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Abstract In this preparatory chapter, brief introductions to the state-of-the-art 
millimeter-wave (mm-wave), infrared (IR) and terahertz (THz) technologies are 
given. Short descriptions of prospective applications of mm-wave, IR and THz signals 
have also been included in this chapter. A chapter-wise overview of the entire book 
has been incorporated at the end of this introductory chapter. 

1 Introduction 

The subject matter of this book covers three major frequency bands of the electro-
magnetic spectrum, such as millimeter-wave (mm-wave), infrared (IR) and terahertz 
(THz) spectrums. The mm-wave spectrum begins at 30 GHz and it is extended up to 
300 GHz; the wavelength range of 1–10 mm falls within this spectrum. On the other 
hand, the IR spectrum starts from 0.3 THz and ends roughly at 430 THz. As a whole, 
the IR spectrum is a very wide frequency regime (wavelength range is 0.7–1000 µm). 
The IR spectrum is conventionally divided into three separate sub-spectrums, such 
as (i) near-IR spectrum having the wavelength range of 2.5–25 µm (i.e. frequency 
range of 120–428.57 THz), (ii) mid-IR spectrum having the wavelength range of 
0.7–2.5 µm (i.e. frequency range of 12–120 THz), and (iii) far-IR spectrum having 
the wavelength range of 25–1000 µm (i.e. frequency range of 0.3–12 THz). These 
sub-spectrums like near-, mid- and far-IR regions are named with respect to their
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Fig. 1 Electromagnetic spectrum showing the position of the THz band [1] 

close proximity to the visible spectrum of light (i.e. 0.39–0.7 µm). Now, the THz 
region is the portion of the electromagnetic spectrum (0.3–10 THz), which begins at 
the end of the mm-wave spectrum and extends up to far-IR regime. The left side of 
the THz spectrum belongs to the world of ‘Electronics’ and the world of ‘Photonics’ 
starts from the right edge of this spectrum. Figure 1 depicts an elaborate illustration 
of the electromagnetic spectrum [1]. In Fig. 1, the entire broad frequency band 1– 
300 GHz is denoted as microwaves; however, the spectrum 1–30 GHz is specifically 
known as microwaves and the spectrum 30–300 GHz is known as mm-waves. 

The mm-wave spectrum is highly demanding for future wireless communica-
tion technologies [2]. Presence of three low absorption window frequencies, such as 
94, 140 and 220 GHz (Fig. 2) makes it a highly attractive spectrum for wideband, 
long-haul wireless communication applications. In order to support ultra-high data 
rates, 5th generation (5G) technology is currently utilizing the mm-wave band of 
24–86 GHz. Less costly mm-wave links may also replace comparatively costlier 
fibre optic links between mobile base stations. In future, mm-wave spectrum will be 
utilized in ultra high definition (UHD) video transmission, IEEE 802.11ad WiGig 
technology, next generation satellite communication links, wideband and high defi-
nition and high fidelity video and audio transmission in virtual reality devices, etc. 
However, despite having several advantages of this spectrum, one major hurdle is 
still obstructing the rapid progress of this technology. Considerable amount of atmo-
spheric absorption of the mm-wave frequencies, especially in fog, dust particles, 
clouds, etc. is limiting the mm-wave communication range.

The IR spectrum is already in use in several existing technologies. Infrared heating 
technologies are used in safe heat therapy methods of natural health care and phys-
iotherapy, cooking, industrial manufacturing processes, etc. Infrared imaging tech-
nology is very popular in military applications like passive night vision goggles, 
astronomy, etc. Most popular application of this spectrum is the use of it in high 
speed, wideband, short or medium or long range fibre optic communication tech-
nology. This technology utilizes three low absorption window wavelengths, such as 
(i) 1st window centred at 0.85 µm, (ii) 2nd window centred at 1.35 µm and (iii) 3rd 
window centred at 1.55 µm; Fig. 3 shows the positions of those windows [3].
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Fig. 2 Atmospheric absorption versus frequency/wavelength plot at sea level and at 4000 m altitude 
[2]

Fig. 3 Attenuation versus optical wavelength plot in glass; three optical transmission windows are 
shown in this plot [3] 

The THz spectrum or THz band is also known as ‘THz-gap’, since it is the most 
technologically unexplored portion of the electromagnetic spectrum. As mentioned 
earlier, the ‘THz-gap is an almost untouched frequency band (0.3–10 THz) lying 
between well explored mm-wave and IR spectrums. Higher data rate can be achieved 
in THz communication systems as compared to their equivalent mm-wave counter-
parts. On the other hand, better penetration capability of THz waves as compared to IR
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frequencies makes the THz band superior to the IR spectrum in some specific appli-
cations. Currently, the THz spectrum has massive requirements in various scientific, 
security, medical and astronomical sectors. Some examples are bio-sensing, bio-
imaging, remote sensing, spectroscopy, industrial quality inspection, medical and 
pharmaceutical sectors, food diagnostics, astronomy, etc. [4–24]. Significantly, the 
lower energy of THz photons makes those more convenient as compared to the high 
energy X-ray photons for remote inspection of some highly delicate substances like 
historical artefacts, historical structures, historical paintings, etc. [25]. 

2 Brief Overview of the Book 

The scope of this book includes a significantly long portion of the electromagnetic 
spectrum, starting from the mm-waves (i.e. 30 GHz) and extended up to the end of 
the near-IR spectrum (i.e. 450 THz). Most significant aspect of this portion of the 
electromagnetic spectrum is that it includes a frequency regime where the gradual 
transition from electronics to photonics occurs; this frequency regime is nothing but 
the THz frequency spectrum. This book provides a detailed analysis, description and 
discussion of some recently developed technologies under this extended frequency 
spectrum. Especially, the emphasis is given on the state-of-the-art and upcoming 
research going on at various parts of the globe on THz science and technology [26– 
36]. This book can be considered as a textbook for undergraduate, post graduate, 
doctoral students and also for scientists due to the ultra-broad coverage of it. 

Chapter-wise organization of the entire book is provided in this section. Sensi-
tivity analysis of Ku-band substrate integrated waveguide has been presented in 
Chap. 2 for photonic circuit integration. The possibilities of realizing Gallium Nitride 
integrated power module for terahertz wave generation are discussed in Chap. 3. 
Design methodologies of SiSnC/Si heterostructure electro-optic modulator (EOM) 
for optical signal processing applications have been included in Chap. 4. Design  
and optimization techniques of graphene nanoribbon tunnel field effect transistors 
(TFETs) for low power digital applications are described in Chap. 5. Chapter 6 
describes a very interesting topic of optoelectronics, i.e. birhythmic behaviour in dual 
loop optielectronic oscillators. Performance analysis of optical arithmetic circuits 
using artificial neural networks has been presented in Chap. 7. Chapter 8 demon-
strates the design and modelling of an infrared sensor-based object detection circuit 
for computer vision applications. A comparative analysis on bandwidth management 
techniques in 6th generation mobile communication has been presented in Chap. 9. 
Noise performance of millimeter-wave impact avalanche transist time (IMPATT) 
oscillators has been summarized in Chap. 10. Chapter 11 deals with a brief introduc-
tion of high frequency passive circuits. Impact of negative bottom gate voltage for 
improvement of RF/analog performance in asymmetric junctionless dual material 
double gate MOSFET has been discussed in detail in Chap. 12. Chapter 13 presents 
a DC and RF analysis of gate all round tunneling field-effect transistor (GAA-TFET) 
based on graphene nanoribbon (GNR). Generalized distribution functions in heavily 
doped nano materials have been studied at terahertz frequency and the results are
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summarized in Chap. 14. Chapter 15 deals with the influence of THz frequency 
on the gate capacitance in two-dimensional quantum-well field effect transistors 
(QWFETs). Chapter 16 reveals an alternative scheme of quantum optical superfast 
tristate controlled-NOT gate using frequency encoding principle of light with semi-
conductor optical amplifier. Finally, the Chap. 16 deals with the detailed discussion 
regarding the use of frequency encoding principle for implementing nano-photonic 
ultrafast tristate Pauli X gate. 
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