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1 Introduction 

As per the national research councils of India material characterization should 
describe feature such as structure of material, composition, defects, etc. with appli-
cation. Material characterization involves chemical, physical and mechanical prop-
erties which describe the material in best manner. To understand the physics of 
engineering material under the action of external forces (which may be of contact 
and non-contact type) is known as mechanical characterization of material. These 
mechanical properties play an important role in characterization of material which 
helps the research to find its correct application. Evaluation of mechanical prop-
erties relies on experimental data [1] obtained from distractive and non-distractive 
testing. And mathematical model (based on governing law) which interpretiate the 
mechanical properties from data obtained from experiment. Increasing demand of 
the society result in discovering of new material having superior properties with vast 
range of application are been required. Evaluation in material science field can be 
best described into four phases or paradigms [2]. First phase start from stone-age past 
back to thousands of years where by only metallurgical observation help in predicting
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the characteristic of material, this is purely empirical. Second phase start near about 
sixteenth century where scientists have developed mathematical models to correlate 
the physical relations. In these paradigms conventional laws have been formulated in 
the form of mathematical equation. But with time the complexity of developed math-
ematical model become too complex, result in raising question on the solution obtain 
from the above analytical methods. In the mid of nineteenth century, advancements 
in computational science increased that gave rise to the third phase. Any mechanical 
properties of the material cannot be best described by only one mathematical model 
or conventional law; there may be several concept which may describe the single 
property in best way. Therefore experimental data is been required which is been 
interpreted through mathematical models with the help of computational science. 
Molecular dynamic and density function theory are been some of the examples in 
material science in this paradigm. Data generated from experiment and simulation 
from computer give rise to fourth phase where calculation of mechanical properties 
is based on large set of data also known as data driven paradigm [3]. Large data set 
obtained from different experiments including structure patterns help in determining 
the hidden correlation which were not visible in small data sets result in horizon 
of twenty-first century research. Figure 1 represents the four paradigms of material 
science starting from stone-age to twenty-first century.

2 Big-Data 

To meet the specific requirement of industries or scientist discovery of novel material 
or unknown properties of known materials is been evaluated on the basic of data 
obtained from different source which may or may not relate the property in theoretical 
concepts. But contain some hidden correlation that may describe the behavior of 
the material and the huge amount of data obtained from different source comes 
under big-data. Big-data is been characterized by five-V models i.e. volume: concern 
about the size of the data, velocity: data generation speed, variety: diversity of data 
generated, veracity: quality and accuracy of data generated and value: value provided 
the data generated [4, 5]. Development in sensors helps in collection of data, but 
bigness of data have their own challenges such as storage, visualization, analysis, 
and retrieval. Suppose data obtained from heterogeneous sources (from different 
experiments) have the problem of correlation in between them, inconsistencies within 
it, some missing value, reliability issue, etc. These are the major challenges comes 
in the path of scientist while working in the field of material science. In the field 
of computational material science, European center of excellence, Novel Material 
discovery (NOMAD) having concept “FAIR” of big-data i.e. Findable for anyone 
interest, easily Accessible, standard representation which make it Interoperable and 
Reusable [6]. Different stages involve in mechanical characterization of material are 
and also shown in Fig. 2, data obtained from the heterogeneous source may first pre-
process to identify the correlation of in between the data; after that identification of 
key feature/factor which may help in data reduction/selection; after that mathematical
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Fig. 2 Different stages involve in mechanical characterization of material 

model based on machine learning is applied on the data; finally this machine learning 
model will predict the mechanical property on the basic of data provided to the model. 
At last predicted value of mechanical property is been validated. Therefore after big-
data computer intelligence plays an important role where machine learning comes 
into picture. 

3 Machine Learning 

Machine learning (ML) should be describe as generating computer intelligence with 
the help of algorithm which perform certain task on the given relevant data [7]. Next 
paradigm in the field of material science is application of artificial intelligence and 
machine learning [8–10]. Increase in computational power help the scientific commu-
nity to involve lab automation, parallel experiments and effective experiment design 
also known as high throughput experimentation (HTE). Through HTE correlation 
in processing, microstructure and composition of material [8–11] is been possible. 
ML models are broadly classified into four categories: (1) Supervised Learning: In 
this type of model labeled data is used to train the model and predicts the outcome 
[12]. Some supervised learning algorithms are neural networking, linear regression, 
Naive Bayes, etc. (2) Unsupervised learning: In this type of model unlabeled data is 
used to train the model, clustering of data is done and the outcome is been predicted. 
Some unsupervised learning algorithms are k-nearest neighbors, k-mean clustering, 
etc. (3) Semi-supervised learning: In this type of model some data is labeled data 
and some is unlabeled [13]. (4) Reinforced learning: this model is based on reward 
and penalty approach [14]. ML has wide application in every area of science and day 
to day activities such as communication, transportation, medical, business, material 
science, social media, and industrial research [15]. In the field of material science 
ML is used to predict new stable materials [16–18], predicting of material proper-
ties [19–21], inorganic chemistry [22–24], predicting properties of material [25–27], 
analyzing complex reaction [28], understanding crystal structure [29], guide exper-
imental design [30], etc. In this chapter a brief review of application of machine 
learning in the field of determining the mechanical properties such as tensile strength, 
fatigue behavior, visco-elastic study, and etc. have be done.
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4 Tensile Strength 

Characterization of material is done through determining the mechanical properties 
such as tensile strength, yield strength, % elongation, etc. It is the behavior of material 
under the action of external forces. Mechanical properties of material depend upon 
many factors such as microstructure, alloying composition, fabrication processing 
parameters, and other external factors. As per present scenario most of the researcher 
employ the universal testing machine to determine the mechanical properties of mate-
rial. But there is no mathematical model where all the above governing factors will 
be include, therefore the role of machine learning comes into picture. Wang et al. 
[31] applied the machine learning algorithm to determine the elongation and yield 
strength of reduce activation ferritic/martensitic steels (RAFM). To perform the ML 
algorithm database is been developed through experiments. And to maintain dimen-
sional equality normalization was performed as preprocessing method for feature 
engineering. About 80% database is been used to train the ML model and 20% 
to test. Initially there are about 19 feature, after artificial selection 8 feature (due 
to narrow data range following were content Ni, Nb, V, Mn, Mo, neglected; due to 
testing accuracy following were neglected content of P, S; and due to small dataset of 
time, temperature of austenitizing is been neglected) were ignored. Random forests 
model was employed as ML algorithm to find out the impact of remaining 11 features 
(content of C, Cr, W, Si, V, Ta, Ti, N, B, Temp., and Time) on yield strength and elon-
gation of RAFM. Moreover, last-place elimination rule was also been employed to 
eliminate the feature which less correlate. Results show that tempering temperature, 
content of C and tempering time show the highest correlation in predicting the yield 
strength of RAFM followed by content of Cr, Ti, W and B. Outcomes of ML model 
shows similarity with RAFM steels principle of physical metallurgy i.e. formation 
of MX carbonitride during tempering process of RAFM steel play an important role 
in strengthening mechanism [32]. 

Sasikumar et al. [33] predict the ultimate tensile strength of epoxy/unidirectional 
carbon composites using back propagation algorithm based on Artificial Neural 
Network (ANN). Acoustic Emission (AE) response of epoxy/unidirectional carbon 
fiber is been recorded, AE sensors were placed on both side of the specimen. Total 
of about 18 dataset were generated and three mode of failures were studied i.e. (1) 
fiber breakage: since most of the load is taken up by the fiber, therefore highest 
energy and amplitude is been generated, (2) delamination (in case of unidirectional 
fiber splitting of fiber): duration of this mode is short and amplitude and energy is 
also lesser than fiber breakage failure and (3) matrix cracking: this failure occurs 
throughout the test. AE characteristic produce were recorded for each failure mode 
i.e. AE hits and ultimate tensile strength. Three layers ANN model were used to fit 
the data obtained with 45 neurons at middle layer, Levenberg-Marguart algorithm 
employed with linear transfer function. Results show about 9.5% error which makes 
ANN more provident method to predict the tensile strength using AE emission.
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Santos et al. [34] apply machine learning approach to predict the mechanical 
properties with foundry process parameter. 25 variable parameters were taken into 
account for 889 casting datasets. About 10 different ML classifiers such as Bayes 
TAN, Bayes Hill Climber, Bayes K2, Naive Bayes, KNN algorithms were used. 
Results show that Hill Climbing classifier give best result for lower training datasets 
whereas in case other classifier their accuracy increases with increase in training 
dataset. 

Sterjovski et al. [35] apply the artificial neural networks to predict the mechanical 
properties of steels. Focus of the work is on to predict the impact strength of quenched 
and tempered pressure vessel steel exposed to multiple postweld heat treatment cycles 
on the basic of alloy content and heat treatment processing parameter (Model 1); 
hardness of the simulated heat affected zone of weldment in pipeline and tap fitting 
steels after in service welding on the basic of alloy contents and cooling time (Model 
2); and the hot ductility and hot strength of various micro alloyed steels over the 
temperature range for strand or slab straightening in the continuous casting process on 
the basic of treatment conditions and chemical composition (Model 3). ANNs model 
variables is classified into material characteristics (composition of alloying element, 
such as %C, %Mn, %Cr, etc., thickness and hardness) and processing parameters 
(temperature, cooling rate, time, etc.). For Model 1 10 input variable i.e. cooling 
type, time, thickness, orientation, temperature, content of C, Cr, Mn, and B were 
studied. In Model 2 16 parameters were taken and 9 were taken for Mode 3. For all 
the models content of carbon play a significant impact. For Model 1 holding time 
and temperature play important role, impact strength decreases with PWHT time. In 
Model 2 with decrease in cooling rate from 150 to 30 °C/s result in drop in hardness. 
For Mode 3 with increase in test temperature hot tensile strength decreases. 

Datta et al. [36] apply the concept of neural networks and genetic algorithms in 
designing multiphase steel for balanced strength and ductility. Major challenges 
in multiphase steel to use the optimum amount of alloying elements such that 
it has maximum strength without compromising the ductility. Moreover, thermo-
mechanical controlled processing parameters such as cooling rate, rolling tempera-
ture, reheating temperature and deformation in rolling stages also play an important 
role. For modeling of neural networking thermo-mechanical controlled processing 
parameters and alloy composition were taken as input variable and yield strength, 
elongation and tensile strength as output parameter. Further to reduce the neural 
network connectivity two methods were employed. First is intuitive pruning algo-
rithm [37] which is used to remove the lesser significant connections. In second 
approach genetic algorithm [38, 39] (predator prey algorithm and pareto front is 
employed to minimize the training error). Results show that rolling temperature 
does not play any significant role in predicting the yield strength and ultimate tensile 
strength of multiphase steel. Reason regarding that conclusion is that rolling temper-
ature is maintain higher that the recrystallization temperature therefore amount of 
dislocation during rolling is lesser due to which alteration in yield strength and ulti-
mate tensile strength is insignificant. Major factor which influence the multiphase 
steel are precipitation hardening and post rolling cooling rate. Results show that 
carbide forming elements have less effect as compare to Cu (strain hardening) in
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case ultimate tensile strength. Whereas cooling rate after rolling play important role 
in microstructure construction and found to most significant input variable even for 
percentage elongation also. 

Zhang et al. [40] applied the deep learning concept for elasticity imaging of 
non-homogeneous material through Physics-Informed Neural Networks (PINNs) on 
the basic of which diseased and normal tissue cab be identified. Accomplishment 
of objective was done using two neural network one for solution approximation 
and other for unknown material estimation. The objective is to determine the mate-
rial properties by observing displacement data for plain strain problems for incom-
pressible Neo-Hookean hyper-elastic materials. Formulation loss function involves 
displacement data, physics information of partial differential equation, boundary 
condition and incompressibility constraint. 

Matzbower et al. [41] applied the concept of neural networking to approximate 
the ductility and strength of welding shipbuilding steel alloys. Database of 189 weld 
steel alloys samples were been generated which include chemical composition (such 
as content of C, Mn, Si, Cr, Ni, Mo, Cu, S, P etc.), elongation and cross-section area 
reduction and weld cooling rate as an input variable and ultimate tensile strength 
and yield strength as output variable. All input variable were been normalized within 
the range of ± 0.5. About 80 neural models were created with varied number of 
hidden units and 5 random initial seed set. The output y is the linear function of 
bias and hyperbolic tangent transfer function. Results show that about ¼ dataset 
doesn’t satisfied the model in case yield strength. Noteworthy input variable which 
had significant impact on yield strength are content of Mn, C, Ni, Ti, Mo and cooling 
rate. 

Shigemori et al. [42] applied the concept of Just-In-Time (JIT) methodology to 
developed quality design system for steel. Focus of the work is to decide the best 
manufacturing procedure as per the desire quality target for steel bar. Initially the 
production of steel slabs is done by altering the chemical composition. To obtained 
desire shape and size cold working (rolling process) of the steel slab heated to 
specific temperature is done. Desirable mechanical properties and microstructure 
is been obtained through cooling process which may further be temper rolled and 
heat treated to again modified the properties. In this work quality index of the steel or 
output parameter taken were tensile strength, yield strength, toughness and elonga-
tion. And on the other hand alloying element content, cooling process, rolling process 
and extraction temperature were taken as input parameter for mathematical model. 
Mathematical model is based on locally weighted regression approach type of JIT 
modeling which can be employed for nonlinear processes. Quality designing system 
consists of three models first one to select the initial input values so that value of initial 
objective function (it is deviation of product quality from target value) is minimum; 
second one for locally weighted regression models which generate nonlinear rela-
tion between quality and manufacturing condition, and third module is for deriving 
the optimal manufacturing conditions by employing quadratic programing methods. 
Results show that accuracy of locally weighted regression is higher as compared 
linear regression.
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Swaddiwudhipong et al. [43] employed the least square support vector machines to 
characterize the aluminum alloys (Al6061 and Al7075). Previously many researcher 
had used reverse analysis through iterative process but due to high nonlinear nature 
make it complex. Other approach is to use analytical model developed between load-
indentation parameters and material properties. Latter on concept of artificial neural 
networking is also been adopted by the researchers [44, 45] for material character-
ization when single indenter is been used to extract the data for thin films, which 
further extended to elasto-plastic materials [46]. In present work validated results 
obtained from FEA (using ABAQUS software) of indentation tests using conical 
indentor based on large strain and deformation model were taken as input in least 
square support vector machines (LS-SVM). The four LS-SVM models were devel-
oped using MATLAB 6.5 based on structural risk minimization principle. Problems 
like over fitting and large deviation are overcome by regularization and final unction is 
obtained with incorporation of regularization and loss function. Outcome shows that 
LS-SVM model gives more accurate result of Young’s modulus and yield strength 
rather than position’s ration. 

5 Fatigue and Creep 

Behavior of material under the action of cyclic loading is known as fatigue. Fatigue 
behavior/characteristic of material is determined by calculating the no. of cycles 
before failure also known as fatigue life. Abdalla and Hawileh [47] employed radial 
basis function (RBF) ANN for modelling and simulation of fatigue life (low-cycle 
fatigue life) of steel bar. For training the ANN model input parameters were maximum 
tensile strain (sinusoidal axial strain with 0.05 Hz frequency ranging from 3 to 10% 
beyond yield point) and strain ratio (−1,−0.75,−0.5, −0.25 and 0). And no. of cycles 
to fail the material is been evaluated through fatigue test taken as output parameter 
which is been evaluated by Coffin-Manson equation [48–50]. ANN model is based on 
back-propagation feed forward with random selection of initial weight values. ANN 
model consist of two additional hidden layers with four neurons in each layer. First 
hidden layer consist of Gaussian activation function while one output layer and two 
additional hidden layers consist of tangent hyperbolic activation function. Accuracy 
of ANN model is high with the normalized square error 0.0428 and R value 0.9869. 

Application ANN also been used predict the failure life of composites mate-
rial now a days. Lee et al. [51] predict the fatigue life of the carbon and glass 
fiber reinforced epoxy composites using ANN method. Object of the work is to 
develop the model for predicting the fatigue life for newly developed/existing mate-
rial having lesser fatigue testing results. Only approach available is developed math-
ematical model using physical laws by evaluating material properties and damage 
at microstructure which is time consuming and yet satisfactory result is also not 
obtained. Dataset is been obtained by fatigue testing of material with R rations 0.1– 
0.5. Three input parameters were taken i.e. are stress ratio, stress range and mean
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stress and on the other hand fatigue life was taken as output parameters. ANN model 
prediction give good result for median life as compared to minimum failure life. 

Agarwal et al. [52] determine the fatigue strength of steel based on composi-
tion and processing parameter by employing different data science techniques such 
as ANN, decision trees and regression. Database is been obtained from MatNavi 
(National Institute of Material Science) which is world largest database developed 
at Japan. Database consists of low alloy steels, spring steels and carburizing steels 
having 25 input variable parameters having following classifications: (1) Chemical 
content such as weight percentage of different alloying element C, Si, Mn, S, Ni, 
Cr, Mo, Cu, etc.; (2) Upstream processing parameters i.e. reduction ratio, ingot size, 
non-metallic inclusions, etc.; (3) Heat treatment parameters such as time, temper-
ature, and processing conditions for different process, and; (4) Mechanical proper-
ties such as yield strength, ultimate tensile strength, %elongation, hardness, fatigue 
strength, impact value, etc. Preprocessing of database is done for feature selection 
and R, WEKA and MATLAB were used as data processing software. Result shows 
that tempering time, Carburization temperature and Diffusion temperature have the 
highest correlation with fatigue strength. About 12 different ML models were used 
out of which MPR and M5 model tress show the best result with R2 value of 0.98. 

Zhang et al. [53] applied the concepts of genetic algorithm and support vector 
machine (SVM) to determine the fatigue life of material. SVM machine learning 
technique is applied when the database contain smaller sample with good accuracy 
result. In this technique nonlinear mapping of input variable into infinite-dimension 
space by creating hyper plane which classify the database into classes. Kernel func-
tion (Gauss function) was also been incorporated to solve nonlinear problem through 
SVM. Purpose for introducing the kernel function is to overcome the dimensionality 
problem, help in nonlinear transformation expressions and provide different mapping 
space having different properties. Accuracy of SVM depends upon the three factors: 
Penalty factor, higher is the value higher is the fitting but time consuming also even 
too high value result in over-fitting; Lower fitting accuracy, higher is value lower 
the no. of support vectors result is reduction in the complexity of the accuracy of 
model; γ, smaller is the value, poor performance of radial based function and vice 
versa but too high value may cause poor generalization ability. Genetic algorithm 
approach was employed to optimize the parameters as parameter selection is one of 
the major problem where theoretical guidance cannot help. SVM model was used to 
predict the P91 steel base metal and welding consumable taken from literature of Ji 
[54]. Holding time is taken as input parameter whereas fatigue life as output param-
eter. Genetic algorithm-SVR shows the highest accuracy with R2 of 0.99 on training 
sample. The authors have a vast experience in the field of molecular dynamics and 
experimental characterization of composites materials [55–106].
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6 Conclusion 

This chapter shows the various machine learning techniques applied by different 
researchers towards characterization of mechanical properties of material. These 
articles review literature on the application of machine learning in the field of 
fatigue failure, creep-recovery behavior of material, tensile strength, etc. Utilization 
of machine learning techniques in the field of material characterization is growing 
day by day. ML has a vast future in the field of material characterization which is 
not only limited to above characterization techniques. 
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