ILC theory. 
Through the development in the past decades, there have been a plenty of research 
results. But it is worth pointing out that there are still many topics for ILC problem, 
such as initial value problem, application research, frequency-domain analysis 
method and so on. Because these problems are out of the scope of this book, we 
will not discuss them in detail. 

1.3 Main Contents of the Book 

Based on summarizing and studying the previous results, this book presents a new 
kind of AILC design method and systematically solve a series of AILC design prob-
lems for nonlinear time-varying systems with input nonlinearities and time delays. 
The main contents of this book are as follows. 

Chapter 1 presents the research background and significance of this book and a 
summary of the development of ILC. There into, the development and research status
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of AILC are discussed emphatically, which takes the works of several research teams 
as the main line and summarize the basic idea, characteristic and research actuality 
of ILC. 

In Chap. 2, a novel adaptive iterative learning control scheme is proposed for a 
class of nonlinear time-varying parameterized with unknown dead-zone and time-
varying delays. Firstly, a new dead-zone model with time-varying slopes is estab-
lished, which has a simple form but extensive presentation. After compensating 
for the time delay term by L-K functional, the system is re-parameterized by 
using Young’s inequality. On this basis, the adaptive iterative learning controller 
is designed. In the design, the boundary layer function is introduced to relax the 
limitation of identical initial condition for ILC, and the possible singularity problem 
is avoided by utilizing the hyperbolic tangent function. 

In Chap. 3, the study on the AILC problem for a class of uncertain non-
parameterized nonlinear time-varying systems with unknown dead-zone and time-
varying state delays is carried out, where two time-varying NNs are used to approxi-
mate time-varying uncertainties and robust learning term is designed to deal with the 
NN approximation errors, which conquers the difficulty of time-varying uncertain-
ties. The Lyapunov-like CEF analysis is presented to get the boundedness of system 
signals, the convergence of tracking errors and dynamical performance. 

In Chap. 4, An AILC scheme is proposed for a class of nonlinear systems with 
unknown control direction, time-varying state delays and backlash-like hysteresis 
input by synthetically using Nussbaum type function method, time-varying NNs and 
robust adaptive control technique. The control gain is estimated by using Nussbaum 
type function method and a new CEF satisfying initial resetting is constructed to 
overcome the difficulty in stability analysis arouse by the usage of Nussbaum type 
function. For the first time, integral type Lyapunov function is utilized in the AILC 
design, which avoids the possible singularity problem by cooperation with hyperbolic 
tangent function. 

In Chap. 5, a deep investigation is carried out for the AILC problem of nonlinear 
systems with states un-measurable and two kinds of observer-based AILC schemes 
are proposed, which overcomes the design difficulty from time delays, input satu-
ration and the absence of measurement of states. In the state observer-based AILC 
scheme, state observer is designed on the basis of NN compensation. The observer 
gain is determined by using LMI method, which avoids the SPR condition. In the 
error observer-based AILC scheme, a new error variable is defined by introducing 
filter, which removes the identical initial condition and SPR condition. A new robust 
learning term is chosen by using hyperbolic tangent function and series convergent 
sequence to guarantee the learning convergence. 

In Chap. 6, the research for plants with unmeasurable states and unknown control 
gain is carried out by taking manipulator as investigation object, which successfully 
overcomes the design difficulty from unknown control gain, absence of measurement 
of states and output delays. During the design the observer gain is determined by using 
LMI method and hyperbolic tangent function and convergent sequence are employed 
to design the robust term for purposed of guaranteeing the learning convergence.
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The researches on the control problem for nonlinear systems with input nonlinear 
characteristics and time-delay have both theoretical and practical meaning. This book 
explores the researches on above-mentioned problems, in the future we can carry on 
a further study from the following two aspects: 

(1) Further research on the development of the proposed AILC design methods in 
other kinds of systems, for example, multi-input multi-output nonlinear systems, 
distributed interconnected large-scale systems, non-affine nonlinear systems, 
discrete systems, fractional-order systems. 

(2) Further research on the combination of AILC and other novel nonlinear control 
methods and the improvement in theory and applications. 
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Chapter 2 
AILC of Parameterized Nonlinear 
Time-Delay Systems 

2.1 Introduction 

In control field, a broad category of plants can be modeled as parametric dynamic 
systems or transformed to parametrized form through some technical operations. The 
design problems of parameterized systems occupy an important position in control 
theories, the scholars studying all kinds of control theories proposed various control 
schemes for parametric systems. In general, if the unknown system parameters are 
time-invariant, adaptive control methods can be used to estimate them and Lyapunov 
method is applied to obtain asymptotic convergence. Conversely, if unknown param-
eters are time-varying variables, it is needed to take advantage of AILC method to 
design the control systems. 

In practical control systems, time delay is a common physical phenomenon. The 
existence of time delays has a negative impact on the system performance, in the worst 
case, it will even destroy the system stability. Therefore, the research on the control 
problem for time-delay systems has great theoretical significance and application 
value. Because of the challenge in theoretical design and demand in practice, the 
issue of control system design for time-delay systems has drawn much attention in 
control community and a great deal of effective solutions have been put forward [1– 
7]. Most of these results are obtained by using control design methods in time domain 
and the results for ILC are relatively less in comparison. Chen, Meng and Sun et al. 
designed ILC algorithms for time-delay systems under the framework of contraction 
mapping theory and 2-D theory [8–11]. The research teams of Li [12–18] and Hou 
[19, 20] investigated the AILC design problems for time-delay systems by using 
CEF method. Wherein, the References [15, 18] and [15] presents AILC schemes 
for nonlinear systems with known delays. In the situation of unknown time delays, 
the L-K [21] is an effective design tool. For a large class of parameterized systems 
with unknown time-varying delays, Li et al. dealt with the impact of unknown time-
varying delays by using L-K functional and designed AILC schemes on the basis of 
signal replacement method [12–16]. Based on the same idea, Hou et al. proposed 
AILC schemes for a class of nonlinear parameterized systems and high-speed train
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dynamical systems in parameterized form [19, 20]. To carry out the analysis based 
on CEF, the above results all require identical initial condition, which is a common 
shortcoming of their work. 

Non-smooth and nonlinear characteristics such as dead-zone, hysteresis, satura-
tion and backlash, are common in practical control systems. There into, dead-zone 
is one of the most important non-smooth nonlinear characteristics in many indus-
trial motion control systems. The existence of dead-zone can severely impact system 
performances. It gives rise to design difficulty of controller. Therefore, the effect 
of dead-zone has been taken into consideration and drawn much attention in the 
control community for a long time [22–32]. To handle the problem of unknown 
dead-zone in control system design, an immediate method is to construct an inverse 
model of dead-zone and compensate for its influence in the controller [22]. The 
continuous and discrete inverse models of dead-zone were established in [23] and 
[24] respectively. When there is no priori knowledge of dead-zone to build inverse 
model, we have to directly model the dead-zone characteristic and compensate for 
dead-zone model in the controller design. Wang et al. established linear model with 
same slopes for dead-zone in [25]. Zhang et al. built a general form model of dead-
zone with wide generality which can be transformed once more by using mean value 
theorem in design [3, 26, 27]. Other scholars basically adopt the above approaches 
in their researches [28, 29]. In researches on ILC, the results considering dead-zone 
are relatively less. The references [30–32] present the studies of ILC problem for 
systems with dead-zone input and obtain the convergence of control system using 
contraction mapping theorem. For the CEF based AILC problem of the systems with 
dead-zone input, only Zhu et al. discussed it in [33], and they adopted the constant 
slope dead-zone model in [25]. 

In this chapter, we will conduct the research on the AILC problem for a class of 
nonlinear parameterized systems with dead-zone input and unknown time-varying 
delays. To the best of our knowledge, there is no result discussing it in the literature 
at present stage. 

2.2 Problem Formulation and Preliminaries 

2.2.1 Problem Formulation 

Consider a class of nonlinear time varying systems with unknown time-varying time-
delays and dead-zone running on a finite time interval [0, T ] repeatedly which is given 
by 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

ẋi,k(t) = xi+1,k (t), i = 1, . . . ,  n − 1 
ẋn,k(t) = f 

( 
Xk(t), Xτ,k(t), θ (t) 

) + g(t)uk(t) + d(t) 
yk(t) = x1,k(t), uk(t) = D(vk(t)), t ∈ [0, T ] 
xi,k(t) = ϖi (t), t ∈ [−τmax, 0), i = 1, . . . ,  n 

(2.1)
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where, t is the time, k ∈ N denotes the times of iteration (N is the integer set); yk(t) ∈ 
R and xi,k(t) ∈ R (i = 1, . . . ,  n) are the system output and states, respectively; 
Xk(t) ≜ 

[ 
x1,k(t), . . . ,  xn,k (t) 

]T 
is the state vector; τ (t) is unknown time-varying 

delay of states, xτ 
i,k ≜ xi,k(t − τ (t)), i = 2, . . . ,  n, Xτ,k(t) = 

[ 
xτ 
1,k (t), . . . ,  xτ 

n,k (t) 
]T 
; 

f (·, ·, ·) is unknown smooth continuous function; g(t) is the unknown continuous 
time-varying gain of the system input; θ (t) is an unknown continuous time-varying 
parameter vector; d(t) is unknown external disturbance. ϖi (t) (i = 1, . . . ,  n) denotes 
initial functions for delayed states; vk(t) ∈ R is the control input and the actuator 
nonlinearity D(vk(t)) presents the dead-zone characteristic. 

Remark 2.1 One of the main tasks of control science is to design a suitable controller 
for the controlled object such that the closed-loop system can be stabilized or track 
the desired reference trajectory under the requirements of some performance indices, 
namely, regulation and tracking problem. In order to design a good control system, 
it is necessary to acquire the knowledge about the motion laws of controlled object, 
actuator and all the elements of the system as fully as possible. The so-called motion 
law refers to the corresponding motion that the system element inevitably generates 
under certain internal and external conditions. There exists fixed causal relationship 
between internal-external conditions and the motions of system elements, which 
mostly could be presented by mathematical expressions. This is the mathematical 
description of the motion laws of control systems. In control systems, the common 
physical phenomenons are nothing more than electricity, magnetism, optics, conduc-
tion of heat and the motion of rigid body, elastomer and fluid, the motion laws of 
these physical quantities could be determined by the fundamental laws of electro-
magnetism, optics, thermodynamics and mechanics, for example, Kirchhoff’s law 
in electromagnetism, Maxwell’s equations, Fourier’s law in thermodynamics, the 
second law of thermodynamics, Fermat’s principle in optics, Newton’s laws and 
their variants in mechanics. These physical laws are generally described by differen-
tial equations, integral equations and algebraic equations. The differential equations 
similar to (2.1) describe the controlled object in this chapter, it has a broad represen-
tation and represents the mathematical model for a lot of dynamical process. This 
kind of form in (2.1) is known as Brunovsky canonical form. 

Control Objective: for a given desired trajectory yd (t), design an AILC scheme, 
such that the output yk (t) of (2.1) track yd (t) accurately enough, and all the close-loop 
signals are bounded. 

For system (2.1), define the desired trajectory vector as Xd (t) =
[ 
yd (t), ẏd (t), . . . ,  y(n−1) 

d (t) 
]T 

and tracking error vector as ek(t) = 
[ 
e1,k, e2,k , . . . ,  en,k 

]T = Xk(t) − Xd (t). Then the control objective can be 
described as: designing an AILC algorithm, such that the elements of tracking 
error vector ek(t) converge to a small neighborhood of the origin as k → ∞, i.e., 
lim 
k→∞ 

||ek(t)|| ≤ εe∞ with εe∞ as a small positive error tolerance. 

To facilitate control system design, make the following reasonable assumptions.
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Assumption 2.1 The unknown state time-varying delays τ (t) satisfy: 0 ≤ τ (t) ≤ 
τmax, τ̇ (t) ≤ κ <  1, where τmax and κ are unknown positive constants. 

Assumption 2.2 The unknown smooth functions f (·, ·, ·) satisfy the inequality 
| 
| f 
( 
Xk, Xτ,k, θ (t) 

) − f 
( 
Xd , Xd,τ , θ (t) 

)| 
| ≤ 

||Xk − Xd||h1(Xk, Xd )ξ1(θ ) + 
|| 
||Xτ,k − Xd,τ 

|| 
||h2 

( 
Xτ,k, Xd,τ 

) 
ξ2(θ ) 

(2.2) 

where, Xd,τ ≜ Xd (t − τ (t)), h1(·, ·), and h2(·, ·) are known continuous positive 
functions, ξ1(θ ) and ξ2(θ ) denote unknown smooth functions of θ (t). 

Assumption 2.3 The sign of control gain g(t) is known, without lose of generality, 
we always assume g(t) > 0. 

Assumption 2.4 The initial state errors ei,k(0) at each iteration are not necessarily 
zero small and fixed, but assumed to be bounded. 

Assumption 2.5 The desired trajectory yd (t) up to its n-th derivative are continuous, 
bounded and available. 

Assumption 2.6 The unknown external disturbance d(t) is bounded, i.e., |d(t)| ≤ 
dmax with dmax being an unknown constant. 

Assumption 2.7 For t ∈ [−τmax, 0), ei,k(t) = 0, i = 1, . . . ,  n. 

Remark 2.2 Assumption 2.1 is necessary for the control problem of time-varying 
delay systems, which ensures that the time-delay parts can be eliminated by 
Lyapunov-Krasovskii functional. Moreover, Assumption 2.1 is milder than that in 
[12–16] which requires to know the true value of κ . 

Remark 2.3 As g(t) is continuous on [0, T ], there exist constants 0 < gmin ≤ gmax 

such that gmin ≤ g(t) ≤ gmax. However, the control gain bounds gmin and gmax are 
only used for analytical purposes, their true values are not necessarily known since 
they are not used for controller design. 

Remark 2.4 In most ILC schemes, identical initial condition or fixed initial states 
are required, i.e., Xk(0) = Xd (0) or Xk(0) = X0 with X0 as a fixed constant vector. 
From the practical point of view, it is difficult to satisfy identical initial condition 
or fixed initial states due to the operation precision and existence of measurement 
noise. Therefore, Assumption 2.4 has much more practical significance. 

Remark 2.5 Assumption 2.7 is only used for analysis and has no practical meaning.
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2.2.2 Dead-Zone Characteristic 

As mentioned above, dead-zone is a common nonlinear characteristic in practical 
control systems, which will severely impact system performances and even destroy 
the system stability. Different from existing results, a new simple dead-zone model 
in nonlinear form is proposed as follows. 

uk(t) = D(vk(t)) = 

⎧ 
⎨ 

⎩ 

m(t)(vk(t) − br ), vk(t) ≥ br 
0, bl <vk(t) < br 
m(t)(vk(t) − bl ), vk(t) ≤ bl 

(2.3) 

where, br ≥ 0 and bl ≤ 0 are unknown constants, m(t) > 0 is unknown time-
varying coefficient. vk(t) and uk(t) are the input and output of dead-zone character-
istic respectively. A graphical representation of the proposed dead-zone is shown in 
Fig. 2.1. 

We make the following assumption on the dead-zone parameters. 

Assumption 2.8 The dead-zone parameters br , bl and m(t) are bounded, i.e., there 
exist unknown constants br min, br max, bl min, bl max, mmin, mmax satisfying br min ≤ 
br ≤ br max, bl min ≤ bl ≤ bl max and mmin ≤ m(t) ≤ mmax. 

To facilitate the subsequent design, rewrite the dead-zone as the following from 

uk(t) = D(vk) = m(t)vk(t) − d1(vk(t)) (2.4) 

d1(vk(t)) = 

⎧ 
⎨ 

⎩ 

m(t)br , vk(t) ≥ br 
m(t)vk(t), bl <vk(t) < br 
m(t)bl , vk(t) ≤ bl 

(2.5)

Fig. 2.1 Graphical 
representation of the 
dead-zone model 

lb 

rb 

ku 

kv 
0 
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It is obvious that d1(vk(t)) is bounded. 

Remark 2.6 In the research reports concerning dead-zone nonlinearity, the 
commonly used dead-zone model includes two forms: one is linear form, namely, 
m(t) has equal or unequal values in negative and positive planes; the other one is 
nonlinear form, in this case, it is usually transformed into the parameterized form 
by using some mathematical method, such as mean-value theorem, in order to facil-
itate controller design. Obviously, the dead-zone model proposed here is a nonlinear 
form. As m(t) could be any smooth continuous form which is more general than 
linear form. Meanwhile, the dead-zone model (2.3) is in parameterized form and 
can be directly estimated in design, in other words, it doesn’t need mathematical 
approximation by using some mathematical techniques any more. 

Throughout this book, σ denotes the integral variable and || · || denotes the 
Euclidean norm. N is the set of nonnegative integers. For a signal vector rk(t), 
define the norm ||rk(t)||L∞

T 
= max 

(k,t)∈N×[0,T ] 
||rk(t)|| and ||rk(t)||L2 

T 
= 
∫ T 
0 ||rk(σ )||2 dσ . 

Then if ||rk(t)||L∞ 
T 

< ∞, we could say that rk(t) is bounded in L∞ 
T -norm, which 

is denoted by rk(t) ∈ L∞ 
T . Similarly, we denote the boundedness of rk(t) in 

L2 
T -norm as rk(t) ∈ L2 

T . Obviously, the boundedness in L
∞ 
T -norm implies the 

boundedness in L2 
T -norm, because there exists the relationship between them: 

||rk(t)||L2 
T 

≤ T ||rk(t)||2 L∞ 
T 
. 

2.3 AILC Scheme Design 

Define a filtered tracking error variable as esk(t) = 
[ 
ΛT 1 

] 
ek(t), where Λ =

[ 
λ1, λ2, . . . , λn−1 

]T 
and λ1, λ2, . . . , λn−1 are the coefficients of Hurwitz polyno-

mial H (s) = sn−1 + λn−1sn−2 + · · · +  λ1. According to Assumption 2.4, there exist 
known constants εi satisfying 

| 
|ei,k(0) 

| 
| ≤ εi , i = 1, 2, · · ·  n, ∀k ∈ N. 

In ILC, there are two common ways to deal with initial condition problem: one is 
design learning law for initial values, the other is employing the modification term. 
The first one is to use iterative learning process to realize the learning convergence of 
initial values along iteration axis. But this method requires the accurate positioning of 
the system initial values. So, similar to zero initial condition, this method is difficult to 
realize because of measurement noises or accuracy problem. In contrast, the second 
method is suitable for the needs of practical engineering. In existing results, there are 
mainly two ways to introduce modification term: one is to redefine the control errors 
such that the redefined error variables satisfy zero initial condition [23]; the other 
one is to directly introduce the modification quantity for initial errors in controller 
and eliminate the impacts of initial errors in finite time. The boundary layer function 
put forward by Chiang-Ju Chien’s team is a method of control error redefinition. In 
this book, we will use their method for reference and improve it to deal with the 
initial condition problem. 

Introduce the boundary layer and define a new tracking error variable as
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sk(t) = esk(t) − η(t)sat 

( 
esk(t) 
η(t) 

) 
(2.6) 

η(t) = εe−Kt  , K > 0 (2.7) 

where, ε = 
[ 
ΛT 1 

] 
[ε1, ε2, . . . , εn]T, K is design parameter, sat(·) denotes saturation 

function which is defined by 

sat(·) = sgn(·) · min{|·|, 1} (2.8) 

where, sgn(·) = 

⎧ 
⎪⎨ 

⎪⎩ 

1 i f  · > 0 
0 i f  · =  0 
−1 i f  · < 0 

is the sign function. 

Remark 2.7 According to the definition of boundary layer function, η(t) is a 
decreasing function with respect to time, and η(0) = ε, 0 < η(T ) ≤ η(t) ≤ ε, 
∀t ∈ [0, T ]. If we can design a controller that derive sk(t) converge to zero, then the 
system states will asymptotically converge to the desired trajectory on t ∈ [0, T ], in  
other words, the tracking error esk(t) will be always within the envelope that deter-
mined by boundary layer function η(t). Then according to the Hurwitz property of 
coefficient vector Λ, we can know that e1,k(t) will also locate in the envelope that 
determined by η(t), i.e., the system output yk(t) will be able to track the desired 
reference trajectory yd (t). Moreover, by choosing suitable parameters ε and K , we  
can ensure the tracking error locate within the tolerance range. 

According to previous definition, it can be easily shown that 

|esk(0)| = 
| 
|λ1e1,k(0) + λ2e2,k(0) +  · · ·  +  en,k(0) 

| 
| 

≤ λ1 

| 
|e1,k(0) 

| 
| + λ2 

| 
|e2,k (0) 

| 
| +  · · ·  +  

| 
|en,k(0) 

| 
| 

≤ λ1ε1 + λ2ε2 +  · · ·  +  εn = ε = η(0) (2.9) 

which implies that sk(0) = esk(0) − η(0) esk (0) 
η(0) = 0 is satisfied for ∀k ∈ N. 

For the subsequent design, we firstly give the dynamical equation for en,k(t) 

ėn,k(t) = f 
( 
Xk(t), Xτ,k, θ (t) 

) + g(t)uk + d(t) − y(n) 
d (t) 

= f 
( 
Xk, Xτ,k, θ (t) 

) − f 
( 
Xd , Xd,τ , θ (t) 

) + f 
( 
Xd , Xd,τ , θ (t) 

) 

+ g(t)(m(t)vk(t) − d1(vk(t))) + d(t) − y(n) 
d (t) 

= f 
( 
Xk, Xτ,k, θ (t) 

) − f 
( 
Xd , Xd,τ , θ (t) 

) + f 
( 
Xd , Xd,τ , θ (t) 

) 

+ g(t)m(t)vk(t) + d2(t) − y(n) 
d (t) (2.10) 

where, d2(t) = −b(t)d1(vk(t)) + d(t). According to Assumptions 2.3 and 2.6, it  
is obvious that d2(t) is bounded, namely, there exists an unknown smooth posi-
tive function d(t) such that |d2(t)| ≤ d(t). For expression simplicity, define
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gm(t) = g(t)m(t),   Θ(t) = f 
( 
Xd , Xd,τ , θ (t) 

) 
,  Δk(t) = f 

( 
Xk, Xτ,k, θ (t) 

)− 
f 
( 
Xd , Xd,τ , θ (t) 

) 
. Obviously,   Θ(t) is an unknown time-varying but iteration-

invariant function. Additionally, there exists the relationship that g
m 

= mmingmin ≤ 
gm(t) ≤ mmaxgmax = gm with gm and gm being unknown positive constants. 

Define a smooth scalar function as 

Vsk (t) = 
1 

2 
s2 k (t) (2.11) 

Taking the time derivative of Vsk (t) yields 

V̇sk (t) = sk(t)ṡk(t) 

= 

⎧ 
⎪⎨ 

⎪⎩ 

sk(t)( ̇esk (t) − η̇(t)), i f  esk(t) > η(t) 
0, i f  |esk(t)| ≤ η(t) 
sk(t)( ̇esk (t) + η̇(t)) , i f  esk(t) < −η(t) 

= sk(t) 
[
ėsk (t) − η̇(t)sgn(sk(t)) 

] 

= sk(t) 

⎡ 

⎣ 
n−1∑ 

j=1 

λ j e j+1,k (t) − η̇(t)sgn(sk(t)) +   Θ(t) +  Δk(t) + gm(t)vk(t) 

+d2(t) − y(n) 
d (t) 

] 

= sk(t) 

⎡ 

⎣ 
n−1∑ 

j=1 

λ j e j+1,k (t) + K η(t)sgn(sk(t)) + Kesk(t) 

− Kesk(t) +   Θ(t) +  Δk(t)+gm(t)vk(t) + d2(t) − y(n) 
d (t) 

] 

= sk(t)[  Θ(t) +  Δk(t) + gm(t)vk(t) + μk(t) + d2(t)] − Ks2 k (t) (2.12) 

where, μk(t) = 
∑n−1 

j=1 λ j e j+1,k (t) + Kesk(t) − y(n) 
d (t) and using the following 

equality 

sk(t)(−Kesk(t) + K η(t)sgn(sk(t))) 

= sk(t) 
( 

−Ksk(t) − K η(t)sat 

( 
esk (t) 
η(t) 

) 
+ K η(t)sgn(sk(t)) 

) 

= −Ks2 k (t) − K η(t)|sk(t)| + K η(t)|sk(t)| 
= −Ks2 k (t) (2.13) 

Using Young’s inequality and noting Assumption 2.2, we have  

sk(t) Δk(t) 
≤ |sk(t)|

(||Xk − Xd||h1(Xk, Xd )ξ1(θ ) + 
|| 
||Xτ,k − Xd,τ 

|| 
||h2 

( 
Xτ,k, Xd,τ 

) 
ξ2(θ ) 

)
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≤ 
1 

2 
s2 k (t)ξ 

2 
1 (θ ) + 

1 

2
||ek||2 h2 1(Xk, Xd ) + 

1 

2 
s2 k (t)ξ 

2 
2 (θ ) + 

1 

2 

|| 
||eτ,k 

|| 
||2 h2 2 

( 
Xτ,k, Xd,τ 

) 

(2.14) 

Substituting (2.14) into (2.12) leads to 

V̇sk (t) ≤ sk(t) 
[

  Θ(t) + gm(t)vk(t) + μk(t) + d2(t) + 
1 

2 
sk(t)ξ 2 1 (θ ) 

+ 
1 

2 
sk(t)ξ 2 2 (θ ) 

] 
− Ks2 k (t) + 

1 

2
||ek||2 h2 1(Xk, Xd ) + 

1 

2 

|| 
||eτ,k 

|| 
||2 h2 2 

( 
Xτ,k, Xd,τ 

) 

(2.15) 

To deal with the unknown time-varying delay term in (2.15), consider the 
following Lyapunov-Krasovskii functional 

VUk (t) =
1 

2(1 − κ) 

t∫ 

t−τ (t) 

||ek(σ )||2 h2 2(Xk(σ ), Xd (σ ))dσ (2.16) 

According to Assumption 2.1, taking the time derivative of VUk (t) results in 

V̇Uk (t) =
1 

2(1 − κ) 
||ek||2 h2 2(Xk, Xd ) − 

1 − τ̇ (t) 
2(1 − κ) 

|| 
||eτ,k 

|| 
||2 h2 2 

( 
Xτ,k, Xd,τ 

) 

≤ 1 

2(1 − κ)
||ek||2 h2 2(Xk, Xd ) − 

1 

2 

|| 
||eτ,k 

|| 
||2 h2 2 

( 
Xτ,k, Xd,τ 

) 
(2.17) 

Choose the Lyapunov function as Vk(t) = Vsk (t) + VUk (t), recalling (2.15) and 
(2.17), we can obtain the time derivative of Vk(t) as follows 

V̇k(t) ≤ sk(t) 
[

  Θ(t) + gm(t)vk(t) + μk(t) + d2(t) + 
1 

2 
sk(t)ξ 2 1 (θ ) 

+ 
1 

2 
sk(t)ξ 2 2 (θ ) 

] 
− Ks2 k (t) + 

1 

2
||ek||2 h2 1(Xk, Xd ) 

+ 1 

2(1 − κ)
||ek||2 h2 2(Xk, Xd ) (2.18) 

For convenience of expression, denote ζk(t) = 1 
2||ek||2 h2 1(Xk, Xd ) +

1 
2(1−κ)

||ek||2 h2 2(Xk, Xd ), then (2.18) can be simplified as 

V̇k(t) ≤ sk(t) 
[

  Θ(t) + gm(t)vk(t) + μk(t) + d2(t) + 
1 

2 
sk(t)ξ 2 1 (θ ) 

+ 
1 

2 
sk(t)ξ 2 2 (θ ) + 

ζk(t) 
sk(t) 

] 
− Ks2 k (t) (2.19)
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Examining Eq. (2.19), if we directly compensate for the term ζk(t) 
/ 
sk(t) in the 

feedback controller design, it will cause singularity problem as sk (t) approaches zero. 
In order to tackle this problem, we exploit the following characteristic of hyperbolic 
tangent function. 

Lemma 2.1 [34] For any constant η >  0 and any variable p ∈ R, the following 
equality holds 

lim 
p→0 

tanh2 ( p/η) 
p

= 0 (2.20) 

Introducing the hyperbolic tangent function, inequality (2.19) can be rewritten as 

V̇k(t) ≤ sk(t) 
[

  Θ(t) + d2(t) + gm(t)vk(t) + μk(t) + 
1 

2 
sk(t)ξ 2 1 (θ ) + 

1 

2 
sk(t)ξ 2 2 (θ ) 

+ 
b 

2sk(t) 
tanh2 

( 
sk(t) 
η(t) 

) 
||ek||2 h2 1(Xk, Xd ) 

+ b 

2(1 − κ)sk(t) 
tanh2 

( 
sk(t) 
η(t) 

) 
||ek||2 h2 2(Xk, Xd ) 

] 

− Ks2 k (t) + 
( 
1 − b tanh2 

( 
sk(t) 
η(t) 

)) 
ζk(t) (2.21) 

where, b > 1 is a design constant. 

From Lemma 2.1, it’s clear that lim 
sk (t)→0 

b 
sk (t) tanh

2 
( 
sk (t) 
η(t) 

) 
ζk(t) = 0. Hence, the 

singularity problem will not occur even at the point sk(t) = 0. Upon multiplication 
of (2.21) by  1 

/ 
gm(t), it becomes 

V̇k(t) 
gm(t) 

≤ sk(t) 
[ 

1 

gm(t) 
(  Θ(t) + d2(t)) + vk(t) + 

1 

gm(t) 
μk(t) 

+ 1 

2gm(t) 
sk(t) 

( 
ξ 2 1 (θ ) + ξ 2 2 (θ ) 

) 

+ b 

2gm(t)sk(t) 
tanh2 

( 
sk(t) 
η(t) 

) 
||ek||2 h2 1(Xk, Xd ) 

+ b 

2gm(t)(1 − κ)sk(t) 
tanh2 

( 
sk(t) 
η(t) 

) 
||ek||2 h2 2(Xk, Xd ) 

] 

− K 

gm(t) 
s2 k (t) +

1 

gm(t) 

( 
1 − b tanh2 

( 
sk(t) 
η(t) 

)) 
ζk(t) 

= sk(t) 
[ 
βT (t) 𝝫(Xk, Xd ) + vk(t) 

] − 
K 

gm(t) 
s2 k (t) 

+ 1 

gm(t) 

( 
1 − b tanh2 

( 
sk(t) 
η(t) 

)) 
ζk(t) (2.22)
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where, β(t) = 
[ 

1 
gm (t) (  Θ(t) + d2(t)), 1 

gm (t) ,
1 

gm (t) 
( 
ξ 2 1 (θ ) + ξ 2 2 (θ ) 

) 
, 1 

(1−κ)gm (t) 

]T 

denotes an unknown time-varying parameter vector that 
is invariant along the iteration axis;  𝝫(Xk, Xd ) =[ 
1, μk (t) + b 

2sk (t) tanh
2 
( 
sk (t) 
η(t) 

) 
||ek||2 h2 1(Xk, Xd ), sk(t), b 

2sk (t)
× 

tanh2 
( 
sk (t) 
η(t) 

) 
||ek||2 h2 2(Xk, Xd ) 

]T 
. 

Based on (2.22), we can design the adaptive iterative learning controller as follows: 

vk(t) = −β̂ 
T 

k (t) 𝝫(Xk, Xd ) − K1sk(t) (2.23) 

where, K1 > 0 is a design parameter, β̂k(t) represents the estimate of β(t) at the 
k-th iteration. Design the adaptive learning algorithm for β(t) as follows 

⎧ 
β̂k(t) = β̂k−1(t) + qsk(t) 𝝫(Xk, Xd ) 
β̂0(t) = 0, t ∈ [0, T ] (2.24) 

where, q > 0 is parameter learning gain. 
Define the parameter estimation error as β̃k(t) = β̂k(t) − β(t). Then substituting 

the controller (2.23) into (2.22) yields 

V̇k(t) 
gm(t) 

≤ −sk(t) ̃β 
T 
k (t) 𝝫(Xk, Xd ) − 

( 
K 

gm(t) 
+ K1 

) 
s2 k (t) 

+ 
1 

gm(t) 

( 
1 − b tanh2 

( 
sk(t) 
η(t) 

)) 
ζk(t) 

≤ −sk(t) ̃β 
T 
k (t) 𝝫(Xk, Xd ) − 

( 
K 

gm 
+ K1 

) 
s2 k (t) 

+ 
1 

gm(t) 

( 
1 − b tanh2 

( 
sk(t) 
η(t) 

)) 
ζk(t) (2.25) 

For simplicity in expression, denote K2 = 
( 
K 
/ 
gm + K1 

) 
. Then Eq. (2.25) can be 

rewritten as 

sk(t) ̃β 
T 
k (t) 𝝫(Xk, Xd ) ≤ −  ̇

Vk(t) 
gm(t) 

− K2s
2 
k (t) + 

1 

gm(t) 

( 
1 − b tanh2 

( 
sk(t) 
η(t) 

)) 
ζk(t) 

(2.26) 

In this section, we will analyze the stability of the closed-loop system and the 
convergence of tracking errors. The stability of the proposed AILC scheme is 
summarized as follows. 

The block diagram of the proposed AILC is presented in Fig. 2.2.
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Fig. 2.2 The block diagram of the proposed AILC 

2.4 Stability Analysis 

In this section, we will analyze the system stability using Lyapunov-like CEF method. 
In the proof, we need to use the following characteristic of the tangent hyperbolic 
function. 

Lemma 2.2 Define a compact set: Ωsk := {sk(t)||sk(t)| ≤ mη(t)}, the for ∀sk(t) /∈ 
Ωsk , the following inequality holds: 

1 − b tanh2 
( 
sk(t) 
η(t) 

) 
< 0 (2.27) 

where, m = ln 
( /

b 
/ 

(b − 1) +
/

1 
/ 

(b − 1) 
) 
. 

Proof For expression convenience, denote x = sk(t) 
/ 

η(t), then Eq. (2.27) can be 
expressed as 

1 

b 
< tanh2 (x) = 

( 
ex − e−x 

ex + e−x 

)2 

= 1 − 
( 

2 

ex + e−x 

)2 

(2.28)
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Noting that ex and e−x are both positive, from Eq. (2.28) we can obtain 

ex + e−x > 2 
/

b 

b − 1 
(2.29) 

Multiplying both sides of the previous inequality by ex and rearranging terms we 
get 

e2x − 2 
/

b 

b − 1 
ex + 1 > 0 (2.30) 

Solving the quadratic inequality (A.3), we can get the following solutions 

0 < ex <
/

b 
/ 

(b − 1) − 
/

1 
/ 

(b − 1) or ex >
/

b 
/ 

(b − 1) +
/

1 
/ 

(b − 1) 
(2.31) 

On the other hand, from |sk(t)| > mη(t) we have 

x < −m or  x  > m (2.32) 

According to the expression of m, we obtain 

0 < ex < 
1 

/

b 
/ 

(b − 1) +
/

1 
/ 

(b − 1) 
=
/

b 
/ 

(b − 1) −
/

1 
/ 

(b − 1) 

or ex >
/

b 
/ 

(b − 1) +
/

1 
/ 

(b − 1) (2.33) 

Obviously, from the uniformity of inequality (2.31) and (2.33), we can easily 
know that Lemma 2.2 holds. ◻ 

For the proposed AILC scheme in this chapter, we have the following conclusion. 

Theorem 2.1 Considering the parameterized time-delay systems as (2.1) running 
repeatedly on finite time interval [0, T ], if Assumption 2.1–Assumption 2.8 are 
satisfied, design AILC scheme (2.23) with adaptive updating law (2.24), we can 
obtain the following conclusions: ➀ all the closed-loop signal are bounded; ➁ 
the tracking error esk(t) converge to a small neighborhood of zero as k → ∞  
in L2 

T -norm, i.e., lim 
k→∞ 

∫ T 
0 (esk(σ ))2 dσ ≤ εesk , εesk = 1 

2K (1 + m)2 ε2; ➂ the system 

transient performance: the output tracking error e1,k (t) satisfies lim 
k→∞ 

| 
|e1,k(t) 

| 
| = 

k0 
n−1∑ 
i=1 

/

ε2 i e
−λ0t + (1 + m)εk0 

1 
λ0−K 

( 
e−Kt  −e−λ0t 

) 
. 

Proof The sign of the last term in the right side of Eq. (2.26) depends on the sign of( 
1 − b tanh2 

( 
sk(t) 

/ 
η(t) 

)) 
, whereas the sign of 

( 
1 − b tanh2 

( 
sk(t) 

/ 
η(t) 

)) 
depends
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on the value of Sk . Therefore, according to Lemma 2.2, we need to consider two 
cases. 

Case 1. sk(t) ∈ Ωsk . 
For sk(t) ∈ Ωsk , |sk(t)| ≤ mη(t) holds. Consider the following three situations. 

➀ If sk(t) = 0, we can know that esk(t) lies in the envelope of η(t) all the time, i.e., 
|esk (t)| ≤ η(t); ➁ If sk(t) > 0, from the definition of sk(t), we know sk(t) = esk(t)− 
η(t). According to |sk(t)| ≤ mη(t), it is clear that sk(t) = esk (t) − η(t) ≤ mη(t), 
which implies that 0 < esk ≤ (1 + m)η(t); ➂ Similarly, if sk(t) < 0, we know 
sk(t) = esk(t)+ η(t) ≥ −mη(t), which is equivalent to 0 > esk(t) ≥ −(1 + m)η(t). 
In summary, we can obtain the conclusion that |esk(t)| ≤ (1 + m)η(t). Obviously, 
since Xd (t) is bounded, then we can know that xi,k(t) is bounded. Furthermore, 
since h1(·, ·) and h1(·, ·) are continuous and bounded on [0, T ], then we can say that
 𝝫(Xk, Xd ) is a bounded vector. According to Eq. (2.24), β̂0(t) = 0, t ∈ [0, T ], then 
if sk(t) ∈ Ωsk , β̂k(t) is bounded as well. Through above analysis, we can further 
obtain the boundedness of vk(t). Thus all the closed-loop signals are bounded. 

Remark 2.8 In theory, m can be made arbitrarily small through the choose of b. 
For example, when b = 100, m = 0.099. Thus sk(t) can be driven arbitrarily 
small as well. However, overlarge b may lead to excessive control signal, which may 
degrade the transient performance. Therefore, in practical applications, designers 
should choose suitable parameters and obtain satisfactory transient performance and 
stable error. 

Case 2. sk(t) /∈ Ωsk . 
In this case, from Lemma 2.2 we know that the last term in the right side of (2.26) 

is less than zero, so it can be removed from inequality (2.26), i.e., 

sk(t) ̃β 
T 
k (t) 𝝫(Xk, Xd ) ≤ −  ̇

Vk(t) 
gm(t) 

− K2s
2 
k (t) (2.34) 

Choosing the Lyapunov-like CEF as 

Ek(t) = 
1 

2q 

t∫ 

0 

β̃ 
T 
k (σ ) ̃βk(σ )dσ (2.35) 

In the next text, we will prove the boundedness of signals and the convergence of 
tracking error in Theorem 2.1, which includes three parts. The main idea is presented 
in Fig. 2.3.

The specific proof is as follows. 

(1) The difference of Ek(t). 

Compute the difference of Ek(t) in the k-th iteration and the (k-1)-th iteration

 ΔEk(t) = Ek(t) − Ek−1(t)
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Fig. 2.3 The main idea of CEF-based proof for Theorem 2.1

= 
1 

2q 

t∫ 

0 

( 
β̃ 
T 
k (σ ) ̃βk(σ ) − β̃ 

T 
k−1(σ ) ̃βk−1(σ ) 

) 
dσ (2.36)

Utilizing the algebraic relation (a − b)T (a − b) − (a − c)T (a − c) = 
(c − b)T [2(a − b) + (b − c)] and recalling adaptive iterative learning law (2.24), 
we can obtain the following inequality

 ΔEk(t)= 
t∫ 

0 

sk(σ ) ̃β 
T 
k (σ ) 𝝫(Xk, Xd )dσ − 

q 

2 

t∫ 

0 

s2 k (σ )|| 𝝫(Xk, Xd )||2 dσ 

≤ 
t∫ 

0 

sk(σ ) ̃β 
T 
k (σ ) 𝝫(Xk, Xd )dσ (2.37) 

Substituting Eq. (2.34) into above inequality results in

 ΔEk(t) ≤ −  
t∫ 

0 

V̇k(σ ) 
gm(σ ) 

dσ − 
t∫ 

0 

K2s
2 
k (σ )dσ ≤ −  

1 

gm 
Vk(t) − K2 

t∫ 

0 

s2 k (σ )dσ <  0 

(2.38) 

The above inequality indicates that Ek(t) is decreasing along iteration axis. 
Accordingly, the boundedness of Ek(t) can be ensured provided that E1(t) is 
bounded. 

(2) The boundedness of Ek(t). 

According to the definition of CEF, we know 

E1(t) = 
1 

2q 

t∫ 

0 

β̃ 
T 
1 (σ ) ̃β1(σ )dσ (2.39)
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Taking the time derivative of E1(t) yields 

Ė1(t) = 
1 

2q 
β̃ 
T 
1 (t) ̃β1(t) (2.40) 

Recalling parameter adaptive law, we have β̂1(t) = qs1(t) 𝝫(X1, Xd ), then we 
obtain 

Ė1(t) = 
1 

2q 
β̃ 
T 
1 (t) ̃β1(t) 

= 
1 

2q 

( 
β̃ 
T 
1 (t) ̃β1(t) − 2β̃ 

T 
1 (t) ̂β1(t) 

) 
+ 

1 

q 
β̃ 
T 
1 (t) ̂β1(t) 

= 
1 

2q 

[( 
β̂1(t) − β(t) 

)T( 
β̂1(t) − β(t) 

) 
− 2 

( 
β̂1(t) − β(t) 

)T 
β̂1(t) 

] 

+ s1(t) ̃β 
T 
1 (t) 𝝫(X1, Xd ) 

= 
1 

2q 

( 
−β̂ 

T 

1 (t) ̂β1 + βT (t)β(t) 
) 

+ s1(t) ̃β 
T 
1 (t) 𝝫(X1, Xd ) (2.41) 

Recalling (2.26), we may have 

Ė1(t) ≤ −  ̇
V1(t) 
gm(t) 

− K2s
2 
1 (t) + 

1 

2q 
βT (t)β(t) (2.42) 

Denote βmax = max 
t∈[0,T ] 

{ 
1 
2q β

T (t)β(t) 
} 
. Integrating the above inequality over [0, t] 

yields 

E1(t) − E1(0) ≤ −  
1 

gm 
V1(t) − K2 

t∫ 

0 

s2 1 (σ )dσ + t · βmax (2.43) 

Obviously, E1(0) = 0, then inequality (2.43) can be transformed to 

E1(t) ≤ t · βmax < ∞ (2.44) 

which, therefore, implies the boundedness of E1(t), so  Ek(t) is finite for any k ∈ N. 

(3) The convergence of tracking error 

Applying (2.38) repeatedly, we have 

Ek(t) = E1(t) + 
k∑ 

l=2

 ΔEl (t)
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< E1(t) − 
1 

bm 

k∑ 

l=2 

Vl (t) − 
k∑ 

l=2 

K2 

t∫ 

0 

s2 l (σ )dσ 

≤ E1(t) − 
k∑ 

l=2 

K2 

t∫ 

0 

s2 l (σ )dσ (2.45) 

Rewrite the above inequality as 

k∑ 

l=2 

K2 

t∫ 

0 

s2 l (σ )dσ ≤ (E1(t) − Ek(t)) ≤ E1(t) (2.46) 

Letting t = T in (2.46) and taking the limitation of (2.46), it follows that 

lim 
k→∞ 

k∑ 

l=2 

T∫ 

0 

s2 l (σ )dσ ≤ 
1 

K2 
E1(T ) (2.47) 

Since E1(T ) is bounded, according to the convergence theorem of the sum of 
series, we have lim 

k→∞ 

∫ T 
0 s

2 
k (σ )dσ = 0, which implies that lim 

k→∞ 
sk(t) = s∞(t) = 0, 

∀t ∈ [0, T ]. Moreover, from the definition (2.6), we can know that if |esk(t)| ≤ η(t), 
then sk(t) = 0, therefore, lim 

k→∞ 

∫ T 
0 s

2 
k (σ )dσ = 0 is equivalent to lim 

k→∞ 
|esk(t)| ≤ η(t), 

furthermore, lim 
k→∞ 

∫ T 
0 (esk(σ ))2 dσ ≤ 

∫ T 
0 (η(σ ))2 dσ . 

According to the boundedness of Ek(t), we can obtain the boundedness of β̂k(t). 
Moreover, from the boundedness of Xd (t) we further get the boundedness of xi,k(t). 
Similar to case 1, the boundedness of vk(t) can be derived. 

Summarizing above conclusions in two cases, we can see that the AILC 
scheme proposed in this chapter is able to ensure the boundedness of 
closed-loop signals and lim 

k→∞ 
|esk(t)| ≤ (1 + m)η(t).Consequently, we can 

further get lim 
k→∞ 

∫ T 
0 (esk (σ ))2 dσ ≤ εe, εe = ∫ T 

0 ((1 + m)η(σ ))2 dσ = 
1 
2K (1 + m)2 ε2 

( 
1 − e−2KT  

) ≤ 1 
2K (1 + m)2 ε2 = εesk . Moreover, es∞(t) satisfy 

lim 
k→∞ 

|esk(t)| = es∞(t) = (1 + m)εe−Kt , ∀t ∈ [0, T ]. 
Next, we continue to prove the conclusion about transient performance in 

Theorem 2.1. 

(4) Transient performance 

Define the vector ψk(t) = 
[ 
e1,k (t), e2,k (t), · · ·  , en−1,k (t) 

]T 
, then from the 

definition esk(t) = 
[ 
ΛT 1 

] 
ek(t) we have 

ψ̇k(t) = Asψk(t) + bsesk(t) (2.48)
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where, 

As = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

0 1  · · · 0 
... 

... 
. . . 

... 
0 0  · · · 1 

−λ1 −λ2 · · ·  −λn−1 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

∈ R(n−1)×(n−1) , bs = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

0 
... 
0 
1 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

∈ Rn−1 (2.49) 

with As being a stable matrix. According to the proposition in [35], there exist two 
constants k0 > 0 and λ0 > 0 such that 

|| 
||eAs t 

|| 
|| ≤ k0e−λ0t [35]. The solution of ψ̇k(t) 

is 

ψk(t) = eAs t ψk(0) + 
t∫ 

0 

eAs (t−σ ) bsesk(σ )dσ (2.50) 

Hence, ψk(t) is bounded by 

|| 
||ψk(t) 

|| 
|| ≤ k0 

|| 
||ψk(0) 

|| 
||e−λ0t + k0 

t∫ 

0 

e−λ0(t−σ )|esk (σ )|dσ (2.51) 

Choosing suitable parameter such that λ0 > K . The from lim 
k→∞ 

|esk(t)| ≤ 
(1 + m)η(t) it follows 

|| 
||ψ∞(t) 

|| 
|| ≤ k0 

|| 
||ψ∞(0) 

|| 
||e−λ0t + k0 

t∫ 

0 

e−λ0(t−σ )|es∞(σ )|dσ 

≤ k0 
|| 
||ψ∞(0) 

|| 
||e−λ0t + (1 + m)εk0 

t∫ 

0 

e−λ0(t−σ ) e−K σ dσ 

= k0 
|| 
||ψ∞(0) 

|| 
||e−λ0t + (1 + m)εk0 

1 

λ0 − K 
( 
e−Kt  − e−λ0t 

) 

≤ k0 
|| 
||ψ∞(0) 

|| 
|| + 1 

λ0 − K 
(1 + m)εk0 (2.52) 

Noting esk(t) = 
[ 
ΛT 1 

] 
ek(t) and ek(t) = 

[ 
ψT 

k (t) en,k(t) 
]T 
, we have  

||ek(t)|| ≤ 
|| 
||ψk(t) 

|| 
|| + 

| 
|en,k(t) 

| 
| 

= 
|| 
||ψk(t) 

|| 
|| + 

| 
|esk(t) − ΛT ψk(t) 

| 
| 

≤ (1 + ||Λ||) || 
||ψk(t) 

|| 
|| + |esk(t)| (2.53) 

Combining (2.52) and (2.53), it results in
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||e∞(t)|| ≤ (1 + ||Λ||) || 
||ψ∞(t) 

|| 
|| + |es∞(t)| 

≤ k0 
|| 
||ψ∞(0) 

|| 
||e−λ0t + (1 + m)εk0 

1 

λ0 − K 
( 
e−Kt  − e−λ0t 

) + (1 + m)η(t) 

≤ (1 + ||Λ||) 
( 

k0 

n−1∑ 

i=1 

/

ε2 i +
1 

λ0 − K 
(1 + m)εk0 

) 

+ (1 + m)η(t) 

≤ (1 + ||Λ||) 
( 

k0 

n−1∑ 

i=1 

/

ε2 i +
1 

λ0 − K 
(1 + m)εk0 

) 

+ (1 + m)ε = εe∞ 

(2.54) 

According to 
| 
|e1,k(t) 

| 
| ≤ 

|| 
||ψk(t) 

|| 
|| we can get 

| 
|e1,∞(t) 

| 
| ≤ k0 

|| 
||ψ∞(0) 

|| 
||e−λ0t + (1 + m)εk0 

1 

λ0 − K 
( 
e−Kt  − e−λ0t 

) 

≤ k0 
n−1∑ 

i=1 

/

ε2 i + 
1 

λ0 − K 
(1 + m)εk0 

(2.55) 

This concludes the proof. ◻ 

2.5 Simulation Analysis 

In this section, a simulation study is presented to verify the effectiveness of the 
AILC scheme. Consider the following second-order nonlinear system with unknown 
time-varying delays and unknown dead-zone: 

⎧ 
⎨ 

⎩ 

ẋ1,k(t) = x2,k(t) 
ẋ2,k(t) = f 

( 
Xk, Xτ,k, θ  (t) 

) + g(t)uk(t) + d(t) 
yk(t) = x1,k(t), uk(t) = D(vk(t)) 

(2.56) 

where, f 
( 
Xk, Xτ,k, θ  (t) 

) = −( x1,k(t) + x2,k(t) 
) 
θ (t)+exp(−θ(t)((xτ 

1,k(t))
2 

+(xτ 
2,k(t))

2)), g(t) = 2 + 0.5 sin  t ,d(t) = 0.1 sin  t . The unknown time-varying 
delay is τ (t) = 0.5(1 + sin t), then τmax = 1, θ (t) = |cos(t)|. It can be easily 
verified that 

| 
|exp 

(−θ (t)||Xk||2 
) − exp 

(−θ (t)||Xd||2 
)| 
| ≤ ||Xk − Xd|| 

√ 
2|θ (t)|e−0.5 

Obviously, this system has the typical form of (2.1), and it satisfies Assumptions 
2.1–2.3 and 2.5–2.7. Moreover, it is clear that h1 = 1, h2 = 1.
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2.5.1 Verification of the AILC Scheme 

To test above conclusion, conduct the following two experiments. 

Experiment 1 The desired reference trajectory is given by Xd (t) = [sin t, cos t]T . 
The design parameters are chosen as ε1 = ε2 = 1, λ = 2, K = 3, K1 = 2, q = 1, 
b = 5, ε = λε1 + ε2 = 3. The parameters for dead-zone nonlinearity is specified 
by m = 1 + 0.2 sin  t , br = 0.25, bl = −0.25. The initial condition for x1,k(0) and 
x2,k(0) are generated randomly on intervals [−0.5, 0.5] and [0.5, 1.5], respectively. 
The system runs on the interval [0, 10] for ten iterations. Part simulation results are 
presented in Figs. 2.4, 2.5, 2.6, 2.7 and 2.8. 

Figures 2.4 and 2.5 show the tracking curves of the 1st iteration (k = 1) and the 
10th iteration (k = 10), respectively, which shows that the tracking performance has 
been improved through nine times of learning. In Fig. 2.5, we can see that the it has 
achieved complete tracking except for the initial stage that is influenced by resetting 
error. This improvement performance is clearly shown by Fig. 2.8. Figures 2.6 and 
2.7 show the control curves of the 1st iteration and 10th iteration respectively, which 
shows the boundedness of control signal and the influence of dead-zone nonlinearity. 

Experiment 2 To show the control performance for more complicated desired 
reference trajectory, we choose the desired reference signal as Xd (t) = 
[sin t + sin(1.5t), cos t + 1.5 cos(1.5t)]T . The design parameters keep the same as 
Experiment 1. The initial conditions for states x1,k (0) and x2,k(0) are generated 
randomly on the intervals [−0.5, 0.5] and [2, 3] respectively. The system runs on
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Fig. 2.4 System output yk versus yd (k = 1)
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Fig. 2.7 The input vk and output uk dead-zone characteristic (k = 10) 
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0 s

2 
k (t)dt versus the number of iterations (Experiment 1)

finite time interval [0, 10] for ten iterations. The simulation results are presented in 
Figs. 2.9, 2.10, 2.11, 2.12 and 2.13.
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Fig. 2.9 System output yk versus yd (k = 1) 
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Fig. 2.10 System output yk versus yd (k = 10)

As shown in simulation Figure s, we can see that the proposed controller can also 
achieve perfect tracking performance for more complicated desired trajectory and 
accomplish the control objective.
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Fig. 2.11 The input vk and output uk of dead-zone characteristic (k = 1) 
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Fig. 2.12 The input yk and output uk of dead-zone characteristic (k = 10)
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2.5.2 Comparison Simulation: Adaptive Control 

Experiment 3 Finally, the contribution of this chapter is shown by comparing the 
proposed controller with traditional adaptive controller. In adaptive control, the 
controller remains unchanged, but instead of (2.24) the adaptive law for unknown 
parameter changes to the σ -modification form which is given by 

˙̂
β(t) = −Γ  

[
 𝝫k(t)sk + σ β̂(t) 

] 
, β̂(0) = 0 

The design parameters are chosen as Γ  = diag{0.01},σ = 0.5. The desired 
reference signal is Xd (t) = [sin t, cos t]T , other design parameters keeps the same 
as Experiment 1. As traditional adaptive controller runs in time domain, the notation 
“k” here doesn’t have any practical meaning. Figures 2.14, 2.15 and 2.16 provide the 
simulation results. From the simulation results shown below, it is obvious that the 
adaptive controller is unable to achieve good tracking performance, and the tracking 
error exists all the time and can’t be eliminated by adaptive law.

As observed in simulation results above, the proposed AILC can achieve a good 
tracking performance for parameterized nonlinear time-delay systems preceded by 
dead-zone characteristic and tracking errors decrease along the iteration axis, which 
demonstrates the validity of the proposed AILC approach in this chapter and achieve 
the control design objective.
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Fig. 2.14 The system output yk versus desired trajectory yd (Experiment 3) 
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Fig. 2.15 The input vk and output uk of dead-zone characteristic (Experiment 3)

2.6 Summary and Comments 

In this chapter, based on a deep investigation of research results concerning nonlinear 
systems with time-delay and dead-zone, a new AILC scheme is proposed for a 
class of nonlinear time-varying systems with unknown time-varying time-delays and
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Fig. 2.16 The curve of tracking error s (t)

unknown input dead-zone nonlinearity running on a finite time interval repetitively. 
Firstly, a novel representation with time-varying slope for the dead-zone nonlinearity 
characteristic is built, this model for dead-zone is very simple in form and broadly 
representative. Using appropriate Lyapunov-Krasovskii functional in the Lyapunov 
function candidate, the uncertainties from unknown time-varying delays are removed 
such that control law is delay-independent. The identical initial condition for ILC 
has been relaxed by introducing the boundary layer function. The hyperbolic tangent 
function is employed to avoid the possible singularity problem, which guarantee 
the continuity of control signal. Theoretical analysis by constructing Lyapunov-
like CEF has shown that the tracking errors converge to a small residual domain 
around the origin as iteration goes to infinity. At the same time, all the closed-
loop signals remain bounded. Simulation results have been provided to show the 
effectiveness the proposed control scheme and the advantage in tackling this kind 
systems compared with traditional adaptive control method. The proposed AILC 
strategy widens the applicable scope of AILC and may provide useful reference 
ideas for relevant research. 
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Chapter 3 
NN AILC of Nonlinear Time-Delay 
Systems 

3.1 Introduction 

In Chap. 2, we solve the AILC problem of a class of nonlinear parameterized time-
delay systems with dead-zone input that is described by (2.1). However, if the systems 
don’t satisfy the parameterized condition, the proposed method in Chap. 2 is not yet 
applicable. In this chapter, we will investigate the AILC problem for a class of non-
parameterized nonlinear systems with unknown dead-zone input and time-varying 
delays. 

When there exist non-parameterized uncertainties in systems, neural networks or 
fuzzy logic systems are useful tool in dealing with them. Chien et al. employed fuzzy 
logic systems or fuzzy neural networks approximation technique and designed AILC 
scheme for SISO nonlinear systems, distributed interconnected large systems, non-
affine nonlinear interconnected systems respectively, with difference-type adaptive 
law for estimating weights. In [1], Zhu utilized RBF NN to approximate the nonlinear 
uncertainty and designed differential-type adaptive law to estimate the NN weight. 
To deal with time-varying uncertainties, Prof. Sun put forward a kind of time-varying 
neural network [2, 3] whose optimal weights are time-varying. In this case, the NN 
weight can’t be estimated by differential-type adaptive law, and Sun designed a 
kind of weight updating form along iteration axis and proved the convergence of 
approximation error by using least square method. By using time-varying NN, they 
designed AILC schemes for several classes of systems [1, 4, 5] and difference-type 
adaptive updating law for time-varying optimal weight. 

In this chapter, we will study a class of nonlinear systems with unknown time-
varying delay, dead-zone input and time-varying nonlinearity. The influences of these 
factors make it very difficult to design effective control scheme and existing methods 
in both time domain and iterative domain are not applicable. Here, we will employ 
time-varying NN technique to design a novel AILC scheme aiming at solving this 
control problem.

© National Defense Industry Press 2022 
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3.2 Problem Formulation and Preliminaries 

3.2.1 Problem Formulation 

In this paper, we consider a class of nonlinear time-varying systems with unknown 
time-varying delays and dead-zone running over a finite time interval [0, T ] 
repeatedly, that is described by 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

ẋi,k(t) = xi+1,k (t), i = 1, . . . ,  n − 1 
ẋn,k(t) = f (Xk(t), t) + h 

( 
Xτ,k(t), t 

) + g(Xk(t), t)uk(t) + d(t) 
yk(t) = x1,k(t), uk(t) = D(vk(t)), t ∈ [0, T ] 
xi,k(t) = ϖi (t), t ∈ [−τmax, 0), i = 1, . . . ,  n 

(3.1) 

where, most notations are as same as that in previous chapter. What is different is that, 
τi (t) denote unknown time-varying delays of states, and xτi ,k

≜     xi,k(t − τi (t)), i = 
2, . . . ,  n, Xτ,k(t) = 

[ 
xτ1,k(t), . . . ,  xτn ,k(t) 

]T 
denotes a vector of time-delay states; 

f (·, ·) and g(·, ·) are unknown smooth continuous functions; h(·, ·) is an unknown 
bounded continuous function of time-delay states. Here we will still consider the 
influence of dead-zone characteristic and use the model (2.3), where vk(t) ∈ R 
and uk(t) represent the input and output of dead-zone respectively. Moreover, the 
Assumption 2.8 on dead-zone model still holds her. 

Remark 3.1 Comparing (2.1) with (3.1), we can see that, different from the controlled 
object in Chap. 2 in which the time delays of all states are same, the time delays of 
all states in (3.1) are independent of each other, which is consistent with practical 
situation. 

The control objective of this chapter remains the same as Chap. 2. Before the 
control system design, we need to make some assumptions. 

Assumption 3.1 The unknown state time-varying delays τi (t) satisfy 0 ≤ τi (t) ≤ 
τmax, τ̇i (t) ≤ κ <  1, i = 1, 2, . . . ,  n, where τmax and κ are unknown positive 
constants. 

Assumption 3.2 The unknown smooth continuous function h(·, ·) satisfy the 
following inequality 

| 
|h 
( 
Xτ,k, t 

)| 
| ≤ θ (t) 

n ∑

j=1 

ρ j 
( 
xτ j ,k(t) 

) 
(3.2) 

where θ (t) is unknown time-varying parameter, ρ j (·) j = 1, 2, . . . ,  n) are known 
positive smooth functions.
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Assumption 3.3 The sign of h(·, ·) is known, and there exist constants 0 < gmin ≤ 
gmax such that gmin ≤ |g(·, ·)| ≤  gmax ). Without loss of generality, we always assume 
g(·, ·) >  0. 

The assumptions on initial resetting errors, desired state trajectories and unknown 
disturbance remain the same as Chap. 2. 

Remark 3.2 Assumption 3.2 is mild on h(·, ·). Since h(·, ·) is continuous and smooth 
on [0, T ], then it is obvious that h(·, ·) is bounded on [0, T ]. Compared with the 
assumption of local Lipschitz condition with known upper bound functions in [6– 
10], this assumption is largely relaxed and can be easily satisfied. Actually, ρ j (·) 
are not necessarily known, because they are approximated by NNs as part of the 
uncertainties, which will be discussed in detail later. 

Remark 3.3 The control gain bounds gmin and gmax are only required for analytical 
purposes, their true values are not necessarily known since they are not used for 
controller design. 

3.2.2 RBF Neural Network 

For control engineering, two types of artificial neural networks are usually used 
as approximator to approximate unknown functions, which specifically are linearly 
parameterized neural networks (LPNNs) and multilayer neural networks (MNNs). 
As a kind of LPNNs, the radial basis function (RBF) neural network (NN) [11] 
is usually used as a tool to model unknown nonlinear functions owing to its nice 
approximation capabilities. The RBF NN has attracted much attention because of its 
simple form and avoidance of unnecessary and lengthy computation and widely used 
in pattern recognition and control problems [12, 13]. Research shows that RBF NN 
is able to approximate any continuous functions with arbitrarily high accuracy on a 
compact set [12]. The RBF NN is a two-layer network whose structure is presented 
in Fig. 3.1, which implies that the input space is mapped into a new space. The 
hidden layer of RBF performs a fixed nonlinear transformation with no adjustable 
parameters, and the output layer then combines the outputs linearly.

Generally, the RBF NN is described as 

Qnn(Z) = WT φ(Z) (3.3) 

where, Z ∈ ΩZ ⊂ Rq in the input vector, W = [w1, w2, . . . , wl]T ∈ Rl is the weight 
vector, the number of neurons is l > 1, the basis function vector is expressed as 
φ(Z) = [ϕ1(Z), . . . , ϕl (Z)]T , ϕi (Z) denotes the commonly used Gaussian function, 

i.e., ϕi (Z) = e−(Z−μi )
T 
(Z−μi )/σ 2 i , i = 1, . . . ,  l, μi = 

[ 
μi1, μi2, . . . , μiq  

]T 
is the 

center of the receptive field, σi is the width of Gaussian function. It has been proven 
that the RBF NN can approximate any continuous nonlinear function Q(Z) in the
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Fig. 3.1 The structure of RBF NN

form of Q(Z) = W∗T φ(Z) + ε(Z) on a compact set ΩZ ⊂ Rq with arbitrarily 
high accuracy provided l > 1 is sufficiently large, ∀Z ∈ ΩZ ⊂ Rq , where W∗ is the 
optimal constant weight vector, ε(Z) is the NN approximation error which is bounded 
on the compact set, i.e., |ε(Z)| ≤ ε∗, ∀Z ∈ ΩZ , with ε∗ > 0 as an unknown constant 
upper bound. The optimal weight vector W∗ represents the ideal value for NN weight 
and only used for analytical purposes, it is defined as the value W of that can minimize 
|ε(Z)| for all Z ∈ ΩZ ⊂ Rq , i.e., W∗ := arg minW∈Rl 

{ 
supZ∈ΩZ 

| 
|h(Z) − WT φ(Z) 

| 
| } . 

In control system design, when neural networks are used to approximate unknown 
functions, updating laws for estimating the weight vector need to be designed. 
In the early stage, the gradient-based back-propagation algorithms and its vari-
ants are the most popular algorithms for training neural networks. Along with the 
applications in traditional adaptive control framework, differential type learning 
laws were developed in the control scheme design and stability analysis by using 
Lyapunov method. Over the past few decades, a large number of adaptive neural 
control schemes have been presented [12, 14–20], However, difficulties arise when 
using (3.3) to approximate unknown time-varying function Q(Z, t) in the form of 
Q(Z) = W∗T φ(Z)+ ε(Z). In order to deal with this problem, a kind of time-varying 
neural networks is proposed to approximate the unknown time-varying functions in 
the form of 

Q(Z, t) = W∗T (t)φ(Z) + ε(Z, t) (3.4) 

where, the ideal weight vector W∗(t) is time-varying as well. In ILC design, we can 
design adaptive laws along iteration axis to estimate W∗(t).
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3.3 RBF NN AILC Design 

The definitions of esk(t) and sk(t) remain the same as Chap. 2. It follows from the 
definition of sk(t) that 

sk(t)sat 

( 
esk(t) 
η(t) 

) 
= 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

0, i f  

| 
| 
| 
| 
esk(t) 
η(t) 

| 
| 
| 
| ≤ 1 

sk(t)sgn(esk (t)), i f  

| 
| 
| 
| 
esk (t) 
η(t) 

| 
| 
| 
| > 1 

= sk(t)sgn(sk(t)) = |sk(t)| (3.5) 

According to Eq. (3.1) and the definition of tracking errors, we can get the 
dynamical equation of en,k(t) as follows 

ėn,k(t) = f (Xk(t), t) + h 
( 
Xτ,k(t), t 

) + g(Xk(t), t)uk + d(t) − y(n) 
d (t) 

= f (Xk(t), t) + h 
( 
Xτ,k(t), t 

) + g(Xk(t), t)(m(t)vk(t) − d1(vk(t))) 

+ d(t) − y(n) 
d (t) 

= f (Xk(t), t) + h 
( 
Xτ,k(t), t 

) + g(Xk(t), t)m(t)vk(t) 

+ d2(Xk(t), t) − y(n) 
d (t) (3.6) 

where, d2(Xk(t), t) = −g(Xk(t), t)d1(vk(t)) + d(t). From Assumption 3.3, 
Assumption 2.6 and Assumption 2.8, we know that d2(Xk, t) is bounded, i.e., there 
exists an un known continuous positive function d(Xk) satisfying |d2(Xk, t)| ≤ 
d(Xk). For the simplification of expression, denote gm(Xk(t), t) ≜     g(Xk(t), t)m(t). 
It is clear that g

m 
= mmingmin ≤ gm(xk, t)≤ mmaxgmax = gm . 

Choose the Lyapunov function as 

Vsk (t) = 
1 

2 
s2 k (t) (3.7) 

Taking the derivative of Vsk (t) along (3.6), it results in 

V̇sk (t) = sk(t)ṡk(t) 
= sk(t)( ̇esk(t) − η̇(t)sgn(sk(t))) 

= sk(t) 

⎡ 

⎣ 
n−1 ∑

j=1 

λ j e j+1,k (t) − η̇(t)sgn(sk(t)) + f (Xk(t), t) + h 
( 
Xτ,k(t), t 

) 

+gm(Xk(t), t)vk(t) + d2(Xk(t), t) − y(n) 
d (t) 

[ 

= sk(t) 

⎡ 

⎣ 
n−1 ∑

j=1 

λ j e j+1,k (t) + Kesk(t) − Kesk(t)
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+ K η(t)sgn(sk(t)) + f (Xk(t), t) 

+h 
( 
Xτ,k(t), t 

) + gm(Xk(t), t)vk(t) + d2(Xk(t), t) − y(n) 
d (t) 

[ 

= sk(t) 
[( 

f (Xk(t), t) + h 
( 
Xτ,k(t), t 

) + gm(Xk(t), t)vk(t) 
+μk(t) + d2(Xk(t), t)] − Ks2 k (t) (3.8) 

where, μk(t) =  ∑n−1 
j=1 λ j e j+1,k (t) + Kesk(t) − y(n) 

d (t) and using the relationship 
(2.13). 

Using Youngs inequality and noting Assumption 3, we have 

sk(t)h 
( 
Xτ,k(t), t 

) ≤ |sk(t)|θ (t) 
n ∑

j=1 

ρ j 
( 
xτ j ,k(t) 

) 

≤ 
n 

2 
s2 k (t)θ 2 (t) + 

1 

2 

n ∑

j=1 

ρ2 
j 

( 
xτ j ,k(t) 

) 
(3.9) 

sk(t)d2(Xk(t), t) ≤ 
s2 k (t)d 

2 
(Xk(t)) 

2a2 1 
+ 

a2 1 
2 

(3.10) 

where, a1 is a given arbitrary positive constant. 
Substituting (3.9) and (3.10) back into (3.8) yields 

V̇sk (t) ≤ sk(t) 
[ 
( f (Xk(t), t)+ gm(Xk(t), t)vk(t) + μk(t) + 

n 

2 
sk(t)θ 2 (t) 

+ 
sk(t)d 

2 
(Xk(t)) 

2a2 1 

] 

− Ks2 k (t) + 
1 

2 

n ∑

j=1 

ρ2 
j 

( 
xτ j ,k(t) 

) + 
a2 1 
2 

(3.11) 

To overcome the design difficulty arising from the unknown time-varying delay 
term ρ2 

j 

( 
xτ j ,k(t) 

) 
, consider the following Lyapunov–Krasovskii functional 

VUk (t) =
1 

2(1 − κ) 

n ∑

j=1 

t∫ 

t−τ j (t) 

ρ2 
j 

( 
x j,k(σ ) 

) 
dσ (3.12) 

Recalling Assumption 3.1, taking the time derivative of VUk (t) leads to 

V̇Uk (t) =
1 

2(1 − κ) 

n ∑

j=1 

ρ2 
j 

( 
x j,k 

) − 
1 

2 

n ∑

j=1 

1 − τ̇ j (t) 
(1 − κ) 

ρ2 
j 

( 
xτ j ,k 

) 

≤ 1 

2(1 − κ) 

n ∑

j=1 

ρ2 
j 

( 
x j,k 

) − 
1 

2 

n ∑

j=1 

ρ2 
j 

( 
xτ j ,k 

) 
(3.13)
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Define a Lyapunov functional as Vk(t) = Vsk (t) + VUk (t), combining (3.11) and 
(3.13), we can obtain the time derivative of Vk(t) as follows 

V̇k(t) ≤ sk(t) 
[ 
( f (Xk(t), t)+ gm(Xk(t), t)vk(t) + μk(t) + 

n 

2 
sk(t)θ 2 (t) 

+ 
sk(t)d 

2 
(Xk(t)) 

2a2 1 

] 

− Ks2 k (t) +
1 

2(1 − κ) 

n ∑

j=1 

ρ2 
j 

( 
x j,k 

) + 
a2 1 
2 

(3.14) 

For the convenience of expression, denote ξ (Xk(t)) ≜     a2 1 
2 + 1 

2(1−κ)

 ∑n 
j=1 ρ

2 
j 

( 
x j,k(t) 

) 
, 

then Eq. (3.14) can be simplified as 

V̇k(t) ≤ sk(t) 
[ 
( f (Xk(t), t)+ gm(Xk(t), t)vk(t) + μk(t) + 

n 

2 
sk(t)θ 2 (t) 

+ 
sk(t)d 

2 
(Xk(t)) 

2a2 1 
+ 

ξ (Xk(t)) 
sk(t) 

] 

− Ks2 k (t) (3.15) 

To avoid the possible singularity problem, we still employ the hyperbolic tangent 
function as Chap. 2, then transform Eq. (3.15) to  

V̇k (t) ≤ sk (t) 

[ 

f (Xk (t), t) + gm (Xk (t), t)vk (t) + μk (t) + 
n 

2 
sk (t)θ 2(t) + 

sk (t)d 
2 
(Xk (t)) 

2a2 1 

] 

− Ks2 k (t) + ξ (Xk (t)) − b tanh2 
( 
sk (t) 
η(t) 

) 
ξ (Xk (t)) + b tanh2 

( 
sk (t) 
η(t) 

) 
ξ (Xk (t)) 

= sk (t) 
[ 
f (Xk (t), t) + gm (Xk (t), t)vk (t) + μk (t) + 

n 

2 
sk (t)θ 2(t)+ 

sk (t)d 
2 
(Xk (t)) 

2a2 1 

+ 
b 

sk (t) 
tanh2 

( 
sk (t) 
η(t) 

) 
ξ (Xk (t)) 

] 
− Ks2 k (t) + 

( 
1 − b tanh2 

( 
sk (t) 
η(t) 

)) 
ξ (Xk (t)) (3.16) 

Upon multiplication of both sides of (3.16) by  1 
/ 
gm(Xk, t), it becomes 

V̇k (t) 
gm (Xk (t), t) 

≤ sk (t) 
[ 

1 

gm (Xk (t), t) 

( 

f (Xk (t), t) + 
n 

2 
sk (t)θ 2(t) + 

sk (t)d 
2 
(Xk (t)) 

2a2 1 

+ 
b 

sk (t) 
tanh2 

( 
sk (t) 
η(t) 

) 
ξ (Xk (t)) 

) 
+ vk (t) + 1 

gm (Xk (t), t) 
μk (t) 

] 

− K 

gm (Xk (t), t) 
s2 k (t) +

1 

gm (Xk (t), t) 

( 
1 − b tanh2 

( 
sk (t) 
η(t) 

)) 
ξ (Xk (t)) 

= sk (t) 
[ 
.(Xk , t) + Ψ(Xk , t)μk (t) + vk (t) 

] − K 

gm (Xk (t), t) 
s2 k (t) 

+ 1 

gm (Xk (t), t) 

( 
1 − b tanh2 

( 
sk (t) 
η(t) 

)) 
ξ (Xk (t)) (3.17)
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where, .(Xk, t) = 1 
gm (Xk (t),t) 

[ 
f (Xk(t), t) + n 2 sk(t)θ 2(t) + b 

sk (t) tanh
2 
) 
sk (t) 
η(t) 

) 
× 

ξ (Xk) + sk (t)d 
2 
(Xk ) 

2a2 1 

[ 
, Ψ(Xk, t) = 1 

gm (Xk (t),t) . In order to deal with the uncertain-

ties in the controller design, we apply the RBF NNs to approximate the unknown 
nonlinear functions .(Xk, t) 和 Ψ(Xk, t) 

.(Xk, t) = W∗T 
. (t) 𝝫. 

( 
X. 

k 

) + ε. 
( 
X. 

k , t 
) 

(3.18) 

Ψ(Xk, t) = W∗T 
Ψ (t) 𝝫Ψ 

( 
XΨ 

k 

) + εΨ 
( 
XΨ 

k , t 
) 

(3.19) 

where, X. 
k = 

[ 
XT 

k , XT 
d 

]T ∈ Ω. ⊂ R2n and XΨ 
k = Xk ∈ ΩΨ ⊂ Rn are the 

input vector with Ω. and ΩΨ as two compact sets; δ. 
( 
X. 

k , t 
) 
和 δΨ 

( 
XΨ 

k , t 
) 
are 

inherent NN approximation errors which can be decreased arbitrarily by increasing 
the NN node number, so we can assume that 

| 
|ε. 

( 
X. 

k , t 
)| 
| ≤ ε., 

| 
|ε. 

( 
X. 

k , t 
)| 
| ≤ εΨ , 

∀t ∈ [0, T ], with ε., εΨ > 0 being unknown positive constants. Define β(t) as 
β(t) = max 

{| 
|δ. 

( 
X. 

k , t 
)| 
|, 
| 
|δ. 

( 
X. 

k , t 
)| 
| } .  𝝫. 

( 
X. 

k 

) 
and  𝝫Ψ 

( 
XΨ 

k 

) 
are Gaussian basis 

function vectors which is given by

 𝝫. 
( 
X. 

k 

) = 
[ 
ϕ1 
( 
X. 

k 

) 
, ϕ2 

( 
X. 

k 

) 
, . . . , ϕl. 

( 
X. 

k 

)]T : R2n |→ Rl. (3.20)

 𝝫Ψ 
( 
XΨ 

k 

) = 
[ 
ϕ1 
( 
XΨ 

k 

) 
, ϕ2 

( 
XΨ 

k 

) 
, . . . , ϕlΨ 

( 
XΨ 

k 

)]T : Rn |→ RlΨ (3.21) 

where, ϕi (Z) = exp 
(−||Z − ci||2 

/ 
σ 2 i 

) 
, ci ∈ ΩZ and σi ∈ R are the center and 

width of the i-th neuron respectively, l. and lΨ are the number of neurons of two 
NNs. W∗ 

.(t) ∈ Rl. and W∗ 
Ψ (t) ∈ RlΨ denote the optimal time-varying NN weights 

which are specifically defined as 

W∗ 
.(t) = arg min 

W.(t)∈Rl. 

⎧ 

sup 
XΨ 

k ∈Rn 

| 
|.(Xk, t) − WT 

.(t) 𝝫. 
( 
X. 

k 

)| 
| 
⎫ 

(3.22) 

W∗ 
Ψ (t) = arg min 

WΨ (t)∈RlΨ 

⎧ 

sup 
XΨ 

k ∈Rn 

| 
|Ψ(Xk, t) − WT 

Ψ (t) 𝝫Ψ 
( 
XΨ 

k 

)| 
| 
⎫ 

(3.23) 

For NN ideal weights, the following assumption holds. 

Assumption 3.4 The optimal weight vector W∗ 
.(t) and W∗ 

Ψ (t) are bounded, i.e., 

max 
t∈[0,T ] 

|| 
||W∗ 

.(t) 
|| 
|| ≤ εW ∗. 

, max 
t∈[0,T ] 

|| 
||W∗ 

Ψ (t) 
|| 
|| ≤ εW ∗Ψ 

(3.24) 

where, εW ∗. 
and εW ∗Ψ 

are unknown positive constants. 
Based on above analysis, design an adaptive iterative learning controller as
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vk(t) = −  ̂W 
T 
.,k(t) 𝝫. 

( 
X. 

k 

) − Ŵ 
T 
Ψ,k(t) 𝝫Ψ 

( 
XΨ 

k 

) 
μk(t) 

− sat 
( 

esk 
η(t) 

) 
β̂k(t)(1 + |μk(t)|) (3.25) 

where, Ŵ 
T 
.,k(t), Ŵ 

T 
Ψ,k(t) and β̂k(t) are the estimates of W∗ 

.(t), W∗ 
Ψ (t) and β, 

respectively. Design the adaptive learning law for above unknown parameters as 
follows 

⎧ 
Ŵ.,k(t) = Ŵ.,k−1(t) + q1sk(t) 𝝫. 

( 
X. 

k 

) 

Ŵ.,0(t) = 0, t ∈ [0, T ] (3.26) 

⎧ 
ŴΨ,k(t) = ŴΨ,k−1(t) + q2sk(t)μk(t) 𝝫Ψ 

( 
XΨ 

k 

) 

ŴΨ,0(t) = 0, t ∈ [0, T ] (3.27) 

⎧ 
(1 − γ ) ˙̂βk(t) = −γ β̂k(t) + γ β̂k−1(t) + q3|sk(t)|(1 + |μk(t)|) 
β̂k(0) = β̂k−1(T ), β̂0(t) = 0, t ∈ [0, T ] 

(3.28) 

where, q1, q2, q3 > 0 and 0 < γ  <  1 are design parameters. 
In order to show how controller (3.25) can guarantee stability and convergence of 

tracking errors later, we define the estimation error as W̃.,k(t) = Ŵ.,k(t) − W∗ 
.(t), 

W̃Ψ,k(t) = ŴΨ,k(t) − W∗ 
Ψ (t), β̃k(t) = β̂k(t) − β. Then, substituting controller 

(3.25) back into (3.17) yields 

V̇k(t) 
gm(Xk(t), t) 
≤ sk(t) 

[ 
W∗T 

. (t) 𝝫. 
( 
X. 

k 

) + δ. 
( 
X. 

k , t 
) + 

( 
W∗T 

Ψ (t) 𝝫Ψ 
( 
XΨ 

k 

) + δ. 
( 
XΨ 

k , t 
)) 

μk(t) 

− Ŵ 
T 
.,k(t) 𝝫. 

( 
X. 

k 

) − Ŵ 
T 
Ψ,k(t) 𝝫Ψ 

( 
XΨ 

k 

) 
μk(t) − sat 

( 
esk 
η(t) 

) 
β̂k(1 + |μk(t)|) 

] 

− K 

gm(Xk(t), t) 
s2 k (t) +

1 

gm(Xk(t), t) 

( 
1 − b tanh2 

( 
sk(t) 
η(t) 

)) 
ξ (Xk(t)) 

≤ −sk(t) W̃ 
T 
.,k(t) 𝝫. 

( 
X. 

k 

) − sk(t) W̃ 
T 
Ψ,k(t) 𝝫Ψ 

( 
XΨ 

k 

) 
μk(t) − |sk(t)| β̃k(1 + |μk(t)|) 

− K 

gm(Xk(t), t) 
s2 k (t) +

1 

gm(Xk(t), t) 

( 
1 − b tanh2 

( 
sk(t) 
η(t) 

)) 
ξ (Xk(t)) (3.29) 

Equation (3.29) can be further written as 

sk(t) W̃ 
T 
.,k(t) 𝝫. 

( 
X. 

k 

) + sk(t) W̃ 
T 
Ψ,k(t) 𝝫Ψ 

( 
XΨ 

k 

) 
μk(t) + |sk(t)| β̃k(1 + |μk(t)|) ≤ 

− V̇k(t) 
gm(Xk(t), t) 

− K 

gm(Xk(t), t) 
s2 k (t) 

+ 1 

gm(Xk(t), t) 

( 
1 − b tanh2 

( 
sk(t) 
η(t) 

)) 
ξ (Xk(t)) (3.30)
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ˆ
kW 

Fig. 3.2 The block diagram of the proposed NN AILC system 

The block diagram of proposed NN AILC system is shown in Fig. 3.2. 

3.4 Stability Analysis 

In this section, we will analyze the stability of the closed loop system and the 
convergence of tracking errors. 

The stability of the proposed NN AILC scheme is summarized as follows. 

Theorem 3.1 Considering the nonlinear time-delay systems described by (3.1) 
and running on the finite interval [0, T ] repeatedly, if Assumptions 3.1–3.4 and 
Assumptions 2.4–2.8 hold, design NN adaptive iterative learning controller (3.25) 
with adaptive learning laws (3.26)–(3.28), we can obtain the same conclusions 
as Theorem 2.1, i.e., ➀ all the signals of the closed-loop system are bounded; ➁ 
lim 
k→∞ 

∫ T 
0 (esk(σ ))2 dσ ≤ εesk ,εesk = 1 

2K (1 + m)2 ε2; ➂ the system transient perfor-

mance: the output tracking error satisfies lim 
k→∞ 

| 
|e1,k (t) 

| 
| = k0

 ∑n−1 
i=1

/

ε2 i e
−λ0t 

+(1 + m)εk0 
1 

λ0−K 

( 
e−Kt  − e−λ0t 

) 
. 

Proof According to Lemma 2.2, consider the following two cases:
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Case 1. sk(t) ∈ Ωsk 
According to the analysis in Sect. 2.4, in the case of sk(t) ∈ Ωsk , |esk(t)| ≤ 

(1 + m)η(t) holds. Then followed by the boundedness of the desired reference 
state vector Xd (t), xi,k(t) is bounded. According to adaptive iterative learning laws 
Eqs. (3.26)–(3.28), we can conclude that Ŵ.,k(t), ŴΨ,k(t) and β̂k(t) are bounded 
provided sk(t) ∈ Ωsk . On the basis of above analysis, it is easy to obtain the bound-
edness of vk(t). In summary, all the closed-loop signals are bounded and the tracking 
error satisfies |esk (t)| ≤ (1 + m)η(t). 

Case 2. sk(t) /∈ Ωsk 
According to Lemma 2.2, for  sk(t) /∈ Ωsk , the last term in the right side of 

Eq. (3.30) is less than zero and can be removed, then Eq. (3.30) is simplified as 

sk(t) W̃ 
T 
.,k(t) 𝝫. 

( 
X. 

k 

) + sk(t) W̃ 
T 
Ψ,k(t) 𝝫Ψ 

( 
XΨ 

k 

) 
μk(t) + |sk(t)| β̃k(1 + |μk(t)|) 

≤ − V̇k(t) 
gm(Xk(t), t) 

− K 

gm(Xk(t), t) 
s2 k (t) (3.31) 

Choose the Lyapunov-like CEF as follows 

Ek(t) = 
1 

2q1 

t∫ 

0 

W̃ 
T 
.,k(σ ) W̃.,k(σ )dσ + 

1 

2q2 

t∫ 

0 

W̃ 
T 
Ψ,k(σ ) W̃Ψ,k(σ )dσ 

+ 
γ 
2q3 

t∫ 

0 

β̃2 
k (σ )dσ + 

(1 − γ )  
2q3 

β̃2 
k (3.32) 

Remark 3.4 The CEF should contains the information concerning tracking error and 
parameter estimation errors. However, from the analysis in Sect. 2.4 we can see that 
even if the CEF is chosen as of index function of parameter estimation errors, we can 
also obtain the convergence of tracking error. Therefore, here we choose the CEF 
as the index function of three parameter estimation errors. Moreover, the last two 
terms in Eq. (3.32) are chosen in accordance with the adaptive learning law (3.28) 
for β̂k(t). 

The following proof contains four parts. And the main idea is presented is Fig. 3.3.
(1) The difference of Ek(t). 
From Eq. (3.32), we can get the difference of Ek(t)

Δ Ek(t) = 
1 

2q1 

t∫ 

0 

) 
W̃ 

T 
.,k(σ ) W̃.,k(σ ) − W̃ 

T 
.,k−1(σ ) W̃.,k−1(σ ) 

) 
dσ 

+ 
1 

2q2 

t∫ 

0 

) 
W̃ 

T 
Ψ,k(σ ) W̃Ψ,k(σ ) − W̃ 

T 
Ψ,k−1(σ ) W̃Ψ,k−1(σ ) 

) 
dσ
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Fig. 3.3 The main idea of CEF-based proof for Theorem 3.1

+ 
γ 
2q3 

t∫ 

0 

) 
β̃2 
k (σ ) − β̃2 

k−1(σ ) 
) 
dσ + 

(1 − γ )  
2q3 

) 
β̃2 
k (t) − β̃2 

k−1(t) 
) 

(3.33)

Considering adaptive iterative learning laws (3.26) and (3.27), we can obtain the 
following equalities 

1 

2q1 

t∫ 

0 

) 
W̃ 

T 
.,k(σ ) W̃.,k(σ ) − W̃ 

T 
.,k−1(σ ) W̃.,k−1(σ ) 

) 
dσ 

= 
t∫ 

0 

sk(σ ) W̃ 
T 
.,k(σ ) 𝝫. 

( 
X. 

k 

) 
dσ − 

q1 
2 

t∫ 

0 

s2 k (σ ) 
|| 
|| 𝝫. 

( 
X. 

k 

)|| 
||2 dσ 

(3.34) 

1 

2q2 

t∫ 

0 

) 
W̃ 

T 
Ψ,k(σ ) W̃Ψ,k(σ ) − W̃ 

T 
Ψ,k−1(σ ) W̃Ψ,k−1(σ ) 

) 
dσ 

= 
t∫ 

0 

sk(σ ) W̃ 
T 
Ψ,k(σ ) 𝝫Ψ 

( 
XΨ 

k 

) 
μk(σ )dσ − 

q2 
2 

t∫ 

0 

s2 k (σ )μ2 
k(σ ) 

|| 
|| 𝝫Ψ 

( 
XΨ 

k 

)|| 
||2 dσ 

(3.35) 

Recalling adaptive learning laws (3.28), the last two terms in Eq. (3.33) can be 
transformed to 

γ 
2q3 

t∫ 

0 

) 
β̃2 
k (σ ) − β̃2 

k−1(σ ) 
) 
dσ + 

(1 − γ )  
2q3 

) 
β̃2 
k (t) − β̃2 

k−1(t) 
) 

= 
γ 
2q3 

t∫ 

0 

) 
β̃2 
k (σ ) − β̃2 

k−1(σ ) 
) 
dσ + 

(1 − γ )  
q3 

t∫ 

0 

β̃k(σ ) ˙̃βk(σ )dσ
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+ 
(1 − γ )  
2q3 

[ 
β̃2 
k (0) − β̃2 

k−1(t) 
[ 

= 
t∫ 

0 

|sk(σ )| β̃k(σ )(1 + |μk(σ )|)dσ − 
γ 
q3 

t∫ 

0 

β̃k(σ ) 
) 
β̂k(σ ) − β̂k−1(σ ) 

) 
dσ 

+ 
γ 
2q3 

t∫ 

0 

) 
β̃2 
k (σ ) − β̃2 

k−1(σ ) 
) 
dσ + 

(1 − γ )  
2q3 

[ 
β̃2 
k (0) − β̃2 

k−1(t) 
[ 

= 
t∫ 

0 

|sk(σ )| β̃k(σ )(1 + |μk(σ )|)dσ − 
γ 
q3 

t∫ 

0 

β̃k(σ ) 
) 
β̃k(σ ) − β̃k−1(σ ) 

) 
dσ 

+ 
γ 
2q3 

t∫ 

0 

) 
β̃2 
k (σ ) − β̃2 

k−1(σ ) 
) 
dσ + 

(1 − γ )  
2q3 

[ 
β̃2 
k (0) − β̃2 

k−1(t) 
[ 

= 
t∫ 

0 

|sk(σ )| β̃k(σ )(1 + |μk(σ )|)dσ + 
(1 − γ )  
2q3 

[ 
β̃2 
k (0) − β̃2 

k−1(t) 
[ 

− 
γ 
2q3 

t∫ 

0 

) 
β̃k(σ ) − β̃k−1(σ ) 

)2 
dσ (3.36) 

Substituting (3.34)–(3.36) back into (3.33), it follows that

Δ Ek(t) ≤ −  
t∫ 

0 

V̇k(σ ) 
gm(Xk(σ ), σ  ) 

dσ − 
t∫ 

0 

K 

gm(Xk(σ ), σ  ) 
s2 k (σ )dσ 

+ 
(1 − γ )  
2q3 

[ 
β̃2 
k (0) − β̃2 

k−1(t) 
[ 

≤ −  
1 

gm 
Vk(t) − 

t∫ 

0 

K 

gm(Xk(σ ), σ  ) 
s2 k (σ )dσ + 

(1 − γ )  
2q3 

[ 
β̃2 
k (0) − β̃2 

k−1(t) 
[ 

(3.37) 

Let t = T in Eq. (3.37), from β̂k(0) = β̂k−1(T ) and β̂1(0) = 0, it leads to

Δ Ek(T ) < − 
1 

gm 
Vk(T ) − 

T∫ 

0 

K 

gm(Xk(σ ), σ  ) 
s2 k (σ )dσ ≤ 0 (3.38) 

The inequality (3.38) shows that Ek(T ) is decreasing along iteration axis. Hence, 
as long as E1(T ) is bounded, the bounded of Ek(T ) can be ensured.
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(2) The boundedness of E1(T ). 
From the definition of Ek(t) we know 

E1(t) = 
1 

2q1 

t∫ 

0 

W̃ 
T 
.,1(σ ) W̃.,1(σ )dσ + 

1 

2q2 

t∫ 

0 

W̃ 
T 
Ψ,1(σ ) W̃Ψ,1(σ )dσ 

+ 
γ 
2q3 

t∫ 

0 

β̃2 
1 (σ )dσ + 

(1 − γ )  
2q3 

β̃2 
1 (3.39) 

Then the time derivative of E1(t) is 

Ė1(t) = 
1 

2q1 
W̃ 

T 
.,1(t) W̃.,1(t) + 

1 

2q2 
W̃ 

T 
Ψ,1(t) W̃Ψ,1(t) + 

γ 
2q3 

β̃2 
1 (t) + 

(1 − γ )  
q3 

β̃1 
˙̃
β1 

(3.40) 

Recalling parameter adaptive learning laws (3.26)–(3.28), we have Ŵ.,1(t) = 
q1s1(t) 𝝫. 

( 
X. 

1 

) 
, ŴΨ,1(t) = q2s1(t)μ1(t) 𝝫Ψ 

( 
XΨ 

1 

) 
, (1 − γ ) ˙̂β1 = −γ β̂1 + 

q3|s1(t)|(1 + |μ1(t)|), then we can obtain 
1 

2q1 
W̃ 

T 
.,1(t) W̃.,1(t) 

= 
1 

2q1 

) 
W̃ 

T 
.,1(t) W̃.,1(t) − 2 W̃ 

T 
.,1(t) Ŵ.,1(t) 

) 
+ 

1 

q1 
W̃ 

T 
.,1(t) Ŵ.,1(t) 

= 
1 

2q1 

() 
Ŵ.,1(t) − W ∗ 

.(t) 
)T) 

Ŵ.,1(t) − W ∗ 
.(t) 

) 

−2 
) 
Ŵ.,1(t) − W ∗ 

.(t) 
)T 

Ŵ.,1(t) 
) 

+ s1(t) W̃ 
T 
.,1(t) 𝝫. 

( 
X. 

1 

) 

= 
1 

2q1 

) 
− Ŵ 

T 

.,1(t) Ŵ.,1(t) + W ∗T . (t)W ∗ 
.(t) 

) 
+ s1(t) W̃ 

T 
.,1(t) 𝝫. 

( 
X. 

1 

) 
(3.41) 

1 

2q2 
W̃ 

T 
Ψ,1(t) W̃Ψ,1(t) = 

1 

2q2 

) 
− Ŵ 

T 
Ψ,1(t) ŴΨ,1(t) + W∗T 

Ψ (t)W
∗ 
Ψ (t) 

) 

+s1(t) W̃ 
T 
Ψ,1(t) 𝝫Ψ 

( 
XΨ 

1 

) (3.42) 

γ 
2q3 

β̃2 
1 (t) + 

(1 − γ )  
q3 

β̃1(t) ˙̃β1(t) 

= 
γ 
2q3 

β̃2 
1 (t) − 

γ 
q3 

β̃1(t) β̂1(t) + |s1(t)| β̃1(t)(1 + |μ1(t)|) 

= 
γ 
2q3 

) 
β̂2 
1 (t) − 2 β̃1(t) β̂1(t) + β̃2 

1 (t) 
) 

− 
γ 
2q3 

β̂2 
1 (t) + |s1(t)| β̃1(t)(1 + |μ1(t)|)
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≤ 
γ 
2q3 

) 
β̂1(t) − β̃1(t) 

)2 + |s1(t)| β̃1(t)(1 + |μ1(t)|) 

= 
γ 
2q3 

β2 + |s1(t)| β̃1(t)(1 + |μ1(t)|) (3.43) 

Substituting (3.41)–(3.43) back into (3.40), the Ė1(t) changes to 

Ė1(t) ≤ s1(t) W̃ 
T 
.,1(t) 𝝫. 

( 
X. 

1 

) + s1(t) W̃ 
T 
Ψ,1(t) 𝝫Ψ 

( 
XΨ 

1 

) + |s1(t)| β̃1(1 + |μ1(t)|) 
+ 

1 

2q1 
W *T 

. (t)W
∗ 
.(t) + 

1 

2q2 
W *T 

Ψ (t)W
∗ 
Ψ (t) + 

γ 
2q3 

β2 (t) 

≤ −  
V̇k(t) 

gm(Xk, t) 
− k 

gm(Xk, t) 
s2 k (t) + 

1 

2q1 
W *T 

. (t)W
∗ 
.(t) 

+ 
1 

2q2 
W *T 

Ψ (t)W
∗ 
Ψ (t) + 

γ 
2q3 

β2 (t) (3.44) 

For convenience of expression, denote 

cmax = max 
t∈[0,T ] 

{ 
1 
2q1 

W *T 
. (t)W

∗ 
.(t) + 1 

2q2 
W *T 

Ψ (t)W
∗ 
Ψ (t) + γ 

2q3 
β2 
} 
. Integrating the 

inequality (3.44) over [0, t] results in 

E1(t) − E1(0) ≤ −  
1 

gm 
V1(t) − 

t∫ 

0 

K 

gm(X1(σ ), σ  ) 
s2 1 (σ )dσ + t · cmax (3.45) 

According to β̂1(0) = 0, we have  

E1(0) = 
(1 − γ )  
2q3 

β̃2 
1 (0) = 

(1 − γ )  
2q3 

β2 (0) (3.46) 

Combining (3.45) and (3.46) yields 

E1(t) ≤ t · cmax + 
(1 − γ )  
2q3 

β2 (0) < ∞ (3.47) 

In result, E1(t) is bounded on [0, T ]. When t = T , Eq.  (3.47) becomes 

E1(T ) ≤ T · cmax + 
(1 − γ )  
2q3 

β2 (0) < ∞ (3.48) 

Based on the above analysis, we can arrive at the boundedness of Ek(T ). 
(3) The boundedness of Ek(t). 
Next we will prove the boundedness of Ek(t) by induction method. Firstly, 

separate Ek(t) into two parts as follows
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E1 
k (t) = 

1 

2q1 

t∫ 

0 

W̃ 
T 
.,k(σ ) W̃.,k(σ )dσ + 

1 

2q2 

t∫ 

0 

W̃ 
T 
Ψ,k(σ ) W̃Ψ,k(σ )dσ 

+ 
γ 
2q3 

t∫ 

0 

β̃2 
k (σ )dσ (3.49) 

E2 
k (t) = 

(1 − γ )  
2q3 

β̃2 
k (t) (3.50) 

According to preceding analysis, the boundedness of E1 
k (T ) and E2 

k (T ) is guar-
anteed for ∀k ∈ N. Consequently, ∀k ∈ N, there exist finite constants M1 and M2 

satisfying 

E1 
k (t) ≤ E1 

k (T ) ≤ M1 < ∞ (3.51) 

E2 
k (T ) ≤ M2 (3.52) 

Then we have 

Ek(t) = E1 
k (t) + E2 

k (t) ≤ E2 
k (t) + M1 (3.53) 

On the other hand, from (3.28) we know E2 
k+1(0) = E2 

k (T ), then it results in

Δ Ek+1(t) < 
(1 − γ )  
2q3 

[ 
β̃2 
k+1(0) − β̃2 

k (t) 
[ 

≤ M2 − E2 
k (t) (3.54) 

Adding (3.53) and (3.54) leads to 

Ek+1(t) = Ek(t) + Δ Ek+1(t) ≤ M1 + M2 (3.55) 

As we have proven that E1(t) is bounded, therefore, from induction method we 
can known Ek(t) is bounded as well. Furthermore, From the form of Ek(t) we can 
obtain the boundedness of Ŵ.,k(t), ŴΨ,k(t) and β̂k(t). 

(4) The convergence of tracking error 
It follows from (3.38) that 

Ek(T ) = E1(T ) + 
k ∑

l=2

Δ El (T ) 

< E1(T ) − 
1 

gm 

k ∑

l=2 

Vl (T ) − 
k ∑

l=2 

T∫ 

0 

K 

gm(Xk(σ ), σ  ) 
s2 l (σ )dσ
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≤ E1(T ) − 
k ∑

l=2 

T∫ 

0 

K 

gm(Xk(σ ), σ  ) 
s2 l (σ )dσ (3.56) 

Rewriting the previous inequality as the following from 

K 

gm 

k ∑

l=2 

T∫ 

0 

s2 l (σ )dσ ≤ 
k ∑

l=2 

T∫ 

0 

K 

gm(Xk(σ ), σ  ) 
s2 l (σ )dσ ≤ E1(T ) − Ek(T ) ≤ E1(T ) 

(3.57) 

Taking the limitation of (3.57), it yields 

lim 
k→∞ 

k ∑

l=2 

T∫ 

0 

s2 l (σ )dσ ≤ 
g
m 

k 
(E1(T ) − Ek(T )) ≤ 

g
m 

k 
E1(T ) (3.58) 

Since E1(T ) is bounded, according to the convergence theorem of the sum of 

series, it results in lim 
k→∞ 

T∫ 

0 
s2 k (σ )dσ = 0, which implies that lim 

k→∞ 
sk(t) = s∞(t) = 0, 

∀t ∈ [0, T ]. It follows form the definition of sk (t) that when |esk (t)| ≤ η(t), sk(t) = 0 

holds. Then lim 
k→∞ 

T∫ 

0 
s2 k (σ )dσ = 0 is equivalent to lim 

k→∞ 
|esk(t)| ≤ η(t). Furthermore, 

lim 
k→∞ 

T∫ 

0 
(esk(σ ))2 dσ ≤ 

T∫ 

0 
(η(σ ))2 dσ . 

In previous part, we have got the boundedness of Ŵ.,k(t), ŴΨ,k(t) and β̂k(t) 
from the boundedness of Ek(t). Here we can obtain the boundedness of sk(t) from∫ t 
0 s

2 
k (σ )dσ ≤ 

∫ T 
0 s

2 
k (σ )dσ , then we can further get the boundedness of xi,k(t) on the 

basis of the boundedness of Xd (t). Similar to case 1, the boundedness of vk(t) can 
be established. 

Summarizing the conclusions in two cases, we can know that the 
proposed control algorithm is able to guarantee that all closed-loop signals 
are bounded and lim 

k→∞ 
|esk(t)| ≤ (1 + m)η(t). Therefore, we can further 

conclude that lim 
k→∞ 

∫ T 
0 (esk(σ ))2 dσ ≤ εe, εe = ∫ T 

0 ((1 + m)η(σ ))2 dσ = 
1 
2K (1 + m)2 ε2 

( 
1 − e−2KT  

) ≤ 1 
2K (1 + m)2 ε2 = εesk . Moreover, es∞(t) satisfies 

lim 
k→∞ 

|esk(t)| = es∞(t)= (1 + m)εe−Kt , ∀t ∈ [0, T ]. 
The proof of the transient performance for tracking error is same as Sect. 2.4. 
This concludes the proof. ◻  
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3.5 Simulation Analysis 

In this section, a simulation study is presented to verify the effectiveness of the 
proposed AILC scheme. Consider the following second-order nonlinear system with 
unknown time-varying delays and unknown dead-zone running on finite time interval 
repetitively 

⎧ 
⎨ 

⎩ 

ẋ1,k(t) = x2,k (t) 
ẋ2,k(t) = f (Xk(t), t) + h 

( 
Xτ,k(t), t 

) + g(Xk(t), t)uk(t) + d(t) 
yk(t) = x1,k(t), uk(t) = D(vk(t)) 

(3.59) 

where, f (Xk(t), t) = −x1,k (t)x2,k(t) sin 
( 
x1,k(t)x2,k(t) 

) 
, 

g(Xk(t), t) = 0.9+ 0.1|cos(2t)|2 sin2 ( x1,k x2,k 
) 
,h 
( 
Xτ,k(t), t 

) = 
0.2 sin(t)e−|cos(2t)|[ x1,k (t − τ1) sin 

( 
x1,k(t − τ1) 

) +x2,k (t − τ2(t)) sin 
( 
x2,k(t − τ2(t)) 

)] 
. 

The unknown time-varying delays are given by τ1(t) = 0.5(1 + sin t), 
τ2(t) = 1 − 0.5 cos(t), then τ1max  = 1, τ̇1 ≤ 0.5, τ2max  = 1.5, τ̇2 ≤ 0.5. 
The unknown external disturbance is d(t) = 0.5∗ rand  ∗ sin t , where rand  presents 
Gaussian noise signal that takes value on [0, 1] randomly. 

3.5.1 Verification of the RBF NN AILC Scheme 

To demonstrate the validity of above conclusion, we design three mathematical 
simulation experiments as follows. 

Experiment 1 Choose the desired reference trajectory vector as Xd (t) = 
[sin t, cos t]T and the design parameters as ε1 = ε2 = 1, λ = 2, K = 3, γ = 0.5, 
q1 = q2 = 1, q3 = 0.01, ε = λε1 + ε2 = 3. The parameters for dead-zone is given 
by m = 1 + 0.2 sin  t , br = 0.25, bl = −0.25. The NN parameters are chosen as 
l. = 30, μ.j = 1 

l. 

( 
2 j − l. ) [2, 3, 1, 1.5], σ.j = 2, j = 1, 2, . . . ,  l.; lΨ = 20, 

μΨ j = 1 
l. 

( 
2 j − l. ) [2, 3], σΨ j = 2, j = 1, 2, . . . ,  lΨ . The initial condition for 

x1,k(0) and x2,k (0) are generated randomly on intervals [−0.5, 0.5] and [0.5, 1.5], 
respectively. The system runs on the finite time interval [0, 4π ] for five times. Part 
simulation results are presented in Figs. 3.4, 3.5, 3.6, 3.7 and 3.8.

Figures 3.4 and 3.5 show the tracking curves of the 1st iteration (k = 1) and the 5th 
iteration (k = 5), respectively, which shows that the tracking performance has been 
improved through four times of learning. In Fig. 3.5, we can see that the it has achieved 
complete tracking except for the initial stage that is influenced by resetting error. This 
improvement performance is clearly presented by Fig. 3.8. Figures 3.6 and 3.7 show 
the control curves of the 1st iteration and 5th iteration respectively, which shows the 
boundedness of control signal and the influence of dead-zone characteristic.
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Fig. 3.4 System output yk versus yd (k = 1)
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Fig. 3.5 System output yk versus yd (k = 5)
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Fig. 3.6 The input vk and output uk of dead-zone characteristic (k = 1) 
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Fig. 3.7 The input vk and output uk of dead-zone characteristic (k = 5)
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Fig. 3.8 
∫ T 
0 s

2 
k (t)dt  versus the number of iterations (Experiment 1) 

Experiment 2 To show the control performance for more complicated desired 
reference trajectory, we choose the desired reference signal as Xd (t) = 
[sin t + sin(2t), cos t + 2 cos(2t)]T . The design parameters keep the same as Exper-
iment 1. The initial conditions for states x1,k(0) and x2,k(0) are generated randomly 
on the intervals [−0.5, 0.5] and [2.5, 3.5] respectively. The system runs on finite 
time interval [0, 4π ] for fifteen iterations. The simulation results are presented in 
Figs. 3.9, 3.10, 3.11, 3.12 and 3.13.

As shown in simulation Figures, we can see that the proposed controller can also 
achieve perfect tracking performance for more complicated desired trajectory and 
accomplish the control objective. 

Experiment 3 To study the control performance of different design parameters, the 
following case is investigated. The desired trajectory is the same as that in Case 2. 
The parameters are chosen λ = 3, K = 4, γ = 0.5, q1 = q2 = 2, q3 = 0.02, 
ε = λε1 + ε2 = 4. Other parameters remain unchanged. Here we only give the 
results of 

∫ T 
0 s

2 
k (t)dt  versus the number of iterations which is shown in Fig. 3.14.

Comparing Fig. 3.13 with Fig. 3.14, it shows that fast adaption may improve the 
convergence rate in terms of iteration times. But in practice, the parameters can be 
chosen too large, as it may generate over-large control signal and eventually results 
in large overshot and oscillations.
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Fig. 3.9 System output yk versus yd (k = 1) 
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Fig. 3.10 System output yk versus yd (k = 15)
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Fig. 3.11 The input vk and output uk of dead-zone characteristic (k = 1) 
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Fig. 3.12 The input vk and output uk of dead-zone characteristic (k = 15)
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k (t)dt  versus the number of iterations (Experiment 3)

3.5.2 Comparison Simulation: Adaptive NN Control 

Experiment 4 Finally, the contribution of the proposed NN AILC is shown by 
comparing the proposed controller with traditional adaptive NN controller. We
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employ the adaptive NN controller in [12] to control the systems (3.59). The controller 
is as same as (3.25). But the adaptive laws for unknown parameters are changed to 
the following forms according to adaptive NN control method: 

˙̂W.,k = −ΓW. 

[
 𝝫. 

( 
X. 

k 

) 
sk + σ1 Ŵ.,k 

[ 
, Ŵ.,k(0) = 0 

˙̂WΨ,k(t) = −ΓWΨ 

[ 
skμk 𝝫

T 
Ψ 
( 
XΨ 
k 

) + σ2 ŴΨ,k 

[ 
, ŴΨ,k(0) = 0 

˙̂
βk = −γ β̂k + q3|sk(t)|(1 + |μk(t)|), β̂k(0) = 0 

The design parameters are chosen as ΓW. = diag{2}, ΓWΨ = diag{2}, σ1 = 
σ2 = 0.5, γ = 0.5, q3= 0.02. The desired reference trajectory is Xd (t) = 
[sin t + sin(2t), cos t + 2 cos(2t)]T , and other design parameter keep the same as 
Experiment 2. Since traditional adaptive NN controller runs in time domain, the 
subscript “k” in controller and adaptive updating laws does not have any practical 
meaning. Fig. 3.15 shows the tracking curve for yd and Fig. 3.16 shows the input and 
output curves of dead-zone characteristic. From the simulation results shown below, 
it is obvious that the adaptive NN controller performs much worse than the proposed 
approach and the tracking error can’t be eliminated through differential-type adaptive 
laws for unknown parameters. 

As observed in the simulation results above, the proposed NN AILC can achieve 
a good tracking performance for non-parameterized nonlinear time-delay systems 
with dead-zone input and realize the control objective, which is in accord with the
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Fig. 3.15 System output yk versus yd
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Fig. 3.16 The input vk and output uk of dead-zone

conclusions in Theorem 3.1 and adequately demonstrates the validity of the AILC 
approach in this chapter. 

3.6 Summary and Comments 

On the basis of Chap. 2, in this chapter we investigated the AILC problem for a 
class of nonlinear time-varying systems with unknown time-varying delays and 
unknown input dead-zone nonlinearity and proposed a RBF NN-based AILC scheme 
by comprehensively using L-K functional method, time-varying NN approxima-
tion technique and robust control method. By constructing appropriate Lyapunov– 
Krasovskii functional in the Lyapunov function candidates, the uncertainties from 
unknown time varying delays are removed such that control law is delay indepen-
dent. RBF NNs are then used to compensate for the system’s uncertainties and robust 
learning term is designed to deal with NN approximation remaining term. Theoret-
ical analysis by constructing Lyapunov-like CEF has shown that the tracking errors 
converge to a small residual domain around the origin as iteration number goes to 
infinity. At the same time, all the closed-loop signals remain bounded. Simulation 
results have been provided to show the effectiveness of the proposed control scheme 
and the superiority comparing with traditional adaptive NN control method. More-
over, the proposed scheme relaxes the limitation of globally or locally Lipschitz 
condition, thus broadening the range of application of AILC method.
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Chapter 4 
AILC of Nonlinear Time-Delay Systems 
with Unknown Control Direction 

4.1 Introduction 

In Chap. 3, the proposed RBF NN-based AILC scheme solved the AILC problem for 
nonlinear time-delay systems with dead-zone input. However, an important precon-
dition for this scheme is that the sign of unknown control gain function is known, 
but this condition may not be satisfied in some practical control systems which are 
referred to as unknown control direction. In such case, the NN-based AILC method 
is no longer applicable. 

Nowadays, the control problem of nonlinear systems with unknown control direc-
tions is a hot topic in the control field. When there is no priori knowledge about the 
signs of control coefficients, the control of such systems becomes much more diffi-
cult. For this problem, there are mainly two solutions: one is to directly estimate the 
unknown control parameter [1–3], the other is Nussbaum gain technique [4]. There 
into, the Nussbaum-type gain has been proved to be one of the most effective tools, 
and it was first proposed by Nussbaum for a class of first-order systems in 1983 [4]. 
In the decades that followed, this method was widely used in various kinds of control 
systems with unknown control direction, a large number of correlational studies have 
been reported in literature to promote the development of Nussbaum-type gain for a 
variety of control systems [5–7]. Among tremendous research results, only a few are 
conducted from the perspective of AILC [8–10]. The main obstacles of the problem 
include the manipulation of unknown control direction and stability analysis with 
CEF, which are different from adaptive control. Therefore, when using nonlinear 
control techniques to solve the ILC problem for uncertain systems with unknown 
direction, we have to face many new challenges. Although a few existing literatures 
have made some exploratory studies, the studied objects are mostly first-order system 
and the time-varying uncertainties exist in the parameterized form [9, 11]. Moreover, 
some studies also required the uncertainties to satisfy Lipschitz condition [8]. All 
these requirements greatly limited the extension of these methods. 

Except for the dead-zone nonlinearity characteristics in the previous two chap-
ters, hysteresis is another important non-smooth nonlinearities in a wide range of
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physical systems and devices, for example, electromagnetic fields, mechanical actu-
ators, and electronic relay circuits, which is caused by the backlash between the 
motion devices of gears. The existence of hysteresis can severely limit system 
performances and usually lead to undesirable inaccuracies, oscillations and insta-
bility. Therefore, the control design for nonlinear systems preceded by hysteresis is 
a challenging and rewarding research subject. To address such a problem, the prin-
cipal work is to model the hysteresis nonlinearity for control design. So far, various 
kinds of mathematical models have been proposed for hysteresis, such as Ishlinskii 
hysteresis operator [12], Preisach model [13], Krasnoskl’skii-Pokrovskii hysteron 
[12], Duhem hysteresis [14], backlash-like hysteresis [15]. Among those models, 
the backlash-like hysteresis model was widely used owing to its better representa-
tion of the hysteresis nonlinearity and its facilitation for the controller design. In 
time domain, many various methods have been put forward for various systems with 
backlash-like hysteresis [16–18]. However, there are few works conducted from the 
viewpoint of AILC to deal with nonlinear systems with hysteresis nonlinearity in the 
literature. All the control strategies mentioned above are not applicable to the AILC 
problem of uncertain time-varying systems due to the particular design process and 
stability analysis tool. As far as we know, only Zhu discussed the ILC problem for a 
class of parameterized systems with hysteresis nonlinearity [19]. 

Motivated by the above observations, in this chapter, we study the AILC problem 
specifically for a class of nonlinear systems with unknown time-varying delays and 
control direction preceded by a backlash-like hysteresis input. To the best of our 
knowledge, up to now, no works has been reported in the field of AILC which can deal 
with this kind of systems. The design difficulty mainly comes from the interactions of 
unknown time varying delays, backlash-like hysteresis nonlinearity, unknown control 
direction and time-varying uncertainties. In order to overcome above difficulties, 
we will synthetically utilize neural approximation technique, Nussbaum function 
method and robust control to design the iterative learning controller. 

4.2 Problem Formulation and Preliminaries 

4.2.1 Problem Formulation 

Consider a class of nonlinear time-delay systems with unknown control direction and 
uncertain backlash-like hysteresis running on a finite time interval [0, T ] repeatedly, 
which is given by 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

ẋi,k(t) = xi+1,k (t), i = 1, . . . ,  n − 1 
ẋn,k (t) = f (Xk(t), t) + h 

( 
Xτ,k(t), t 

) + g(Xk(t), t)uk(vk(t)) + d(t) 
yk(t) = x1,k (t), t ∈ [0, T ] 
xk(t) = ϖ (t), t ∈ [−τmax, 0) 

(4.1)
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where, g(·, ·) is the unknown time-varying control gain and its sign is unknown; 
uk(vk(t)) presents backlash-like hysteresis nonlinearity, where vk and uk present the 
input and output of backlash-like nonlinearity respectively. Other notations are as 
same as those in Chap. 3. 

The control goal remains the same as previous chapters. On the basis of Chap. 3, 
make the following assumption on control gain function. 

Assumption 4.1 The nonlinear gain function g(·, ·) and its sign are both unknown, 
and its sign is either strictly positive or negative. There exist positive constants 
0 < gmin ≤ gmax such that gmin ≤ |g(·, ·)| ≤  gmax ). 

Remark 4.1 Assumption 4.1 a reasonable assumption since g(·, ·) being away from 
zero is the controllable condition of nonlinear systems (4.1), which is required in 
most control schemes [20, 21]. Besides, the control gain bounds gmin and gmax are 
only required for analytical purposes, their true values are not necessarily known as 
they are not used for controller design. 

4.2.2 Backlash-Like Hysteresis Nonlinearity 

Traditionally, the backlash hysteresis nonlinearity can be given by the following 
expression. 

u̇k(t) = 

⎧ 
⎨ 

⎩ 

cv̇k, if v̇k > 0, uk = c(vk − B) 
cv̇k, if v̇k < 0, uk = c(vk + B) 
0, otherwise 

(4.2) 

where c > 0 is the slope of the lines and B > 0 is the backlash distance. This model 
is discontinuous and not suitable for controller design. Here, we use the backlash-like 
hysteresis dynamic model in [15] to model the backlash-like hysteresis nonlinearity, 
which is given by 

duk 
dt 

= α 
| 
| 
| 
| 
dvk 
dt 

| 
| 
| 
|(cvk − uk) + B1 

dvk 
dt 

(4.3) 

where β, c and B1 are unknown constants, satisfying c > B1. Based on the analysis 
in [15], Eq. (4.3) can be solved explicitly 

uk(t) = cvk(t) + d1(vk) (4.4) 

where, 

d1(vk) = (uk(0) − cvk(0))e−α(vk−vk (0))sgn v̇k
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Fig. 4.1 Backlash-like 
hysteresis curves for model 
(4.3) with  β = 1, c = 
1.1635, and B1 = 0.345 for 
vk (t) = m sin(2.3t) with m 
= 2.5, 3.5, 4.5, 5.5 and 6.5 
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vk (0) 

Examining (4.4), it shows that the backlash-like hysteresis nonlinearity is 
composed of a line with the slope c, together with d1(vk) which is bounded. 
Furthermore, we have 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

lim 
vk→−∞ 

d1(vk) = lim 
vk→−∞(uk(vk; vk(0), uk(0)) − cvk) = 

c − B1 

α 

lim 
vk→+∞ 

d1(vk) = lim 
vk→+∞(uk(vk; vk(0), uk(0)) − cvk) = −  

c − B1 

α 

(4.6) 

It indicates that β determines the rate where uk switches between −(c− B1)/β and 
(c − B1)/β, i.e., the larger the parameter β is, the faster the transition frequency in uk 
is going to be [22]. The backlash distance is determined by (c − B1)/β. Therefore, 
a suitable choose of parameter set {β, c, B1} enable us to model the required shape 
of backlash-like hysteresis. A graphical representation of backlash-like hysteresis 
is shown in Fig. 4.1, where the parameters β = 1, c = 1.1635, and B1 = 0.345, 
the input signal vk(t) = m sin(2.3t) (m = 2.5, 3.5, 4.5, 5.5 and 6.5) and the initial 
condition uk(0) = 0. 

4.2.3 Nussbaum Gain Method 

In order to deal with unknown control direction, the Nussbaum gain technique is 
used in this paper. The Nussbaum type function is defined as follows.



4.2 Problem Formulation and Preliminaries 85

Definition 4.1 A continuous function N (ζ ) is called a Nussbaum-type function 
when it has the following properties: 

lim 
s→+∞ 

sup 
1 

s 

s∫ 

0 

N (ζ )dζ = +∞ (4.7) 

lim 
s→+∞ 

inf 
1 

s 

s∫ 

0 

N (ζ )dζ = −∞ (4.8) 

Commonly used Nussbaum-type functions include: ζ 2 cos ζ , ζ 2 sin ζ and 
exp 

( 
ζ 2 
) 
cos((π/2)ζ ). Taking N (ζ ) = ζ 2 sin ζ for example, it is sufficient to prove 

that 

lim 
n→∞ 

1 

2nπ 

2nπ∫ 

0 

N (ζ )dζ = −∞ (4.9) 

lim 
n→∞ 

1 

2nπ + π 

2nπ +π∫ 

0 

N (ζ )dζ = +∞ (4.10) 

The proof for (4.9) is as follows  

lim 
n→∞ 

1 

2nπ 

2nπ∫ 

0 

ζ 2 sin ζ dζ = −  lim 
n→∞ 

1 

2nπ 

2nπ∫ 

0 

ζ 2 d cos ζ 

= −  lim 
n→∞ 

1 

2nπ 

⎛ 

⎝ ζ 2 cos(ζ ) 
| 
|2nπ 
0 − 2 

2nπ∫ 

0 

ζ cos ζ dζ 

⎞ 

⎠ 

= −  lim 
n→∞ 

2nπ + lim 
n→∞ 

1 

nπ 

2nπ∫ 

0 

ζ d sin  ζ 

= −  lim 
n→∞ 

2nπ + lim 
n→∞ 

1 

nπ 

⎛ 

⎝ ζ sin ζ |2nπ 
0 − 

2nπ∫ 

0 

sin ζ dζ 

⎞ 

⎠ 

= −∞ (4.11) 

The proof for (4.10) is similar and we will not present it in detail. 
Associated with the Nussbaum-type function, we have the following propositions.
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Lemma 4.1 [23]. Let V (·) and ζ (·) be smooth functions defined on [ 0, t f 
) 
with 

V (t) ≥ 0, ∀t ∈ 
[ 
0, t f 

) 
, and N (·) be an even smooth Nussbaum-type function. If the 

following inequality holds: 

V (t) ≤ c0 + 
t∫ 

0 

(g0 N (ζ ) + 1)ζ̇ dσ ,  ∀t ∈ 
[ 
0, t f 

) 
(4.12) 

where, g0 is a nonzero constant and c0 represents some suitable constant, then V (t), 
ζ (t) and 

∫ t 
0 (g0 N (ζ ) + 1) ̇ζ dσ must be bounded on 

[ 
0, t f 

) 
. 

Lemma 4.2 [24]. For any given positive constant t f > 0, if the solution of the 
resulting closed-loop system is bounded, then t f = ∞. 

4.3 Nussbuam Gain-Based AILC Scheme Design 

The definitions of esk and sk are as same as that in previous two chapters. Substituting 
(4.4) into (4.1), we can obtain the time derivative of en,k as follows 

ėn,k = f (Xk, t) + h 
( 
Xτ,k, t 

) + g(Xk, t)(cvk + d1(vk)) + d(t) − y(n) 
d 

= f (Xk, t) + h 
( 
Xτ,k, t 

) + cg(Xk, t)vk + d2(Xk) − y(n) 
d (4.13) 

where, d2(Xk) = g(Xk, t)d1(vk) + d(t). Obviously, d2(Xk) is bounded, i.e., there 
exists unknown smooth positive function d(Xk) such that |d2(Xk)| ≤ d(Xk). For  
clarity of notation, we denote cg(Xk, t) by gc(Xk, t) ≜ cg(Xk, t). It is clear that, 
g
c 

= cgmin ≤ |gc(Xk, t)| ≤ cgmax = gc. For subsequent design, we define a 
positive function β(Xk) = 1 

/ |gc(Xk, t)|. For following design, we rewrite β(Xk) 
as β 

( 
xn−1,k, xn,k 

) = 1 
/ |gc(Xk, t)| with xn−1,k (t) = 

[ 
x1,k (t), . . . ,  xn−1,k (t) 

]T 
. To  

avoid control singularity, define the following positive integral functional 

Vsk = 
sk∫ 

0 

σβ(xn−1,k, σ  + ωk)dσ (4.14) 

where, ωk = y(n−1) 
d − 

[ 
ΛT 0 

] 
ek+η(t)sat 

( 
esk 
/ 

η(t) 
) 
. 

By changing the variable σ = ϑsk , we may rewrite Vsk as Vsk = 
s2 k 
∫ 1 
0 ϑβ(xn−1,k, θ  sk + ωk)dϑ . Noting that 1 

/ 
gc ≤ β(xn−1,k , σ  + ωk) ≤ 1 

/ 
g
c 
, 

we have 

s2 k 
2gc 

≤ Vsk ≤ 
s2 k 
2g

c 

(4.15)
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It is clear that Vsk is positive definite with respect to sk . Differentiating Vsk with 
respect to time t, we obtain 

V̇sk = 
∂ Vsk 

∂sk 
ṡk + ẋ 

T 

n−1,k 
∂Vsk 

∂ xn−1,k 
+ 

∂ Vsk 

∂ωk 
ω̇k 

= β(Xk)sk ṡk + ẋ 
T 

n−1,k 

sk∫ 

0 

σ 
∂β(xn−1,k , σ  + ωk) 

∂ xn−1,k 
dσ 

+ ω̇k 

sk∫ 

0 

σ 
∂β(xn−1,k , σ  + ωk) 

∂ωk 
dσ (4.16) 

Considering the first term of the right side of (4.16), we have 

β(Xk)sk ṡk = 

⎧ 
⎪⎨ 

⎪⎩ 

β(Xk)sk(ėsk − η̇(t)), i f  esk > η(t) 
0, i f  |esk | ≤ η(t) 
β(Xk)sk(ėsk + η̇(t)), i f  esk < −η(t) 

= β(Xk)sk(ėsk − η̇(t)sgn(sk)) 

= β(Xk)sk 

⎡ 

⎣ 
n−1∑ 

j=1 

λ j e j+1,k − η̇(t)sgn(sk) − y(n) 
d + f (Xk, t) + h 

( 
Xτ,k, t 

) 

+gc(Xk, t)vk + d2(Xk)] (4.17) 

By changing the variable we obtain 

ẋ 
T 

n−1,k 

sk∫ 

0 

σ 
∂β(xn−1,k , σ  + ωk) 

∂ xn−1,k 
dσ = s2 k 

n−1∑ 

i=1 

xi+1,k 

1∫ 

0 

ϑ 
∂β(xn−1,k, ϑsk + ωk) 

∂xi,k 
dϑ 

(4.18) 

Because ∂β(xn−1,k , σ  + ωk)/∂ωk = ∂β(xn−1,k , σ  + ωk)/∂σ , it is clear that 

ω̇k 

∫ sk 

0 
σ 

∂β(xn−1,k , σ  + ωk ) 
∂ωk 

dσ 

= ω̇k 

[ 
σβ(xn−1,k , σ  + ωk ) 

| 
|sk 
0 − 

∫ sk 

0 
β(xn−1,k , σ  + ωk )dσ 

] 

= sk ω̇k 

[ 
β(Xk ) − 

∫ 1 

0 
β(xn−1,k , ϑsk + ωk )dϑ 

]
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= 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

sk 

[ 
y(n) 
d − 

∑n−1 

j=1 
λ j e j+1,k + η̇(t) 

] [  
β(Xk ) − 

∫ 1 

0 
β(xn−1,k , ϑsk + ωk )dϑ 

] 
, i f  esk (t) > η(t) 

0, i f  |esk (t)| ≤ η(t) 

sk 

⎡ 

⎣y(n) 
d − 

n−1∑ 

j=1 

λ j e j+1,k − η̇(t) 

⎤ 

⎦ 
[ 
β(Xk ) − 

∫ 1 

0 
β(xn−1,k , ϑsk + ωk )dϑ 

] 
, i f  esk (t) < −η(t) 

= sk 

⎡ 

⎣y(n) 
d − 

n−1∑ 

j=1 

λ j e j+1,k + η̇(t)sgn(sk ) 

⎤ 

⎦ 
[ 
β(Xk ) − 

∫ 1 

0 
β(xn−1,k , ϑsk + ωk )dϑ 

] 

= sk β(Xk ) 

⎡ 

⎣y(n) 
d − 

n−1∑ 

j=1 

λ j e j+1,k + η̇(t)sgn(sk ) 

⎤ 

⎦ 

− sk 

⎡ 

⎣y(n) 
d − 

n−1∑ 

j=1 

λ j e j+1,k + η̇(t)sgn(sk ) 

⎤ 

⎦ 
∫ 1 

0 
β(xn−1,k , ϑsk + ωk )dϑ (4.19) 

Substituting (4.17)–(4.19) back into (4.16) leads to 

V̇sk = 
∂Vsk 

∂sk 
ṡk + ẋ 

T 

n−1,k 
∂Vsk 

∂ xn−1,k 
+ 

∂Vsk 

∂ωk 
ω̇k 

= skβ(Xk) 
[ 
f (Xk, t) + h 

( 
Xτ,k, t 

) + gc(Xk, t)vk + d2(Xk) 
] 

+ s2 k 
n−1∑ 

i=1 

xi+1,k 

1∫ 

0 

ϑ 
∂β(xn−1,k, ϑsk + ωk) 

∂xi,k 
dϑ 

− sk 

⎡ 

⎣y(n) 
d − 

n−1∑ 

j=1 

λ j e j+1,k + η̇(t)sgn(sk) 

⎤ 

⎦ 
1∫ 

0 

β(xn−1,k, ϑsk + ωk)dϑ 

= sk 
{ 
β(xk) 

[ 
f (Xk, t) + h 

( 
Xτ,k, t 

) + gc(Xk, t)vk + d2(Xk) 
] 

+ sk 
n−1∑ 

i=1 

xi+1,k 

1∫ 

0 

ϑ 
∂β(xn−1,k , ϑsk + ωk) 

∂xi,k 
dϑ 

− 

⎡ 

⎣y(n) 
d − 

n−1∑ 

j=1 

λ j e j+1,k + η̇(t)sgn(sk) 

⎤ 

⎦ 
1∫ 

0 

β(xn−1,k , ϑsk + ωk)dϑ 

⎫ 
⎬ 

⎭ (4.20) 

Using Young’s inequality, we have 

skβ(Xk)h 
( 
Xτ,k, t 

) ≤ |sk |β(Xk)θ (t) 
n∑ 

j=1 

ρ j 
( 
xτ j ,k(t) 

) 

≤ 
n 

2 
s2 k (β(Xk))

2 (θ (t))2 + 
1 

2 

n∑ 

j=1 

ρ2 
j (xτ j ,k) 

(4.21)
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skβ(Xk)d2(Xk) ≤ 
s2 k β

2(Xk)d 
2 
(Xk) 

4a1 
+ a1 (4.22) 

with a1 being a given arbitrary positive constant. 
Substituting (4.21) and (4.22) into (4.20) results in 

V̇sk ≤ sk{β(Xk)[ f (Xk, t) + gc(Xk, t)vk] 

+ sk 
n−1∑ 

i=1 

xi+1,k 

1∫ 

0 

ϑ 
∂β(xn−1,k, ϑsk + ωk) 

∂xi,k 
dϑ 

+ 
n 

2 
skβ

2 (Xk)θ 2 (t) + 
skβ2(Xk)d 

2 
(Xk) 

4a1 

− 

⎡ 

⎣y(n) 
d − 

n−1∑ 

j=1 

λ j e j+1,k + η̇(t)sgn(sk) 

⎤ 

⎦ 
1∫ 

0 

β(xn−1,k, ϑsk + ωk)dϑ 

⎫ 
⎬ 

⎭ 

+ 
1 

2 

n∑ 

j=1 

ρ2 
j (xτ j ,k) + a1 (4.23) 

To overcome the design difficulty arising from the unknown time-varying delays 
term in (4.23), define L-K functional as 

VUk (t) =
1 

2(1 − κ) 

n∑ 

j=1 

t∫ 

t−τ j (t) 

ρ2 
j 

( 
x j,k(σ ) 

) 
dσ (4.24) 

Taking the time derivative of VUk (t) yields 

V̇Uk (t) =
1 

2(1 − κ) 

n∑ 

j=1 

ρ2 
j 

( 
x j,k 

) − 
1 

2 

n∑ 

j=1 

1 − τ̇ j (t) 
(1 − κ) 

ρ2 
j 

( 
xτ j ,k 

) 

≤ 1 

2(1 − κ) 

n∑ 

j=1 

ρ2 
j 

( 
x j,k 

) − 
1 

2 

n∑ 

j=1 

ρ2 
j 

( 
xτ j ,k 

) 
(4.25) 

Define the Lyapunov candidate as Vk(t) = Vsk (t) +VUk (t), combining (4.23) and 
(4.25), we can obtain the time derivative of Vk(t) as follows 

V̇k ≤ sk{β(Xk)[ f (Xk(t), t) + gc(Xk(t), t)vk(t)] 

+ sk 
n−1∑ 

i=1 

xi+1,k 

1∫ 

0 

ϑ 
∂β(xn−1,k , ϑsk + ωk) 

∂xi,k 
dϑ



90 4 AILC of Nonlinear Time-Delay Systems with Unknown …

+ 
n 

2 
skβ

2 (Xk)θ 2 (t) + 
skβ2(Xk)d 

2 
(Xk) 

4a1 

− 

⎡ 

⎣y(n) 
d − 

n−1∑ 

j=1 

λ j e j+1,k + η̇(t)sgn(sk) 

⎤ 

⎦ 
1∫ 

0 

β(xn−1,k , ϑsk + ωk)dϑ 

⎫ 
⎬ 

⎭ 

+ 1 

2(1 − κ) 

n∑ 

j=1 

ρ2 
j (x j,k) + a1 (4.26) 

For the convenience of expression, denote ξ (Xk) ≜ 1 
2(1−κ) 

∑n 
j=1 ρ

2 
j (x j,k) + a1. 

Similar to previous chapters, to avoid possible singularity problem, Employing the 
hyperbolic tangent function, then Eq. (4.26) becomes 

V̇k ≤ skβ(Xk)gc(Xk, t)vk(t) + sk{β(Xk) f (Xk, t) 

+ sk 
n−1∑ 

i=1 

xi+1,k 

1∫ 

0 

ϑ 
∂β(xn−1,k, ϑsk + ωk) 

∂ xi,k 
dϑ 

+ 
n 

2 
skβ

2 (Xk)ϑ
2 (t) + 

skβ2(Xk)d 
2 
(xk) 

4a1 

− 

⎡ 

⎣y(n) 
d − 

n−1∑ 

j=1 

λ j e j+1,k + η̇(t)sgn(sk) 

⎤ 

⎦ 
1∫ 

0 

β(xn−1,k , ϑsk + ωk)dϑ 

+ 
b 

sk 
tanh2 

( 
sk 
/ 

η(t) 
) 
ξ(Xk) 

⎫ 
+ 
[ 
1 − b tanh2 

( 
sk 
/ 

η(t) 
)] 

ξ(Xk) 

= g0skvk(t) + sk Q(Zk, t) + 
[ 
1 − b tanh2 

( 
sk 
/ 

η(t) 
)] 

ξ(Xk) (4.27) 

where, 

Q(Zk, t) = β(Xk) f (Xk, t) + sk 
n−1∑ 

i=1 

xi+1,k 

∫ 1 

0 
ϑ 

∂β(xn−1,k , ϑsk + ωk) 
∂ xi,k 

dϑ 

+ 
n 

2 
skβ

2 (xk)θ 2 (t) + 
skβ2(Xk)d 

2 
(Xk) 

4a1 

− 

⎡ 

⎣y(n) 
d − 

n−1∑ 

j=1 

λ j e j+1,k + η̇(t)sgn(sk) 

⎤ 

⎦ 
∫ 1 

0 
β(xn−1,k, ϑsk + ωk)dϑ 

+ 
b 

sk 
tanh2 

( 
sk 

η(t) 

) 
ξ(xk)
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Zk = 
[ 
XT 

k , XT 
d , y

(n) 
d 

]T ⊂ ΩZk , with ΩZk being a compact set, g0 = 
β(Xk)gc(Xk, t) =gc(Xk, t) 

/ |gc(Xk, t)| = 1 or −1. Apparently, Q(Zk, t) is contin-
uous and well-defined on the compact set, then it can be approximated by RBF NN 
to arbitrary accuracy as: 

Q(Zk, t) = W∗T (t)φ(Zk) + ε(Zk, t) (4.28) 

where, W∗(t) ∈ Rl is unknown ideal time-varying weight; φ(Zk) = 
[ϕi (Zk), ϕ2(Zk), . . . , ϕl (Zk)]

T ∈ Rl is the Gaussian basis function with ϕi (Xk) = 
exp 

( 
−|| 
||Xk − μi 

|| 
||2 
/ 

σ 2 i 
) 
, μi ∈ Rn and σi ∈ R are the center and width of neural 

network respectively, l denotes the NN node number; ε(Zk, t) is the approximation 
error. According to NN approximation characteristic, the approximation error can 
be made arbitrarily small by increasing NN nodes. Therefore, we can assume that 
max 
t∈[0,T ] 

|ε(Zk, t)| ≤ ε∗, ε∗ is an unknown small constant. Besides, the ideal NN weight 

W∗(t) is bounded, i.e., 

max 
t∈[0,T ] 

|| 
||W∗(t) 

|| 
|| ≤ εW (4.29) 

By using Nussbaum function method, design the adaptive iterative learning control 
system for system (4.1) as follows: 

⎧ 
⎪⎨ 

⎪⎩ 

vk = N (ζk)αk(t) 
ζ̇k = skαk, ζk(0) = ζk−1(T ) 
αk(t) = k1sk + Ŵ 

T 
k (t)φ(Zk) + sat 

( 
esk 
/ 

η(t) 
)
ε̂k 

(4.30) 

where, αk presents the virtual control, ζk is the Nussbaum gain, k1 > 0 is the design 
parameter, Ŵ k(t) and ε̂k are the estimates for W∗(t) and ε∗, respectively. The adaptive 
learning algorithms for unknown parameters are designed as follows 

⎧ 
Ŵ k(t) = Ŵ k−1(t) + q1sk(t)φ(Zk) 
Ŵ 0(t) = 0, t ∈ [0, T ] (4.31) 

⎧ 
(1 − γ ) ˙̂εk(t) = −γ ̂εk(t) + γ ̂εk−1(t) + q2|sk(t)| 
ε̂k(0) = ε̂k−1(T ), ε̂0(t) = 0, t ∈ [0, T ] 

(4.32) 

where, q1, q2 > 0 and 0 < γ  <  1 are design parameters. 

Remark 4.2 In the controller (4.30), three parts are included, which are error feed-
back term, neural learning term and robust learning term. Feedback term of error is 
to guarantee the stability in time domain for each iteration. Neural learning term is 
used to compensate for the uncertainties in the system. Robust learning term deals 
with the neural approximation error. As shown in (4.31) and (4.32), difference-type
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and differential-difference-type learning laws are designed for neural weights and 
upper bound of approximation error, respectively. 

Define the estimation error as W̃k(t) = Ŵk(t) − W ∗(t), ε̃k(t) = ε̂k(t) − ε∗. Then, 
substituting the controller (4.30) back into (4.27), it results in 

V̇k ≤ g0skvk(t) + sk Q(Zk) + 
[ 
1 − b tanh2 

( 
sk 
/ 

η(t) 
)] 

ξ(Xk) 
= g0 N (ζk)ζ̇k + ζ̇k − ζ̇k + sk 

( 
W∗T (t)φ(Zk) + ε(Zk, t) 

) 

+ 
[ 
1 − b tanh2 

( 
sk 
/ 

η(t) 
)] 

ξ(Xk) 

= (g0 N (ζk) + 1)ζ̇k − sk 
[ 
k1sk + Ŵ 

T 
k (t)φ(Zk) + sat 

( 
esk 
/ 

η(t) 
)
ε̂k 

] 

+ sk 
( 
W∗T (t)φ(Zk) + ε(Zk) 

) + 
[ 
1 − b tanh2

( 
sk 
/ 

η(t) 
)] 

ξ(Xk) 

≤ (g0 N (ζk) + 1)ζ̇k − sk W̃ 
T 
k (t)φ(Zk) − |sk |ε̂k + |sk |ε∗ 

+ 
[ 
1 − b tanh2 

( 
sk 
/ 

η(t) 
)] 

ξ(Xk) − k1s2 k (t) 

= (g0 N (ζk) + 1)ζ̇k − sk W̃ 
T 
k (t)φ(Zk) − |sk |ε̃k 

+ 
[ 
1 − b tanh2 

( 
sk 
/ 

η(t) 
)] 

ξ(Xk) − k1s2 k (t) (4.33) 

For subsequent discussion, we rewrite (4.33) as  

sk W̃ 
T 
k (t)φ(Zk) + |sk |ε̃k ≤ −  ̇Vk + (g0 N (ζk) + 1) ̇ζk − k1s2 k 

+ 
[ 
1 − b tanh2

( 
sk 
/ 

η(t) 
)] 

ξ(Xk) (4.34) 

The block diagram of the proposed Nussbaum-based AILC scheme is presented 
in Fig. 4.2.

4.4 Stability Analysis 

The stability of the proposed AILC scheme in this chapter is summarized as follows. 

Theorem 4.1 Considering the nonlinear time-delay system (4.1) with unknown 
control direction preceded by backlash-like hysteresis nonlinearity running on the 
finite interval [0, T ] repetitively, if Assumptions 2.4–2.7, 3.1, 3.2 and 4.1 hold, design 
the Nussbaum gain-based AILC (4.30) with parameter adaptive iterative learning 
laws (4.31) and (4.32), we can obtain the same conclusion as Theorem 2.1. 

Proof Similar to previous two chapters, we will discuss in two cases according to 
Lemma 2.2. 

Case 1. sk(t) ∈ Ωsk . 
According to the analysis in Sect. 2.4, in the case of sk(t) ∈ Ωsk , |esk(t)| ≤ 

(1 + m)η(t). Based on adaptive iterative learning laws (4.31) and (4.32), we know
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Fig. 4.2 Nussbaum gain based NN AILC scheme

that Ŵ k(t) and ε̂k(t) are bounded in L∞ 
T -norm, which leads to the boundedness of 

vk(t). Thus, all the closed-loop signals are bounded. 
Case 2. sk(t) /∈ Ωsk . 
According to Lemma 2.2, it follows from (4.34) that 

sk W̃ 
T 
k (t)φ(Zk) + |sk |ε̃k ≤ −  ̇Vk + (g0 N (ζk) + 1)ζ̇k − k1s2 k (4.35) 

Define a Lyapunov-like CEF as follows: 

Ek(t) = 
1 

2q1 

t∫ 

0 

W̃ 
T 
k W̃ kdσ + 

1 

2q1 

T∫ 

t 

W̃ 
T 
k−1 W̃ k−1dσ 

+ 
γ 
2q2 

t∫ 

0 

ε̃2 k dσ + 
(1 − γ )  
2q2 

ε̃2 k + 
γ 
2q2 

T∫ 

t 

ε̃2 k−1dσ (4.36) 

Remark 4.3 From (4.36) we can see that there are two extra terms 
1 
2q1 

∫ T 
t W̃ 

T 
k−1 W̃ k−1dσ and γ 

2q2 

∫ T 
t ε̃2 k−1dσ in (4.36) compared with the CEF (3.32)
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in Chap. 3, they are mainly used to meet the needs for Nussbaum gain technique 
based analysis, which will be given in detail later. 

The following proof are separated into three parts. 
(1) Difference of Ek(t). 
Based on (4.36), computing the difference of Ek(t), we obtain 

ΔEk(t) = 
1 

2q1 

t∫ 

0 

[ 
W̃ 

T 
k W̃ k − W̃ 

T 
k−1 W̃ k−1 

] 
dσ 

+ 
1 

2q1 

T∫ 

t 

[ 
W̃ 

T 
k−1 W̃ k−1 − W̃ 

T 
k−2 W̃ k−2 

] 
dσ 

+ 
γ 
2q2 

t∫ 

0 

[
ε̃2 k − ε̃2 k−1 

] 
dσ + 

(1 − γ )  
2q2 

[
ε̃2 k − ε̃2 k−1 

] 

+ 
γ 
2q2 

T∫ 

t 

[
ε̃2 k−1 − ε̃2 k−2 

] 
dσ (4.37) 

Taking the adaptive learning law (4.31) into consideration, the first term on the 
right-hand said of (4.37) can be expressed as 

1 

2q1 

t∫ 

0 

[ 
W̃ 

T 
k W̃ k − W̃ 

T 
k−1 W̃ k−1 

] 
dσ 

= 
t∫ 

0 

sk W̃ 
T 
k φ(Zk)dσ − 

q1 
2 

t∫ 

0 

s2 k ||φ(Zk)||2 dσ (4.38) 

Considering adaptive learning law (4.32), we can obtain the following equality 

γ 
2q2 

t∫ 

0 

[
ε̃2 k − ε̃2 k−1 

] 
dσ + 

(1 − γ )  
2q2 

[
ε̃2 k − ε̃2 k−1 

] 

= 
γ 
2q2 

t∫ 

0 

[
ε̃2 k − ε̃2 k−1 

] 
dσ + 

(1 − γ )  
q2 

t∫ 

0 

ε̃k ˙̃εkdσ 

+ 
(1 − γ )  
2q2 

[
ε̃2 k (0) − ε̃2 k−1(t) 

] 

= 
t∫ 

0 

|sk |ε̃kdσ − 
γ 
q2 

t∫ 

0 

ε̃k 
(
ε̂k − ε̂k−1 

) 
dσ
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+ 
γ 
2q2 

t∫ 

0 

(
ε̃2 k − ε̃2 k−1 

) 
dσ + 

(1 − γ )  
2q2 

[
ε̃2 k (0) − ε̃2 k−1(t) 

] 

= 
t∫ 

0 

|sk |ε̃kdσ − 
γ 
q2 

t∫ 

0 

ε̃k(ε̃k − ε̃k−1)dσ 

+ 
γ 
2q2 

t∫ 

0 

(
ε̃2 k − ε̃2 k−1 

) 
dσ + 

(1 − γ )  
2q2 

[
ε̃2 k (0) − ε̃2 k−1(t) 

] 

= 
t∫ 

0 

|sk |ε̃kdσ + 
(1 − γ )  
2q2 

[
ε̃2 k (0) − ε̃2 k−1(t) 

] − 
γ 
2q2 

t∫ 

0 

[
ε̃k − ε̃k−1 

]2 
dσ (4.39) 

Substituting (4.38) and (4.39) back into (4.37), it follows that 

ΔEk(t)= 
t∫ 

0 

sk W̃ 
T 
k (σ )φ(Zk)dσ − 

q1 
2 

t∫ 

0 

s2 k ||φ(Zk)||2 dσ 

+ 
t∫ 

0 

|sk |ε̃kdσ + 
(1 − γ )  
2q2 

[
ε̃2 k (0) − ε̃2 k−1(t) 

] − 
γ 
2q3 

t∫ 

0 

[
ε̃k − ε̃k−1 

]2 
dσ 

+ 
1 

2q1 

T∫ 

t 

[ 
W̃ 

T 
k−1 W̃ k−1 − W̃ 

T 
k−2 W̃ k−2 

] 
dσ + 

γ 
2q2 

T∫ 

t 

[
ε̃2 k−1 − ε̃2 k−2 

] 
dσ 

≤ −Vk(t) + Vk(0) + 
t∫ 

0 

(g0 N (ζk) + 1)ζ̇kdσ 

− k1 

t∫ 

0 

s2 k dσ + 
(1 − γ )  
2q2 

[
ε̃2 k (0) − ε̃2 k−1(t) 

] 

+ 
1 

2q1 

T∫ 

t 

[ 
W̃ 

T 
k−1 W̃ k−1 − W̃ 

T 
k−2 W̃ k−2 

] 
dσ + 

γ 
2q2 

T∫ 

t 

[
ε̃2 k−1 − ε̃2 k−2 

] 
dσ 

(4.40) 

From Assumption 2.4 and Assumption 2.7, it is clear that Vk(0) = 0. Let中 t = T 
in (4.43), according to ε̂k(0) = ε̂k−1(T ), ε̂1(0) = 0, we can have 

ΔEk(T ) ≤ −Vk(T ) + 
T∫ 

0 

(g0 N (ζk) + 1) ̇ζkdσ − k1 

T∫ 

0 

s2 k dσ
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≤ 
T∫ 

0 

(g0 N (ζk) + 1) ̇ζkdσ − k1 

T∫ 

0 

s2 k dσ (4.41) 

(2) The finiteness of Ek(t). 
Applying (4.41) repeatedly, we have 

Ek(T ) = E1(T ) + 
k∑ 

j=2 

ΔE j (T ) 

≤ E1(T ) + 
k∑ 

j=2 

T∫ 

0 

( 
g0 N 

( 
ζ j 
) + 1 

)
ζ̇ j dσ − k1 

k∑ 

j=2 

T∫ 

0 

s2 j dσ (4.42) 

Next let us check the finiteness of E1(T ). According to the definition of Ek , we  
know 

Ė1(t) = 
1 

2q1 
W̃ 

T 
1 W̃ 1 + 

γ 
2q2 

ε̃2 1 + 
(1 − γ )  

q2 
ε̃1 ˙̃ε1 (4.43) 

Taking the time derivative of E1(t) yields 

Ė1(t) = 
1 

2q1 
W̃ 

T 
1 W̃ 1 + 

γ 
2q2 

ε̃2 1 + 
(1 − γ )  

q2 
ε̃1 ˙̃ε1 (4.44) 

Recalling parameter adaptive laws, we have Ŵ 1(t) = q1s1φ(Z1), (1 − γ ) ˙̂ε1 = 
−γ ̂ε1 + q2|s1(t)|, then we can obtain 

1 

2q1 
W̃ 

T 
1 W̃ 1 = 

1 

2q1 

[ 
W̃ 

T 
1 W̃ 1 − 2 W̃ 

T 
1 Ŵ 1 

] 
+ 

1 

q1 
W̃ 

T 
1 Ŵ 1 

= 
1 

2q1 

[( 
Ŵ 1 − W∗ 

)T ( 
Ŵ 

T 
1 − W∗ 

) 
− 2 

( 
Ŵ 1 − W∗ 

)T 
Ŵ 1 

] 

+ s1 W̃ 
T 
1 φ(Z1) 

= 
1 

2q1 

[ 
− Ŵ 

T 
1 Ŵ 1 + W *T W∗ 

] 
+ s1 W̃ 

T 
1 φ(Z1) 

≤ 
1 

2q1 
W *T W∗ + s1 W̃ 

T 
1 φ(Z1) (4.45) 

γ 
2q2 

ε̃2 1 + 
(1 − γ )  

q2 
ε̃1 ˙̃ε1 = 

γ 
2q2 

ε̃2 1 − 
γ 
q2 

ε̃1ε̂1(t) + |s1|ε̃1 
= 

γ 
2q2 

(
ε̂2 1 − 2ε̃1ε̂1 + ε̃2 1 

) − 
γ 
2q2 

ε̂2 1 + |s1|ε̃1 
≤ 

γ 
2q2 

(
ε̂1 − ε̃1 

)2 + |s1|ε̃1
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= 
γ 
2q2 

( 
ε∗)2 + |s1|ε̃1 (4.46) 

Substituting (4.45) and (4.46) back into (4.44) leads to 

Ė1(t) ≤ 
1 

2q1 
W *T W∗ + s1 W̃ 

T 
1 φ(Z1) + 

γ 
2q3 

( 
ε∗)2 + |s1|ε̃1 

≤ −  ̇V1 + (g0 N (ζ1) + 1)ζ̇1 − Ks2 1 + 
1 

2q1 
W *T W∗ + 

γ 
2q3 

( 
ε∗)2 (4.47) 

Denote cmax = max 
t∈[0,T ] 

{ 
1 
2q1 

W *T (t)W∗(t) + 1 
2q2 

(ε∗)2 
} 
. Integrating the above 

inequality over [0, t] results in 

E1(t) − E1(0) ≤ −V1(t) + 
t∫ 

0 

(g0 N (ζ1) + 1) ̇ζ1dσ − k1 

t∫ 

0 

s2 1dσ + t · cmax (4.48) 

Based on  ͡
ε1(0)0 , we have  

E1(0) = 
(1 − γ )  
2q2 

ε̃2 1(0) = 
(1 − γ )  
2q2 

( 
ε∗)2 (4.49) 

Then, Eq. (4.48) changes to 

E1(t) ≤ −k1 

t∫ 

0 

s2 1dσ + 
t∫ 

0 

(g0 N (ζ1) + 1)ζ̇1dσ+t · cmax + 
(1 − γ )  
2q2 

( 
ε∗)2 (4.50) 

Letting t = T in (4.50), it becomes 

E1(T ) ≤ −k1 

T∫ 

0 

s2 1dσ + 
T∫ 

0 

(g0 N (ζ1) + 1) ̇ζ1dσ +T · cmax + 
(1 − γ )  
2q2 

( 
ε∗)2 (4.51) 

Further, substituting (4.51) into (4.42) yields 

Ek (T ) ≤ −k1 

k∑ 

j=1 

T∫ 

0 

s2 j dσ + 
k∑ 

j=1 

T∫ 

0 

( 
g0 N 

( 
ζ j 
) + 1 

)
ζ̇ j dσ + T · cmax + 

(1 − γ )  
2q2 

( 
ε∗)2 

≤ 
k∑ 

j=1 

T∫ 

0 

( 
g0 N 

( 
ζ j 
) + 1 

)
ζ̇ j dσ + T · cmax + 

(1 − γ )  
2q2 

( 
ε∗)2 (4.52)
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According to the relationship ζk(0) = ζk−1(T ) for Nussbaum gain, we can know 
Nussbaum gain is continuous along with iterative running. Then we can denote 
ζ(t + (k − 1)T ) ≜ ζk(t), j ∈ N. Consequently, ζ (t) and ζ̇ (t) are both continuous 
for ∀t ∈ [0, kT  ]. Then from ζk(0) = ζk−1(T ) we have 

k∑ 

j=1 

T∫ 

0 

( 
g0 N 

( 
ζ j 
) + 1 

)
ζ̇ j dσ = 

T∫ 

0 

(g0 N (ζ1) + 1)ζ̇1dσ + 
T∫ 

0 

(g0 N (ζ2) + 1) ̇ζ2dσ 

+  · · ·  +  
T∫ 

0 

(g0 N (ζk) + 1) ̇ζkdσ 

= 
T∫ 

0 

(g0 N (ζ ) + 1)ζ̇ dσ + 
2T∫ 

T 

(g0 N (ζ ) + 1)ζ̇ dσ 

+  · · ·  +  
kT∫ 

(k−1)T 

(g0 N (ζ ) + 1)ζ̇ dσ 

= 
kT∫ 

0 

(g0 N (ζ ) + 1)ζ̇ dσ (4.53) 

Therefor, we can get 

Ek(T ) ≤ 
kT∫ 

0 

(g0 N (ζ ) + 1) ̇ζ dσ + T · cmax + 
(1 − γ )  
2q2 

( 
ε∗)2 (4.54) 

On the other hand, for k ≥ 2 , we have  

Ėk(t) = 
1 

2q1 

( 
W̃ 

T 
k W̃ k − W̃ 

T 
k−1 W̃ k−1 

) 
+ 

γ 
2q2 

ε̃2 k + 
(1 − γ )  

q2 
ε̃k ˙̃εk − 

γ 
2q2 

ε̃2 k−1 

= sk W̃ 
T 
k (t)φ(Zk) − 

q1 
2 
s2 k ||φ(Zk)||2 + |sk |ε̃k − 

γ 
2q2 

(ε̃k − ε̃k−1)
2 

≤ V̇k + (g0 N (ζk) + 1) ̇ζk − k1s2 k (4.55) 

It is obvious that Ek(0) = Ek−1(T ) from the definition of Ek(t). Then integrating 
(4.55) over [0, t] and letting k = k − 1 in (4.54), we can obtain 

Ek(t) ≤ −Vk + 
t∫ 

0 

(g0 N (ζk) + 1) ̇ζkdσ − k1 

t∫ 

0 

s2 k dσ + Ek(0)



4.4 Stability Analysis 99

≤ 
t∫ 

0 

(g0 N (ζk) + 1)ζ̇kdσ + 
(k−1)T∫ 

0 

(g0 N (ζ ) + 1) ̇ζ dσ 

+ T · cmax + 
(1 − γ )  
2q2 

( 
ε∗)2 

= c0 + 
(k−1)T +t∫ 

0 

(g0 N (ζ ) + 1) ̇ζ dσ (4.56) 

where, c0 = T · cmax + (1−γ )  
2q2 

(ε∗)2 . From Lemma 2, we know that any [0, T ] ⊂
[ 
0, t f 

) 
. According to the Lemma 4.1, we can conclude that: Ek(t), ζ (t) and 

∫ (k−1)T +t 
0 (g0 N (ζ ) + 1)ζ̇ dσ are all bounded, which further leads to the boundedness 
of ζk(t), Ŵ k(t) and ε̂k(t), ∀k ∈ N. 

(3) Learning convergence property. 
Letting t = T in (4.56), we can know that Ek(T ) is bounded. From (4.52) it leads 

to 

k1 

k∑ 

j=1 

T∫ 

0 

s2 j dσ ≤ −Ek(T ) + 
k∑ 

j=1 

T∫ 

0 

( 
g0 N 

( 
ζ j 
) + 1 

)
ζ̇ j dσ + c0 

≤ 
kT∫ 

0 

(g0 N (ζ ) + 1) ̇ζ dσ + c0 (4.57) 

Taking the limitation of (4.57), it follows 

lim 
k→∞ 

k∑ 

j=1 

T∫ 

0 

s2 j dσ ≤ lim 
k→∞ 

1 

k1 

⎡ 

⎢ 
⎣ 

kT∫ 

0 

(g0 N (ζ ) + 1)ζ̇ dσ + T · cmax + 
(1 − γ )  
2q2 

( 
ε∗)2 

⎤ 

⎥ 
⎦ ≤ M (4.58) 

According to the convergence theorem of the sum of series, we have 
lim 
k→∞ 

∫ T 
0 s

2 
k (σ )dσ = 0 which implies that lim 

k→∞ 
sk(t) =s∞(t) = 0, ∀t ∈ [0, T ]. 

Furthermore, from the definition sk(t) we know that when |esk (t)| ≤ η(t), sk(t) = 0, 
then lim 

k→∞ 

∫ T 
0 s

2 
k (σ )dσ = 0 is equivalent to lim 

k→∞ 
|esk (t)| ≤ η(t), finally resulting in 

lim 
k→∞ 

∫ T 
0 (esk(σ ))2 dσ ≤ 

∫ T 
0 (η(σ ))2 dσ . 

Based on the boundedness of Ek(t), we have got the boundedness of Ŵ k(t) and 
ε̂k(t). From the inequality 

∫ t 
0 s

2 
k (σ )dσ ≤ 

∫ T 
0 s

2 
k (σ )dσ we can obtain the boundedness 

of sk(t), then from the boundedness of Xd (t) we can further get the boundedness of 
xi,k(t). Similar to Case 1, we can get the conclusion that vk(t) and uk(t) are bounded. 

Based on above discussion in two cases, we can see that the proposed 
Nussbaum gain based AILC scheme is able to ensure the boundedness of
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all closed-loop signals, and lim 
k→∞ 

|esk(t)| ≤ (1 + m)η(t). Therefore, we can 

further obtain lim 
k→∞ 

∫ T 
0 (esk(σ ))2 dσ ≤ εe, εe = ∫ T 

0 ((1 + m)η(σ ))2 dσ = 
1 
2K (1 + m)2 ε2 

( 
1 − e−2KT  

) ≤ 1 2K (1 + m)2 ε2 = εesk . Moreover, es∞(t) satisfies 
lim 
k→∞ 

|esk(t)| = es∞(t) = (1 + m)εe−Kt , ∀t ∈ [0, T ]. 
The proof of the transient performance for tracking error is same as Sect. 2.4. 
This concludes the proof. ◻ 

4.5 Simulation Analysis 

In this section, we present a simulation example to verify the effectiveness of the 
AILC scheme. Consider the following second-order nonlinear time delay system 
with unknown backlash-like hysteresis and control direction: 

⎧ 
⎨ 

⎩ 

ẋ1,k(t) = x2,k(t) 
ẋ2,k(t) = f (Xk(t), t) + h 

( 
Xτ,k(t), t 

) + g(Xk(t), t)uk(vk) + d(t) 
yk(t) = x1,k(t) 

(4.59) 

where, the forms of unknown functions f (Xk(t), t), h 
( 
Xτ,k(t), t 

) 
and disturbance 

d(t) are as same as system (3.67), g(xk(t), t) = 0.7+ 0.3|cos(0.5t)|2 sin2 ( x1,k x2,k 
) 
. 

The unknown time-varying delays are τ1(t) = 0.5(1 + sin(0.3t)) and τ2 = 
0.8(1 + sin(0.5t)). 

4.5.1 Verification of Nussbuam Gain-Based AILC Scheme 

To demonstrate the conclusions in Theorem 4.1, conduct three simulation experi-
ments. 

Experiment 1 The desired trajectory is given by Xd (t) = [sin t, cos t]T . The design 
parameters are ε1 = ε2 = 1, λ = 2, K = 2, k1 = 1, γ = 0.5, q1 = 0.8, q2 = 0.1, 
ε = λε1 + ε2 = 3. The parameters for backlash-like hysteresis are specified by 
α = 1, c = 1.1635, B1 = 0.345. The parameters for RBF NN are given by l = 30, 
μ j = 1 l (2 j − l)[2, 3, 2, 3, 3]T , η j = 2, j = 1, 2, . . . ,  l. The initial condition x1,k(0) 
and x2,k (0) are randomly taken in the intervals [−0.5, 0.5] and [0.5, 1.5], respectively. 
The system runs on [0, 4π ] for five iterations. The simulation results are shown in 
Figs. 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8.

Figures 4.3 and 4.4 show the curve of system output yk to track yd in the 1st itera-
tion (k = 1) and the 5th iteration (k = 5), respectively, which shows that the tracking 
performance has been improved through four times of learning. This improvement 
effect is clearly shown in Fig. 4.8 by the curve of 

∫ T 
0 s

2 
k (t)dt  versus iterations. The
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Fig. 4.3 System output yk 
versus yd (k = 1) 
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Fig. 4.4 System output yk 
versus yd (k = 5)
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control curves for the 1st and 5th iteration are presented in Figs. 4.5 and 4.6 respec-
tively, which shows the effect of backlash-like hysteresis nonlinearity on control 
input. As mentioned above, the Nussbaum gain ζ varies continuously, and Fig. 4.7 
presents continuously varying curve for five iterations. It should be pointed out that 
the horizontal axis of Fig. 4.7 is not real time axis, but a combination of ζk for five 
iterations. From Fig. 4.7 we can see that the Nussbaum gain tends to stability in the 
1st iteration. 

Experiment 2 To show the control performance for more compli-
cated desired trajectory, we choose the desired trajectory as Xd (t) = 
[sin t + sin(0.5t), cos t + 0.5 cos(0.5t)]T . The control parameters are chose 
as q1 = 1, q2 = 0.03, γ = 0.5, λ = 2, K = 2, k1 = 3, l = 10, 
μ j = 1 

l (2 j − l)[2, 3, 2, 3, 2]T , η j = 2, j = 1, 2, . . . ,  l. The initial conditions
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Fig. 4.5 The input vk and 
output uk of backlash-like 
hysteresis (k = 1) 
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Fig. 4.6 The input vk and 
output uk of backlash-like 
hysteresis (k = 5)
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x1,k(0) and x2,k (0) are randomly generated in [−0.5, 0.5] and [1, 2] respectively. 
The system runs on finite interval [0, 8π ] for ten times. Simulation results are 
presented in Figs. 4.9, 4.10, 4.11, 4.12, 4.13 and 4.14.

From above simulation results, it is clear that the proposed AILC scheme can 
achieve a good tracking performance for the desired reference signal Xd (t) = 
[sin t + sin(0.5t), cos t + 0.5 cos(0.5t)]T as well. 

Experiment 3 To test the effect of different parameters on tracking performance, 
we change the parameters in Experiment 2 to λ = 3, K = 4, γ = 0.5, q1 = q2 = 2, 
q3 = 0.02, ε = λε1 + ε2 = 4, while remaining other parameters unchanged. Here 
we only present the curve of 

∫ T 
0 s

2 
k (t)dt with respect to iterations.
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Fig. 4.7 The curve of 
Nussbaum gain ζ 

Fig. 4.8 
∫ T 
0 s

2 
k (t)dt versus 

iterations

By comparing Figs. 4.14 and 4.15, we can see that, for the Nussbaum gain based 
AILC scheme, larger design parameters can only decrease the index of tracking 
error 

∫ T 
0 s

2 
k (t)dt slightly and don’t have remarkable effect on the improvement via 

learning process. This is mainly because the error feedback term k1sk in controller 
(4.30) make tracking error converge quickly, which is clearly shown in Fig. 4.9. 
Moreover, in the controller (3.25) of Chap. 3, since there is no direct effect of error 
feedback term, the tracking error is not eliminated obviously in the first iteration. To 
accelerate convergence speed, we can also add the feedback term of tracking error 
sk in (3.25). It will not change the stability analysis conclusions in Sect. 3.4.
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Fig. 4.9 System output yk 
versus yd (k = 1) 
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Fig. 4.10 System output yk 
versus yd (k = 10) 
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Fig. 4.11 The input vk and 
output uk of backlash-like 
hysteresis (k = 1)
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Fig. 4.12 The input vk and 
output uk of backlash-like 
hysteresis (k = 10) 
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Fig. 4.13 The curve of 
Nussbaum gain ζ
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4.5.2 Comparison Simulation: Nussbuam Gain-Based 
Adaptive NN Control 

Experiment 4 Finally, the contribution of the proposed AILC scheme is shown 
by comparing the proposed controller with traditional adaptive neural network 
controller. We utilize the Nussbaum gain based adaptive NN controller in [5] to  
control the system (4.50) aiming at achieve tracking the desired reference trajectory, 
in which the controller has the same form as (4.30) and the parameter adaptive law 
is modified to the following form:

˙̂W = −⎡ 
[ 
φ(Zk)sk + σW Ŵ 

] 
,
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Fig. 4.14 
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Fig. 4.15 
∫ T 
0 s

2 
k (t)dt versus 

iterations (Experiment 3)
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Ŵ (0) = 0 (1 − γ ) ˙̂εk(t) = −γ ̂εk(t) + q2|sk(t)|

The design parameters are chosen as ⎡ = diag{2}, σW = 
0.5, q2= 0.02. The desired reference trajectory vector is Xd (t) = 
[sin t + sin(0.5t), cos t + 0.5 cos(0.5t)]T , while other parameters remaining 
the same as Experiment 2. Similarly, here the subscript “k” in controller and 
adaptive laws has no practical meaning. Figures 4.16 and 4.17 present the tracking 
curve and control signal curve respectively. Simulation results show that traditional 
adaptive control can’t achieve perfect tracking performance as iteration continues 
when there exist time-varying uncertainties in systems, and tracking errors always 
exist periodically and can’t be eliminated by adaptive learning. The simulation 
results clearly reflect the superiority in dealing with time-varying uncertainties.



4.5 Simulation Analysis 107

Fig. 4.16 yk versus yd 
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Fig. 4.17 The input vk and 
output uk of backlash-like 
hysteresis 
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As observed in above four experiments, the proposed NN AILC can achieve a 
good tracking performance for nonlinear time-delay systems with unknown control 
direction and backlash-like hysteresis nonlinearity and realize the control objective, 
which is in accord with the conclusions in Theorem 4.1. The simulation results 
adequately demonstrate the validity of the AILC approach in this chapter.
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4.6 Summary and Comments 

In this chapter, we investigated the control problem for a class of nonlinear time-
delay systems with unknown control direction and backlash-like hysteresis nonlin-
earity. The RBF NN was employed to approximate time-varying uncertainties and 
robust adaptive learning term was designed to compensate for the NN approxima-
tion error, unknown external disturbance and the remaining term of hysteresis. The 
Nussbaum gain method was used to estimate the unknown control gain and over-
come the difficulty of unknown control direction. To solve the problem in stability 
analysis followed by the introduction of Nussbaum function, we constructed a kind 
of CEF satisfying alignment condition. In the design, we considered the influence of 
unknown backlash-like hysteresis nonlinearity input and introduced the integral type 
Lyapunov function method into AILC design, which avoided the control singularity 
problem incorporating with the hyperbolic tangent function. This method further 
extends the application scope of AILC and may provide useful reference for relevant 
control problems. 
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Chapter 5 
Observer-Based AILC of Nonlinear 
Time-Delay Systems 

5.1 Introduction 

In previous three chapters, we designed three kinds of AILC schemes for three 
different kinds of nonlinear time-delay systems, while considering the influence of 
dead-zone and backlash-like hysteresis nonlinearity. However, these AILC schemes 
have a common requirement for the plants: the system states are measurable. In the 
control community, state feedback control is very powerful for nonlinear systems as 
the full information of the state vectors is assumed to be accessible for feedback. 
However, in many practical control systems, only the measured output information, 
rather than the full state information, is available for feedback. In this situation, the 
designed approaches are not applicable. In this chapter, we will study the AILC 
problem for nonlinear systems with un-measurable states. 

For systems with only output measurable, the firs task for control systems design 
is to estimate the states based on priori knowledge. In existing estimation methods, 
observer technique has been proven to be the most effective scheme, which estimates 
dynamically the states on the basis of information about output tracking error and 
other compensation term. Over the past decades, there has been a considerable devel-
opment in various observer design methodologies using different approaches [1–4]. 
Although so many results have been developed, only a few results are available from 
the point of AILC. How to design an AILC for nonlinear systems using only output 
measurement is an interesting and challenging issue. The main research teams of ILC 
all studied the problem of observer-based ILC more or less. Tayebi and Xu proposed 
an observer-based iterative learning control scheme for the tracking problem of a 
class of time-varying nonlinear systems and gave the sufficient conditions for the 
boundedness and the convergence to zero of the estimation error by using contrac-
tion mapping method [5]. In reference [6], Xu utilized the observer in [7] to design 
an observer-based AILC scheme for a class of time-varying parameterized nonlinear 
systems based on CEF analysis method. Chen et al. extended the result in [6] and 
proposed an observer-based AILC for nonlinear systems with unknown time-varying 
parametric uncertainties and the delayed output, where the Lyapunov-Krasovskii-like

© National Defense Industry Press 2022 
J. Wei et al., Iterative Learning Control for Nonlinear Time-Delay System, 
https://doi.org/10.1007/978-981-19-6317-9_5 

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-6317-9_5&domain=pdf
https://doi.org/10.1007/978-981-19-6317-9_5


112 5 Observer-Based AILC of Nonlinear Time-Delay Systems

composite energy function was constructed to prove the boundedness of all closed-
loop signals and the convergence of output tracking error [8]. Sun et al. also used 
the observer in [7] to estimate the system states and designed observer-based ILC 
scheme for a class of time-varying parameterized systems, realizing global accu-
rate tracking for non-uniform trajectory on the finite time interval [9]. By contrast, 
Chien’s team obtained more results. In [10], Wang and Chien introduced an error 
observer to design an iterative learning controller for robotic systems, where a robust 
learning component using a filtered fuzzy neural network was presented to solve 
the problem of unknown nonlinearities. Subsequently, then extended the results in 
[10] to SISO nonlinear systems [11], MIMO nonlinear systems [12], and MIMO 
nonlinear systems with delayed output [13]. 

Similar to dead-zone and hysteresis, saturation is another nonlinear character-
istic that is commonly encountered in practical control systems. Strictly speaking, 
in practical control systems, as long as there exist actuators, there exist saturation 
nonlinearities. In some situations, the magnitude of saturation is relatively large, 
most control signals will lie between the bounds of saturation. In this case, the influ-
ences of saturation on the whole control systems are small and can be neglected 
in control system design. Inversely, when the influences of saturation are large, if 
neglected, it may severely limit system performances and usually leads to undesir-
able inaccuracies and even instability. The saturation has always been a hot topic 
in control community. The control design for nonlinear systems preceded by input 
saturation is a challenging but worthwhile and necessary issue. In the field of time 
control methods, many results have been published in the past several decades [14– 
16], however in ILC filed, only a few results are available at present stage. A few 
researchers carried on researches and designed ILC schemes for several classes of 
systems with input saturation under some necessary assumptions [17–22]. 

In this chapter, we will consider a class of nonlinear systems that is influenced 
by unknown time-varying delays and input saturation, with only output available. 
To the best of our knowledge, up till now no works have been reported in the field 
of AILC to deal with such kinds of systems. And we will make full use of observer, 
LMI tool, AILC method and filter and propose two control design schemes to solve 
this control problem. 

5.2 Problem Formulation and Preliminaries 

5.2.1 Problem Formulation 

Consider a class of nonlinear time delay systems with input saturation which runs 
on a finite time interval [0, T ] repeatedly:
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⎧ 
⎨ 

⎩ 

ẋi,k(t) = xi+1,k (t), i = 1, . . . ,  n − 1 
ẋn,k(t) = f (Xk(t)) + h 

( 
yτ,k(t), t 

) + uk(vk(t)) + d(t) 
yk(t) = x1,k(t), t ∈ [0, T ] 

(5.1) 

where, f (•) and h(•, •) are unknown smooth continuous functions; yτi ,k �
yk(t − τi (t)) (i = 1, . . . ,  n), yτ,k(t) = 

[ 
yτ1,k(t), . . . ,  yτn ,k(t) 

]T 
is time-delay output 

vector; vk(t) is control input, uk(vk(t)) presents saturation nonlinearity. Here, The 
states are assumed to be unavailable for measurement and only output yk (t) is measur-
able. Moreover, the system is bounded-input-bounded-output (BIBO) stable. Define 
C = [1, 0, . . . ,  0]T , then it is known that yk(t) = CT Xk(t). 

The control objective of this chapter is as same as that in previous chapters. On the 
basis of assumptions on unknown time-varying delay, desired reference trajectories 
and unknown external disturbance, we make the following assumption on h(•, •): 

Assumption 5.1 The unknown continuous function h(·, ·) is bounded and satisfies 
the following inequality 

| 
|h 
( 
yτ,k, t 

)| 
| ≤ 

n∑ 

j=1 

ρ j 
( 
yτ j ,k(t) 

) 
(5.2) 

where, ρ j (·) is unknown positive continuous function. 

5.2.2 Input Saturation Nonlinearity 

In this chapter, the output of a control uk with input vk subjected to the condition of 
saturation is given by 

uk = 
⎧ 

vk, |vk | < uM 

uM sgn(vk), |vk | ≥ uM 
(5.3) 

where, uM is the upper bound of control signal vk . For convenience of design, we 
rewrite the saturation nonlinearity as 

uk = β(vk) + d1(vk) (5.4) 

where, β(vk) = uM × tanh 
( 
vk 
/ 
uM 
) 
. Then, d1(vk) = uk − β(vk). It is clear that 

|d1(vk)| = |sat(vk) − β(vk)| ≤ uM (1 − tanh(1)) = D2 (5.5) 

A graphic presentation of saturation model is shown in Fig. 5.1.
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Fig. 5.1 Saturation model 
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5.2.3 Schur Complementary Lemma 

In this paper, the following lemma is used. 

Lemma 5.1 [23]. The Linear Matrix Inequality (LMI) 

S = 
[ 
S11 S12 

S21 S22 

] 
< 0 (5.6) 

with S11 = ST 
11 and S22 = ST 

22 is equivalent to 

S22 < 0, S11 − S12 S
−1 
22 S

T 
12 < 0 (5.7) 

5.3 State Observer-Based AILC Design and Stability 
Analysis 

5.3.1 State Observer Design 

Rewrite the system (5.1) as  

Ẋk = AXk + K 0 yk + B 
[ 
f (Xk) + h 

( 
yτ,k, t 

) + β(vk) + d1(vk) + d(t) 
] 

(5.8)
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where, K 0 = [k1, k2, . . . ,  kn]T , B = [0, . . . ,  0, 1]T , A = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

−k1 
−k2 In−1 

... 
−kn 0 · · ·  0 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 
, In−1 is 

a unit square matrix of n-1 dimensions. K 0 ∈ Rn can be chosen suitably such that 
A is a strict Hurwitz matrix. Then for a given positive matrix Q > 0, there exists a 
positive matrix P > 0 satisfying the following inequality: 

AT P + P A  + 
n + 3 

λ 
P PT + P PT 

|| 
||CCT + δ In 

|| 
||2 

< − Q (5.9) 

where, λ is a positive constant. 

Remark 5.1 To solve inequality (5.9), we decompose the matrix A as A = A+ K 0 B 
with 

A = 

⎡ 

⎢ 
⎣ 
0 
... In−1 

0 · · ·  0 

⎤ 

⎥ 
⎦, B = [−1, 0, . . . ,  0] (5.10) 

According to Lemma 5.1, the inequality (5.9) is equivalent to the following LMI: 

⎡ 

⎢ 
⎣ 
P A + M B + B T MT + A T P + Q P  

P − 
( 

n+3 
λ + 1 

||CCT +δ In||2 

)−1 

In 

⎤ 

⎥ 
⎦ < 0 (5.11) 

where, In is a unit square matrix of n dimensions. Then P, M and λ can be calculated 
simultaneously via MATLAB LMI toolbox, and the observer gain matrix is further 
obtained by K 0 = P−1 M. 

For simplicity, define d(t) = d1(vk)+d(t), obviously, it is bounded, i.e., 
| 
|d(t) 

| 
| ≤ 

D0, D0 = D1 + D2. To estimate the states of system (5.1), design the observer as 

⎧ ˙̂Xk = A X̂k + K o yk + B[Ψk + vk] 
ŷk = x̂1,k 

(5.12) 

where, Ψk will be given later. For subsequent design, we define  Δvk = β(vk) − vk 
to describe the effect of input saturation and it can be effectively approximated by 
using a dynamic neural network. 

Define the observer estimation error as zk �
[ 
z1,k, z2,k, . . . ,  zn,k 

] = Xk − X̂k , 
then according to (5.8) and (5.12) we can obtain the dynamical equation of observer 
error as follows 

żk = Azk + B 
[ 
F(Xk) + h 

( 
yτ,k, t 

) + d(t) − Ψk 
] 

(5.13)
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where, F(Xk) = f (Xk) +  Δvk . Choose a positive function of observer error as 
Vzk = zT k Pzk , then taking the time derivative of Vzk yields 

V̇zk = zT k 
( 
AT P + P A  

) 
zk + 2zT k PB  

[ 
F(Xk) + h 

( 
yτ,k, t 

) + d(t) − Ψk 
] 

(5.14) 

Considering Assumption 5.1 and utilizing Young’s inequality, we can have 

2zT k PBh 
( 
yτ,k, t 

) ≤ 2 
| 
|zT k PB  

| 
| | |h 
( 
yτ,k, t 

)| 
| ≤ 

n 

λ 
zT k P PT zk + λ 

n∑ 

j=1 

ρ2 
j 

( 
yτ j ,k(t) 

) 

(5.15) 

2zT k PBd(t) ≤ 
1 

λ 
zT k P PT zk + λD2 

0 (5.16) 

To compensate for the time delay term, consider the following Lyapunov-
Krasovskii functional: 

VUk (t) =
λ 

(1 − κ) 

n∑ 

j=1 

t∫ 

t−τ j (t) 

ρ2 
j (yk(σ ))dσ (5.17) 

On the basis of Assumption 3.1, differentiating VUk (t) with respect to time leads 
to 

V̇Uk (t) =
λ 

(1 − κ) 

n∑ 

j=1 

ρ2 
j (yk) − λ 

n∑ 

j=1 

1 − τ̇ j (t) 
(1 − κ) 

ρ2 
j 

( 
yτ j ,k 

) 

≤ λ 
(1 − κ) 

n∑ 

j=1 

ρ2 
j (yk) − λ 

n∑ 

j=1 

ρ2 
j 

( 
yτ j ,k 

) 
(5.18) 

Combining (5.14)–(5.16) and (5.18), it results in 

V̇zk + V̇Uk ≤ zT k 
( 
AT P + P A  + 

n + 1 
λ 

P PT 

) 
zk + 2zT k PB[F(Xk) − Ψk] 

+ 
λ 

(1 − κ) 

n∑ 

j=1 

ρ2 
j (yk) + λD2 

0 (5.19) 

To overcome the difficulty from unknown time-varying function F(Xk) in (5.19), 
we utilize time-varying RBF NN to approximate F(Xk) in the following form 

F(Xk) = W∗T φ(Xk) + ε(Xk) (5.20)
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where, W∗ ∈ Rl denotes the unknown time-varying optimal weight, l is the 
number of neural nodes, φ(Xk) = [ϕi (Xk), ϕ2(Xk), . . . , ϕl (Xk)]

T ∈ Rl , ϕi (xk) = 
exp 

( 
−|| 
|| ( Xk − µi 

)|| 
||2 
/ 

σ 2 i 
) 
is the Gaussian radial basis function, μi ∈ Rn and 

σi ∈ R are the center and width of NN respectively, ε(Xk) presents the approximation 
error. Denote the bounds of W∗ and ε(Xk) as εW and ε0, respectively, i.e.,

|| 
||W∗|| 

|| ≤ εW (5.21) 

|ε(Xk)| ≤ ε0 (5.22) 

where, εW and ε0 are unknown constants. 
Consequently, we can determine 

Ψk = Ŵ 
T 
k φ 
( 
X̂k 

) 
(5.23) 

where, Ŵ k(t) is the estimated value of W∗(t). Define the error of estimation as 
W̃ k = Ŵ k − W∗, then we can have the following relation 

2zT k PB[F(Xk) − Ψk] 

= 2zT k PB  
[ 
W∗T φ(Xk) + ε(Xk) − Ŵ 

T 
k φ 
( 
X̂k 

)] 

= 2zT k PB  
[ 
W∗T φ(Xk) − W∗T (t)φ 

( 
X̂k 

) 
+ ε(Xk) + W∗T φ 

( 
X̂k 

) 
− Ŵ 

T 
k φ 
( 
X̂k 

)] 

= 2zT k PB  
[ 
W∗T φ̃ 

( 
Xk, X̂k 

) 
+ ε(Xk) − W̃ 

T 
k φ 
( 
X̂k 

)] 
(5.24) 

where, 

φ̃ 
( 
Xk, X̂k 

) 
= φ(Xk) − φ 

( 
X̂k 

) 
(5.25) 

Based on the form of RBF NN radial basis function, we know that φ̃ 
( 
Xk, X̂k 

) 
is 

bounded which satisfies φ̃ T 
( 
Xk, X̂k 

) 
φ̃ 
( 
Xk, X̂k 

) 
≤ 4l. Then according to Young’s 

inequality it is clear that 

2zT k PB  
[ 
W∗T φ̃ 

( 
Xk, X̂k 

) 
+ ε(Xk) 

] 
≤ 

2 

λ 
zT k P PT zk + 4λlε2 W + λε2 0 (5.26) 

−2zT k PB  W̃ 
T 
k φ 
( 
X̂k 

) 
= −2zT k CCT( CCT + δ In 

)−1 
PB  W̃ 

T 
k φ 
( 
X̂k 

) 

− 2zT k δ In 
( 
CCT + δ In 

)−1 
PB  W̃ 

T 
k φ 
( 
X̂k 

) 

≤ −2z1,k CT( CCT + δ In 
)−1 

PB  W̃ 
T 
k φ 
( 
X̂k 

)
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+ zT k P PT zk 
|| 
||CCT + δ In 

|| 
||2 

+ δ2 l W̃ 
T 
k W̃ k (5.27) 

where, δ >  0 is a small positive constant. 
Substituting (5.26) and (5.27) back into (5.19) and using (5.9), it follows that 

V̇zk + V̇Uk ≤ zT k 

( 

AT P + P A  + 
n + 3 

λ 
P PT + P PT 

|| 
||CCT + δ In 

|| 
||2 

) 

zk 

− 2z1,k CT( CCT + δ In 
)−1 

PB  W̃ 
T 
k φ 
( 
X̂k 

) 

+ 
λ 

(1 − κ) 

n∑ 

j=1 

ρ2 
j (yk) + λD2 

0 + 4λlε2 W + λε2 0 + δ2 l W̃ 
T 
k W̃ k 

≤ −zT k Qzk − 2z1,k CT( CCT + δ In 
)−1 

PB  W̃ 
T 
k φ 
( 
X̂k 

) 

+ λ 
(1 − κ) 

n∑ 

j=1 

ρ2 
j (yk) + λD2 

0 + 4λlε2 W + λε2 0 + δ2 l W̃ 
T 
k W̃ k 

≤ −λmin( Q)||zk||2 − 2z1,k CT( CCT + δ In 
)−1 

PB  W̃ 
T 
k φ 
( 
X̂k 

) 

+ λ 
(1 − κ) 

n∑ 

j=1 

ρ2 
j (yk) + λD2 

0 + 4λlε2 W + λε2 0 + δ2 l W̃ 
T 
k W̃ k (5.28) 

where, λmin( Q) denotes the minimum eigenvalue of matrix Q. 

5.3.2 NN AILC Scheme Design 

Define errors as e1,k = x̂1,k−yd , ei,k = x̂i,k−y(i−1) 
d , i = 2, . . . ,  n, i.e., ek = X̂k−Xd . 

Make the following assumptions on initial conditions. 

Assumption 5.2 zi,k(0) = 0, i = 1, 2, . . . ,  n. 

Assumption 5.3 Identical initial condition is not necessary for ei,k(0), that is, the 
initial state errors ei,k(0) at each iteration are not necessarily zero, small or fixed, but 
assumed to be bounded. 

Similar to previous chapters, define errors esk and sk . To facilitate following 
controller design, we give the dynamic equation of ek as follows 

ėi,k = ei+1,k + ki z1,k, i = 1, . . . ,  n − 1 (5.29) 

ėn,k = knz1,k + vk + Ŵ 
T 
k φ 
( 
X̂k 

) 
− y(n) 

d (5.30)
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Choose the Lyapunov function for tracking error as Vsk = s2 k 
/ 
2, taking the time 

derivative of Vsk yields 

V̇sk = sk ṡk 

= 

⎧ 
⎪⎨ 

⎪⎩ 

sk( ̇esk − η̇(t)), i f  esk > η(t) 
0 ,i f  |esk | ≤ η(t) 
sk( ̇esk + η̇(t)), i f  esk < −η(t) 

= sk(ėsk − η̇(t)sgn(sk)) 

= sk 

⎡ 

⎣ 
n−1∑ 

j=1 

( 
λ j e j+1,k + λ j k j z1,k 

) + K η(t)sgn(sk) 

−y(n) 
d + knz1,k + Ŵ 

T 

k φ 
( 
X̂k 

) 
+ vk 

] 

= sk 

⎡ 

⎣ 
n−1∑ 

j=1 

λ j e j+1,k + 
[ 
ɅT 1 

] 
K0z1,k + Kesk 

−y(n) 
d + Ŵ 

T 

k φ 
( 
X̂k 

) 
+ vk 

] 
− Ks2 k (5.31) 

Choose the Lyapunov function of the whole system as Vk = Vzk + VUk + Vsk . 
Combining (5.28) and (5.31), it follows that 

V̇k ≤ −λmin( Q)||zk||2 − 2z1,k CT( CCT + δ In 
)−1 

PB  W̃ 
T 
k φ 
( 
X̂k 

) 

+ λ 
(1 − κ) 

n∑ 

j=1 

ρ2 
j (yk) + λD2 

0 + 4λlε2 W + λε2 0 + δ2 l W̃ 
T 
k W̃ k 

= sk 

⎡ 

⎣ 
n−1∑ 

j=1 

λ j e j+1,k + 
[ 
ΛT 1 

] 
K0z1,k + Kesk − y(n) 

d + Ŵ 
T 
k φ 
( 
X̂k 

) 
+ vk 

⎤ 

⎦ − Ks2 k 

(5.32) 

For convenience of expression, denote .(yk) � λ 
(1−κ) 

∑n 
j=1 ρ

2 
j (yk)+λD2 

0+4λlε2 W + 
λε2 0 . Employing the hyperbolic tangent function, Eq. (5.32) turns into 

V̇k ≤ −λmin( Q)||zk||2 − 2z1,k CT( CCT + δ In 
)−1 

PB  W̃ 
T 
k φ 
( 
X̂k 

) 
+ δ2 l W̃ 

T 
k W̃ k 

+ sk 

⎡ 

⎣ 
n−1∑ 

j=1 

λ j e j+1,k + 
[ 
ΛT 1 

] 
K0z1,k + Kesk − y(n) 

d + Ŵ 
T 
k φ 
( 
X̂k 

) 
+
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vk + b 
tanh2 

( 
sk 
/ 

η(t) 
) 

sk 
.(yk) 

[ 

+ 
[ 
1 − b tanh2 

( 
sk 
/ 

η(t) 
)] 

.(yk) − Ks2 k 

(5.33) 

Obviously, λ 
(1−κ) 

∑n 
j=1 ρ

2 
j (yk) is continuous and well-defined on the compact set 

Ωy = {yk} ⊂ R. Hence, it can be approximated by a NN with constant weight as 
follows 

λ 
(1 − κ) 

n∑ 

j=1 

ρ2 
j (yk) = W∗T 

. φ.(yk) + ε.(yk) 

where, the estimation error satisfies |ε.(yk)| ≤ ε., W∗ 
. ∈ Rl. denotes the optimal 

weight vector, φ.(yk) ∈ Rl. is Gaussian basis function vector, l. is the number of 
neurons. Then .(yk) can be rewritten as follows 

.(yk) = W∗T 
. φ.(yk) + ε.(yk) + λD2 

0 + 4λlε2 W + λε2 0 (5.34) 

For simplicity of expression, denote μ � ε.(yk) + λD2 
0 + 4λlε2 W + λε2 0 . Then we 

can further rewrite .(yk) as .(yk) = W∗T 
2 φ2(yk), W

∗ 
2 = 

[ 
W∗T 

. , μ  
]T 
, φ2(yk) =

[ 
φT 

.(yk), 1 
]T 
. 

Until now, we can design output feedback controller as 

vk = −  
n−1∑ 

j=1 

λ j e j+1,k − 
[ 
ΛT 1 

] 
K0z1,k − Kesk + y(n) 

d 

− Ŵ 
T 
k φ 
( 
X̂k 

) 
− b Ŵ 

T 
2,kφ2(yk) tanh2 

( 
sk 
/ 

η(t) 
)/ 

sk (5.35) 

where, Ŵ k and Ŵ 2,k are the estimated values of W∗ and W∗ 
2, respectively. 

Design adaptive learning laws for Ŵ k(t) and Ŵ 2,k as follows 

⎧ 
(1 − γ1) ˙̂W k = −γ1 Ŵ k − γ1α1 Ŵ k + γ1 Ŵ k−1 + 2q1z1,k CT( CCT + δ In 

)−1 
PBφ 

( 
X̂k 

) 

Ŵ k (0) = Ŵ k−1(T ), Ŵ0(t) = 0, t ∈ [0, T ] 
(5.36) 

⎧ 
(1 − γ2) ˙̂W 2,k = −γ2 Ŵ 2,k + γ2 Ŵ 2,k−1 + q2b tanh2 

( 
sk 
/ 

η(t) 
) 
φ2(yk) 

Ŵ 2,k(0) = Ŵ 2,k−1(T ), Ŵ 2,0(t) = 0, t ∈ [0, T ] 
(5.37) 

where, q1, q2 > 0, 0 < γ1, γ2 < 1 and α1 > 0 are all design parameters. 
Define parameter estimation errors as W̃ k = Ŵ k − W∗, W̃ 2,k = Ŵ 2,k − W∗ 

2,k . 
Substituting controller (5.35) back into (5.33) leads to 

V̇k ≤ −λmin( Q)||zk||2 − 2z1,k CT( CCT + δ In 
)−1 

PB  W̃ 
T 
k φ 
( 
X̂k 

) 
+ δ2 l W̃ 

T 
k W̃ k
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− b W̃ 
T 
2,kφ2(yk) tanh2 

( 
sk 
/ 

η(t) 
) + 

[ 
1 − b tanh2 

( 
sk 
/ 

η(t) 
)] 

.(yk) − Ks2 k 
(5.38) 

Fro proceeding analysis, we write Eq. (5.38) in the following form 

2z1,k CT( CCT + δ In 
)−1 

PB  W̃ 
T 
k φ 
( 
X̂k 

) 
+ b W̃ 

T 
2,kφ2(yk) tanh2

( 
sk 
/ 

η(t) 
) ≤ 

− V̇k − λmin( Q)||zk||2 + 
[ 
1 − b tanh2 

( 
sk 
/ 

η(t) 
)] 

.(yk) − Ks2 k + δ2 l W̃ 
T 
k W̃ k 

(5.39) 

The block diagram of the proposed state observer based adaptive NN ILC scheme 
is presented in Fig. 5.2. 
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Fig. 5.2 The block diagram of the state observer based adaptive NN ILC system
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5.3.3 Stability Analysis 

The convergence and boundedness property of the proposed observer-based AILC 
scheme are summarized in the following theorem. 

Theorem 5.1 Considering the closed-loop system consisting of plant (5.1) and input 
saturation model (5.3) under Assumptions 2.5, 2.6, 3.1, and Assumptions 5.1–5.3 
running on the finite time interval [0, T ] repeatedly, if only the output variable, design 
state observer (5.12), output feedback controller (5.35) with parameter adaptive iter-
ative learning laws (5.36) and (5.37), the following conclusions can be guaranteed: 
(1) for k → ∞,esk(t) will converge to a small neighborhood of the origin under the 
L2 
T -norm, i.e., lim 

k→∞ 

∫ T 
0 (esk)

2 dσ ≤ εesk = 1 2K (1 + m)2 ε2; (2)  the tracking error satis-

fies lim 
k→∞ 

|yk(t) − yd (t)| ≤ min 

⎧ 
k0 
∑n−1 

i=1

/

ε2 i e
−λ0t + (1 + m) εk0 

λ0−K 

( 
e−Kt  − e−λ0t 

) 
, 

[ 
p1 + 1 k1 (Kp1 + p2) 

] 
εe−Kt  

{ 
, where, λ0, k0, p1 and p2 are positive constants and 

will be given later. 

Proof Similar to previous chapters, we will consider two cases according to Lemma 
2.2. 

Case 1. sk ∈ Ωsk . 
In this case,|esk(t)| ≤ (1 + m)η(t). Since Xd (t) is finite, x̂i,k(t) is bounded. 

From adaptive iterative learning laws (5.36) and (5.37) it is clear that for sk(t) ∈ 
Ωsk , Ŵk(t) ∈ L∞ 

T , Ŵ2,k(t) ∈ L∞ 
T , i.e., they have bounds in L

∞ 
T -norm. Based on 

above analysis, we can know that zk and Xk are bounded which naturally leads to 
the boundedness of vk(t). Consequently, all the closed-loop signals are bounded. 
Additionally, from |esk | ≤ (1 + m)η(t) and the definition of ek , we can know that 
e1,k and e2,k lies within small neighborhoods of p1η(t) and p2η(t) respectively with 
p1 and p2 being small constants, i.e., 

| 
|e1,k 

| 
| ≤ p1η(t), 

| 
|e2,k 

| 
| ≤ p2η(t). Then it can 

be derived that 
| 
|ė1,k 

| 
| ≤ p1K η(t) which further leads to according to (5.29) 

k1 
| 
|z1,k 

| 
| ≤ 

| 
|e2,k 

| 
| + 

| 
|ė1,k 

| 
| = (Kp1 + p2)εe−Kt  (5.40) 

It means that 

|yk − yd | = 
| 
|z1,k + e1,k 

| 
| ≤ 

| 
|z1,k 

| 
| + 

| 
|e1,k 

| 
| ≤ 

[ 
p1 + 

1 

k1 
(Kp1 + p2) 

] 
εe−Kt  (5.41) 

Case 2. sk(t) /∈ Ωsk . 
According to Lemma 2.2, Eq.  (5.38) changes to 

2z1,k CT( CCT + δ In 
)−1 

PB  W̃ 
T 
k φ 
( 
X̂k 

) 
+ b W̃ 

T 
2,kφ2(yk) tanh2 

( 
sk 
/ 

η(t) 
) 

≤ −  ̇Vk − λmin( Q)||zk||2 − Ks2 k + δ2 l W̃ 
T 
k W̃ k (5.42)
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Next we will check the stability of the system by using CEF-based analysis. 
Choose the following CEF 

Ek(t) = 
γ1 

2q1 

t∫ 

0 

W̃ 
T 
k W̃ kdσ + 

(1 − γ1) 
2q1 

W̃ 
T 
k W̃ k 

+ 
γ2 

2q2 

t∫ 

0 

W̃ 
T 
2,k W̃ 2,kdσ + 

(1 − γ2) 
2q2 

W̃ 
T 
2,k W̃ 2,k (5.43) 

Similarly, we separate the following proof into five parts. 
(1) The difference of Ek(t). 
From (5.43) we can compute the difference of Ek(t) as follows

 ΔEk(t) = Ek(t) − Ek−1(t) 

= 
γ1 

2q1 

t∫ 

0 

[ 
W̃ 

T 
k W̃ k − W̃ 

T 
k−1 W̃ k−1 

] 
dσ + 

(1 − γ1) 
2q1 

[ 
W̃ 

T 
k W̃ k − W̃ 

T 
k−1 W̃ k−1 

] 

+ 
γ2 

2q2 

t∫ 

0 

[ 
W̃ 

T 
2,k W̃ 2,k − W̃ 

T 
2,k−1 W̃ 2,k−1 

] 
dσ 

+ 
(1 − γ2) 
2q2 

[ 
W̃ 

T 
2,k W̃ 2,k − W̃ 

T 
2,k−1 W̃ 2,k−1 

] 
(5.44) 

Recalling adaptive iterative learning law (5.36) and using the relationship 

2 W̃ 
T 
k Ŵ k ≥ W̃ 

T 
k W̃ k − W *T W∗ we can get 

γ1 

2q1 

t∫ 

0 

[ 
W̃ 

T 
k W̃ k − W̃ 

T 
k−1 W̃ k−1 

] 
dσ + 

(1 − γ1) 
2q1 

[ 
W̃ 

T 
k W̃ k − W̃ 

T 
k−1 W̃ k−1 

] 

= 
γ1 

2q1 

t∫ 

0 

[ 
W̃ 

T 
k W̃ k − W̃ 

T 
k−1 W̃ k−1 

] 
dσ + 

(1 − γ1) 
q1 

t∫ 

0 

W̃ 
T 
k 
˙̃W kdσ 

+ 
(1 − γ1) 
2q1 

[ 
W̃ 

T 
k (0) W̃ k(0) − W̃ 

T 
k−1 W̃ k−1 

] 

= 
t∫ 

0 

2z1,k CT( CCT + δ In 
)−1 

PB  W̃ 
T 
k φ 
( 
X̂k 

) 
dσ 

− 
γ1 

q1 

t∫ 

0 

W̃ 
T 
k 

( 
α1 Ŵ k + Ŵ k − Ŵ k−1 

) 
dσ
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+ 
γ1 

2q1 

t∫ 

0 

[ 
W̃ 

T 
k W̃ k − W̃ 

T 
k−1 W̃ k−1 

] 
dσ 

+ 
(1 − γ1) 
2q1 

[ 
W̃ 

T 
k (0) W̃ k(0) − W̃ 

T 
k−1 W̃ k−1 

] 

= 
t∫ 

0 

2z1,k CT( CCT + δ In 
)−1 

PB  W̃ 
T 
k φ 
( 
X̂k 

) 
dσ 

− 
α1γ1 

q1 

t∫ 

0 

W̃ 
T 
k Ŵ kdσ − 

γ1 

q1 

t∫ 

0 

W̃ 
T 
k 

( 
W̃ k − W̃ k−1 

) 
dσ 

+ 
γ1 

2q1 

t∫ 

0 

[ 
W̃ 

T 
k W̃ k − W̃ 

T 
k−1 W̃ k−1 

] 
dσ 

+ 
(1 − γ1) 
2q1 

[ 
W̃ 

T 
k (0) W̃ k(0) − W̃ 

T 
k−1 W̃ k−1 

] 

= 
t∫ 

0 

2z1,k CT( CCT + δ In 
)−1 

PB  W̃ 
T 
k φ 
( 
X̂k 

) 
dσ − 

α1γ1 

q1 

t∫ 

0 

W̃ 
T 
k Ŵ kdσ 

− 
γ1 

2q1 

t∫ 

0 

( 
W̃ k − W̃ k−1 

)T( 
W̃ k − W̃ k−1 

) 
dσ 

+ 
(1 − γ1) 
2q1 

[ 
W̃ 

T 
k (0) W̃ k(0) − W̃ 

T 
k−1 W̃ k−1 

] 

≤ 
t∫ 

0 

2z1,k CT( CCT + δ In 
)−1 

PB  W̃ 
T 
k φ 
( 
X̂k 

) 
dσ 

− 
α1γ1 

2q1 

t∫ 

0 

W̃ 
T 
k W̃ kdσ + 

α1γ1 

2q1 

t∫ 

0 

|| 
||W∗|| 

||2 dσ 

+ 
(1 − γ1) 
2q1 

[ 
W̃ 

T 
k (0) W̃ k(0) − W̃ 

T 
k−1 W̃ k−1 

] 
(5.45) 

Similarly, from adaptive iterative learning law (5.37) we can have 

γ2 

2q2 

t∫ 

0 

[ 
W̃ 

T 
2,k W̃ 2,k − W̃ 

T 
2,k−1 W̃ 2,k−1 

] 
dσ 

+ 
(1 − γ2) 
2q2 

[ 
W̃ 

T 
2,k W̃ 2,k − W̃ 

T 
2,k−1 W̃ 2,k−1 

]
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≤ 
t∫ 

0 

b tanh2 
( 
sk 
/ 

η 
) 
W̃ 

T 
2,kφ2(yk)dσ 

+ 
(1 − γ2) 
2q2 

[ 
W̃ 

T 
2,k(0) W̃ 2,k(0) − W̃ 

T 
2,k−1 W̃ 2,k−1 

] 
(5.46) 

Substituting (5.45) and (5.46) back into (5.44), it results in

 ΔEk(t) ≤ 
t∫ 

0 

2z1,k CT( CCT + δ In 
)−1 

PB  W̃ 
T 
k φ 
( 
X̂k 

) 
dσ 

+ 
t∫ 

0 

b tanh2 
( 
sk 
/ 

η 
) 
W̃ 

T 
2,kφ2(yk)dσ 

− 
α1γ1 

2q1 

t∫ 

0 

W̃ 
T 
k W̃ kdσ + 

α1γ1 

2q1 

t∫ 

0 

|| 
||W∗|| 

||2 dσ 

+ 
(1 − γ1) 
2q1 

[ 
W̃ 

T 
k (0) W̃ k(0) − W̃ 

T 
k−1 W̃ k−1 

] 

+ 
(1 − γ2) 
2q2 

[ 
W̃ 

T 
2,k(0) W̃ 2,k(0) − W̃ 

T 
2,k−1 W̃ 2,k−1 

] 

≤ −Vk(t) + Vk(0) − K 
t∫ 

0 

s2 k dσ 

− λmin( Q) 
t∫ 

0 

||zk||2 dσ − 
t∫ 

0 

( 
α1γ1 

2q1 
− lδ2 

) 
W̃ 

T 
k W̃ kdσ 

+ 
α1γ1 

2q1 

t∫ 

0 

|| 
||W∗|| 

||2 dσ + 
(1 − γ1) 
2q1 

[ 
W̃ 

T 
k (0) W̃ k(0) − W̃ 

T 
k−1 W̃ k−1 

] 

+ 
(1 − γ2) 
2q2 

[ 
W̃ 

T 
2,k(0) W̃ 2,k(0) − W̃ 

T 
2,k−1 W̃ 2,k−1 

] 
(5.47) 

Choose suitable parameters such that α1γ1 
/ 
2q1 − lδ2 > 0, then (5.47) further 

changes to

 ΔEk(t) ≤ −Vk(t) + Vk(0) − K 
t∫ 

0 

s2 k dσ
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− λmin( Q) 
t∫ 

0 

||zk||2 dσ + 
α1γ1 

2q1 

t∫ 

0 

|| 
||W∗|| 

||2 dσ 

+ 
(1 − γ1) 
2q1 

[ 
W̃ 

T 
k (0) W̃ k(0) − W̃ 

T 
k−1 W̃ k−1 

] 

+ 
(1 − γ2) 
2q2 

[ 
W̃ 

T 
2,k(0) W̃ 2,k(0) − W̃ 

T 
2,k−1 W̃ 2,k−1 

] 
(5.48) 

According to Assumption 5.2 and Assumption 5.3, we know Vk(0) = 0. Letting 
t = T in (5.48), from Ŵ k(0) = Ŵ k−1(T ), Ŵ 1(0) = 0, Ŵ 2,k(0) = Ŵ 2,k−1(T ), 
Ŵ 2,1(0) = 0, we can obtain

 ΔEk(T ) ≤ −Vk(T ) − K 
T∫ 

0 

s2 k dσ − λmin( Q) 
T∫ 

0 

||zk||2 dσ + 
α1γ1 

2q1 

|| 
||W∗|| 

||2 T 

≤ −K 

T∫ 

0 

s2 k dσ − λmin( Q) 
T∫ 

0 

||zk||2 dσ + 
α1γ1 

2q1 

|| 
||W∗|| 

||2 T (5.49) 

(2) The boundedness of Ek(T ). 
From (5.43) it is clear that 

E1(t) = 
γ1 

2q1 

t∫ 

0 

W̃ 
T 
1 W̃ 1dσ + 

(1 − γ1) 
2q1 

W̃ 
T 
1 W̃ 1 

+ 
γ2 

2q2 

t∫ 

0 

W̃ 
T 
2,1 W̃ 2,1dσ + 

(1 − γ2) 
2q2 

W̃ 
T 
2,1 W̃ 2,1 (5.50) 

Taking the time derivative of E1(t) it yields 

Ė1(t) = 
γ1 

2q1 
W̃ 

T 
1 W̃ 1 + 

(1 − γ1) 
q1 

W̃ 
T 
1 
˙̃W 1 + 

γ2 

2q2 
W̃ 

T 
2,1 W̃ 2,1 + 

(1 − γ2) 
q2 

W̃ 
T 
2,1 

˙̃W 2,1 

(5.51) 

Considering parameter adaptive iterative learning laws, we have (1 − γ1) ˙̂W 1 = 
−γ1 Ŵ 1 − γ1α1 Ŵ 1 + 2q1z1,1CT( CCT + δ In 

)−1 
PBφ 

( 
X̂1 

) 
, (1 − γ ) ˙̂W 2,1 = 

−γ Ŵ 2,1+ q2b tanh2 
( 
s1 
/ 

η(t) 
) 
φ2(y1). Therefore we have 

γ1 

2q1 
W̃ 

T 
1 W̃ 1 + 

(1 − γ1) 
q1 

W̃ 
T 
1 
˙̃W 1 = 

γ1 

2q1 
W̃ 

T 
1 W̃ 1 − 

γ1 

q1 
W̃ 

T 
1 Ŵ 1 − 

α1γ1 

q1 
W̃ 

T 
1 Ŵ 1
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+ 2z1,1CT( CCT + δ In 
)−1 

PB  W̃ 
T 
1 φ 
( 
X̂1 

) 

= 
γ1 

2q1 

[ 
W̃ 

T 
1 W̃ 1 − 2 W̃ 

T 
1 Ŵ 1 + Ŵ 

T 
1 Ŵ 1 

] 
− 

γ1 

2q1 
Ŵ 

T 
1 Ŵ 1 − 

α1γ1 

q1 
W̃ 

T 
1 Ŵ 1 

+ 2z1,1CT( CCT + δ In 
)−1 

PB  W̃ 
T 
1 φ 
( 
X̂1 

) 

≤ 
γ1 

2q1 

[ 
Ŵ 1 − W̃ 1 

]T[ 
Ŵ 1 − W̃ 1 

] 
− 

α1γ1 

2q1 
W̃ 

T 
1 W̃ 1 + 

α1γ1 

2q1 
W *T W∗ 

+ 2z1,1CT( CCT + δ In 
)−1 

PB  W̃ 
T 
1 φ 
( 
X̂1 

) 

≤ (1 + α1) 
γ1 

2q1 
W *T W∗ 

+ 2z1,1CT( CCT + δ In 
)−1 

PB  W̃ 
T 
1 φ 
( 
X̂1 

) 
− 

α1γ1 

2q1 
W̃ 

T 
1 W̃ 1 (5.52) 

γ 
2q2 

W̃ 
T 
2,1 W̃ 2,1 + 

(1 − γ )  
q2 

W̃ 
T 
2,1 

˙̃W 2,1 = 
γ 
2q2 

W̃ 
T 
2,1 W̃ 2,1 − 

γ 
q2 

W̃ 
T 
2,1 Ŵ 2,1 

+ b tanh2 
( 
s1 
/ 

η(t) 
) 
W̃ 

T 
2,1φ2(y1) 

= 
γ 
2q2 

[ 
W̃ 

T 
2,1 W̃ 2,1 − 2 W̃ 

T 
2,1 Ŵ 2,1 + Ŵ 

T 
2,1 Ŵ 2,1 

] 

− 
γ 
2q2 

Ŵ 
T 
2,1 Ŵ 2,1 + b tanh2 

( 
s1 
/ 

η(t) 
) 
W̃ 

T 
2,1φ2(y1) 

≤ 
γ 
2q2 

[ 
Ŵ 2,1 − W̃ 2,1 

]T[ 
Ŵ 2,1 − W̃ 2,1 

] 

+ b tanh2 
( 
s1 
/ 

η(t) 
) 
W̃ 

T 
2,1φ2(y1) 

= 
γ 
2q2 

W *T 
2 W

∗ 
2 + b tanh2 

( 
s1 
/ 

η(t) 
) 
W̃ 

T 
2,1φ2(y1) (5.53) 

Considering above two inequalities, Ė1(t) becomes 

Ė1(t) ≤ (1 + α1) 
γ1 

2q1 
W *T W∗ + 

γ 
2q2 

W *T 
2 W

∗ 
2 

+ 2z1,1CT( CCT + δ In 
)−1 

PB  W̃ 
T 
1 φ 
( 
X̂1 

) 

+ b tanh2 
( 
s1 
/ 

η(t) 
) 
W̃ 

T 
2,1φ2(y1) − 

α1γ1 

2q1 
W̃ 

T 
1 W̃ 1 

≤ −  ̇V1 − λmin( Q)||z1||2 − Ks2 1 + (1 + α1) 
γ1 

2q1 
W *T W∗ 

+ 
γ 
2q2 

W *T 
2 W

∗ 
2 − 

( 
α1γ1 

2q1 
− lδ2 

) 
W̃ 

T 
1 W̃ 1 

≤ −  ̇V1 − λmin( Q)||z1||2 − Ks2 1 + (1 + α1) 
γ1 

2q1 
W *T W∗ + 

γ 
2q2 

W *T 
2 W

∗ 
2 

(5.54)
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For convenience of expression, denote c = (1 + α1) γ1 2q1 
W *T W∗ + γ 

2q2 
W *T 

2 W
∗ 
2. 

Integrating (5.54) over [0, t] leads to 

E1(t) − E1(0) ≤ −V1(t) + V1(0) − λmin( Q) 
t∫ 

0 

||z1||2 dσ − 
t∫ 

0 

Ks2 1 (σ )dσ + ct 

(5.55) 

From Ŵ 1(0) = Ŵ 2,1(0) = 0 it is clear that 

E1(0) = 
(1 − γ1) 
2q1 

W̃ 
T 
1 (0) W̃ 1(0) + 

(1 − γ2) 
2q2 

W̃ 
T 
2,1(0) W̃ 2,1(0) 

= 
(1 − γ1) 
2q1 

|| 
||W∗|| 

||2 + 
(1 − γ2) 
2q2 

|| 
||W∗ 

2 

|| 
||2 (5.56) 

So we have 

E1(t) ≤ ct + 
(1 − γ1) 
2q1 

|| 
||W∗|| 

||2 + 
(1 − γ2) 
2q2 

|| 
||W∗ 

2 

|| 
||2 , t ∈ [0, T ] (5.57) 

Therefore, E1(t) is bounded on [0, T ]. Letting t = T in above inequality, we can 
obtain the boundedness of E1(T ): 

E1(T ) ≤ cT + 
(1 − γ1) 
2q1 

|| 
||W∗|| 

||2 + 
(1 − γ2) 
2q2 

|| 
||W∗ 

2 

|| 
||2 < ∞ (5.58) 

Choose α1 =  Δk with { Δk} as a convergent sequence. Here we determine  Δk =
q 
k p , where p and q are design parameters satisfying q(∈ R) > 0, p(∈ Z+) ≥ 2.  Δk 

has the following property. 

Property 5.1 limk→∞ 
k∑ 
j=1

 Δ j ≤ 2q. 

Proof When j − 1 ≤ x ≤ j , 1 
j p ≤ 1 

x p . So we have  

1 

j p 
= 

j∫ 

j−1 

1 

j p 
dx ≤ 

j∫ 

j−1 

1 

x p 
dx, ( j = 2, 3, . . .) 

Then the partial sum of the series 
( 
1 + 1 

2p +  · · ·  +  1 k p +  · · ·) is bounded by 

Sk = 1 + 
k∑ 

j=2 

1 

j p 
≤ 1 + 

k∑ 

j=2 

j∫ 

j−1 

1 

x p 
dx



5.3 State Observer-Based AILC Design and Stability Analysis 129

= 1 + 
k∫ 

1 

1 

x p 
dx = 1 + 1 

p − 1 

( 
1 − 1 

k p−1 

) 
< 1 + 

1 

p − 1 

(k = 2, 3, . . .)  

Obviously, the sequence {Sk} is bounded. Since p(∈ Z+) ≥ 2, then it is clear that 

lim 
k→∞ 

k∑ 
j=1

 Δ j ≤ 2q. 

Adding Eq. (5.49) repeatedly yields 

Ek(T ) = E1(T ) + 
k∑ 

j=2

 ΔE j (T ) 

≤ E1(T ) − K 
k∑ 

j=2 

T∫ 

0 

s2 j dσ − λmin(Q) 
k∑ 

j=2 

T∫ 

0 

|| 
||z j 

|| 
||2 dσ 

+ 
γ1 

2q1 
T 
|| 
||W∗|| 

||2 
k∑ 

j=2

 Δk (5.59) 

According to Property 5.1 we can know 
∑k 

j=1  Δk ≤ limk→∞ 
∑k 

j=1  Δk ≤ 2q, 
consequently, Ek(T ) is bounded. 

(3) The boundedness of Ek(t). 
Next we will prove the boundedness of by induction method. Firstly, we separate 

Ek(t) into two parts 

E1 
k (t) = 

γ1 

2q1 

t∫ 

0 

W̃ 
T 
k W̃ kdσ + 

γ2 

2q2 

t∫ 

0 

W̃ 
T 
2,k W̃ 2,kdσ (5.60) 

E2 
k (t) = 

(1 − γ1) 
2q1 

W̃ 
T 
k W̃ k + 

(1 − γ2) 
2q2 

W̃ 
T 
2,k W̃ 2,k (5.61) 

The boundedness of Ek(T ) is guaranteed for all iterations. Consequently, for all 
∀k ∈ N , there exist two constants M1 and M2 satisfying 

E1 
k (t) ≤ E1 

k (T ) ≤ M1 < ∞ (5.62) 

E2 
k (T ) ≤ M2 (5.63) 

Then, we have 

Ek(t) = E1 
k (t) + E2 

k (t) ≤ M1 + E2 
k (t) (5.64)
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On the other hand, from (5.48) it follows

 ΔEk+1(t) <
 Δkγ1 

2q1 

t∫ 

0 

|| 
||W∗|| 

||2 dσ + 
(1 − γ1) 
2q1 

[ 
W̃ 

T 
k (0) W̃ k(0) − W̃ 

T 
k−1 W̃ k−1 

] 

+ 
(1 − γ2) 
2q2 

[ 
W̃ 

T 
2,k(0) W̃ 2,k(0) − W̃ 

T 
2,k−1 W̃ 2,k−1 

] 

≤  Δkγ1 

2q1 

t∫ 

0 

|| 
||W∗|| 

||2 dσ + M2 − E2 
k (t) (5.65) 

Combining (5.64) and (5.65) results in 

Ek+1(t) = Ek(t) +  ΔEk+1(t) ≤ M1 + M2 +  Δkγ1 

2q1 

t∫ 

0 

|| 
||W∗|| 

||2 dσ (5.66) 

As we have got the boundedness of E1(t), therefore Ek(t) is finite according to 
induction principle. Furthermore, we can obtain the boundedness of Ŵ k and Ŵ 2,k . 

(4) Learning convergence property 
From (5.59) it is followed by 

k∑ 

j=2 

T∫ 

0 

s2 j dσ ≤ 
1 

K 

⎛ 

⎝E1(T ) − Ek(T ) + 
γ1T 

2q1 

|| 
||W∗|| 

||2 
k∑ 

j=2

 Δk 

⎞ 

⎠ 

≤ 
1 

K 

⎛ 

⎝E1(T ) + 
γ1T 

2q1 
ε2 W 

k∑ 

j=2

 Δk 

⎞ 

⎠ (5.67) 

lim 
k→∞ 

k∑ 

j=2 

T∫ 

0 

|| 
||z j 

|| 
||2 dσ ≤ 1 

λmin( Q) 

⎛ 

⎝E1(T ) + 
γ1T 

2q1 
ε2 W 

k∑ 

j=2

 Δk 

⎞ 

⎠ (5.68) 

Taking the limitation of the above two inequalities leads to 

lim 
k→∞ 

k∑ 

j=2 

T∫ 

0 

s2 j (σ )dσ ≤ lim 
k→∞ 

1 

K 

⎛ 

⎝E1(T ) + 
γ1T 

2q1 
ε2 W 

k∑ 

j=2

 Δk 

⎞ 

⎠ 

= 
1 

K 

( 
E1(T ) + 

γ1Tq  

q1 
ε2 W 

) 
(5.69)
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lim 
k→∞ 

k∑ 

j=2 

T∫ 

0 

|| 
||z j 

|| 
||2 dσ ≤ 1 

λmin( Q) 

( 
E1(T ) + 

γ1Tq  

q1 
ε2 W 

) 
(5.70) 

Since E1(T ) is bounded, according to the convergence theorem of the sum 
of series we have lim 

k→∞ 

∫ T 
0 s

2 
k (σ )dσ = 0, lim 

k→∞ 

∫ T 
0 ||zk||2 dσ = 0. Obviously, 

lim 
k→∞ 

∫ T 
0 

( 
yk − ŷk 

)2 
dσ ≤ lim 

k→∞ 

∫ T 
0 ||zk||2 dσ = 0, ∀t ∈ [0, T ]. Additionally, 

lim 
k→∞ 

∫ T 
0 s

2 
k (σ )dσ = 0 means lim 

k→∞ 

∫ T 
0 |sk(σ )|dσ = 0 which implies that 

lim 
k→∞ 

∫ T 
0 |esk (σ )|dσ ≤ 

∫ T 
0 η(σ )dσ , lim 

k→∞ 

∫ T 
0 (esk (σ ))2 dσ ≤ 

∫ T 
0 η2(σ )dσ . From  

∫ t 
0 s

2 
k (σ )dσ ≤ 

∫ T 
0 s

2 
k (σ )dσ and 

∫ t 
0 ||zk(σ )||2 dσ ≤ 

∫ T 
0 ||zk(σ )||2 dσ , it is known that 

sk(t) and ||zk|| are bounded in L2 
T -norm, which shows that xk (t) and x̂k(t) are bounded 

as well. Based on above reasoning, we arrive at the fact that vk(t) is bounded. 
Synthesizing the discussions in two cases, we can draw the conclusion that, 

for two cases, the proposed control algorithm is able to guarantee that all 
closed-loop signals are bounded, lim 

k→∞ 

∫ T 
0 ||zk||2 dσ = 0, lim 

k→∞ 

∫ T 
0 (esk)

2 dσ ≤ εe, 

εe = 
∫ T 
0 ((1 + m)η1(σ ))2 dσ = 1 

2K (1 + m)2 ε2 
( 
1 − e−2KT  

) ≤ 1 
2K (1 + m)2 ε2 = 

εesk . Furthermore, the bound of es∞(t) will satisfy lim 
k→∞ 

|esk(t)| = es∞(t) = 

(1 + m)εe−Kt , ∀t ∈ [0, T ]. 

(5) Transient Performance 
Define the vector ζ k(t) = 

[ 
e1,k(t), e2,k (t), . . . ,  en−1,k (t) 

]T 
, then the dynamical 

equation of ζ k(t) can be express as 

ζ̇ k(t) = Asζ k(t) + bsesk(t) + K s z1,k (5.71) 

where, 

As = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

0 1  · · · 0 
... 

... 
. . . 

... 
0 0  · · ·  1 

−λ1 −λ2 · · ·  −λn−1 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

∈ R(n−1)×(n−1) , bs = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

0 
... 
0 
1 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

∈ Rn−1 , K s = 

⎡ 

⎢ 
⎣ 

k1 
... 

kn−1 

⎤ 

⎥ 
⎦ 

with As being a stable matrix. In addition, there are two constants k0 > 0 and λ0 > 0 
such that 

|| 
||eAs t 

|| 
|| ≤ k0e−λ0t . The solution of ζ̇ k(t) is 

ζ k(t) = eAs t ζ k(0) + 
t∫ 

0 

eAs (t−σ ) bsesk(σ )dσ + 
t∫ 

0 

eAs (t−σ ) K s z1,k(σ )dσ (5.72) 

Consequently, we have
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|| 
||ζ k(t) 

|| 
|| ≤ k0 

|| 
||ζ k(0) 

|| 
||e−λ0t + k0 

t∫ 

0 

e−λ0(t−σ )|esk(σ )|dσ 

+ k0||K s|| 
t∫ 

0 

e−λ0(t−σ ) | |z1,k(σ ) 
| 
|dσ (5.73) 

If we choose suitable parameters such that λ0 > K , then from lim 
k→∞ 

|esk (t)| ≤ 
(1 + m)η(t), we can know 

|| 
||ζ ∞(t) 

|| 
|| = k0 

|| 
||ζ ∞(0) 

|| 
||e−λ0t + k0 

t∫ 

0 

e−λ0(t−σ )|es∞(σ )|dσ 

+ k0||K s|| 
t∫ 

0 

e−λ0(t−σ ) | |z1,∞(σ ) 
| 
|dσ 

≤ k0 
|| 
||ζ ∞(0) 

|| 
|| + (1 + m)εk0 

t∫ 

0 

e−λ0(t−σ ) e−K σ dσ + 0 

= k0 
|| 
||ζ ∞(0) 

|| 
|| + (1 + m)εk0 

1 

λ0 − K 
( 
e−Kt  − e−λ0t 

) 

≤ k0 
|| 
||ζ ∞(0) 

|| 
|| + 1 

λ0 − K 
(1 + m)εk0 (5.74) 

Noting esk (t) = 
[ 
ɅT 1 

] 
ek(t) and ek(t) = 

[ 
ζ T k (t) en,k(t) 

]T 
, we may further obtain 

||ek(t)|| ≤ 
|| 
||ζ k(t) 

|| 
|| + 

| 
|en,k(t) 

| 
| 

= 
|| 
||ζ k(t) 

|| 
|| + 

| 
|esk(t) − ɅT ζ k(t) 

| 
| 

≤ (1 + ||Ʌ||) || 
||ζ k(t) 

|| 
|| + |esk(t)| (5.75) 

Considering above two inequalities, we can obtain 

||e∞(t)|| ≤ (1 + ||Ʌ||) || 
||ζ ∞(t) 

|| 
|| + |es∞(t)| 

≤ (1 + ||Δ ||) 
( 
k0 
|| 
||ζ ∞(0) 

|| 
|| + 

1 

λ0 − K 
(1 + m)εk0 

) 
+ (1 + m)η(t) 

≤ (1 + ||Ʌ||) 
( 

k0 

n−1∑ 

i=1 

/

ε2 i +
1 

λ0 − K 
(1 + m)εk0 

) 

+ (1 + m)η(t) (5.76) 

Since ζ k(t) = 
[ 
e1,k(t), e2,k (t), . . . ,  en−1,k (t) 

]T 
, then it is clear that
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| 
|e1,k(t) 

| 
| ≤ 

|| 
||ζ k(t) 

|| 
|| ≤ k0 

|| 
||ζ k(0) 

|| 
||e−λ0t + k0 

t∫ 

0 

e−λ0(t−σ )|esk (σ )|dσ (5.77) 

When k → ∞, it can be shown that 

| 
|e1,∞(t) 

| 
| ≤ 

|| 
||ζ ∞(t) 

|| 
|| 

≤ k0 
|| 
||ζ ∞(0) 

|| 
||e−λ0t + k0 

t∫ 

0 

e−λ0(t−σ )|es∞(σ )|dσ 

≤ k0 
|| 
||ζ ∞(0) 

|| 
||e−λ0t + (1 + m)εk0 

t∫ 

0 

e−λ0(t−σ ) e−K σ dσ 

= k0 
|| 
||ζ ∞(0) 

|| 
||e−λ0t + (1 + m)εk0 

1 

λ0 − K 
( 
e−Kt  − e−λ0t 

) 

≤ k0 
n−1∑ 

i=1 

/

ε2 i e
−λ0t + (1 + m)εk0 

1 

λ0 − K 
( 
e−Kt  − e−λ0t 

) 
(5.78) 

Define χ k = 
[ 
χ1,k, . . . , χn,k 

]T = Xk− Xd , then it is clear that χ k = zk+ek . From  

lim 
k→∞ 

∫ T 
0 ||zk||2 dσ = 0 we have lim 

k→∞ 
||zk(t)|| = 0, that is,||z∞(t)|| = 0, t ∈ [0, T ]. 

Consequently, it is obvious that 

|| 
||χ ∞ 

|| 
|| ≤ ||z∞|| + ||e∞|| 

≤ (1 + ||Ʌ||) 
( 

k0 

n−1∑ 

i=1 

/

ε2 i + 
1 

λ0 − K 
(1 + m)εk0 

) 

+ (1 + m)η(t) (5.79) 

| 
|χ1,∞ 

| 
| = |y∞ − yd | 
≤ 
| 
|z1,∞ 

| 
| + 

| 
|e1,∞ 

| 
| 

≤ k0 
n−1∑ 

i=1 

/

ε2 i e
−λ0t + (1 + m)εk0 

1 

λ0 − K 
( 
e−Kt  − e−λ0t 

) 
(5.80) 

This concludes the proof. ⛛ 

5.3.4 Simulation Analysis 

In this section, we present a simulation example to verify the effectiveness of 
proposed control scheme. Consider the following second-order nonlinear time delay
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system with input saturation: 

⎧ 
⎨ 

⎩ 

ẋ1,k(t) = x2,k(t) 
ẋ2,k(t) = f (Xk(t)) + h 

( 
yτ,k(t), t 

) + uk(vk) + d(t) 
yk(t) = x1,k(t) 

(5.81) 

where, 

f (Xk(t)) = −x1,k (t)x2,k(t) sin 
( 
x1,k(t)x2,k(t) 

) 

h 
( 
yτ,k, t 

) = 0.5 sin(t)e−|cos(0.5t)|( yτ1,k sin 
( 
yτ1,k 

) + yτ2,k sin 
( 
yτ2,k 

)) 

The unknown time-varying delays and external disturbance are as same as those 

in Chap. 4. We choose Q = 
[ 
0.001 0 
0 0.002 

] 
. By using Matlab LMI toolbox, we can 

obtain K0 = [3.2894, 2.9764]T and P = 
[ 

0.4741 −0.2848 
−0.2848 0.4741 

] 
. 

5.3.4.1 The Verification of State Observer Based AILC Scheme 

To demonstrate the conclusions in Theorem 5.1, we carry on the following two 
simulation experiments. 

Experiment 1 The desired reference trajectory vector is chosen as Xd (t) = 
[sin t, cos t]T . The design parameters are chosen as ε1 = ε2 = 1, λ = 2, K = 2, 
γ1 = γ2 = 0.5, α1 = 0.03 × 1 

/ 
k2, q1 = 0.5, q1 = 0.5, q2 = 1, ε = λε1 + ε2 = 3. 

The upper bound of saturation input is uM = 1.3. The parameters of two NNs are 
given by l = 30, μ j = 1 l (2 j − l)[2, 3, 2, 3, 3]T , σ j = 1.5, j = 1, 2, . . . ,  l; l. = 15, 
s, σ.j = 1, j = 1, 2, . . . ,  l.. The initial conditions for x1,k (0) and x2,k(0) are gener-
ated on the intervals [−0.5, 0.5] and [0.5, 1.5], respectively. The systems run on 
[0, 4π ] for five times. Part simulation results are presented in Figs. 5.3, 5.4, 5.5, 5.6, 
5.7, 5.8, 5.9 and 5.10.

Figures 5.3 and 5.6 show the trajectories of the observer output and the desired 
reference signal of the first iteration and the tenth iteration, respectively; Figs. 5.4 and 
5.7 present the trajectories of x1,k and x̂1,k . It can be seen that the proposed scheme is 
able to estimate the system states accurately and steer the system output to track the 
desired trajectory, which implies achieving the control objective. By comparing the 
simulation results of the first iteration and the tenth iteration, we can conclude that 
the tracking performance is improved via iterative learning, which is shown clearly 
by the curves of 

∫ T 
0 z

2 
1,k(t)dt and 

∫ T 
0 s

2 
k (t)dt in Figs. 5.9 and 5.10. Figures 5.5 and 

5.8 show the control curves of the first iteration and the tenth iteration, respectively, 
which show the boundedness of control signals and the influence of saturation.



5.3 State Observer-Based AILC Design and Stability Analysis 135

Fig. 5.3 x̂1,k versus yd (k = 
1) 
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Fig. 5.4 x1,k versus x̂1,k (k 
= 1) 
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Fig. 5.5 The input vk and 
output uk of saturation (k = 
1)
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Fig. 5.6 x̂1,k versus yd (k = 
10) 
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Fig. 5.7 x1,k versus x̂1,k (k 
= 10)
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Experiment 2 To show the control performance for more compli-
cated desired trajectory, we choose the desired trajectory as Xd (t) = 
[sin t + sin(0.5t), cos t + 0.5 cos(0.5t)]T . The control parameters remain the 
same as those in Experiment 1. The control input is bounded by uM = 4. The system 
runs on the finite time interval [0, 8π ] for ten iterations. The simulation results are 
presented in Figs. 5.11, 5.12, 5.13, 5.14, 5.15, 5.16, 5.17 and 5.18.

From the simulation curves of the first iteration in Figs. 5.11 and 5.12, it is clear 
that we can’t obtain satisfactory tracking performance and state observer estimation 
effect. Through nine times of learning, the control performance has been improved 
greatly in the tenth iteration in Figs. 5.14 and 5.15. In other words, it has achieved 
the control objective.
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Fig. 5.8 The input vk and 
output uk of saturation (k = 
10) 
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Fig. 5.9 
∫ T 
0 z

2 
1,k (t)dt versus 

the number of iterations
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5.3.4.2 Comparison Analysis: State Observer Based Adaptive NN 
Control 

Experiment 3 Finally, the contribution of the proposed observer based AILC 
scheme is shown by comparing the proposed controller with traditional adaptive 
neural network controller. The form of controller is as same as the proposed scheme, 
but the adaptive laws using σ-modification for NN weights are given by 

˙̂W = Γ W 

( 
2q1z1,k CT( CCT + δ In 

)−1 
PBφ 

( 
X̂k 

) 
− δW Ŵ 

) 

˙̂W 2 = q2skφ2(yk) − γ Ŵ 2
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Fig. 5.10 
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Fig. 5.11 x̂1,k versus yd (k 
= 1)
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The design parameters are chosen as ⎡W = diag{0.2}, δW = 0.5, q2= 1, 
γ = 0.5, uM = 3.5. The desired reference trajectory vector is Xd (t) = 
[sin t + sin(0.5t), cos t + 0.5 cos(0.5t)]T , other design parameters keep the same 
as Experiment 1. Figures 5.19, 5.20 and 5.21 present part simulation results.

From the simulation curves in Figs. 5.19 and 5.20, it shows that traditional adaptive 
controller can’t get good tracking performance for the system (5.81) and tracking 
error always exists periodically. This is mainly because time-varying uncertainties 
can’t be compensated through differential-type adaptive control effect. 

According to the simulation results, it is confirmed that the proposed AILC can 
guarantee fairly good control performance for uncertain nonlinear systems with 
unknown time varying delays and control input saturation in the presence of external



5.4 Error Observer-Based AILC Design and Stability Analysis 139

Fig. 5.12 x1,k versus x̂1,k (k 
= 1) 
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Fig. 5.13 The input vk and 
output uk of saturation (k = 
1)
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disturbance. Moreover, it is verified that our control scheme is more suitable than 
robust adaptive neural network control methods for finite time repeated problem. 

5.4 Error Observer-Based AILC Design and Stability 
Analysis 

In this section, we continue studying the system (5.1) and design a novel error 
observer-based AILC scheme.
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Fig. 5.14 x̂1,k versus yd (k 
= 10) 
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Fig. 5.15 x1,k versus x̂1,k (k 
= 10)
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5.4.1 Error Observer-Based AILC Scheme Design 

Consider the system (5.1), and the definitions of symbols in (5.1) remain unchanged. 
In the following part, we will redefine some symbols to meet the needs of controller 
design, where some symbols may remain the same as mentioned above, but have 
different meaning. 

In this section, we consider the case that time delays is known. For simplicity, we 
will not consider the influence of saturation input. Rewrite the system (5.1) in the  
following form 

⎧ 
Ẋk = AXk + B 

[ 
f (Xk) + h 

( 
yτ,k, t 

) + uk(t) + d(t) 
] 

yk = CT Xk 
(5.82)
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Fig. 5.16 The input vk and 
output uk of saturation (k = 
10) 
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Fig. 5.17 
∫ T 
0 z

2 
1,k (t)dt 

versus the number of 
iterations 
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Fig. 5.18 
∫ T 
0 s
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k (t)dt versus 

the number of iterations
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Fig. 5.19 x̂1,k versus yd 
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Fig. 5.20 x1,k versus x̂1,k
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with 

A = 

⎡ 

⎢ 
⎣ 
0 
... In−1 

0 · · ·  0 

⎤ 

⎥ 
⎦, B = [0, . . . ,  0, 1]T , C = [1, 0, . . . ,  0]T . 

Define tracking error as zk = 
[ 
z1,k, . . . ,  zn,k 

]T = Xk − Xd , then the dynamical 
equation of tracking error can be given by 

⎧ 
żk = Azk + B 

[ 
f (Xk) + h 

( 
yτ,k, t 

) + uk(t) + d(t) − y(n) 
d 

] 

z1,k = CT zk 
(5.83)
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Fig. 5.21 The input vk and 
output uk of saturation
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In order to deal with the system uncertainties, we employ two radial basis function 
(RBF) neural network to approximate unknown functions f (Xk) and h 

( 
yτ,k, t 

) 
as 

follows 

f (Xk) = W *T 
f (t)φ f (Xk) + ε f (Xk) (5.84) 

h 
( 
yτ,k, t 

) = W *T 
h (t)φh 

( 
yτ,k 

) + εh 
( 
yτ,k, t 

) 
(5.85) 

where, W∗ 
f ∈ Rl f and W∗ 

h ∈ Rlh are NN optimal weight vectors, l f , lh > 1 denotes 
the number of NN nodes; φ f (Xk) ∈ Rl f and φh 

( 
yτ,k 

) ∈ Rlh are Gaussian radial 
basis functions, ε f (Xk) and εh 

( 
yτ,k, t 

) 
present NN approximation errors which has 

their bounds. Then we can rewrite Eq. (5.83) as  

⎧ 
żk = Azk + B 

[ 
W *T 

f φ f 
( 
X̂k 

) 
+ W *T 

h (t)φh 

( 
yτ,k 

) + uk(t) + δk(t) − y(n) 
d 

] 

z1,k = CT zk 
(5.86) 

where, δk(t) = W *T (t) 
( 
φ(Xk) − φ 

( 
X̂k 

)) 
+ ε(Xk) + ε 

( 
yτ,k, t 

) + d(t), obviously, 

δk(t) is bounded. X̂k can be obtained through the relation X̂k = ẑk + Xd , where ẑk 
denotes the estimated tracking error that is obtained by the following observer: 

⎧ ˙̂zk = Ac ẑk + K o 
( 
z1,k − ẑ1,k 

) 

ẑ1,k = CT ẑk 
(5.87)
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where, Ac = A − BKT 
c , K c = [kc1, . . . ,  kcn]T ∈ Rn should be chosen suitably such 

that the characteristic polynomial of Ac is Hurwitz; K o = [ko1, . . . ,  kon]T ∈ Rn is 
the observer gain which makes the characteristic polynomial of Ao = A− K oCT be 
Hurwitz. 

Define the estimation error vector as ek = 
[ 
e1,k , . . . ,  en,k 

]T = zk − ẑk , then we 
can obtain the dynamic equation of estimation error as follows 

⎧ 
ėk = Aoek + B 

[ 
W*T 

f (t)φ f 
( 
X̂k 

) 
+ W*T 

h (t)φh 
( 
yτ,k 

) + uk (t) + δk (t) − y(n) 
d + KT 

c ẑk 
] 

e1,k = CTek 
(5.88) 

Remark 5.2 Unlike state-based observer design in the previous section, we design an 
observer to estimate tracking errors, which is to solve the problem of identical initial 
condition in ILC design. Because the states are unavailable, it is difficult to make the 
initial values of the state-based observer as same as the system states. However, it is 
essential in the convergence analysis of ILC method. In this section, we use observer 
(5.87) estimate the errors in Eq. (5.86). By defining the estimation error, we obtain 
the dynamic equation of estimation error in Eq. (5.88). In the following design, if we 
can realize the convergence to zero of estimation error ek by designing the control 
system, the estimated error ẑk will be driven to zero, because Ac is Hurwitz. Then 
from the definition ek = zk − ẑk , it is followed that tracking error zk will converge 
to zero simultaneously. 

In order to see how to design the control law, we adopt the mixed use of a time 
signal and a Laplace transfer function to obtain the explicit expression of e1,k in 
Eq. (5.88) as follows:  

e1,k = H(s) 
( 
W *T 

f φ f 
( 
X̂k 

) 
+ W *T 

h (t)φh 

( 
yτ,k 

) + uk(t) + δk(t) − y(n) 
d + KT 

c ẑk 
) 

(5.89) 

where, “s” denotes the complex variable in Laplace transform, H (s) = 
CT (s I  − Ao)

−1 B is the transfer function of (5.88). If we choose K o =
[ 
Cn 
n λ

n, . . . ,  C2 
n λ

2, C1 
n λ 
]T 

with Ci 
n = n!/ 

((n − i )!i !), it can easily be shown that 
H (s) = 1 

/ 
(s + λ)n with λ as a positive design parameter. 

In order to design the control term, we construct a new variable ea,k as follows 

ėa,k + Kaea,k = α0 
(
ė1,k + λe1,k 

) 
, ea,k (0) = 0 (5.90) 

where, Ka and α0 are positive design parameters. It follows from (5.90) that 

ea,k = 
[ 
α0(s + λ) 
s + Ka 

] 
e1,k (5.91) 

Noting Eqs. (5.89), (5.91) becomes
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ea,k = 
L(s) 

s + Ka 

[ 
W *T 

f φ f 
( 
X̂k 

) 
+ W *T 

h (t)φh 

( 
yτ,k 

) + uk(t) + δk(t) − y(n) 
d + KT 

c ẑk 
] 

(5.92) 

where, L(s) denotes a stable filter which is L(s) = α0(s + λ)H (s) = 
α0 
/ 

(s + λ)n−1 . 
The differential equation, which allows to obtain ea,k , can be written as 

ėa,k + Kaea,k = L(s) 
[ 
W*T 

f φ f 
( 
X̂k 

) 
+ W*T 

h (t)φh 
( 
yτ,k 

) + uk (t) + δk (t) − y(n) 
d + KT 

c ẑk 
] 

(5.93) 

For design purpose, we separate the structure of control variable into two parts 

uk(t) = uc,k(t) + ur,k(t) (5.94) 

Here, uc,k(t) is defined as the feedback component of uk(t) and specified by 

uc,k(t) = −  ̂W 
T 
f,kφ f 

( 
X̂k 

) 
− Ŵ 

T 
h,k(t)φh 

( 
yτ,k 

) + y(n) 
d − KT 

c ẑk (5.95) 

where, Ŵ f,k and Ŵ h,k denote the estimates of W∗ 
f and W

∗ 
h , respectively. Substituting 

Eq. (5.95) into Eq. (5.93) yields 

ėa,k + Kaea,k = L(s) 
( 
− W̃ 

T 
f,k (t)φ f 

( 
X̂k 

) 
− W̃ 

T 
h,k(t)φh 

( 
yτ,k 

) + ur,k(t) + δk(t) 
) 

= −  ̃W 
T 
f,k (t)ξ f 

( 
X̂k 

) 
− W̃ 

T 
h,k(t)ξ h 

( 
yτ,k 

) + L(s) 
[ 
ur,k(t) 

] + δL ,k(t) 
(5.96) 

where, ξ 
( 
X̂k 

) 
= L(s)φ 

( 
X̂k 

) 
, ξ h 

( 
yτ,k 

) = L(s)φh 

( 
yτ,k 

) 
, δL ,k(t) = L(s)δk(t). 

obvious that δL ,k(t) is bounded by an unknown constant, i.e., 
| 
|δL ,k(t) 

| 
| ≤ β with 

β as an unknown constant. Then we can design the robust control part as follows 

ur,k(t) = −  
1 

L(s) 
ea,k β̂k tanh 

( 
ea,k β̂k 

/
 Δk 

) 
(5.97) 

where, β̂k is the estimated value of β,  Δk denotes a convergent sequence which 
is specified in the previous section. For preceding analysis, we need the following 
lemma. 

Lemma 5.2 [24]. For any  Δk > 0 and x ∈ R, the inequality |x |− x tanh 
( 
x 
/

 Δk 
) ≤ 

θ Δk holds, where θ is a positive constant and θ = e−(θ +1) or θ = 0.2785. 

Design adaptive learning laws for unknown parameters as 

⎧ 
(1 − γ1) ˙̂W f,k = −γ1 Ŵ f,k + γ1 Ŵ f,k−1 + q1ea,kξ f 

( 
X̂k 

) 

Ŵ f,k(0) = Ŵ f,k−1(T ), Ŵ f,0(t) = 0, t ∈ [0, T ] 
(5.98)
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⎧ 
Ŵ h,k = Ŵ h,k−1 + q2ea,kξ h 

( 
yτ,k 

) 

Ŵ h,0(t) = 0, t ∈ [0, T ] 
(5.99) 

⎧ 
(1 − γ2) ˙̂βk = −γ2 β̂k + γ2 β̂k−1 + q3 

| 
|ea,k 

| 
| 

β̂k(0) = β̂k−1(T ), β̂0(t) = 0, t ∈ [0, T ] 
(5.100) 

where, γ1, γ2 ∈ (0, 1) are adjustable parameters, q1, q2, q3 > 0 are adaptive learning 
gains. 

Define a Lyapunov function as Vk = e2 a,k 

/ 
2. Taking the derivative of Vk with 

respective to time and utilizing Lemma 5.2 results in 

V̇k = ea,k ėa,k 

= −Kae
2 
a,k + ea,k 

( 
− W̃ 

T 
f,k(t)ξ f 

( 
X̂k 

) 
− W̃ 

T 
h,k(t)ξ h 

( 
yτ,k 

) + δL ,k(t) 
) 

− ea,k β̂k tanh 
( 
ea,k β̂k 

/
 Δk 

) 

≤ −Kae
2 
a,k − ea,k W̃ 

T 
f,k(t)ξ f 

( 
X̂k 

) 

− ea,k W̃ 
T 
h,k(t)ξ h 

( 
yτ,k 

) + 
| 
|ea,k 

| 
|β − 

| 
|ea,k 

| 
| β̂k + 

| 
|ea,k 

| 
| β̂k 

− ea,k β̂k tanh 
( 
ea,k β̂k 

/
 Δk 

) 

≤ −Kae
2 
a,k − ea,k W̃ 

T 
f,k(t)ξ f 

( 
X̂k 

) 
− ea,k W̃ 

T 
h,k(t)ξ h 

( 
yτ,k 

) − 
| 
|ea,k 

| 
| β̃k + θ Δk 

(5.101) 

The block diagram of the proposed error observer based adaptive NN ILC scheme 
is presented in Fig. 5.22.

5.4.2 Stability Analysis 

The stability of the proposed AILC scheme is summarized as follows. 

Theorem 5.2 Considering the nonlinear time-delay system (5.1), de designing the 
tracking error observer (5.87) and adaptive iterative learning controller (5.94) with 
parameter adaptive learning algorithms in Eqs. (5.98)–(5.100), the following prop-
erties can be guaranteed: ➀ all the signals of the closed-loop system are bounded; ➁ 
the output error z1,k(t) approaches zero as k → ∞, i.e., lim 

k→∞ 

∫ T 
0 

( 
z1,k(σ ) 

)2 
dσ = 0. 

Proof Define the parameter estimation error as β̃k = β̂k − β. Then we can define a 
Lyapunov-like CEF as
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Fig. 5.22 The block diagram of the proposed error observer based adaptive NN ILC scheme

Ek(t) = Vk + 
γ1 

2q1 

t∫ 

0 

W̃ 
T 
f,k W̃ f,kdσ + 

1 − γ1 
2q1 

W̃ 
T 
f,k W̃ f,k 

+ 
1 

2q2 

t∫ 

0 

W̃ 
T 
h,k W̃ h,kdσ + 

γ2 

2q3 

t∫ 

0 

β̃2 
k dσ + 

1 − γ2 
2q3 

β̃2 
k 

(5.102) 

Similar to previous chapters, the proof includes four parts. 

(1) The difference of Ek(t) 

Computing the difference of Ek(t), which is

 ΔEk(t) = Ek(t) − Ek−1(t) 

= Vk − Vk−1 + 
γ1 

2q1 

t∫ 

0 

( 
W̃ 

T 
f,k W̃ f,k − W̃ 

T 
f,k−1 W̃ f,k−1 

) 
dσ 

+ 
1 − γ1 
2q1 

( 
W̃ 

T 
f,k W̃ f,k − W̃ 

T 
f,k−1 W̃ f,k−1 

)
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+ 
1 

2q2 

t∫ 

0 

( 
W̃ 

T 
h,k W̃ h,k − W̃ 

T 
h,k−1 W̃ h,k−1 

) 
dσ 

+ 
γ2 

2q3 

t∫ 

0 

( 
β̃2 
k − β̃2 

k−1 

) 
dσ + 

1 − γ2 
2q3 

( 
β̃2 
k − β̃2 

k−1 

) 
(5.103) 

Considering Eq. (5.101), it is known that 

Vk = 
t∫ 

0 

V̇kdσ − Vk(0) 

≤ −Ka 

t∫ 

0 

e2 a,kdσ − 
t∫ 

0 

ea,k W̃ 
T 
f,kξ 

( 
X̂k 

) 
dσ 

− 
t∫ 

0 

ea,k W̃ 
T 
h,k(t)ξ h 

( 
yτ,k 

) 
dσ − 

t∫ 

0 

| 
|ea,k 

| 
| β̃kdσ + 

t∫ 

0 

θ Δkdσ (5.104) 

Recalling the adaptive learning law, we can have 

γ1 

2q1 

t∫ 

0 

( 
W̃ 

T 
f,k W̃ f,k − W̃ 

T 
f,k−1 W̃ f,k−1 

) 
dσ + 

1 − γ1 
2q1 

( 
W̃ 

T 
f,k W̃ f,k − W̃ 

T 
f,k−1 W̃ f,k−1 

) 

= 
γ1 

2q1 

t∫ 

0 

( 
W̃ 

T 
f,k W̃ f,k − W̃ 

T 
f,k−1 W̃ f,k−1 

) 
dσ + 

(1 − γ1) 
q1 

t∫ 

0 

W̃ 
T 
f,k 

˙̃W f,kdσ 

+ 
(1 − γ1) 
2q1 

[ 
W̃ 

T 
f,k (0) W̃ k (0) − W̃ 

T 
f,k−1 W̃ f,k−1 

] 

= 
t∫ 

0 

ea,k W̃ 
T 
f,k ξ f 

( 
X̂k 

) 
dσ − 

γ1 

q1 

t∫ 

0 

W̃ 
T 
f,k 

( 
Ŵ f,k (σ ) − Ŵ f,k−1(σ ) 

) 
dσ 

+ 
γ1 

2q1 

t∫ 

0 

( 
W̃ 

T 
f,k W̃ k − W̃ 

T 
f,k−1 W̃ f,k−1 

) 
dσ + 

(1 − γ1) 
2q1 

[ 
W̃ 

T 
f,k (0) W̃ k (0) − W̃ 

T 
f,k−1 W̃ f,k−1 

] 

= 
t∫ 

0 

ea,k W̃ 
T 
f,k ξ f 

( 
X̂k 

) 
dσ − 

γ1 

q1 

t∫ 

0 

W̃ 
T 
f,k 

( 
W̃ f,k (σ ) − W̃ f,k−1(σ ) 

) 
dσ 

+ 
γ1 

2q1 

t∫ 

0 

( 
W̃ 

T 
f,k W̃ f,k − W̃ 

T 
f,k−1 W̃ f,k−1 

) 
dσ + 

(1 − γ1) 
2q1 

[ 
W̃ 

T 
f,k (0) W̃ k (0) − W̃ 

T 
f,k−1 W̃ f,k−1 

] 

= 
t∫ 

0 

ea,k W̃ 
T 
f,k ξ f 

( 
X̂k 

) 
dσ + 

(1 − γ1) 
2q1 

[ 
W̃ 

T 
f,k (0) W̃ k (0) − W̃ 

T 
f,k−1 W̃ f,k−1 

] 

− 
γ1 

2q1 

t∫ 

0 

[ 
W̃ f,k (σ ) − W̃ f,k−1(σ ) 

]T[ 
W̃ f,k (σ ) − W̃ f,k−1(σ ) 

] 
dσ (5.105)
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1 

2q2 

t∫ 

0 

( 
W̃ 

T 
h,k W̃ h,k − W̃ 

T 
h,k−1 W̃ h,k−1 

) 
dσ = 

t∫ 

0 

ea,k W̃ 
T 
h,k(t)ξ h 

( 
yτ,k 

) 
dσ 

− 
q2 
2 

t∫ 

0 

e2 a,k 

|| 
||ξ h 

( 
yτ,k 

)|| 
||2 dσ (5.106) 

γ2 

2q3 

t∫ 

0 

( 
β̃2 
k − β̃2 

k−1 

) 
dσ + 

1 − γ2 
2q3 

( 
β̃2 
k − β̃2 

k−1 

) 

= 
t∫ 

0 

| 
|ea,k 

| 
| β̃kdσ + 

1 − γ2 
2q3 

[ 
β̃2 
k (0) − β̃2 

k−1(t) 
] 

− 
γ2 

2q3 

t∫ 

0 

( 
β̃k − β̃k−1 

)2 
dσ 

(5.107) 

Combining Eqs. (5.104)–(5.107) results in

 ΔEk (t) ≤ −Ka 

t∫ 

0 

e2 a,kdσ + 
t∫ 

0 

θ Δkdσ + 
(1 − γ1) 
2q1 

[ 
W̃ 

T 
f,k (0) W̃ f,k (0) − W̃ 

T 
f,k−1 W̃ f,k−1 

] 

+ 
1 − γ2 
2q3 

[ 
β̃2 
k (0) − β̃2 

k−1(t) 
] 

− Vk−1 (5.108) 

Letting t = T in Eq. (5.108), and noting Ŵ f,k (0)= Ŵ f,k−1(T ), β̂k(0) = β̂k−1(T ), 
then we can have

 ΔEk(T ) ≤ −Ka 

T∫ 

0 

e2 a,kdσ + θ ΔkT − Vk−1 (5.109) 

(2) The boundedness of Ek(T ) 

Letting k = 1 in Eq. (5.102), we have 

E1(t) = V1 + 
γ1 

2q1 

t∫ 

0 

W̃ 
T 
f,1 W̃ f,1dσ + 

1 − γ1 
2q1 

W̃ 
T 
f,1 W̃ f,1 

+ 
1 

2q2 

t∫ 

0 

W̃ 
T 
h,1 W̃ h,1dσ + 

γ2 

2q3 

t∫ 

0 

β̃2 
1 dσ + 

1 − γ2 
2q3 

β̃2 
1 (5.110) 

Taking the time derivative of E1(t) yields 

Ė1(t) = V̇1 + 
γ1 

2q1 
W̃ 

T 
f,1 W̃ f,1 + 

1 − γ1 
q1 

W̃ 
T 
f,1 

˙̃W f,1



150 5 Observer-Based AILC of Nonlinear Time-Delay Systems

+ 
1 

2q2 
W̃ 

T 
h,1 W̃ h,1 + 

γ2 

2q3 
β̃2 
1 + 

1 − γ2 
q3 

β̃1 
˙̃
β1 (5.111) 

From parameter adaptive learning laws we know (1 − γ1) ˙̂W f,1 = −γ1 Ŵ f,1 + 
q1ea,1ξ f 

( 
X̂1 

) 
, Ŵ h,1 = q2ea,1ξ h 

( 
yτ,1 

) 
, (1 − γ2) ˙̂β1 = −γ2 β̂1 + q3 

| 
|ea,1 

| 
|, then we can 

obtain 

γ1 

2q1 
W̃ 

T 
f,1 W̃ f,1 + 

1 − γ1 
q1 

W̃ 
T 
f,1 

˙̃W f,1 

= 
γ1 

2q1 
W̃ 

T 
f,1 W̃ f,1 − 

γ1 

q1 
W̃ 

T 
f,1 Ŵ f,1 + ea,1 W̃ 

T 
f,1ξ f 

( 
X̂1 

) 

= 
γ1 

2q1 

[ 
W̃ 

T 
f,1 W̃ f,1 − 2 W̃ 

T 
f,1 Ŵ f,1 + Ŵ 

T 
f,1 Ŵ f,1 

] 

− 
γ1 

2q1 
Ŵ 

T 
f,1 Ŵ f,1 + ea,1 W̃ 

T 
f,1ξ f 

( 
X̂1 

) 

≤ 
γ1 

2q1 

[ 
Ŵ f,1 − W̃ f,1 

]T[ 
Ŵ f,1 − W̃ f,1 

] 
+ ea,1 W̃ 

T 
f,1ξ f 

( 
X̂1 

) 

= 
γ1 

2q1 
W *T 

f W
∗ 
f + ea,1 W̃ 

T 
f,1ξ f 

( 
X̂1 

) 
(5.112) 

1 

2q2 
W̃ 

T 
h,1 W̃ h,1 = 

1 

2q2 

( 
− Ŵ 

T 
h,1 Ŵ h,1 + W *T 

h W
∗ 
h 

) 
+ ea,1 W̃ 

T 
h,1ξ h 

( 
yτ,1 

) 
(5.113) 

γ2 

2q3 
β̃2 
1 + 

1 − γ2 
q3 

β̃1 
˙̃
β1 ≤ 

γ2 

2q3 
β2 + 

| 
|ea,k 

| 
| β̃1 (5.114) 

Considering Eq. (5.101) and substituting Eqs. (5.112)–(5.114) back into 
Eq. (5.111), we can further get 

Ė1(t) ≤ −Kae
2 
a,1 + θ Δ1 + 

γ1 

2q1 
W *T 

f W
∗ 
f + 

1 

2q2 
W *T 

h W
∗ 
h + 

γ2 

2q3 
β2 (5.115) 

Denote cmax = max 
t∈[0,T ] 

{ 
γ1 
2q1 

W *T 
f W

∗ 
f + 1 

2q2 
W *T 

h (t)W
∗ 
h(t) + γ2 

2q3 
β2 
{ 
. Integrating 

Eq. (5.115) over [0, t] leads to 

E1(t) − E1(0) ≤ −Ka 

t∫ 

0 

e2 a,1dσ + t · cmax + θ Δ1t (5.116) 

From the adaptive learning laws we have Ŵ f,1(0) = 0, β̂1(0) = 0. Further, we 
arrive at
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E1(0) = 
1 − γ1 
2q1 

W̃ 
T 
f,1(0) W̃ f,1(0) + 

1 − γ2 
2q3 

β̃2 
1 = 

1 − γ1 
2q1 

|| 
||W∗ 

f 

|| 
||2 + 

1 − γ2 
2q3 

β2 

(5.117) 

Substituting Eq. (5.117) back into Eq. (5.116) results in 

E1(t) ≤ t · cmax + θ Δ1t + 
1 − γ1 
2q1 

|| 
||W∗ 

f 

|| 
||2 + 

1 − γ2 
2q2 

β2 , t ∈ [0, T ] (5.118) 

which implies that E1(t) is bounded on [0, T ]. Letting t = T in Eq. (5.118), we can 
obtain the upper bound of E1(T ) 

E1(T ) ≤ T · (cmax + θ Δ1t) + 
1 − γ1 
2q1 

|| 
||W∗ 

f 

|| 
||2 + 

1 − γ2 
2q2 

β2 < ∞ (5.119) 

Applying Eq. (5.109) repeatedly, we obtain 

Ek(T ) = E1(T ) + 
k∑ 

j=2

 ΔE j (T ) 

≤ −Ka 

k∑ 

j=2 

T∫ 

0 

e2 a, j dσ + T · cmax + θ T 
k∑ 

j=1

 Δk + 
1 − γ1 
2q1 

|| 
||W∗ 

f 

|| 
||2 + 

1 − γ2 
2q2 

β2 

≤ T · cmax + θ T 
k∑ 

j=1

 Δk + 
1 − γ1 
2q1 

|| 
||W∗ 

f 

|| 
||2 + 

1 − γ2 
2q2 

β2 (5.120) 

According to Property 5.1 we know θ T 
k∑ 
j=1

 Δk ≤ lim 
k→∞ 

θ T 
k∑ 
j=1

 Δk ≤ 2θ Tq, 

therefore, it means that Ek(T ) is bounded. 

(3) The boundedness of Ek(t) 

Similarly, separate Ek(t) into two parts 

E1 
k (t) = 

γ1 

2q1 

t∫ 

0 

W̃ 
T 
f,k W̃ f,kdσ + 

γ2 

2q2 

t∫ 

0 

β̃2 
k dσ + 

1 

2q2 

t∫ 

0 

W̃ 
T 
h,k W̃ h,kdσ (5.121) 

E2 
k (t) = Vk + 

1 − γ1 
2q1 

W̃ 
T 
k W̃ k + 

1 − γ2 
2q2 

β̃2 
k (5.122) 

According to foregoing derivation, the boundedness of E1 
k (T ) and E2 

k (T ) is guar-
anteed for all iterations. Consequently, ∀k ∈ N , there are two constants M1 and M2 

such that
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E1 
k (t) ≤ E1 

k (T ) ≤ M1 < ∞ (5.123) 

E2 
k (T ) ≤ M2 (5.124) 

Then we know 

Ek(t) = E1 
k (t) + E2 

k (t) ≤ M1 + E2 
k (t) (5.125) 

On the other hand, from Eq. (5.108), we obtain

 ΔEk+1(t) < 
t∫ 

0 

(θ Δk+1)dσ + 
(1 − γ1) 
2q1 

[ 
W̃ 

T 
k+1(0) W̃ k+1(0) − W̃ 

T 
k W̃ k 

] 

+1 − γ2 
2q2 

[ 
β̃2 
k+1(0) − β̃2 

k (t) 
] 

− Vk(t) 

≤ θ Δk+1t + M2 − E2 
k (t) (5.126) 

Adding Eq. (5.125) and Eq. (5.126) together yields 

Ek+1(t) = Ek(t) +  ΔEk+1(t) ≤ M1 + M2 + θ Δk t (5.127) 

Since we have proven that E1(t) is bounded, so we can conclude that Ek(t) is 
bounded as well according to induction method. Furthermore, we can say that Ŵ f,k , 
Ŵ h,k and β̂k are all bounded. 

(4) The convergence of tracking errors 

Rewrite Eq. (5.119) as  

k∑ 

j=2 

T∫ 

0 

e2 a, j dσ ≤ 
1 

Ka 

⎡ 

⎣T · cmax + θ T 
k∑ 

j=1

 Δk + 
1 − γ1 
2q1 

|| 
||W ∗

|| 
||2 + 

1 − γ2 
2q2 

β2 − Ek (T ) 

⎤ 

⎦ (5.128) 

Taking the limitation of Eq. (5.128), it follows that 

lim 
k→∞ 

k∑ 

j=2 

T∫ 

0 

e2 a, j dσ ≤ 
1 

Ka 

[ 
T · cmax + 2qθ T + 

1 − γ1 
2q1 

|| 
||W ∗

|| 
||2 + 

1 − γ2 
2q2 

β2 

] 

(5.129) 

According to the convergence theorem of the sum of series, lim 
k→∞ 

∫ T 
0 e

2 
a,kdσ = 0, 

from ea,k = 
[ 

α0(s+λ) 
s+Ka 

] 
e1,k , it is followed by  lim 

k→∞ 

∫ T 
0 e

2 
1,kdσ = 0. Because Ac and Ao 

are Hurwitz, then from Eq. (5.87) we get lim 
k→∞ 

∫ T 
0 ẑ

2 
1,kdσ = 0, which further implies
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lim 
k→∞ 

∫ T 
0 z

2 
1,kdσ = lim 

k→∞ 

∫ T 
0 (yk − yd )2 dσ = 0. This means that we have achieved 

the tracking control for system output to the desired reference signals. Based on the 
above reasoning, we can finally obtain the boundedness of uk(t). 

This concludes the proof. ⛛ 

5.4.3 Simulation Analysis 

Consider the second-order system (5.81), here time delays are known. To verify the 
validity of the proposed AILC scheme, we conduct the following two simulation 
experiments. 

Experiment 1 The desired reference signals are chosen as Xd (t) = [sin t, cos t]T . 
Choose the design parameters as K c = [1, 2]T , K o = [6, 9]T , λ = 3, Ka = 2, 
α0 = 2, q1 = 1, q2 = 1, γ1 = γ2 = 0.5. The parameters for RBF NN are chosen 
as l f = 30, μ f, j = 1 

l f 

( 
2 j − l f 

) 
[2, 3]T , σ f, j = 2, j = 1, 2, . . . ,  l f ; lh = 20, 

μh, j = 1 
lh 
(2 j − lh)[2, 2]T , σh, j = 2, j = 1, 2, . . . ,  lh . The system runs on [0, 4π ] 

for five iterations. Some simulation results are presented in Figs. 5.23, 5.24, 5.25, 
5.26, 5.27, 5.28 and 5.29. 

From simulation results we can see that for the desired reference trajectory 
Xd (t) = [sin t, cos t]T the proposed error observer based AILC scheme can also 
obtain perfect control effect and achieve the control objective. 

Experiment 2 Further we choose the desired trajectory as Xd (t) = 
[sin t + cos(0.5t), cos t − 0.5 sin(0.5t)]T , the control parameters remain the same as 
Experiment 1. The system runs on [0, 8π ] repeatedly. Simulation results are shown 
in Figs. 5.30, 5.31, 5.32, 5.33, 5.34, 5.35 and 5.36.

Fig. 5.23 x1,k versus yd (k 
= 1)
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Fig. 5.24 x̂1,k versus yd (k 
= 1) 
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Fig. 5.25 Control input uk 
(k = 1)
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From the simulation results in Experiment 2, it can be seen that the proposed error 
observer based AILC scheme obtains good control effect for more complex desired 
reference trajectory. 

5.5 Summary and Comments 

In this chapter, a deep investigation is carried out for the AILC problem of nonlinear 
systems with states un-measurable and two kinds of observer-based AILC schemes 
are proposed, which overcomes the design difficulty from time delays, input satu-
ration and the absence of measurement of states. In the state observer-based AILC
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Fig. 5.26 x1,k versus yd (k 
= 5) 
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Fig. 5.27 x̂1,k versus yd (k 
= 5) 
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Fig. 5.28 Control input uk 
(k = 5)

0 2 4 6 8 10 12 14
-1.5

-1

-0.5 

0 

0.5 

1 

1.5 

time(s) 

co
nt

ro
l i

np
ut

 



156 5 Observer-Based AILC of Nonlinear Time-Delay Systems

Fig. 5.29 
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Fig. 5.30 x1,k versus yd (k 
= 1)

0 5 10 15 20 25 30
-3

-2.5

-2

-1.5

-1

-0.5 

0 

0.5 

1 

1.5 

2 

time(s) 

y d
 a

nd
 x

1 

yd 
x1 

scheme, state observer is designed on the basis of neural network compensation. The 
observer gain is determined by using LMI method, which avoids the SPR condition. 
In the error observer-based AILC scheme, a new error variable is defined by intro-
ducing filter, which removes the identical initial condition and SPR condition. A 
new robust learning term is chosen by using hyperbolic tangent function and series 
convergent sequence to guarantee the learning convergence. Comparing with relative 
existing results, the proposed AILC is applicable to a broader range and requires for 
less restrictions on the plant, thus being of lower conservative property.
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Fig. 5.31 x̂1,k versus yd (k 
= 1) 
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Fig. 5.32 Control input uk 
(k = 1)
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Fig. 5.33 x1,k versus yd (k 
= 10) 
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Fig. 5.34 x̂1,k versus yd (k 
= 10)
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Fig. 5.35 Control input uk 
(k = 10) 
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Fig. 5.36 
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Chapter 6 
Observer-Based AILC Design 
for Robotic Manipulator 

6.1 Introduction 

In last chapter, we investigate AILC problem for uncertain nonlinear systems with 
un-measurable states which is described by (5.1). From the form of (5.1), we can find 
that the proposed observer based AILC schemes are only effective for systems whose 
control gain is 1. As for systems whose control gain is not 1, the proposed schemes 
in last chapter are not applicable any more. To solve this problem, in this chapter we 
will take the manipulator systems with time-delays and only output measurable as 
example and design a new observer based AILC scheme. 

6.2 Problem Formulation and Preliminaries 

6.2.1 Problem Formulation 

Consider the following n degrees-of-freedom rigid robotic manipulator system 

M(qk(t)) ̈qk(t) + C(qk(t), q̇k(t))q̇k(t) + G(qk(t)) + H 
( 
qk,τ 
) = uk(t) + dk(t) 

(6.1) 

where, qk(t) = 
[ 
q1,k (t), . . . ,  qn,k (t) 

]T ∈ Rn , qk(t), q̇k(t) and q̈k(t) are the joint posi-
tion, velocity and acceleration vectors, respectively; M 

( 
qk(t) 
) ∈ Rn×n is the inertia 

matrix; C 
( 
qk(t), q̇k(t) 

) ∈ Rn from Coriolis and centrifugal forces; G 
( 
qk(t) 
) ∈ Rn 

is the vector resulting from the gravitational forces; uk(t) ∈ Rn is the control input 
vector. dk(t) ∈ Rn is the vector containing the unknown external disturbances. 
The time delay term is qk,τ Δ 

[ 
q1,k(t − τ1(t)), . . . ,  qn,k (t − τn(t)) 

]T 
, where τi (t) is 

unknown time-varying delay with the upper bound τmax, i = 1, 2, . . . ,  n. H 
( 
qk,τ 
) 

is a bounded unknown smooth functions of time-delay position. It is well known
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that the inertia matrix M 
( 
qk(t) 
) 
is positive definite and bounded, i.e., for ∀qk(t), it  

satisfies 

0 < m1 In ≤ M 
( 
qk(t) 
) ≤ m2 In (6.2) 

where, m1, m2 > 0 are constants, In is the n-order unit matrix. Since the inverse of 
inertia matrix always exists, then the dynamic formulation (6.1) can be rewritten as 

q̈k(t) = −M−1 (qk) 
( 
C(qk, q̇k)q̇k(t) + G(qk) 

) − M−1 (qk)H 
( 
qk,τ 
) 

+ M−1 (qk)uk(t) + M−1 (qk)dk(t) (6.3) 

Define the state variable at the k-th iteration as x1,k(t) = qk(t), x2,k(t) = q̇k(t), 
xk(t) = 

[ 
xT 1,k(t), xT 2,k(t) 

]T 
, choose the output variable as yk(t) = qk(t), denote 

f 
( 
qk, q̇k 

) = −M−1 (qk) 
( 
C(qk, q̇k)q̇k(t) + G(qk) 

) 
, g 
( 
x1,k 
)

Δ M−1
( 
x1,k 
) 
. Then 

we can rewrite Eq. (6.3) as  

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

ẋ1,k(t) = x2,k(t) 
ẋ2,k(t) = f (xk) − g 

( 
x1,k 
) 
H 
( 
yk,τ 
) + g 

( 
x1,k 
) 
uk(t) + g 

( 
x1,k 
) 
dk(t) 

yk(t) = Cxk(t), t ∈ [0, T ] 
yk(t) = 0, t ∈ [−τmax, 0) 

(6.4) 

where, yk,τ Δ 
[ 
yk,τ1 , . . . ,  yk,τn 

]T = 
[ 
y1,k (t − τ1(t)), . . . ,  yn,k (t − τn(t)) 

]T ∈ Rn , 
C = [In, O]T ∈ R2n×n , O is the n × n zero matrix. The velocity variables are 
assumed to be unmeasurable and only the joint position is available for measurement. 
In constrast with system (5.1), the control gain of system (6.4) is unknown. 

The design objective is to design an observer-based AILC scheme for robotic 
manipulator (1) to steer the output yk tracking a reference signal yd over [0, T ] as 
k → ∞, while guaranteeing that all the system signals remain bounded. Define the 
desired reference trajectory xd = 

[ 
yT d , ẏ

T 
d 

]T 
. To facilitate control design, we make 

following reasonable assumptions. 

Assumption 6.1 The unknown time delays τi (t) satisfy: 0 ≤ τi (t) ≤ τmax, τ̇i (t) ≤ 
κ <  1, i = 1, 2, . . . ,  n, where τmax is the known upper bound of time delays, κ is an 
unknown constant. 

Assumption 6.2 The unknown smooth continuous function H (·) satisfies the 
following inequality 

|||||| 
|||||| 
H(·) 
|||||| 
|||||| 
≤ 

nΣ 

j=1 

ρ j (·) (6.5) 

where, ρ j (·) is unknown positive smooth function.
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Assumption 6.3 The desired signal yd (t) and its derivatives ẏd (t) and ÿd (t) are 
continuous and derivable. 

Assumption 6.4 The unknown external disturbance dk(t) is bounded, i.e.,||dk(t)|| ≤ 
D0, with D0 as an unknown upper bound. 

Assumption 6.5 The control input uk(t) is bounded. 

Remark 6.1 In Assumption 6.5, we made boundedness assumption on control input. 
This is reasonable. Actually, in all control systems, control input is bounded when 
the system achieves the control objective. 

6.2.2 ‘GL’ Matrix and Operators 

To facilitate the analysis of RBF NN, the GL matrix and its product operator [] are 
briefly introduced here for completeness [1]. Denote the GL vectors and matrices by 
{·} and the GL product operator by “·”. To avoid any possible confusion, [·] is used 
to denote the conventional vector and matrix. 

Generally, the GL matrix is a rectangular array of vectors and the elements of GL 
matrix are W i j  , φi j  ∈ Rni j  , ni j  ∈ N , i = 1, 2, . . . ,  n, j = 1, 2, . . . ,  m. The  GL  row  
vector {W i } and its transpose {W i }T are defined as 

{W i } = 
{ 
W i1 W i2 · · ·  W im  

} 

{W i }T = 
{ 
WT 

i1 W
T 
i2 · · ·  WT 

im  

} 

The GL matrix {W} and its transpose {W}T are accordingly defined as 

{W} = 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

W 11 W 12 · · ·  W 1m 

W 21 W 22 · · ·  W 2m 
... 

... 
. . . 

... 
W n1 W n2 · · ·  W nm 

⎫ 
⎪⎪⎪⎬ 

⎪⎪⎪⎭ 
= 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

{W 1} 
{W 2} 

... 
{W n} 

⎫ 
⎪⎪⎪⎬ 

⎪⎪⎪⎭ 

{W}T = 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

WT 
11 W

T 
12 · · ·  WT 

1m 

WT 
21 W

T 
22 · · ·  WT 

2m 
... 

... 
. . . 

... 
WT 

n1 W
T 
n2 · · ·  WT 

nm 

⎫ 
⎪⎪⎪⎬ 

⎪⎪⎪⎭ 
= 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

{W 1}T 
{W 2}T 

... 
{W n}T 

⎫ 
⎪⎪⎪⎬ 

⎪⎪⎪⎭ 

It should be noted that the dimension of each vector in a GL matrix may be 
different from each other. However, as long as ni j  is known, the structure of the GL 
matrix is well-determined.
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For a given GL matrix 

{Φ} = 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

φ11 φ12 · · ·  φ1n 

φ21 φ22 · · ·  φ2n 
... 

... 
. . . 

... 
φn1 φn2 · · ·  φnn 

⎫ 
⎪⎪⎪⎬ 

⎪⎪⎪⎭ 
= 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

{ 
φ1 

} 
{ 
φ2 

} 

...{ 
φn 

} 

⎫ 
⎪⎪⎪⎬ 

⎪⎪⎪⎭ 

where, φi j  has the same dimensions as W i j  . The GL product of {W}T and {Φ} is a 
n × m matrix of elementwise products which is specified by 

[{W}T · {Φ}] = 

⎡ 

⎢⎢⎢ 
⎣ 

WT 
11φ11 W

T 
12φ12 · · ·  WT 

1mφ1m 

WT 
21φ21 W

T 
22φ22 · · ·  WT 

2mφ2m 
... 

... 
. . . 

... 
WT 

n1φn1 W
T 
n2φn2 · · ·  WT 

nmφnm 

⎤ 

⎥⎥⎥ 
⎦ 

Clearly, the GL product can be regarded as a generalization of the Hadamard 
matrix product[2]. The GL product of a square matrix and a GL row vector is defined 
as follows. Let ┌i = ┌T 

i = 
[ 
γ i1 γ i2 · · ·  γ in  

] 
, γ i j  ∈ Rm×ni j  , m = 

Σn 
j=1 ni j  , then 

we have 

┌i · 
{ 
φi 

} = ┌i · {φi } := 
[ 
γ i1φi1 γ i2φi2 · · ·  γ inφin  

] ∈ Rm×n 

Note that the GL product should be computed first in a mixed matrix product. For 
instance, in {A} · {B}C, the matrix [{A} · {B}] should be computed firstly, and then 
followed by the multiplication of [{A} · {B}] with matrix C. 

6.3 States Observer Design 

Rewrite Eq. (6.4) into the following form 

ẋk = Axk + K 0 yk + B 
[ 
f (xk) − g(x1,k)H( yk,τ ) + g 

( 
x1,k 
) 
uk + g 

( 
x1,k 
) 
dk(t) 
] 

(6.6) 

where, A = 
[−K 1 In 

−K 2 O 

] 

2n×2n 

, K 1 = 

⎡ 

⎢ 
⎣ 
k11 

. . . 
k1n 

⎤ 

⎥ 
⎦ 

n×n 

and K 2 = 

⎡ 

⎢ 
⎣ 
k21 

. . . 
k2n 

⎤ 

⎥ 
⎦ 

n×n 

are diagonal matrices, K o = 

[ 
K 1 

K 2 

] 

2n×n 

, B = 

[ 
O 

In 

] 

2n×n 

, O is
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n × n zero matrix. K 1 and K 2 should be chosen suitably so that A is strict Hurwitz. 
Then, for a given positive matrix Q > 0, there exist a matrix P > 0 satisfying the 
following inequality 

AT P + P A  + 

( 
n 
/ 
m1 + 1 
λ

+ D2 
2 + 1 

||||CCT + δ I2n 
||||2 

) 

P PT < − Q (6.7) 

where, λ is a positive constant. 
In order to estimate the states of system (6.6), design a state observer as follows 

⎧ ˙̂xk = A x̂k + K o yk + B(Ψ k − urk) 
ŷk = x̂1,k 

(6.8) 

where, Ψ k ∈ Rn , urk  is defined as the robust term which will be designed later. 

Remark 6.2 To solve inequality (6.7), we separate the matrix A into two parts in the 
form of A = A + K 0 B, where 

A = 
[ 
O In 
O O  

] 
, B = 

[−In O 
] 

(6.9) 

By using Lemma 5.1, inequality (6.7) is equivalent to the following LMI 

⎡ 

⎣ 
P A + M B + B T MT + A T P + Q P  

P −I2n 

/(  
n/ m1+1 

λ + D2 
2+1 

||CCT+δ I2n||2 

) 
⎤ 

⎦ < 0 

(6.10) 

where, I2n denote 2n × 2n unit matrix. P, M and λ can be solved by using Matlab 
LMI toolbox, then we can get the observer gain matrix via K 0 = P−1 M. 

In order to deal with uncertainties in system, we employ two RBF NNs to 
approximate f (xk) and g 

( 
x1,k 
) 
on the compact set Ω f = {xk} ⊂ R2n and 

Ωg = 
{ 
x1,k 
} ⊂ Rn , respectively 

f (xk) = 

⎡ 

⎢ 
⎣ 
W∗T 

f 1(t)φ f 1(xk) 
... 

W∗T 
f n(t)φ f n(xk) 

⎤ 

⎥ 
⎦ + 

⎡ 

⎢ 
⎣ 

ε f 1(xk) 
... 

ε f n(xk) 

⎤ 

⎥ 
⎦ 

= 
[{ 
W∗ 

f (t) 
}T · { φ f (xk) 

}] + ε f (xk) (6.11)
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g 
( 
x1,k 
) = 

⎡ 

⎢ 
⎣ 
W ∗T g11(t)φg11 

( 
x1,k 
) + εg11 

( 
x1,k 
) · · ·  W ∗T g1n(t)φsin 

( 
x1,k 
) + εg ln 

( 
x1,k 
) 

... 
... 

... 
W ∗T gn1(t)φgn1(x1k) + εgn1 

( 
x1,k 
) · · ·  W ∗T gm(t)φgnn 

( 
x1,k 
) + εgm 

( 
x1,k 
) 

⎤ 

⎥ 
⎦ 

= 

⎡ 

⎢⎢ 
⎣ 

W
∗T 
g11(t)φg11 

( 
x1,k 
) 

. . .  W∗T 
g1n(t)φg1n 

( 
x1,k 
) 

... 
... 

... 
W

∗T 
gn1(t)φgn1 

( 
x1,k 
) · · ·  W∗T 

gmn(t)φgm 

( 
x1,k 
) 

⎤ 

⎥⎥ 
⎦ 

= 
[{ 

W 
∗ 
g(t) 
{T · { φg 

( 
x1,k 
)}] 

(6.12) 

where, W ∗ 
f i  (t), φi t  (·) ∈ Rl f i  , i = 1,…,n; W∗ 

gi j , φgi j (·) ∈ Rlg j  , W
∗ 
gi j =

[ 
W∗T 

gi j (t), εgi j 
( 
x1,k 
)]T 

, φgi j 

( 
x1,k 
) = 
[ 
φT 
gi j 

( 
x1,k 
) 
, 1 
]T 
, i = 1,…,n, j = 1,…,n. 

Design Ψk as 

Ψk = 
{ 
W 
Ʌ 

f,k(t) 
{T · { φ f 

( 
x 
Ʌ 

k 
)} + 
[{ 

W 
Ʌ 

g,k(t) 
{T · { gg 

( 
x1,k 
)}] 

uk (6.13) 

According to the property of RBF NN, we have 

f (xk) − f 
Ʌ ( 

x 
Ʌ 

k 
) = 
{ 
W∗ 

f (t) 
}T · { φ f (xk) 

} + ε f (xk) − 
{ 
W 
Ʌ 

f,k 

{T · { φ f 
( 
x 
Ʌ 

k 
)} 

= 
{ 
W∗ 

f (t) 
}T · { φ f (xk) 

} − 
{ 
W∗ 

f (t) 
}T · { φ f 

( 
x 
Ʌ 

k 
)} + ε f (t) 

+ 
{ 
W∗ 

f 

}T · { φ f 
( 
x 
Ʌ 

k 
)} − 
{ 
Ŵ f,k 
{T · { φ f 

( 
x 
Ʌ 

k 
)} 

= 
{ 
W∗ 

f (t) 
}T · {~φ f 

( 
xk, x 

Ʌ 

k 
)} + ε f (xk) − 

{ ~W f,k 
}T · { φ f 

( 
x 
Ʌ 

k 
)} 

= δ f k  − 
{ ~W f,k 

}T · { φ f 
( 
x 
Ʌ 

k 
)} 

(6.14) 

where, W̃ f k  = Ŵ f k−W∗ 
f is the estimation error, δ f k  = 

{ 
W∗ 

f (t) 
}T · 
{
φ̃ f 
( 
xk, x̂k 

){ + 
ε f (xk), whose upper bound is assumed to be 

|| 
||δ f k  
|| 
|| ≤ δ∗. 

Define observer estimation error as zk Δ 
[ 
z1,k, z2,k, . . . ,  z2n,k 

]T = xk − x̂k , and 
denote ỹk = yk − ŷk . 

Then from Eqs. (6.6), (6.8) and (6.13) we can obtain 

żk = Azk + B 
[ 
−{ ~W f,k 

}T · { φ f 
( 
x 
Ʌ 

k 
)} − 
[{ 
~W g,k(t) 

{T · { φg 

( 
x1,k 
)}] 

uk 

] 

− B g 
( 
x1,k 
) 
H 
( 
yk,r 
) + B 

( 
δ f k  + g 

( 
x1,k 
) 
dk(t) + urk  

) 
(6.15) 

Denote Φk = B 
( 
δ f k  + g(x1,k)dk(t) + urk  

) 
, on the basis of above analysis it is 

clear that ϕk is bounded, we assume ||ϕk|| ≤ D0. 
Defining Vzk = zT k Pzk and taking its time derivative we can have
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V̇zk = zT k 
( 
AT P + P A  

) 
zk + 2zT k Pϕk − 2zT k PBg  

( 
x1,k 
) 
H 
( 
yk,τ 
) 

+ 2zT k PB  
[ 
−{ ~W f,k 

}T · { φ f 
( 
x 
Ʌ 

k 
)} − 
[{ 
~W g,k(t) 

{T · { φg 

( 
x1,k 
)} ] 

uk 

] 
(6.16) 

Considering Assumption 6.2 and using Young’s inequality, we have 

−2zT k PBg(x1,k)H( yk,τ ) ≤ 2 
||||zT k PB  

||||||||g(x1,k)H( yk,τ ) 
|||| 

≤ 
n 

m1λ 
zT k P PT zk + 

λ 
m1 

nΣ 

j=1 

ρ2 
j 

( 
yk,τ j 
) 

(6.17) 

2zT k PΦk(t) ≤ 
1 

λ 
zT k P PT zk + λD2 

0 (6.18) 

− 2zT k PB  
[{ ~W f,k 

}T · { φ f 
( 
x 
Ʌ 

k 
)}] 

= −2zT k CCT( CCT + δ I2n 
)−1 

PB  
[{ ~W f,k 

}T · { φ j 
( 
x 
Ʌ 

k 
)}] 

− 2zT k δ I2n 
( 
CCT + δ I2n 

)−1 
PB  
[{ ~W f,k 

}T · { φ f 
( 
x 
Ʌ 

k 
)}] 

≤ −2~yT k C
T( CCT + δ I2n 

)−1 
PB  
[{ ~W f,k 

}T · { φ f 
( 
x 
Ʌ 

k 
)}] 

+ zT k P PT zk 
|| 
||CCT + δ I2n 

|| 
||2 

+ δ2 
nΣ 

i=1 

l f i  
|||| ~W f i,k 

||||2 (6.19) 

− 2zT k PB  
[{ 

W̃ g,k(t) 
{T · { φg 

( 
x1,k 
)}] 

uk 

= −2zT k CCT( CCT + δ I2n 
)−1 

PB  
[{ ~W g,k(t) 

}T · { φg 

( 
x1,k 
)}] 

uk 

− 2zT k δ I2n 
( 
CCT + δ I2n 

)−1 
PB  
[{ 
~W g,k(t) 

{T · { φg 

( 
x1,k 
)}] 

uk 

= −2~yT k C
T( CCT + δ I2n 

)−1 
PB  
[{ 
~W g,k(t) 

{T · { φ g 
( 
x1,k 
)}] 

uk 

+ 
D2 

2 z
T 
k P PT zk 

||||CCT + δ I2n 
||||2 

+ δ2 
nΣ 

i=1 

nΣ 

j=1 

l2 gi j 

|||||| W̃ g j  j,k 
|||||| 
2 

(6.20) 

where, D2 is the upper bound of control signal. 
To deal with time-delay term, define the following Lyapunov–Krasovskii func-

tional 

VUk (t) =
λ 

m1(1 − κ) 

nΣ 

j=1 

∫ t 

t−τ j (t) 
ρ2 
j 

( 
y j,k(σ ) 

) 
dσ (6.21) 

Considering Assumption 6.1 and taking the time derivative of (6.21), it leads to



168 6 Observer-Based AILC Design for Robotic Manipulator

V̇Uk (t) =
λ 

m1(1 − κ) 

nΣ 

j=1 

ρ2 
j 

( 
y j,k 
) − 

λ 
m1 

nΣ 

j=1 

1 − τ̇ j (t) 
(1 − κ) 

ρ2 
j 

( 
yk,τ j 
) 

≤ λ 
m1(1 − κ) 

nΣ 

j=1 

ρ2 
j 

( 
y j,k 
) − 

λ 
m1 

nΣ 

j=1 

ρ2 
j 

( 
yk,τ j 
) 

(6.22) 

Combining Eqs. (6.16)–(6.18) and Eq. (6.20) and considering inequality (6.7), it 
results in 

V̇zk + V̇Uk 

≤ zT k 

( 
AT P + P A  + 

n/m1 + 1 
λ 

PT P + D2 
2 + 1 

||||CCT + δ I2n 
||||2 

PT P 

) 
zk 

+ 2~yT k C
T( CCT + δ I2n 

)−1 
PB  
[ 
−{ ~W f,k 

}T · { φ j 
( 
x 
Ʌ 

k 
)} − 
[{ ~W g,k (t) 

}T · { φg 
( 
x1,k 
)}] 

uk 
] 

+ δ2 
nΣ 

i=1 

l f i  
|||| ~W f i,k 

||||2 + δ2 
nΣ 

i=1 

nΣ 

j=1 

l2 gi j 

|||||| W̃ gi j,k 
|||||| 
2 + λ 

m1(1 − κ) 

nΣ 

j=1 

ρ2 
j 

( 
y j,k 
) + λD2 

0 

≤ −zT k Qzk +
λ 

m1(1 − κ) 

nΣ 

j=1 

ρ2 
j 

( 
y j,k 
) + λD2 

0 

− 2~yT k C
T( CCT + δ I2n 

)−1 
PB  
[{ ~W f,k 

}T · { φ j 
(
x̂k 
)} + 
[{ 
~W g,k (t) 

{T · { φg 
( 
x1,k 
)}] 

uk 

] 

+ δ2 
nΣ 

i=1 

l f i  
|||| ~W f i,k 

||||2 + δ2 
nΣ 

i=1 

nΣ 

j=1 

l2 g j  

|||||| W̃ gi j,k 
|||||| 
2 

(6.23) 

6.4 AILC Design 

Define errors as e1,k = 
[ 
e1 1,k, . . . ,  en 1,k 

]T = x̂1,k − yd , e2,k = 
[ 
e1 2,k, . . . ,  en 2,k 

]T = 
x̂2,k − ẏd , ek = 

[ 
eT 1,k, eT 2,k 

]T 
, and make following assumptions. 

Assumption 6.7 zi,k(0) = 0, i = 1, 2, . . . ,  n. 

Assumption 6.8 Identical initial condition is not necessary for ei,k , i.e., the initial 
state errors ei,k(0) at each iteration are not necessarily zero small and fixed, but 
assumed to be bounded. 

Define a filtered tracking error as esk = 
[ 
esk,1, . . . ,  esk,n 

]T = [Λ In]ek , where Λ 
is a diagonal matrix: 

Λ = 

⎡ 

⎢ 
⎣ 

λ1 

. . . 
λn 

⎤ 

⎥ 
⎦



6.4 AILC Design 169

λ1, …,  λn are chosen such that the polynomial Hi (s) = s + λi is Hurwitz. It is 
obvious that if esk approaches zero as k → ∞, then ||ek|| will converges to the origin 
asymptotically. 

According to Assumption 6.8, there exist known constants εi 1 and ε
i 
2, such that||ei 1,k(0) 

|| ≤ εi 1, 
||ei 2,k(0) 

|| ≤ εi 2, i = 1, 2, . . . ,  n, ∀k ∈ N . Employing boundary layer 

function, define auxiliary error as sk = 
[ 
s1,k, . . . ,  sn,k 

]T 
, where, 

si,k = esk,i − ηi (t)sat 
( 
esk,i 
ηi (t) 

) 
(6.24) 

ηi (t) = εi e−Kt  , i = 1, . . . ,  n (6.25) 

with εi = λi ε
i 
1 + εi 2, K > 0, The saturation function sat(·) is specified by 

sat 

( 
esk,i 
ηi (t) 

) 
= sgn 

( 
esk,i 
) 
min 
{||esk,i 

/ 
ηi (t) 
||, 1 
} 

(6.26) 

According to initial condition, we can easily obtain 

| 
|esk,i (0) 

| 
| = 
| 
|λi e

i 
1,k(0) + ei 2,k(0) 

| 
| 

≤ λi 

||ei 1,k (0) 
|| + 
||ei 2,k (0) 

|| 

≤ λi ε
i 
1 + εi 2 = ηi (0) (6.27) 

which implies that si,k(0) = esk,i (0) − ηi (0)esk,i (0) 
/ 

ηi (0) = 0 for any k ∈ N. For  
further use, we give the following equality 

si,ksat 

( 
esk,i 
ηi (t) 

) 
= 
⎧ 
0, i f  

||esk,i 
/ 

ηi (t) 
|| ≤ 1 

si,ksgn 
( 
esk,i 
) 
, i f  
||esk,i 
/ 

ηi (t) 
|| > 1 

= si,ksgn 
( 
si,k 
) = 
||si,k 
|| (6.28) 

To continue the design procedure, we rewrite the observer as 

⎧ 
⎨ 

⎩ 

˙̂x1,k = K 1z1,k + x 
Ʌ 

2,k 

˙̂x2,k = K 2z1,k + 
{ 
W 
Ʌ 

f,k(t) 
{T · { φ f 

( 
x 
Ʌ 

k 
)} + 
[{ 

W 
Ʌ 

g,k(t) 
{T 

· { φg 

( 
x1,k 
)}] 

uk − urk  

(6.29) 

Define a Lyapunov function as 

Vsk = 
1 

2 
sT k sk (6.30) 

Taking the derivative of Vsk with respective to time, it yields
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V̇sk = sT k 
. 
s 
k 

= 
nΣ 

i=1 

Si,k Ṡi,k 

= 
nΣ 

i=1 

⎧ 
⎨ 

⎩ 

si,k 
(
ėsk,i − η̇i (t) 

) 
, if esk,i > ηi (t) 

0, if 
||esk,i 
|| ≤ ηi (t) 

si,k 
(
ėsk,i + η̇i (t) 

) 
, if esk,i < −ηi (t) 

= 
nΣ 

i=1 

si,k 
(
ėsk,i − η̇i (t)sgn 

( 
si,k 
)) 

= sT k 
( 

. 
e 
sk 

− . η(t)sgn(sk) 
) 

= sT k 
[ 
Λ 
( 
K 1z1,k + e2,k 

) + K 2z1,k + 
{ 
Ŵ f,k (t) 

{T · { φ f 
(
x̂k 
)} 

+ 
[{ 

Ŵ g,k(t) 
{T 

· { φg 

( 
x1,k 
)}] 

uk − urk  − ÿd + K η(t)sgn(sk) 
] 

= sT k 
[ 
Λ 
( 
K 1z1,k + e2,k 

) + K 2z1,k + K esk + 
{ 
Ŵ f,k(t) 

{T · { φ f 
(
x̂k 
)} 

+ 
[{ 

Ŵ g,k(t) 
{T 

· { φg 

( 
x1,k 
)}] 

uk − urk  − ÿd 
] 

− K sT k sk 

(6.31) 

where, η(t) = [η1(t), . . . , ηn(t)]T , sgn(sk) = 
[ 
sgn(s1,k), . . . ,  sgn(sn,k) 

]T 
, and 

utilizing the following relation 

si,k 
(−Kesk,i + K ηi (t)sgn 

( 
si,k 
)) 

= si,k 
(−Ksi,k − K ηi (t)sat 

( 
esk,i 
/ 

ηi (t) 
) + K ηi (t)sgn 

( 
si,k 
)) 

= −Ks2 i,k − K ηi (t) 
||si,k 
|| + K ηi (t) 

||si,k 
|| 

= −Ks2 i,k (6.32) 

Choose the Lyapunov candidate for the whole closed-loop system as Vk = Vzk + 
VUk + Vsk , combining Eqs. (6.23) and (6.31), we can obtain the derivative of Vk as 
follows 

V̇k ≤ −zT k Qzk +
λ 

m1(1 − κ) 

nΣ 

j=1 

ρ2 
j 

( 
y j,k 
) 

+ λD2 
0 + δ2 

nΣ 

i=1 

l f i  
|||| ~W f,k 

||||2 + δ2 
nΣ 

i=1 

nΣ 

j=1 

l2 g j  j  

|||||| ~W g j,k 
|||||| 
2 

− 2~yT k C
T( CCT + δ I2n 

)−1
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× PB  
[{ ~W f,k 

}T · { φ f 
( 
x 
Ʌ 

k 
)} + 
[{ ~W g,k(t) 

}T · { φg 

( 
x1,k 
)}] 

uk 

] 

+ sT k 
[ 
Λ 
( 
K 1z1,k + e2,k 

) + K 2z1,k + Kesk + 
{ 
W 
Ʌ 

f,k(t) 
{T · { φ f 

( 
x 
Ʌ 

k 
)} 

+ 
[{ 

Ŵ g,k(t) 
{T · { φg 

( 
x1,k 
)}] 

uk − urk  − .. y 
d 

] 
− K sT k sk (6.33) 

For the convenience of expression, denote Ξ(yk) Δ λ 
m1(1−κ) 

Σn 
j=1 ρ

2 
j (yk) + λD2 

0 . To  
avoid possible singularity possible, employing the hyperbolic tangent function leads 
to 

V̇k ≤ −λmin( Q)||zk||2 + δ2 
nΣ 

i=1 

l f i  
|||||| W̃ f i,k 

|||||| 
2 + δ2 

nΣ 

i=1 

nΣ 

j=1 

l2 gi j 

|||||| W̃ gi j,k 
|||||| 
2 

− 2 ỹT k C
T( CCT + δ I2n 

)−1 
PB  

⎡ 

⎢⎢ 
⎣ 

{ 
W̃ f,k 
{T · { φ f 

(
x̂k 
)} 

+ 
[{ 

W̃ g,k(t) 
{T · { φg 

( 
x1,k 
)}] 

uk 

⎤ 

⎥⎥ 
⎦ 

+ sT k 
[ 
Λ 
( 
K 1z1,k + e2,k 

) + K 2z1,k + K esk 

+ 
{ 
Ŵ f,k(t) 

{T · { φ f 
( 
x̂k 
)} + 
[{ 

Ŵ g,k(t) 
{T 

· { φg 

( 
x1,k 
)}] 

uk 

−urk  − ÿd + 
1 

n 
bTanh 

( 
sk 
/ 

η(t) 
) 
s−1 
k Ξ(yk) 

] 

+ 
1 

n 

nΣ 

i=1 

[ 
1 − b tanh2

( 
si,k 
/ 

ηi (t) 
)] 

Ξ(yk) − K sT k sk (6.34) 

where, 

Tanh 
( 
sk 
/ 

η(t) 
) = 

⎡ 

⎢ 
⎣ 
tanh2
( 
s1,k 
/ 

η1(t) 
) 

. . . 
tanh2
( 
sn,k 
/ 

ηn(t) 
) 

⎤ 

⎥ 
⎦ 

Obviously, bTanh 
( 
sk 
/ 

η(t) 
) 
s−1 
k Ξ(yk) is continuous and well-defined on the 

compact set ΩΞ = 
{
x̂k, xd , yk 

} ⊂ R5n , so it can be approximated by the following 
RBF NN 

bTanh 
( 
sk 
/ 

η(t) 
) 
s−1 
k Ξ(yk) 

/ 
n = 

⎡ 

⎢ 
⎣ 
W∗T 

Ξ1φΞ1(Zk) + εΞ1(Zk) 
... 

W∗T 
ΞnφΞn(Zk) + εΞn(Zk) 

⎤ 

⎥ 
⎦
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= 

⎡ 

⎢⎢ 
⎣ 

W
∗T 
Ξ1φΞ1(Zk) 

... 
W

∗T 
ΞnφΞn(Zk) 

⎤ 

⎥⎥ 
⎦ = 
{ 
W

∗ 
Ξ 

{T · { φΞ(Zk) 
} 

where, Zk = 
[ 
x̂T k , xT d , yT k 

]T 
, W∗ 

Ξi ∈ RlΞi , φΞi (Zk) ∈ RlΞi , W
∗ 
Ξi = 
[ 
W *T 

Ξi , εΞi (Zk) 
]T 
, 

φΞi (Zk) = 
[ 
φT 

Ξi (Zk), 1 
]T 
, i = 1, …, n, then we can further obtain 

V̇k ≤ −λmin( Q)||zk||2 + δ2 
nΣ 

i=1 

l f i  
|||||| W̃ f i,k 

|||||| 
2 + δ2 

nΣ 

i=1 

nΣ 

j=1 

l2 gi j 

|||||| W̃ gi j,k 
|||||| 
2 

− 2 ỹT k C
T( CCT + δ I2n 

)−1 

× PB  
[{ 

W̃ f,k 
{T · { φ f 

(
x̂k 
)} + 
[{ 

W̃ g,k (t) 
{T · { φg 

( 
x1,k 
)}] 

uk 

] 

+ sT k 
[ 
Λ 
( 
K 1 z1,k + e2,k 

) + K 2z1,k + K esk + 
{ 
Ŵ f,k (t) 

{T · { φ f 
(
x̂k 
)} 

+ 
[{ 

Ŵ g,k (t) 
{T 

· { φg 
( 
x1,k 
)}] 

uk − urk  

− ÿd + 
{ 
W

∗ 
Ξ 

{T · { φΞ(Zk ) 
} − 
{ 
ŴΞ 

{T 
· { φΞ(Zk ) 

} 

+ 
{ 
ŴΞ 

{T 
· { φΞ(Zk ) 

} ] + 
1 

n 

nΣ 

i=1 

[ 
1 − b tanh2

( 
si,k 
/ 

ηi (t) 
)] 

Ξ(yk ) − K sT k sk 

= −λmin( Q)||zk||2 + δ2 
nΣ 

i=1 

l f i  
|||||| W̃ f i,k 

|||||| 
2 + δ2 

nΣ 

i=1 

nΣ 

j=1 

l2 gi j 

|||||| W̃ gi j,k 
|||||| 
2 

− 2 ỹT k C
T( CCT + δ I2n 

)−1 

× PB  
[{ 

W̃ f,k 
{T · { φ f 

(
x̂k 
)} + 
[{ 

W̃ g,k (t) 
{T · { φg 

( 
x1,k 
)} ] 

uk 

] 

− sT k 
[{ 

W̃Ξ,k 

{T · { φΞ(Zk) 
}] + sT k 

[ 
Λ 
( 
K 1 z1,k + e2,k 

) + K 2 z1,k + K esk 

× 
{ 
Ŵ f,k (t) 

{T · { φ f 
(
x̂k 
)} + 
[{ 

Ŵ g,k (t) 
{T 

· { φg 
( 
x1,k 
)}] 

uk − urk  

− ÿd + 
{ 
ŴΞ 

{T 
· { φΞ(Zk ) 

}] + 
1 

n 

nΣ 

i=1 

[ 
1 − b tanh2

( 
si,k 
/ 

ηi (t) 
)] 

Ξ(yk ) − K sT k sk (6.35) 

For convenience of presentation, denote ϒk = −Λ 
( 
K 1z1,k + e2,k 

)− K 2z1,k−K esk−
{ 
Ŵ f,k(t) 

{T · { φ f 
(
x̂k 
)}+ ÿd − 

{ 
ŴΞ 

{T 
· { φΞ(Zk) 

} 
. Then, we can design the output 

feedback controller as follows 

uk = 
[{ 

Ŵ g,k(t) 
{T 

• 
{ 
φg 

( 
x1,k 
)} ]−1 

ϒk (6.36) 

urk  = 0 (6.37)
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Obviously, singularity problem occurs when using the matrix inversion. To avoid 

singularity of the control law (6.37) in the case that Ŵ 
T 

gk(t)φg 

( 
x1,k 
) 
is not invertible, 

the control law is modified as follows 

uk = 
[{ 

Ŵ g,k (t) 
{T 

· { φg 
( 
x1,k 
)}]
[ 
δ1 In + 

[{ 
Ŵ g,k (t) 

{T 
· { φg 
( 
x1,k 
)}]T[{ 

Ŵ g,k (t) 
{T 

· { φg 
( 
x1,k 
)}]
]−1 

ϒk 

(6.38) 

where, δ1 is a small positive constant, Then, substituting the controller (6.38) back 
into (6.35) yields 

V̇k ≤ −λmin( Q)||zk||2 + δ2 
nΣ 

i=1 

l f i  
|||||| W̃ f i,k 

|||||| 
2 + δ2 

nΣ 

i=1 

nΣ 

j=1 

l2 gi j 

|||||| W̃ gi j,k 
|||||| 
2 

− 2 ỹT k C
T( CCT + δ I2n 

)−1 
PB  
[{ 

W̃ f,k 
{T · { φ f 

(
x̂k 
)} + 
[{ 

W̃ g,k (t) 
{T · { φg 

( 
x1,k 
)}] 

uk 

] 

− sT k 
[{ 

W̃Ξ,k 

{T · { φΞ(Zk ) 
} ] 

+ sT k 

⎧ 
⎨ 

⎩
−urk  − δ In 

[ 
δ In + 

[{ 
Ŵ g,k (t) 

{T 
· { φg 
( 
x1,k 
)}]T[{ 

Ŵ g,k (t) 
{T 

· { φg 
( 
x1,k 
)}]
]−1 

ϒk 

⎫ 
⎬ 

⎭ 

+ 
1 

n 

nΣ 

i=1 

[ 
1 − b tanh2

( 
si,k 
/ 

ηi (t) 
)] 

Ξ(yk ) − K sT k sk 

≤ −λmin( Q)||zk||2 + δ2 
nΣ 

i=1 

l f i  
|| 
|||| W̃ f i,k 

|| 
|||| 
2 + δ2 

nΣ 

i=1 

nΣ 

j=1 

l2 gi j 

|| 
|||| W̃ gi j,k 

|| 
|||| 
2 − sT k 

[{ 
W̃Ξ,k 

{T · { φΞ(Zk ) 
}] 

− 2 ỹT k C
T( CCT + δ I2n 

)−1 
PB  
[{ 

W̃ f,k 
{T · { φ f 

(
x̂k 
)} + 
[{ 

W̃ g,k (t) 
{T · { φg 

( 
x1,k 
)}] 

uk 

] 

+ ||sk||||ϒk||δ 
[ 

δ In + 
[{ 

Ŵ g,k (t) 
{T 

· { φg 
( 
x1,k 
)}]T[{ 

Ŵ g,k (t) 
{T 

· { φg 
( 
x1,k 
)}]
]−1 

− sT k urk  

+ 
1 

n 

nΣ 

i=1 

[ 
1 − b tanh2

( 
si,k 
/ 

ηi (t) 
)] 

Ξ(yk ) − K sT k sk (6.39) 

where using the matrix relationship GGT[ δ1 In + GGT]−1 = In − 
δ1 
[ 
δ1 In + GGT]−1 

. 
Design urk  as 

urk  = δ1 

[ 

δ1 In + 
[{ 

Ŵ g,k (t) 
{T 

· { φg 
( 
x1,k 
)}]T[{ 

Ŵ g,k (t) 
{T 

· { φg 
( 
x1,k 
)}]
]−1 

ϒk 

× tanh 

⎛ 

⎜⎜ 
⎜⎜⎜ 
⎝ 

sT k δ1 

[ 

δ1 In + 
[{ 

Ŵ g,k (t) 
{T 

· { φg 
( 
x1,k 
)}]T[{ 

Ŵ g,k (t) 
{T 

· { φg 
( 
x1,k 
)}]
]−1 

ϒk

 Δk 

⎞ 

⎟⎟ 
⎟⎟⎟ 
⎠ 

(6.40) 

Where  Δk is the convergent series sequence define in Sect. 5.3.
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According to Lemma 5.2, we can know 

V̇k ≤ −λmin( Q)||zk||2 + δ2 
nΣ 

i=1 

l f i  
|||||| W̃ f i,k 

|||||| 
2 

+ δ2 
nΣ 

i=1 

nΣ 

j=1 

l2 gi j 

|||||| W̃ gi j,k 
|||||| 
2 − sT k 

[{ 
W̃Ξ,k 

{T · { φΞ(Zk) 
}] 

− 2 ỹT k C
T( CCT + δ I2n 

)−1 

× PB  
[{ 

W̃ f,k 
{T · { φ f 

(
x̂k 
)} + 
[{ 

W̃ g,k(t) 
{T · { φg 

( 
x1,k 
)}] 

uk 

] 

+ θ Δk + 
1 

n 

nΣ 

i=1 

[ 
1 − b tanh2

( 
si,k 
/ 

ηi (t) 
)] 

Ξ(yk) − K sT k sk (6.41) 

The difference type and differential-difference type update algorithms are 
designed as 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

(1 − γ1) 
⎧ ˙̂W f,k(t) 

⎫ 
= −(γ1 + α1) 

{ 
Ŵ f,k(t) 

{ 
+ γ1 
{ 
Ŵ f,k−1(t) 

{ 

+2 ỹT k C
T 
( 
CCT + δ I2n 

)−1 
PB  · { φ f 

(
x̂k 
)} 

{ 
Ŵ f,k (0) 

{ 
= 
{ 
Ŵ f,k−1(T ) 

{ 
, 
{ 
Ŵ f,0(t) 

{ 
= 0, t ∈ [0, T ] 

(6.42) 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

(1 − γ2) 
⎧ ˙̂
W g,k(t) 

⎫ 
= −(γ2 + α) 

{ 
Ŵ g,k(t) 

{ 
+ γ2 
{ 
Ŵ g,k−1(t) 

{ 

+2 ỹT k C
T( CCT + δ I2n 

)−1 
PBuk · 

{ 
φg 

( 
x1,k 
)} 

{ 
Ŵ g,k(0) 

{ 
= 
{ 
Ŵ g,k−1(T ) 

{ 
, 
{ 
Ŵ g,0(t) 

{ 
/= 0, t ∈ [0, T ] 

(6.43) 

⎧ 
⎪⎨ 

⎪⎩ 

(1 − γ3) 
⎧ ˙̂
WΞ,k 

⎫ 
= −γ3 

{ 
ŴΞ,k 

{ 
+ γ3 
{ 
ŴΞ,k−1 

{ 
+ q3sT k · 

{ 
φΞ(Zk) 

} 

{ 
ŴΞ,k(0) 

{ 
= 
{ 
ŴΞ,k−1(T ) 

{ 
, 
{ 
ŴΞ,0(t) 

{ 
= 0, t ∈ [0, T ] 

(6.44) 

where, q1, q2, q3 > 0, 0 < γ1, γ2, γ3 < 1, α >  0. 
Inequality (6.41) can be rewritten as follows 

2 ỹT k C
T( CCT + δ I2n 

)−1 

× PB  
[{ 

W̃ f,k 
{T · { φ f 

(
x̂k 
)} + 
[{ 

W̃ g,k(t) 
{T · { φg 

( 
x1,k 
)}] 

uk 

] 

+sT k 

[{ 
W̃Ξ,k 

{T · { φΞ(Zk) 
}]
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≤ −  ̇Vk − λmin( Q)||zk||2 + δ2 
nΣ 

i=1 

l f i  
|||||| W̃ f i,k 

|||||| 
2 + δ2 

nΣ 

i=1 

nΣ 

j=1 

l2 gi j 

|||||| W̃ gi j,k 
|||||| 
2 

+ θ Δk + 
1 

n 

nΣ 

i=1 

[ 
1 − b tanh2

( 
si,k 
/ 

ηi (t) 
)] 

Ξ(yk) − K sT k sk (6.45) 

The stability of the proposed AILC scheme in this chapter is summarized as 
follows. 

Theorem 6.1 Considering the manipulator plant (6.1), under Assumptions 6.1– 
6.8, design the state observer (6.8) and adaptive iterative learning controller (6.38) 
and (6.40) with parameter update algorithms (6.42)–(6.44), the following properties 
can be guaranteed: (1)  all the closed-loop signals are bounded; (2)  the observer 
estimation error zk and tracking error esk(t) satisfy lim 

k→∞ 

∫ T 
0 ||zk||2 dσ = 0 and 

lim 
k→∞ 

||esk(t)|| = ||es∞(t)|| = 
( 
1 + mη 

)||η(t)||; (3)  lim 
k→∞ 

|||| yk(t) − yd (t) 
|||| ≤ k0||ε||+ 

k0 
( 
1 + mη 

)||ε||( e−(λ0−1) − e−λ0t 
) 
, where, λ0 is a positive constant. 

The proof of Theorem 6.1 is similar to that of Theorem 5.1 and will not presented 
in detail. 

6.5 Simulation Analysis 

Consider a two degree-of-freedom robotic manipulator. The parameters are given by 
M = [mi, j ]2×2, m1,1 = m1l2 c1 + m2(l2 1 + l2 c2 + 2l1lc2 cos q2) + I1 + I2, m1,2 = m2,1 = 
m2(l2 c2+ l1lc2 cos q2) + I2, m2,2 = m2l2 c2 + I2, C = [ci, j ]2×2, c1,1 = h q̇2, c1,2 = 
h q̇1 + h q̇2, c2,1 = −h q̇1 and c2,2 = 0, where, h = −m2l1lc2 sin q2. G = [G1, G2]T , 
G1 = (m1lc1 +m2l1)g cos q1 + m2lc2g cos(q1 + q2), G2 = m2lc2g cos(q1 + q2). The  
parameters are given by m1 = m2 = 1 kg, l1 = l2 = 0.5 m, lc1 = lc2 = 0.25 m, 
I1 = I2 = 0.1 kg m2, g = 9.81 m/s2 , the external disturbance is given by dk = 
[0.1 ∗ rand  ∗ sin t, 0.1 ∗ rand  ∗ sin t]T , where rand  presents Gaussian noise which 
takes an random value on [0, 1]. yk = 

[ 
q1,k, q2,k 

]T 
, xk = 

[ 
q1,k, q2,k , q̇1,k , q̇2,k 

]T 
, 

uk = 
[ 
u1,k, u2,k 

]T 
. The effect of time-delay output is given as 

H 
( 
yk,τ 
) = 

[ 
0.5 sin(t)e−|cos(0.5t)|yτ1 sin 

( 
yτ1 

) 

0.5 cos(t)e−|cos(0.5t)|yτ2 cos 
( 
yτ2 

) 

]
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The time delays is τ1 = 0.5(1 + sin(0.3t)), τ2 = 0.8(1 − sin(0.5t)). The desired 
trajectories for q1,k and q2,k are chosen as q1,d = sin(2π t) and q2,d = cos(2π t). The  
system runs on [0, 2] repeatedly. We choose Q = diag{0.001, 0.002, 0.003, 0.004}. 

By using LMI toolbox, we can obtain K 0 = 

⎡ 

⎢⎢ 
⎣ 

3.2821 0 
0 3.2824 

2.9695 0 
0 2.9698 

⎤ 

⎥⎥ 
⎦, P = 

⎡ 

⎢⎢ 
⎣ 

6.6823 0 −4.01 0 
0 6.6823 0 −4.0102 

−4.01 0 6.6823 0 
0 −4.0102 0 6.6823 

⎤ 

⎥⎥ 
⎦. The design parameters are chosen as Λ = 

[ 
λ1 0 
0 λ2 

] 
= 
[ 
2 0  
0 2  

] 
, ε11 = 1, ε12 = 1, ε21 = 1, ε22 = 1, ε1 = λ1ε11 + ε21 = 3, 

ε2 = λ2ε12 + ε22 = 3, K = 2, γ = 0.5, q1 = 0.5, q2 = 1, q3 = 0.5,  Δk = 1/k3. 
Parts of the simulation results are shown in Figs. 6.1, 6.2, 6.3 and 6.4. 

As observed in simulation results above, the proposed adaptive neural ILC can 
achieve a good tracking performance and tracking errors decrease along the iteration 
axis, which demonstrates the validity of the proposed approach.

Fig. 6.1 q1,k and q2,k versus 
q1d and q2d (k = 1)
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Fig. 6.2 q1,k and q2,k versus 
q1d and q2d (k = 10) 
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Fig. 6.3 
∫ T 
0 

( 
q1,k − q1d 

)2 dt 
versus the number of 
iterations

6.6 Summary and Comments 

In this chapter, the research for plants with unmeasurable states and unknown control 
gain is carried out by taking manipulator as investigation object, which successfully 
overcomes the design difficulty from unknown control gain, absence of measurement 
of states and output delays. During the design the observer gain is determined by using 
LMI method and hyperbolic tangent function and convergent sequence are employed 
to design the robust term for purposed of guaranteeing the learning convergence.
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Fig. 6.4 
∫ T 
0 

( 
q2,k − q2d 

)2 dt 
versus the number of 
iterations
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