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Applications of Machine Learning 
in the Field of Polymer Composites 

Aanchna Sharma and Vinod Kushvaha 

1 Introduction 

Aerospace, marine, automobile and many other consumer industries are demanding 
for alternate materials which have an amalgamation of high strength to weight ratio, 
high toughness, thermal insulation and corrosion resistance along with acoustic 
damping. These days polymer composites have become the most popular and ideal 
choice for these industries due to the great amalgam of above-mentioned superior 
properties that they possess [1–6]. Polymer composites are the multiphase materials 
that are made up of a continous phase more commonly known as the matrix, and a 
dispersed phase, generally known as the reinforcement. The matrix phase is essen-
tially a thermosetting/thermoplastic polymer and the typical function of a matrix is 
to strongly hold the reinforcement and uniformly transfer the load to it [7]. There 
are various kinds of man-made or natural fibers, particles and whiskers that are used 
in the form of reinforcement to strengthen the polymeric matrix [8, 9]. Some of 
the examples are kevlar, aramid, carbon, glass, flax, jute, hemp, coir, sisal, alumina, 
mica, basalt etc. [7]. Figure 1 is an illustration of the broader classification of polymer 
composites on the basis of the kind of reinforcing agent used.

Factors like the chemical composition, aspect ratio, extent of the reinforcement 
and how they are added in consort with the composite manufacturing process signif-
icantly affect the final mechanical response that these materials possess [2, 3, 10– 
14]. If the matrix is reinforced with continuous fibers then the fiber orientation and 
the stacking order become the deciding parameters while in the case of particulate 
polymer composites, size and shape of the filler particles are important [15–17]. 
The interface between the matrix and the reinforcement is another aspect that has 
significant effect on the mechanical behavior of the polymer composites. The extent
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Fig. 1 Classification of polymer composites based on types of reinforcement

of plastic yielding, toughneing, fiber bridging and the overall morphology of such 
materials get largely affected by the type of interface developed [18, 19]. Another 
governing factor is the manufacturing process which affects the performance and 
the load carrying capacity of the end product in the long run [20]. Manufacturing 
processes like hand lay-up, resin transfer molding, vacuum molding, direct extru-
sion, pultrusion and compression molding are mostly used and the process choice 
is made concerning the specific application. Curing temperature, void fraction and 
the processing speed are additional important parameters that come into play with a 
particular manufacturing process and lead to the development of residual stresses and 
strain [21–23]. Therefore, to ramp up the applicability of the polymer composites, 
it is imperative to study and analyze the combined effect of all these parameters. 
Selecting the right combination of matrix and reinforcement results in the desirable 
ultimate response and this tailorability is what gives polymer composites an edge 
over other conventional materials [24]. 

Flexible and economical materials suitable for various simultaneous goals are 
a requirement of most progressive industries. In order to reconnoitre the broader 
potential of polymer based composites, it is essential to consider all the process 
parameters together and then optimize the same, this will greatly contribute to the 
material design and development. However, experimenting on the relevance of each 
of the regulating parameters is difficult and time-consuming. Also it is extremely 
difficult to model the complex interactions between the regulating parameters. Over
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the last few years, material science has progressed from a period of establishing 
purely computational tools for the disclosure and design of new and complicated 
materials to the period of creating coupled techniques that improve the quality of 
results by utilizing the computational forecasts and trial approval. Methods like finite 
element, molecular dynamic simulations and phase field modelling have been utilized 
in different fields to demonstrate the material conduct, however the intricacy and the 
computational severity of these strategies have inspired the researchers to search 
for different other options [22, 25–31]. In view of this, numerous scientists have 
turned to machine learning to come up with an optimal design by considering all the 
important parameters [32, 33]. Machine learning is a subset of artificial intelligence 
that provides a broader space for effectively exploring and studying the behavior 
of complex composite materials with limited set of experimental or computational 
information. Considering the kind of problem to be addressed and the available 
dataset, there are different machine learning algorithms that are being used in different 
fields of material science. Though many studies sum up how the machine learning 
algorithms can be utilized in material science, a large portion of the investigations are 
restricted in scope by the imperatives of various factors which bring about expanded 
dimensionality and vulnerability brought about by the uncertainty of the considered 
information. This chapter aims to summarize the findings of a wide body of research 
in order to emphasize the wide range potential of machine learning in polymer 
composites. Henceforth, the chapter is structured as, Sect. 2: an overview of the 
applications of machine learning in polymer composites, Sect. 3: widely adopted 
machine learning algorithms, Sect. 4: concluding annotations. 

2 An Overview of the Applications of Machine Learning 
in Polymer Composites 

In case of polymer composites, the huge number of existing factors and numerous 
combinations need to be analysed in order to increase the applications with multi-
functional needs. Therefore the researchers are driven to perform more systematic and 
data-intensive research in the analysis of polymer composites. Combined efforts of 
experiments and computer simulations have been generating huge chunks of data that 
need to be analyzed effectively for better insights and understanding. To effectively 
handle the large and complex data and to draw meaningful inferences, machine 
learning algorithms are being integrated with material science. Figure 2 highlights 
the key applications of machine learning algorithms that have been successfully 
implemented.

In material science, the two mostly used paradigms of machine learning are super-
vised and unsupervised learning. Supervised learning makes use of a well-labeled 
dataset and the new predictions are made on the basis of input–output mapping 
considering the relationship between inputs and the known outputs [35]. While in 
the later one, the user is allowed to discover the patterns in the given dataset and make
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Fig. 2 Applications of machine lerarning in various fields of material science [34]

the predictions accordingly [36, 37]. Supervised learning is more popular when it 
comes to polymer composites. A typical workflow of implementing the algorithms 
of supervised learning for making predictions of the material behavior is given in 
Fig. 3.

In the implementation of any machine learning algorithm, the first step is to 
prepare the data to be utilized. Raw information consists of huge amount of noise 
which requires appropriate enhancement in terms of feature engineering that includes 
reordering, cleaning and then sampling the data. Redundant parameters are deleted in
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Fig. 3 Workflow of supervised machine learning algorithms

this step so that only the relevant parameters are considered and also the problem of 
high-dimensionality is avoided. This step helps in improving the learning accuracy 
of the used algorithm and hence better predictions are made [38, 39]. 

Once the data is prepared well, a hypothesis function is set that actually performs 
the mapping between the input and output parameters and also selects the appropriate 
learning algorithm to be utilized. This algorithm selection greatly depends on the kind 
of data in hand and also the type of problem which may be regression or classifi-
cation [40]. The next step involves the training of the model with the preprocessed 
data. The available data is divided into three categories viz. training, testing and 
cross-validation dataset. The chosen model learns to map the input and output using 
the training dataset and for the purpose of hyperparameter tuning, cross-validation 
dataset is utilized. Testing dataset is used to assess the model’s performance on the 
basis of which predictions are finally made. Different accuracy metrics like mean 
square error, mean absolute percentage error, coefficient of determination and the 
confusion matrix are used to evaluate the overall performance of the model. 

Machine learning (ML) has been utilized extensively in polymer composites for 
material property prediction, microstructural characterization, optimization of the 
process parameters and quantifying the uncertainties caused by the complicated 
production processes. A group of researchers [41] used density functional theory and 
a machine learning algorithm to predict properties of long chains of inorganic poly-
mers. Properties like lattice energy, atomization ernergy, spring constant and dielec-
tric constant were predicted and the results from both the approaches were found to be 
in good agreement. A simple machine learning algorithm, K-nearest neighbor (KNN) 
was used in a research related to different kinds of bio-nanocomposites in which heat 
deflection temperature was predicted [42]. Another ML algorithm, decision tree was 
successfully utilized in modelling the behavior of carbon fiber reinforced polymer
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(CFRP) composites. A relationship between the mechanical behavior of the resulting 
CFRP composite and the used carbon fibers was established and a prediction for the 
macromechanical properties was made [43]. There are various machine learning algo-
rithms described in the literature for successful implementation in material science. 
Optimization is one of the most important applications of machine learning because 
of the bewildering array of algorithms available. Simply put, optimization involves 
the process of running different models multiple times and hence is computationally 
intensive and tends to be unwieldy in complex simulations. Optimization algorithm 
involves an iterative execution as it entails comparing different models for probable 
solutions until a satisfying result is discovered. The three fundamental elements of an 
optimization problem are variables, constraints, and objective functions. The param-
eters that can be tuned by the algorithm are called the variables. The second element, 
constraint is the boundary or range within which the parameters must be present and 
the goal for which the entire algorithm is working, is known as the objective function. 
The two main methodologies utilised in optimization algorithms are stochastic and 
deterministic. Deterministic algorithms apply certain principles to discover a solu-
tion, by ignoring the uncertainty associated with the variable space [44, 45]. However 
the stochastic approaches model the uncertainties in a probabilistic manner in terms 
of probability distribution functions [46, 47]. On the basis of design variables, objec-
tive function and type of constraints, optimization algorithms can be classified into 
different categories and the same has been illustrated in Fig. 4. 

Fig. 4 Classification of optimization algorithms [34]
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The approach of machine learning makes it easier to use different optimiza-
tion algorithms with improved efficiency [48]. To assess and optimize the additive 
manufacturing processes, ML based approaches have been widely deployed [49]. 
A research group [50] used a machine learning approch to predict the absorption 
index of polycarbonate composites reinforced with carbon nano tubes. They used 
the approach of mutilayer perceptron network and then performed an optimization 
of the process parameters and consequently the best network was selected for the 
absorption index prediction. An optimal solution for the was also found by another 
research group for the critical buckling load and stiffnes of laminates made by using 
polymer composites [51]. They were able to successfully use the machine learning 
method as an evolutionary model to reduce the overall computational cost of the opti-
mization process. Many researchers have successfully optimized process parameters 
and attributes such as the composition of the composite, surface roughness, thrust 
force, delamination, material properties, and overall structural design using machine 
learning techniques [50, 52–55]. 

Because of differences in material properties, measurement uncertainty, test set-up 
restrictions, operational environment, and imprecise geometrical features, compu-
tational evaluations of polymer composites frequently encounter uncertainties [56, 
57]. Parametric input uncertainties, initial and boundary conditions, computational 
and numerical uncertainties resulting from inevitable assumptions and approxima-
tions, and the inherent inaccuracy of the model bring a significant deviation of mate-
rial response from the expected one. Quantifying these uncertainties is essential to 
ensure the reliability of simulation results and understanding the risks before final 
product selection. In this view, various machine learning algorithms have been instru-
mental. Gaussian process, a supervised machine learning algorithm have been used 
to quantify the inherent uncertainties in the simulation of fiber reinforced compos-
ites [58]. The framework of Bayesian inference has also been successfully utilized 
for the purpose of uncertainty quantification of electrical conductivity of the carbon 
nanotube reinforced polymer composites [59]. 

Aerospace, automotive, marine, and many other highly advanced industries are 
increasingly turning to polymer composites for product design where performance 
reliability is a key factor. It is critical to assess the dependability of complex systems, 
including the detection of abnormalities, for long-term development, robust design, 
and safe operation [60]. Given the many structural and non-structural applications 
of polymer composites and the different types of stress these composites experience 
during their useful life, a reliability study for their safe application is essential. 
Recently, researchers have started exploiting machine learning-based methods to 
assess the reliability of complex systems in a computationally efficient manner [61, 
62]. Algorithms like artificial neural network, support vector machine, random forest 
and genetic algorithms have been reported in literature for determining the reliability 
index successfully in the context of polymer composites [63–66].
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3 Generally Used Machine Learning Algorithms 
in Polymer Composites 

Researchers are constantly investigating the exploitation of the growing capabilities 
of machine learning algorithms in the quest of making advancements in polymer 
composites by discovering new materials, tailoring application oriented properties 
of composite materials, and evaluating the various affecting parameters in order to 
come up with an optimized yet feasible design. Such efforts have yielded a number 
of effective outcomes, which are discussed in the following subsections. 

3.1 Neural Networks 

Neural network is a mathematical tool that imitates the biological nervous system to 
solve a broad spectrum of scientific and engineering problems. Akin to the human 
brain, there are a number of processors (neurons) that work parallely and process 
the information that is passed over the layers. The first layer commonly known as 
the input layer, receives all the preprocessed data. There is an intermediate layer 
also known as the hidden layer that makes all the mathematical computations. Then 
finally, there is an output layer which gives the final predictions. This kind of network 
is known as artificial neural network (ANN). The efficiency and robustness of this 
method lies in its ability to use nonlinear mapping functions to process hefty amounts 
of data with large covariate spaces. Predictor functions like multilayer perceptron 
and radial basis function are often used and their purpose is to reduce the prediction 
error. 

ANN is one of the most popular machine learning algorithms for data catego-
rization, prediction, clustering, pattern recognition, and image identification [67– 
70]. This algorithm has been successfully used by many researchers to predict the 
mechanical properties of polymer based composites that too with limited experimen-
tation [71–73]. For exploring the plaussible applications of carbon nanotube based 
polymer composites in damage detecting sensors, the methodology of ANN was 
used [74]. One of the important observations during this study was that each simula-
tion run using finite element method took 3.5 h to complete, wheras ANN produced 
almost same results in less than 0.2 s. In order to anticipate the tribological proper-
ties of polymer composites, neural networks have been proposed as a new technique 
[75]. Literature suggests that neural networks have been efficaciously implemented 
by the research community for the purpose of prediction and optimization of the 
load-carrying capability, wear rate, delamination, fracature toughness and acoustic 
properties of different types of polymer composites [67, 76–80]. A research group 
[81] used the framework of artificial neural network to predict the tribological and 
mechanical behavior of glass-filled epoxy composites by considering the composi-
tion and test parameters as the input functions. This ANN methodology has also been 
for the purpose of locating defects in the interfacial zone of polymer composites [82].
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Some neural networks are based on fuzzy inference system and are known as adap-
tive neuro fuzzy networks. It is also characterised as a universal estimator because it 
combines the advantages of neural networks and fuzzy logics into a single architec-
ture. Adaptive neural networks have been implemented to predict the overall mechan-
ical response of glass reinforced polymer composites when subjected to impact load 
[83]. Polynomial neural network (PNN) is another class of neural networks that has 
lately gained interest in polymer composites for material behvior prediction. Poly-
nomial neural networks-based predictive modelling has been demonstrated to be 
more accurate than other fuzzy models [84]. When the output function is a higher 
order polynomial, PNNs are the best choice. Convolutional neural network is another 
important class of neural networks that is mostly used for analyzing image-based data 
[85]. Jiang and his research group used material composition, temperature, normal 
load and the sliding speed as input parameters and used the algorithm of ANN to 
predict the wear characteristics along with the mechanical properties of short fiber 
reinforced polyamide composites [81]. In another study, adaptive neural networks 
were used to predict the mechanical response of glass-filled polymer composites 
when fiber content, feed rate and the mixing temperature were used as the input 
parameters [83]. The framework of CNN was used to predict the strength and stiff-
ness of polymer composites by using the microstructural images of the composite in 
the input space [85]. 

3.2 Logistic Regression 

Logistic regression, often known as the classification algorithm, is commonly used 
for predicting discrete values. This supervised learning approach involves applying 
activation functions and adding a threshold value to convert a linear equation to a 
logistic one, as well as mapping the existing values between 0 and 1. Fitting a curve 
to the available data yields probabilistic predictions in this scenario [86]. Logistic 
regression makes use of a sigmoid function as follows: 

y = 1 

(1 + e−x ) 
(1) 

Owing to the simplicity of this algorithm, it has been extensively used by many 
for the purpose of classification and prediction [87, 88]. Logistic regression was used 
by a group of researchers to explain the correlation between the energy density and 
polymerization force [89]. Another group implemented the framework of logistic 
regression to predict the overall mechanical behavior of various polymer composites 
made by different kinds of matrix and reinforcing agents [90]. The same algorithm 
has been successfully applied to adhesive joints made of fiber reinforced polymer 
composites in order to identify different modes of damage/failure in it [91]. Logistic
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regression has applications in assessing the polymeric stability at different tempera-
ture ranges, classifying defects and predicting the electrical conductivity along with 
the thermal response of the resulting composite [86, 92, 93]. 

3.3 Gaussian Process 

The Gaussian process (GP) is a stochastic non-parametric process that can be used 
to solve non-linear problems [94, 95]. Gaussian process is one of the Naive Bayer’s 
versions that is being utilised to bridge the gap between computer simulations and 
physical situations. Simple parametric approaches sometimes fall short of accuracy 
and efficacy when datasets get more complicated. In such cases, neural network 
implementation becomes difficult. However, the advent of kernel based method, 
gaussian process has made it possible to draw unbiased and accurate inferences with 
a small set of training data. In essence, a Gaussian process is a collection of random 
variables with the premise that all the variables (predictor and target) have the same 
Gaussian distribution. 

A research group used piezoelectric parameters as predictor variables and acoustic 
parameters as target and used gaussian process to predict the remaining useful life 
and the damage states of polymer composites [96]. Another group used the B-scans 
of the composite materials after the material being subjected to delamination at 
different sites and characterized the impact failure using the framework of gaussian 
process [97]. Another major observation was the reduction in the computational time 
by 95%. Interfacial properties of polymer composites which are anyway difficult to 
be investigated were explored by means of correlating the feature space with the 
dielectric and viscoelastic properties in a GP framework [98]. The algorithm of 
Gaussian process has been shown to be quite efficient and robust specially in the 
case of smaller datsets with high degree of non-linearity. 

3.4 Support Vector Machine 

It is another kernel-based machine learning algorithm that falls into the category of 
supervised learning. Support vector machine (SVM) can be applied to both, regres-
sion as well as classification problems. SVM has long been considered the most 
classic method in the broad domain of machine learning when it comes to addressing 
classification issues involving large amounts of data. SVM works on the principle of 
optimization, in which the hyperplane is set so that the distance between data points 
also known as support vectors, and the data separator is as large as possible. Support 
vector machines have a wide range of applications because they employ kernel-
ization, which allows the algorithm to simulate non-linear decision boundaries by 
adding an extra dimension to the input [99–101].
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In the investigation of polymer composites, SVM-based machine learning models 
have been widely used. In the instance of CFRP composites, a group of researchers 
employed support vector regression to forecast the position of impact and measure 
the energy of the entire event [102]. A structure property relationship model was 
developed using the framework of supprt vector machine that facilitated in predicting 
the mechanical properties of polymer nanocomposites corresponding to the variations 
made in the filler content and the processing temperature [103]. The same algorithm 
was successfully used in evaluating the bond strength of fiber reinforced polymer with 
concrete [104]. Also, support vector regression based prediction and optimization 
model was used to design conductive carbon fiber reinforced polymer composites 
[105]. SVM has shown promising results when it comes to the classification of matrix 
cracking, damage detection and quantification and risk factor assessment [106–108]. 

4 Conclusion and the Future Scope 

This chapter summarizes the current developments in the applications of various 
machine learning techniques to polymer-based composites. Different kinds of anal-
yses that can be performed using machine learning (like prediction, optimization, 
uncertainty quantification and reliability assessment) are discussed. An overview of 
commonly used algorithms and their implementation to predict and optimize the 
material behavior is presented. The progress made in the area of machine learning 
indicates that the material database can be effectively used to identify trends, patterns 
and mathematical relations for discovering new materials. Appropriate techniques 
can be used to identify salient features of different materials under different conditions 
which can help coming up with an optimum material designing approach. 
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Image Processing and Machine Learning 
Methods Applied to Additive 
Manufactured Composites for Defect 
Detection and Toolpath Reconstruction 

Guan Lin Chen and Nikhil Gupta 

1 Introduction 

Additive manufacturing (AM) plays a crucial role in the fields such as aeronautical, 
automotive, and medical [1, 2], providing possibilities for low cost parts, highly 
customizable designs and small production runs [3, 4]. AM relies on a variety of 
software tools and cloud resources to make it a cyber-physical system [5, 6]. For 
AM, a wide spectrum of feed materials is available across the entire material usage 
of polymers, metals, ceramics and composites [7–9]. Parts made of glass and carbon 
fiber filled polymer matrix composites (PMCs) are now being 3D printed as [10, 
11]. It is reported that the parts printed by different tool paths can have different 
properties because of directionality in material orientation and defects [12]. In case 
of composite materials, the 3D printing toolpath can be used as a method to orient the 
fibers in a certain direction and obtain a customized part [13]. AM technologies have 
improved significantly in recent years; however, there still exist numerous challenges 
in obtaining high quality, resolution and surface finish required for many applica-
tions [14–16]. For example, in powder bed fusion, uniformity in the packing of bed 
from one layer to the other is important for optimizing the processing parameters, 
which controls the porosity of the powder bed so that the final part has uniform and 
maximum density [9]. During fabrication of a complex shaped object using material 
extrusion methods, which is one of the most commonly used by AM methods [17], 
an outline is printed first to more precisely define the shapes and then an infill pattern 
is used to deposit material within the contour’s shape [18]. This kind of space filling 
mechanism leads to gaps at the end of the deposited lines and causes porosity if the 
process is not well optimized, which affects the mechanical properties of the printed 
part [19]. Additionally, CAD models are widely used in the AM to demonstrate a

G. L. Chen · N. Gupta (B) 
Composite Materials and Mechanics Laboratory, Mechanical and Aerospace Engineering 
Department, Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA 
e-mail: ngupta@nyu.edu 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 
V. Kushvaha et al. (eds.), Machine Learning Applied to Composite Materials, 
Composites Science and Technology, https://doi.org/10.1007/978-981-19-6278-3_2 

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-6278-3_2&domain=pdf
mailto:ngupta@nyu.edu
https://doi.org/10.1007/978-981-19-6278-3_2


20 G. L. Chen and N. Gupta

digital model and also used for G-code transformation for 3D printers to manufacture 
the part [20]. However, the curvatures present in the CAD models are often reformed 
with linear segments in file formats such as STL and can result in the loss of dimen-
sional accuracy in the printed part [5, 21]. These effects cannot be avoided when using 
material extrusion methods, leading to porosity and micron-sized voids near curva-
tures, especially in parts of complex geometry and curvatures. The imperfections can 
be visualized using both destructive and non-destructive imaging methods. 

A variety of methods, such as manual or computer assisted non-destructive inspec-
tion methods are used to perform quality assessment, which is quiet challenging in 
the AM domain [22], whether during the process or post-processing to maintain 
high quality as well as the high manufacturing throughput [23, 24]. In AM, parts are 
printed in several hundred layers, which can not only be used for locating defects but 
also can be used to hide specific information within layers [25–27]. The layup process 
of composite manufacturing is somewhat similar to the layer by layer manufacturing 
of AM and the machine learning (ML) trained model can be applied to composite 
quality assessment [13, 28]. Artificial Neural Network, which is inspired by biolog-
ical neural networks, showing efficiency in dealing with intricate nonlinear behavior 
and has a strong physical foundation for use in the materials science field [29]. ANN 
has been used in prediction and optimization of material properties [30], especially 
in the AM domain, which has a strong process-structure–property relationship [31]. 
ML methods are now being applied to a variety of problems in materials science, 
including fields such as development of battery materials and testing of composite 
materials [32, 33] where enormous amounts of raw data are generated on a daily 
basis that can be used to train the ML models for effective decision-making [34]. 
ANN is a computational ML method inspired by the architecture of biological neural 
networks [35] that has been applied in many problems related to composite materials 
[36–39] and other materials for defect detection [40, 41]. 

Micro-CT (µCT) scan, which has been used in the medical field for decades, 
provides a large image database and is finding increasing applications in the charac-
terization of AM parts. Such large image sets are a limitation for manual inspection 
methods, but an asset for training of ML methods [42–45]. It is beneficial to pre-
process the meaningful features that are used for prediction to reduce the training 
effort and increase the accuracy of the designed ML algorithm. The location and 
orientation of the reinforcing fibers govern the mechanical response of composite 
materials, which can be detected by ML methods [46]. ML methods have also been 
used on optical images to identify and classify two-dimensional materials [47]. The 
use of ML methods on large image databases sometimes requires significant signal 
processing effort for making the search faster for implementation in the real time 
defect detection systems. 

In this work, describes in detail the steps required for image processing, ANN 
model training and validation, and defect detection using a database of images 
obtained on a 3D printed composite material specimen. A glass fiber reinforced 
PMC filament is used to fabricate specimens by a commercial material extrusion 
3D printer. The specimens are imaged using a µCT scanner. The image dataset 
is used to train a ML algorithm. Previous studies revealed that 2D images with
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irregular outlines increase the difficulty in analyzing the microstructure features of 
composite materials such as the fiber orientation identification [13, 47], such limita-
tions are overcome by cropping the training images in circular shape during training. 
Application of image processing methods to reduce the size of the dataset helps in 
making the training significantly faster. In addition, two kinds of ANNs, namely 
Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN), with 
three different architectures—one-dimensional and two-dimensional algorithms in 
CNN, and Long-Short-Term-Memory cell in RNN and its related Python codes are 
presented, and the implementations of the three trained model and the resulting tests 
are presented in this work. 

2 Methods 

2.1 Sample Preparation 

The samples are designed using SolidWorks 2017 (Waltham, MA) and saved in 
STL format. The shape of the sample is a cube with 6 mm side. ABS-GF10 glass 
fiber reinforced acrylonitrile butadiene styrene (ABS) filament of 1.75 mm diam-
eter, manufactured by 3DXTECH, Grand Rapids Michigan, USA, is used for 3D 
printing. ReplicatorG software is used for preparing the sliced model and gener-
ating the G-code. The printing parameters included 100% solid infill, feed rate of 
41 mm/s, extrusion temperature of 220 °C, and build platform temperature of 120 °C. 
A FlashForge-Creator Pro Dual Extruder printer is used for printing the specimens. 

2.2 µCT Scan Image 

A Skyscan 1127 (Bruker, Belgium) µCT scan system is used at source voltage of 
44 kV, current of 222 µA and the camera pixel size of 9.5 µm with a rotation step of 
0.6° per scan, for 360° rotation. Normal scanning time is about 40 min with lowest 
resolution. However, larger specimens can take 6–8 h in one scan based on the image 
resolution. Each scan generates thousands of images, which are usually saved in tiff 
format. 

The images acquired from µCT scan were reconstructed using NRecon software. 
In this step, the image can be tuned with function such as “smooth”, which can 
improve the clarity of the image slice, “contrast”, which can reduce the noise and 
“rotation”, which is used to rotate at a fixed angle to output the reconstructed images 
with desired angle as Fig. 1 shown. Since, the sample was randomly mounted on the 
specimen plate and the scanning process involved rotation, the printing direction of 
the output images was random with respect to the scanning direction. It is important 
to designate a reference angle so that all the images can be interpreted with respect
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Fig. 1 An example of a µCT scan output image with a random angle and b after rotation to 0° 

to the same reference framework. Since fibers are included in the feed material and 
the fibers provide high contrast, they are used for identification of the direction. In 
this work, 0° is defined as horizontal reference. Therefore, the reconstructed images 
are rotated using the “rotation” function in NRecon software to output the images 
to be the reference images of 0°. Once the images are rotated, they can be directly 
compared. The present work is exploratory for developing the image processing and 
ML model training methods; hence, the geometry of the 3D printed part is kept 
simple. 

The square shape of the specimen having four sharp corners is a consideration in 
this work. The sharp corners would inevitably affect the accuracy for ML because 
any sharp angles in the image may cause bias while training the model, resulting 
in inaccurate predictions. To increase the accuracy of the trained model, the data 
selection and features extraction are the key steps. Therefore, it is better to sub-
segment each µCT scan image slice into smaller images and use circular shape 
sub-images. Rotation of circular sub-images will preserve the features in the circular 
area without any interference at the edges. The model trained with a circular image 
dataset is still capable of predicting a square image. However, if the model is trained 
on a square image dataset, it will not be able to predict a circle image with accuracy. 

2.3 Circular Image Dataset Preparation for ML Model 
Training 

Two prediction purposes are introduced. One is to build a ML model capable of 
predicting the printing direction and its angular information in each layer of the
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sample, which can then provide the information of the printing angles used in the 3D 
printer. Another purpose is to predict the movement of the print head in each layer, 
which can then be used to analyze the printing signature throughout the printed 
sample. 

There are two different methods to obtain the required dataset. The first method 
uses image reconstruction after the µCT Scan and the second method uses a Matlab 
code. Both of the methods will be discussed thoroughly in the following section. 

2.4 Dataset for Orientation Prediction in Each Layer 

In this section, the prediction of the overall printing orientation in each layer of 
the sample is developed. Circular sub-images are first extracted from each image 
slice as shown in Fig. 2. The function of “region of interest” is used during the 
image reconstruction with NRecon software to capture a certain area of the scanned 
image. Figure 2a shows an image where glass fibers seem to be oriented in the 
horizontal direction. Figure 2b, c show two sub-images that contain fibers oriented 
in multiple directions. These features appear from two different slices because the 
scan resolution is much finer than the deposited layer thickness and the specimen 
shows some warpage due to thermal contraction upon cooling. Such intermixing of 
features may also take place due to mismatch between the printing plane and CT 
scanning plane. 

Depending on the resolution setup for the µCT scan and the specimen size, the 
total numbers of images will be different in each dataset. For the specific sample 
used in this work, there are 663 images obtained after the µCT scan. 

Next, a reference angle needs to be decided. In this work, images with horizontal 
glass fiber are designated as 0°. For training the ML algorithm, a sufficiently large 
database is necessary. Moreover, to distinguish the fiber angle, the model needs to 
be able to predict fibers along any angle in the entire 360°. However, it actually only 
needs to predict 180° to indicate the whole 360°, since 10° can represent 190° and

Fig. 2 Sub-images extracted from a µCT scan image slice 
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0° is the same as 180°. Therefore, in order to train the model, images with clear 
visibility of 0° fiber angle are synthetically rotated counterclockwise at intervals of 
1° each from 0° to 180° using a Python code shown as Fig. 3 to get the images 
database to train the model for predicting various rotation angles. The rotation of 
the images can be conducted at smaller steps but the discontinuous short fibers in 
the present case are not oriented exactly in the same direction. Some local variations 
exist within one extruded line as well as some fibers are bent. Such conditions will 
provide false positives. Hence, the rotation step is kept at a higher angle. The process 
allows creating a dataset with controlled orientation of the glass fiber to train a model 
for printing orientation prediction in each layer. 

A few  µCT images showing overlapping printing directions in Fig. 2b, c are mostly 
at the boundary of two deposited layers due to the slight slope that can be either in the 
printing or in the specimen positioning on the µCT stage. These images are removed 
from the dataset in the present case because there is enough information available 
from other slices that are cleaner. In order to have a defined/labeled angle, a set of 
207 images that show clear orientation of fibers is identified and rotated so that the 
fiber orientation is horizontal. These images are labeled as 0° fiber orientations. All 
the images are cropped with a region of interest to decrease the number of pixels and 
remove bias caused by the sharp angles in four corners for machine learning training. 
The cropped images, shown in Fig. 2, have a pixel size of 536 × 536. Individual 
fibers in each image show some variation in their direction. However, the algorithm 
takes the global signature as the features for the 0° and disregards the individual fiber 
orientation. Each of these images are then rotated counterclockwise from 0° to 180° 
at 1° interval using a Python code. This procedure allows creating a large training 
database with controlled fiber orientation and trains the model to identify any angle. 
This procedure resulted in 37,467 images. The process of synthetically rotating the 
images and cropping them with built-in function during image reconstruction with

Fig. 3 Python code for rotating image form 0° to 180° at 1° interval and save to folders named as 
1, 2, 3…180 
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NRecon software used to generate training data is known as image augmentation. 
This process is helpful in training the ANN model to be robust. 

2.4.1 Dataset for Toolpath Prediction in Each Layer 

In this section, training dataset preparation is slightly different compared to the 
previous section. Here, the purpose is to determine the printing path, or toolpath, 
of each layer of the sample with specific image features for the model training. 
Moreover, the algorithm used for this dataset is 1D and RNN, which needs to transfer 
the features contained in a 2D image into a meaningful dataset with 1 dimensional 
format. Therefore, the training dataset should contain meaningful features, which 
represent the movements of the print head. Thus, one layer of image with clear 
fiber orientation is used to conduct the feature extraction for model training dataset 
preparation. Here, instead of using region of interest to extract the features from a 
certain area, for toolpath prediction, the whole image slice is preferable since the 
toolpath of the whole layer and the whole sample need to be predicted to completely 
recreate the toolpath of the sample. 

Each µCT image slice represents a variety of fiber directions based on the space 
filling algorithm used for determining the print head movement. The ML model 
tuning dataset needs to identify these features, Hence, each image is sliced in circular 
sub-images of 100 × 100 pixels. The sub-sampling process and the resulting images 
are shown as Fig. 4. This process results in 961 cropped circular images for each 
µCT image slice. The circular shape helps in reducing the error caused by irregular 
outline of the specimen. In this work, 150 images with clear visibility of 0° fiber 
angle are selected and then the images are synthetically rotated counterclockwise at 
intervals of 1° each from 0 to 180° using a Python code shown as Fig. 3. Similar to 
the previous section, this cropped circular images for each µCT image slice help in 
reducing the error caused by irregular outline of the specimen. Then, 5 images are 
randomly selected to be the test image set, 115 images are randomly chosen to be 
the training data and the rest 30 images are used to be the validation images. Three 
of them are then rotated with Python code to create the training, validation, and test 
dataset with total images of 27,150 images for model training and testing. A special 
image lossless-processing algorithm called BSIF then used to convert the 2D images 
into a 1D numerical dataset for reducing the computing power and increasing the 
processing speed. The detail of the BSIF process are discussed in the next section.

2.4.2 Binarized Statistical Image Features (BSIF) Algorithm 

Binarized Statistical Image Features (BSIF) algorithm is used to convert an image 
into a binary image format without losing valuable features [48]. Figure 5 shows an 
example of the image produced by the BSIF algorithm. The images processed through 
BSIF algorithm are used for training, validation and testing the ML algorithm. The 
output image is a binary code for each pixel in the image and is stored in a format
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Fig. 4 The image dataset (27,150 segmented images) obtained from µCT scan after removing 
overlapping images and being labeled as 0° to 180° for ML
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Fig. 5 BSIF representation of the glass fiber orientation image with 100 × 100 pixels. a The 
original circular cropped 2D image and b the 2D image converted by BSIF

of 1D numerical array, which makes it convenient to handle large amounts of data. 
Although the visual representation of features in Fig. 5 is not well resolved, such 
images are proven to perform well in ML. Use of BSIF code reduced each image 
to 1 × 256 numerical data as shown in Table 1, which exponentially reduces the 
computational expense involved in running the ML algorithm. Since 27,150 images 
are used, the resulting data was saved as a csv file with 27,150 rows of features, which 
is extremely helpful for ML. This procedure uses a large dataset but the training time 
for the ANN is significantly reduced without losing the accuracy for interpreting the 
features present in the image [48]. The 2D images are converted into 1D numerical 
data with one row and 256 columns and since the more meaningful features represent 
an output the higher accuracy of the model can be obtained. 

In this work, only the dataset for toolpath prediction in each layer (introduced in 
Sect. 2.4.1) needs to be converted with BSIF since the 2D CNN needs original 2D 
images as its input data. 

2.5 Machine Learning 

Two kinds of ANN architectures are used to build models using Python with Tensor-
flow: RNN and CNN. Both neural networks can deal with sequences with variable 
lengths. The RNN uses memory-state to process the input data on each neuron. In this 
work, an RNN architecture with 5 layers and 64 Long Short-Term Memory (LSTM) 
cells is used to train the model. A CNN model is trained with total 5 layers and kernel 
sizes 5 and filter size 80 in the first layer and the second layer to iterate through the 
data to train the model.
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The original images are used for 2D CNN algorithm because it has its own image 
conversion process built in the algorithm. On the other hand, for 1D CNN and RNN, 
the images converted with BSIF are loaded and rearranged in the form of an array 
as (20,815, 1, 256) for training feature. This implies that this training set has 20,815 
data representing the true angle label, with time-step as 1, and 256 features points. 
The same process applies to validation dataset, which results in an array of (5430, 
1, 256) and the test dataset has the numpy shape of (905, 1, 256) for RNN algorithm 
and (20,815, 256, 1), (5430, 256, 1), (905, 256, 1) for training, validation and testing, 
respectively, in 1D CNN algorithm. The loss function depends on the desired result 
parameter such as the fiber angle. Hence, the mean square error (MSE) was used in 
both RNN and 1D CNN as the loss function in the model. The predicted values and 
the actual value of the angle are used to calculate MSE. 

In summary, this work uses three different ML algorithms. 1D and 2D CNN and 
RNN are compared for their accuracy. Each of them target different dataset and 
loss function, the computer language used is python platform with Tensorflow in 
Windows 10 environment. 

2.6 The Architectures of the Machine Learning Algorithms 

2.6.1 2-Dimensional Convolutional Neural Network (2D CNN) 

The 2D CNN ML algorithm uses Python platform, with Tensorflow, CNN (Convolu-
tional Neural Network). CNN works well for identifying simple patterns within the 
data, which are then used to form more complex patterns within higher layers. CNN 
is very effective in deriving interesting features from shorter (fixed-length) segments 
of the overall data set and where the location of the feature within the segment is not 
of high relevance. 

In 2D CNN algorithm, the input is the original image data and the ML algorithm 
convert the image features in its own system. The loss function in 2D CNN is “sparse 
categorical cross entropy”, which is used to distinguish different categories. In 2D 
CNN, the model can be used to predict the printing orientation in each layer as a 
classifier. Hence the predicted values represent the orientation of each layer, and can 
iterated through whole sample to provide the information of the printed direction. 
However, it is not capable of identifying the toolpath in each layer. Also, since it 
uses the original images as the input, the processing needs a huge computing power. 
Additionally, when increasing the number of categories, the training time increases 
substantially. Since the process uses original images and the in-built image processor 
provides a lossless conversion procedure, the accuracy can reach almost 99% with 
proper setup parameters. Thus, the 2D CNN is good at image analysis, especially if 
high performance computing facilities are required. In this section, a 2D CNN model 
and the process steps will be presented in detail. 

The dataset for orientation prediction in each layer (Sect. 2.4), which contains 
207 clear views of 0° orientation images is used to create the input data. The images



30 G. L. Chen and N. Gupta

need to be saved in folders according to the angle they represent, which means each 
classification category is saved in corresponding folder. The 0° reference images are 
split into 3 subsets of images, one for training, one for validation and one for testing. 
Here, 7 images are chosen to be the test data, and the ratio of training and validation 
data is set as 8:2. Thus, the rest of the 200 images are split into 166 images for training 
and 34 images for validation. With the help of python code, as Fig. 3 shows, the split 
images are rotated from 0° to 180° with 0° interval and saved to folders named as 
1, 2, 3…180 for training, and the same process is conducted to create validation 
dataset and test dataset. By doing so, the training dataset with 30,046 images and 
the validation dataset with 6154 images and the test dataset with 1267 images are 
obtained and each angle of images is saved to the corresponding folder. 

Once the training, validation and test dataset are prepared, they are fed into the 
2D CNN algorithm for model building. The image dataset needs to be re-sized from 
536 × 536 to 100 × 100 pixel to reduce the needed computing power and then create 
the training and validation datasets. Last, the training and validation datasets need 
to be appended to corresponding features and labels, which are then converted into 
numpy arrays with the shape of (30,046, 100, 100, 1) for training dataset, (6154, 100, 
100, 1) for validation dataset in order to fit the 2D CNN model training algorithm. 
The first number represents the number of images, the second and the third numbers 
represent the pixel size in x and y directions, and the fourth number represents the 
number of images in each sequence. The Python code used for the 2D CNN image 
processing is shown as Fig. 6.

The architecture of the 2D CNN algorithm is shown as Fig. 7, which has 5 layers. 
The filter size used is 80, and the kernel size in layer 1 is (5, 5) and (3, 3) in layer 
2. The Maxpooling size is (2, 2) in layer 1 and 2. The hidden layer Dense is 200. 
The output layer has 181 categories, so output Dense is set as 181. The activation is 
selected as “softmax”. Batch size iterated is 100, and the epochs is set as 50. Also, 
a Dropout function of 0.1 is used to intentionally drop 10% of the training data in 
each training epoch to prevent the overfitting.

The setup parameters used in this 2D CNN algorithm are obtained by trial-and-
error and the parameters are extremely data-dependent. Therefore, different numbers 
of image, different pixel size of image, and even different shapes of the image used for 
training will need to find the suitable parameters accordingly. A checkpoint function 
is used to monitor the accuracy during each epoch, and save the best model throughout 
the whole training process. The total time for the training is 24 h. 

3 2D CNN Result 

When the training process is completed, first thing is to check the fitting status 
during the training process, whether it is overfitting or underfitting. To do that, a 
recall function in Python is used and the training and validation histories are plotted 
as Fig. 8. The result in this training process shows no overfitting or underfitting, since 
the validation result and the training result have the same trend and do not show large
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Fig. 6 The python code used for resizing images and dataset preparation in 2D CNN algorithm
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Fig. 7 2D CNN architecture for the classification model

variation. If the graph shows a large gap between the two lines, it indicates that the 
model is not trained properly and the setup parameters need to be further tuned. The 
acceptability of the result also depends on the desired accuracy. Typically, in 2D 
CNN machine learning, the accuracy of training is often higher than the accuracy of 
validation, which is also observed from the resulting plot shown in Fig. 8.

To test the accuracy of the trained model, the test dataset is needed, which has been 
separately prepared with 1267 data using the same preparation process as the training 
dataset. An array shape of (1267, 100, 100, 1) is required to be compatible with the 
training dataset. In this 2D CNN training, the shape used for training is (30,046, 100, 
100, 1). Therefore, the test dataset must have the same pixel size of 100 × 100. Then 
the folders with images are loaded in the Python code, and the output categories, 
which contains 0° to 180°, are created. A function “model.evaluate” is used to check
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Fig. 8 Training and 
validation history in each 
epoch for 2D CNN model
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the model accuracy. By doing so, the trained model with the accuracy of 0.9684 is 
achieved, which can be used in a practical situation. 

Next, the prediction accuracy of the trained model is determined by using a set 
of images of unknown angular information. Here, another 3D printed specimen 
of a similar type is imaged by µCT Scan and 500 images with unknown angular 
information are obtained. The images are then renamed according to its layer height 
from the bottom of the sample to its top with the name of “Layer 1”, “Layer 2”, etc. 
These 500 images are then saved in a folder and then loaded into Python code. Next, 
the images are used to create a test dataset and converted into a numpy array with the 
shape of (500, 100, 100, 1). The names of the images are appended to the “Layer” 
column, and the converted images’ features are used for prediction. The results are 
appended to the “Predicted Angle” column. Last, the outcome is saved in the tabular 
form and the predicted angle distribution for each layer is plotted, as shown as Fig. 9, 
which can reveal the printing orientation of the tested sample for each layer. Here, 
the predicted angles are located around 90° and 0° showing that the sample is printed 
with these two angles repetitively. One major benefit is that the prediction process is 
very fast. The dataset has 500 images and the time taken for prediction is less than 
a second. Therefore, even though it takes 24 h to train the model, the time required 
for prediction is extremely short.

3.1 1-Dimensional Convolutional Neural Network (1D CNN) 

In this section, a 1-D ML algorithm is introduced. The 1D CNN, which means 
the input data is 1-Dimensional. Therefore, 2D images must go through the BSIF 
algorithm to be converted into 1D data. In the 1D CNN algorithm, a loss function, 
Mean Square Error (MSE) is used. Each image features are converted with the BSIF 
lossless-process into a numerical data with 1 row and 256 columns, then in order 
to easily extract the needed features and to designate the angle/label, a column, 
named “Image Angle” is added as the first column to designate the angle/label and
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Fig. 9 Angular distribution 
of the tested sample in 500 
layers
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“Feature_1”, “Feature_2”, all the way to “Feature_256” are add at the top of each 
feature. Thus, all the information representing each image in a fixed-length and its 
angle/label and features are saved as a CSV file. 

The 1D CNN algorithm is capable of predicting the printing orientation in each 
layer. It is also capable of predicting the toolpath of the sample in each layer. The 
database containing 27,150 images needs to be divided into training, validation, and 
test datasets. Since 150 images with clear view of 0° fiber orientation are selected 
as described previously, the images are used to rotate 1° interval counterclockwise 
from 0° to 180° to represent 180 angles. Moreover, in order to avoid bias during the 
model training, 115 images are picked to use as the training dataset for each angle, 
which total to be 20,815 sub-images. Then 20 images from each angle are added to 
the validation dataset, which sums up to 5430 sub-images. Finally, 905 sub-images 
are used in the test dataset. By feeding the dataset with evenly distributed weights, 
the ANN will have the least bias when the training is completed. In 1D CNN, the loss 
function is “Mean Square Error”, and the output is a value representing the predicted 
angle. The CSV files for training data, validation data and test data are loaded using 
the “panda” function in Python to train the model. 

The dataset needs to be prepared to form a correct format after being loaded in 
order to feed into CNN algorithm. The Python code used is shown as Fig. 10, where 
“data.values” function is used to capture the features within the data. The first colon 
in the bracket means the function iterates through every row’s data, and the number 
after the comma represents the data in each number of the column. Here, “2:” means 
obtaining the data from the second column all the way to the last column and then 
the value is used as training features. Then, the output labels need to be defined. “[:, 
1]” is used to obtain the data in the first column for every row and the value is defined 
as training labels. The same process is used for the validation dataset to obtain the 
validation features and labels.

After the process of iterating through every row and column of the CSV file, a 
re-shape function is used, which creates a dataset with a shape of (20,815, 256, 1) 
for training feature dataset, (5430, 256, 1) for validation feature dataset and (905, 
256, 1) for testing feature dataset. Here, the first number represents the number of the
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Fig. 10 Python code used to prepare the training and validation dataset in 1D CNN

data/images, the second number represents the features each data has, and the third 
number represents the number of images for each process. As for training, validation 
and test label datasets, the shape of the array is (20,815, 1), (5430, 1) and (905, 1) 
respectively. The first number represents the number of label data, and the second 
number represents the number of images for each process. 

For the output of an angle prediction, it would be easier to understand when 
the output is a value that represents the predicted angle. Hence, the loss function 
“Mean Square Error” (MSE) is used. The model can output a number value to be the 
representation of an angle for the input feature. 

The architecture of the 1D CNN is shown as Fig. 11. Similar to 2D CNN architec-
ture, the checkpoint function is used to capture the model with the lowest MSE value 
throughout the training process. There are 5 layers used in the 1D CNN architecture. 
The filter size for layer 1 and 2 is 256, which means the whole 256 features are 
considered, the kernel size is 1, which means 1 full image features are processed at 
each time. Padding used is “same”, the activation used in each layer is “relu”, the 
hidden layer has Dense of 200 and the loss function is “Mean Square Error”, the 
optimizer is Adam, which provides a learning rate of 0.001, the batch size is set as 
128, and total 10,000 epochs is used. The verbose in checkpoint is set as 2, which 
means the process will just mention the number of epochs, and in “model_m.fit” the 
verbose is set as 1, which will show an animated progress bar for the user to observe 
if the model is properly trained. The parameter setup in this training is also extremely 
data-dependent, therefore, with different datasets, the parameters need to be tuned 
again.

3.2 1D CNN Result 

After completion of the model training, the first thing is to check the training history 
to make sure it has no overfitting, which shows the validation curve to be much lower 
than the training curve or underfitting, which shows the training curve to be much
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Fig. 11 The ML architecture with 5 layer in the 1D CNN algorithm

lower than the validation curve. The training and validation histories are plotted as 
Fig. 12. The graph shows no sign of overfitting or underfitting. Then, the function 
“model.evaluate” is used to test the accuracy of the model. Since the MSE loss 
function is used, the output of the evaluation is the MSE of the prediction. A MSE 
of 0.9651 is obtained showing a promising result for the CNN implementation. 

The model trained in this section is used to predict the toolpath of the composite 
material specimen image set obtained from µCT scan. In this work, the sample used

Fig. 12 The training and 
validation MSE of each 
epoch in 1D CNN model 
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for toolpath prediction is a square cube with 1 cm length on each side. To predict 
the toolpath of the whole sample, a µCT scan needs to be conducted to obtain the 
sliced images. The µCT scan image used to perform the toolpath prediction has pixel 
size of 2657 × 2689. Next, similar to all training dataset preparation, the images are 
cropped as circles using a Matlab code and after the cropping process, 676 images 
with pixel size of 100 × 100 are obtained. These 676 images are then converted with 
BSIF and become 676 data. Each data has 256 numerical features and are saved as 
a CSV file. Thus, a shape of (676, 256, 1) numpy data array is ready for toolpath 
prediction. 

In order to clearly view the toolpath in each layer, a direction indicator is used. The 
idea is to impose each small cropped circular image with a direction indicator corre-
sponding to its prediction and then combine all the direction indicators to reconstruct 
the whole image to represent the layer showing the toolpath. Hence, the predicted 
result needs to be recorded and saved as a CSV file, which has a column showing 
the region the cropped image belongs to and a column for prediction result of that 
region. The direction indicator images showing the angle from 0 to 180° are saved 
with a file name with respect to its angle. Then, according to the prediction result, a 
Python code “if and else” is used to match the prediction result and the corresponding 
image name of the direction indicator. For example, an image representing region 
10 is predicted as 44°, then the Python code will match the prediction result 44° to 
the direction indicator, which is named as 44 and the direction indicator is saved to 
represent the region 10. After the process iterates through all predictions, a collection 
of all 676 direction indicator images is saved. Finally, a 26 × 26 grid is created to 
display all 676 predicted direction indicators are shown as Fig. 13. 

Fig. 13 Imposed toolpath reconstruction with 1D CNN model
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3.2.1 Recurrent Neural Network (RNN) 

Recurrent neural network (RNN) is a supervised ML algorithm, which is designed 
to model sequential data. The order is very important in sequential data. There are 
different forms of sequence modeling algorithms but the one used here is the many-to-
one sequence model, which implies that the input data is a sequence but the output 
is not a sequence, rather a fixed-size vector. In RNN, the hidden layer has inputs 
from both the input layer and the hidden layer from the previous step. The flow of 
information in an RNN from one time-step to another introduces memory of past 
inputs into the network [49]. 

The algorithm used here is a multilayer RNN, which is used to predict the direction 
of fibers in a µCT scan image. The input is the µCT-scan image features obtained after 
the BSIF process and the output is the fiber orientation angle. At any time instance 
the model uses the information from the past and input to predict the output. Since 
AM follows a sequential process of printing, the fiber orientation at each layer can be 
helpful to predict the orientation of fiber of the next layer. Typically, a backpropaga-
tion through time (BPTT) algorithm is used to train an RNN, which sometimes has a 
problem of vanishing gradient. RNN model faces difficulty in learning the long-term 
dependencies because it is trained with sequential data, which implies that the model 
will not be able to relate the images which are captured several time steps apart. 
To address these issues, the RNN architecture with LSTM network is used [50]. 
RNN with hidden layers containing LSTM cells takes information from the input 
and from the previous hidden layers and calculates the output through a set of equa-
tions and then sends the information to the next layer in the model and to the hidden 
layer, namely, another LSTM cell in the next time step. LSTM cells are designed 
to handle the problem of vanishing gradients. These cells have inbuilt default units 
programmed to remember the updates from the previous time steps without loss of 
information over long time steps, making them suitable for large image datasets. 

As mentioned previously, the BSIF process has converted features of each image 
into 1 row and 256 columns. A column named “Image Angle” is added to the file as 
the first column to designate the angle/label. Thus, all the information to represent 
each image is available in a single row. Any change to the input data affects the 
algorithm and the setup parameters need to be tuned. In RNN, the dataset for toolpath 
prediction in each layer is used, which means a model capable of predicting the 
toolpath can be acquired. Here, the same training, validation and test data of CSV 
files as 1D convolutional neural network is used. The Python code used for reshaping 
is similar as the one used in 1D CNN algorithm, where the only difference is in array 
arrangement. In RNN architecture, the shape of the training data is (20,815, 1, 256), 
the validation data is (5430, 1, 256), and the test data is (905, 1, 256). The first number 
represents the number of dataset the CSV file has, the second number represents the 
amount of data being iterated in each time step, in this case, 1 image is used in a 
time step. The architecture of the RNN Python code used is shown in Fig. 14. There 
are 5 layers in the algorithm. The number of LSTM cells used in first 2 layers is 64, 
the hidden layer has “Dense” of 128 with only 1 output value, the loss function is 
“MSE”, the optimizer is Adam, which has a learning rate of 0.001 and the batch size
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Fig. 14 The architecture of the RNN machine learning of python coding 

is 128, and epochs are 10,000. Similarly, a checkpoint function is used to capture 
the best model. Since the model is trained repeatedly, and the accuracy of the last 
trained model does not guarantee to be the best one. Most of the times, the model 
reaches its peak performance, but would be overwritten by the next trained model. 
The callbacks function can monitor the validation loss of each epoch and then save 
the model that is more accurate than the previous trained model. 

3.2.2 RNN Result 

A similar testing procedure as the 1D CNN are applied here for RNN model accuracy 
checking. The recorded training and validation histories are plotted and shown as 
Fig. 15, which shows no sign of overfitting or underfitting. The deviation of RNN 
is relatively greater than the CNN method, and this is why a checkpoint function is 
necessary in RNN method for capturing the best trained model. The test MSE in this 
training is 0.059, which indicates the performance of the model is good to predict 
the toolpath of the sample’s layer.
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Fig. 15 MSE history of 
training and testing for each 
epoch in RNN model 
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To implement the model, the data prepared for 1D CNN are used. 676 cropped 
circular images converted with BSIF process, which become 676 rows with 256 
features for each image, are saved as CSV files. Then, the CSV file is loaded into 
Python with the “panda” function. Since the purpose is to predict the angular infor-
mation for each cropped circular image, 256 features are used as input data and 
undergo a similar data preparation as the one used for the training dataset, except, 
there is no output label in these 676 images. After the prediction, a set of values 
representing the angular information is extracted and saved as a CSV file. 

The same method of imposing a direction indicator on the detected fiber direction 
is used for toolpath reconstruction, shown as Fig. 16. These imposed images are a 
good local toolpath representation of the tested sample in each sub-sectioned image. 
It clearly outlines the movement of the printing process, which can be applied to 
predict the hidden information in a 3D printed sample. Although, only 1 layer is 
used to demonstrate the toolpath reconstruction, the process can be repeated on the 
whole sample image stack to acquire the toolpath information of the entire sample. 
The result can be used as a blueprint for 3D printing reverse engineering or an 3D 
printing in-situ signature inspection.

4 Summary 

The machine learning methods are now widely used in materials design. The oppor-
tunities presented by these methods have enabled design of materials with novel 
properties and reduced time to design complex composite materials for the require-
ments of specific applications. The present work shows the approaches that can be 
used for effectively processing the image datasets from materials with the example 
of a micro-CT scan image dataset processed by three different ML methods. A model 
composite material specimen is used and the ML approach is used to identify the tool-
path used in 3D printing of this specimen. While these methods are useful for a variety 
of materials related problems such as design of new materials, processing parameter 
optimization and also defect detection in the microstructure, the ML methods also
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Fig. 16 a The to-be-test CT scan image showing the printing direction by glass fibers and b the 
collection of direction indicators with the trained model showing the toolpath of the certain layer

present challenges that they make the reverse engineering of the products easier. 
Although the size and geometry of a component can be 3D scanned very easily using 
available scanners and imaging tools, the quality of a component largely depends 
on the microstructure. The reverse engineering of microstructure by recovering the 
toolpath presents a vulnerability that can make reverse engineered products of high 
quality. The present work shows the need for developing new toolpath methodologies 
that are difficult to process through ML algorithms. 
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AI/ML for Quantification 
and Calibration of Property Uncertainty 
in Composites 

Emil Pitz and Kishore Pochiraju 

1 Introduction and Prior Work in Modeling and 
Uncertainty Quantification 

In an engineering context, UQ problems typically consist of a mathematical model 
representing a physical process [3, 67, 81, 82], such as the growth of damage in a 
composite structure. Uncertainties can arise from both the correctness of the model 
itself and the model parameter values [82]. On a general level, UQ requires the 
characterization of the model parameter uncertainties followed by statistical analysis 
of the model responses resulting from the forward propagation of the uncertainties 
through the model [3]. This allows analysis of the induced probability distributions 
of the model outputs or assessment of the reliability of the modeled system and the 
prediction quality [82]. Given some observations of the output parameters, inverse 
UQ allows inference of a statistical distribution of the input parameters [3, 82]. By 
determining the influence of variability on a model, UQ enables the assessment of 
the confidence in model predictions. 

Of particular interest in composite engineering applications is reducing the 
required experimental effort in design and certification of parts and structures in 
aerospace applications, where safety is paramount. Currently, certification of com-
posite components in aerospace is still driven by exhaustive experimental testing, 
raising product development costs [34]. In 1976 the Federal Aviation Administra-
tion (FAA) wrote, “Past experience with simulation techniques indicate they contain 
the potential of contributing significantly to the safe and rapid introduction of these 
new technologies.” [18], recognizing the importance of simulation in developing and 
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certifying new and increasingly complex airplane systems and structures. Examples 
of simulations aiding certification in airplane development are airworthiness certifi-
cation before the first test-flight of a newly developed airframe using simulation [100] 
or a certified simulation tool for lightning strike analysis and used in the certification 
of an aircraft (Alenia Aeronautica C-27J) [7]. Hawker de Havilland Aerospace used 
bird-strike simulations to reduce the required experimental effort and certification 
cost of a composite trailing edge for the Boeing 787 [35]. 

Certification by simulation requires validation and verification of the simulation 
tools. Validation is confirming the suitability of the underlying principles and math-
ematical models describing physical phenomena. On the other hand, verification 
examines whether the design tool actually produces the expected results based on 
the underlying models [34, 69]. Additionally, uncertainties arise from model param-
eters, such as geometry, loads, boundary conditions, material (strongly influenced by 
material heterogeneity and manufacturing influences), or environmental influences 
[3, 78, 81]. These uncertainties are commonly subdivided into aleatoric and epis-
temic uncertainties [3, 82]. Aleatoric uncertainty is a result of an inherently variable 
phenomenon, such as the Uncertainty Principle in quantum mechanics [36], while 
epistemic uncertainty arises from lack of knowledge [3]. In reality, both types of 
uncertainties are present and sometimes not clearly distinguishable [82]. Using UQ 
to assess and take into account these uncertainties allows finding an optimum sys-
tem design in view of uncertainties occurring during manufacturing at the cost of 
increased computational effort [81]. A purely deterministic analysis cannot be rep-
resentative of all possible outcomes of an uncertain system [81]. UQ can provide a 
range of responses in the real world, which can replace some real world testing and, 
therefore, reduce certification costs compared to the current testing-based approach 
[34]. 

The main aim of this work is the development of ML methods to model uncer-
tainties in the material response of composite structures, forward propagate these 
uncertainties, and assess their impact on structural response. The developed method-
ologies can be an important step toward certification of aerostructures, materials, and 
manufacturing processes by simulation. 

This book chapter is organized as follows: Sect. 1 gives an introduction to UQ 
methods, explains the theoretical background of representing stochastic processes, 
gives an overview of uncertainty propagation methods, presents UQ methods used 
for composite materials and Machine Learning (ML) methods for UQ, and states 
the research objective. In Sect. 2, a method to reduce the required samples in uncer-
tainty propagation compared to classical MC method is implemented and presented. 
Section 3 entails a framework using neural networks to infer random field correlation 
parameters from experimental strain distributions.
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1.1 Representation of Property Variations in Materials 

UQ requires the representation of uncertainty using mathematical concepts [81]. 
Uncertainties, such as spatial variations in material parameters, can be modeled 
using stochastic processes and fields. When using Finite Element Method (FEM), 
a stochastic process can be discretized into a denumerable set of random variables 
[36]. The stochastic process requires the definition of its probability distribution and 
covariance function, which describes the spatial covariance of the properties at two 
points [36, 78, 81]. Let X and Y be two jointly distributed random variables with 
expected values μX and μY . Their covariance is given by [74]: 

Cov (X, Y ) = E [(X − μX ) (Y − μY )] , (1) 

where E [ ]  is the expected or average value. If both X and Y tend to be larger than 
their respective mean, the value of Cov (X, Y ) will be positive, while, if X tends to 
be larger than its mean and Y smaller, the covariance will be negative [74]. Zero 
covariance indicates independent X and Y . Definition of probability distribution and 
covariance function is generally a difficult task and commonly assumptions are made 
instead of inferring from experimental data. Alternative ways of defining the random 
field will be addressed in this chapter. 

Random processes can be represented using spectral representation, which in its 
most general form is given by [36]: 

w (x, θ  ) =
.

g (x) dμ (θ ) . (2) 

w is a realization of the random process with the position vector x, θ belongs to the 
space of random events ., g (x) is a deterministic function, and dμ (θ ) is an orthog-
onal set function. The covariance function Cww (x1, x2) of the stochastic process for 
the position vectors x1 and x2 can be decomposed: 

Cww (x1, x2) =
.

g (x1) g (x2) dμ1 (θ ) dμ2 (θ ) . (3) 

A commonly used alternative formulation to the spectral representation is Karhunen-
Loève Expansion (KLE), where the random process is represented in terms of a 
denumerable set of orthogonal random variables in a Fourier-type series [36, 81]: 

w (x, θ  ) = 
∞.
n=0 

.
λnξn (θ ) fn (x) , (4) 

with random variables ξn (θ ), constants λn , and orthonormal functions fn (x). At this  
place Polynomial Chaos Expansion (PCE) should also be mentioned as an alterna-
tive and commonly used representation of a stochastic process. PCE uses a linear
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combination of orthogonal Hermite (in the case of a Gaussian process) polynomials 
to represent the random process [81, 88, 92]. 

If the mean and covariance function of a random process are constant over space, 
the random field is called stationary [4]. Furthermore, if the covariance function is 
only dependent on the Euclidian distance between two points, the process is isotropic 
[4]. An example for non-stationary random events is the precipitation in the United 
States with strongly varying average values in different regions [32]. Using KLE, both 
Gaussian and non-Gaussian, as well as stationary and non-stationary, and isotropic 
and non-isotropic random processes can be modeled [63]. 

1.2 Sampling with Monte Carlo Methods 

One main objective of UQ is to forward propagate the uncertainties of the input 
parameters through the model and analyze the impact of these uncertainties on the 
model response. One of the simplest and most widely used methods is the MC 
method. MC entails drawing samples of input parameters from a target distribution, 
evaluating the model deterministically using the individual samples and recording 
each model response to perform statistics [37, 47]. It should be noted that this requires 
the description of the input variables’ probability distributions, which can be demand-
ing depending on available data. Evaluating a model given by f (x) with input x , 
using n samples U1, U2, . . . ,  Un randomly drawn from the respective distribution, 
gives the MC-estimate of the mean of the model [28, 37]: 

α̂n = E [ f (x)] = 
1 

n 

n.
i=1 

f (Ui ) . (5) 

When the material parameters in FEM analyses are represented using random 
processes, MC can be applied to examine the response statistics. A schematic of MC 
method in the context of FEM analysis is given in Fig. 1. 

According to the Central Limit Theorem, the error of the MC-estimate follows a 
normal distribution with mean 0 and standard deviation σ f √

n 
, where σ f is the standard 

deviation of the function f (x) [37, 75]. That means, if the expected standard error of 
the MC-estimate should be halved, the number of sample points has to be quadrupled. 
As σ f is usually not known, the sample standard deviation can be used to estimate 
the error [37]: 

σ f ≈ s f =
[||] 1 

n − 1 

n.
i=1

[
f (Ui ) − α̂n

]2 
. (6) 

The main advantage of MC method is the fact that the standard error is independent 
of the dimensionality of f [75]. However, with the expected error being O (

n−1/2
)
, 

a large number of model evaluations might be required to achieve sufficient levels
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of accuracy. In case of computationally expensive model evaluations, such as pro-
gressive damage simulations of composite structures, which can take hours to days 
for a single evaluation, MC method might become prohibitive. A method to improve 
the convergence behavior of MC by choosing samples deterministically rather than 
randomly from a stochastic distribution is the main subject of Sect. 2. 

1.3 Sampling with Reliability Methods 

While MC method enables extensive statistical analysis on the model output param-
eters, its computational ineffectiveness can be prohibitive and distribution fitting 
might not always be required. In a number of applications computationally less 
demanding reliability methods can be an attractive alternative. Reliability methods 
require a scalar response function g (x), where x = (x1, x2, . . .  xn) are uncertain 
input variables [3, 24]. g (x) < 0 implies failure, while g (x) > 0 constitutes no 
failure [24]. The fundamental objective of reliability methods is the calculation of 
the failure probability Pf = P [g (x) ≤ 0] based on probabilistic approaches. This 
could for example be the failure probability of a structural component [3, 24]. The 
main advantage of reliability methods compared to MC is improved computational 
efficiency as fewer model evaluations are required. At this place a more detailed 
introduction to the commonly used First-Order Reliability Method (FORM) will 
be given and the Second-Order Reliability Method (SORM) will be introduced. A 
number of additional reliability methods can be found in literature [3]. 

Using the probability densities fi (xi ) of the random input variables, which are 
assumed to be independent, the failure probability can be calculated as [24, 36]: 

Pf =
.

F 

f1 (x1) . . .  fn (xn) dx1 . . .  dxn, (7) 

Fig. 1 Schematic representation of MC technique using FEM analysis (adapted from [8])
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where F is the failure domain. For standard normally distributed input variables, Pf 

can be calculated using the cumulative standard normal distribution Φ [24]: 

Pf = Φ (−β) , (8) 

with the reliability index β. The reliability index gives the distance between the origin 
of the design space and the so called design point or most likely failure point x∗ on 
the failure surface and can be calculated using [24]: 

β = 
g (x∗) − a · x 

|a| , a = ∇g (x) . (9) 

The design point contributes most to the failure probability and is the point on 
the failure surface with the minimum distance to the origin of the space of the input 
variables [24]. This point is iteratively determined. If g (x) is a non-linear function, 
the function can be linearized at the failure point and Eq. 8 gives an approximate 
failure probability. Furthermore, if the input parameters are not standard normally 
distributed, they have to be transformed to the standard normal space. 

While FORM uses a plane in the input variables’ space to approximate the failure 
surface at the design point, SORM uses a quadratic surface [24]. This can improved 
accuracy of the predicted failure probability. Examples for applications of FORM 
and SORM can be found in [23, 87] for the analysis of a cracked steam generator 
tubing and aerospace applications. 

1.4 Sampling with Spectral Stochastic Finite Element 
Methods 

Another method that has attracted considerable interest in recent years is the Spec-
tral Stochastic Finite Element Method (SSFEM) initially proposed in [36]. While the 
SSFEM considerably increases the number of equations that have to be solved com-
pared to classical FEM, a single solution yields the representation of the response 
quantities by a PCE [81]. This can considerably reduce computational effort com-
pared to MC method. Because the response is captured in terms of PCE, SSFEM can 
be interpreted as a polynomial response surface approximation using the Galerkin 
method to calculate the coefficients [81]. 

Classical linear FEM solves a system of linear equations [20]: 

KU  = F, (10) 

with the stiffness matrix K , the vector of unknown nodal displacements U and 
the force vector F. In the SSFEM, spatial material variability is modeled using 
KLE representing a Gaussian stochastic field [36, 81]. This results in a stochastic 
element stiffness matrix. Furthermore, the vector of now random unknown nodal
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displacements is expanded using PCE. The equilibrium equation of the SSFEM can 
now be written as:

( ∞.
i=0 

Ki ξi (θ )

)
· 
⎛ 

⎝ 
∞.
j=0 

U j. j (θ ) 

⎞ 

⎠ − F = 0, (11) 

with deterministic matrices Ki corresponding to the terms of the KLE of the global 
random stiffness matrix, random variables ξi (θ ), and deterministic vectors U j and 
random Hermite polynomials. j from PCE of the random nodal displacement vector. 
Keeping only a finite number of terms P in the PCE and after some algebraic manip-
ulations, Eq. 11 can be rewritten as a system of linear equations of size N P  × N P , 
where N , in the 1-dimensional case, is the number of nodes in the model : 

KU = F . (12) 

The size of the system of linear equations in deterministic FEM would only be 
N × N for the same number of nodes. 

SSFEM is exact for an infinite number of retained terms [81]. To reduce the com-
putational effort however, a large number of terms can be prohibitive. This requires 
the correlation length of the random field represented by KLE to be sufficiently large 
for the chosen number of retained terms, to obtain a good approximation. While 
SSFEM can yield results with lower computational effort compared to MC method, 
its application is practically limited to linear or very simple non-linear problems [81] 
(e.g., elasto-plastic problem [6]). 

As an alternative to the SSFEM, perturbation based Stochastic Finite Element 
Method (SFEM) shall be mentioned as well. The Perturbation approach uses a Tailor-
series approximation of the stochastic stiffness matrix, force vector, and displacement 
vector [50, 81]. In practice, higher than first-order approximations of the perturbation 
approach are only feasible for Gaussian random fields [81]. Some recent applications 
to dynamical systems [31, 50] and geometrically non-linear problems [44] can be 
found in literature. 

1.5 Approaches for Micro- and Macro-UQ of Composite 
Performance 

While uncertainties can arise from multiple model inputs, such as variability in the 
applied load, in boundary conditions, or part geometry, studies in literature pre-
dominantly deal with uncertainty of the composite material response. Due to their 
heterogeneity and strong dependency of the material microstructure on manufac-
turing influences [95], composite materials can show a larger degree of uncertainty 
compared to homogeneous materials [97]. A main difference between studies deal-
ing with composite material uncertainty is the use of either random variables (e.g., 
[5]), where the material parameter is random but constant in the entire domain, or 
random fields (e.g., [80]) with spatially varying material parameters. One of the main
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challenges in UQ of composite structural response is the determination of the dis-
tributions of random variables or distributions and correlation behavior of random 
fields [21]. Because of complex material behavior and usually inadequate size of 
experimental datasets, assumptions have to be made about the random fields govern-
ing uncertain material parameters [21, 95]. This leads multiple studies to conclude 
that micromechanics models, as means of virtual testing frameworks, are required 
to correctly determine the random fields [21, 95]. 

Generally, studies for UQ in composites can be distinguished into two main 
approaches: Micromechanics based methods that infer the stochastic material response 
from the material micro- and/or mesostructure, and studies dealing with stochastic 
macro analysis of composites [78]. 

Multiple different representations of the material heterogeneity have been used 
in micromechanics-based studies. A preferred method is the FEM simulation of 
Representative Volume Element (RVEs) or Stochastic Volume Element (SVEs) of 
the composite microstructure with random placement of fibers (e.g., [95]), random 
fiber waviness (e.g., [43]), or random constituent behavior (e.g., [10]). Randomness 
in fiber placement or fiber waviness is commonly characterized from micrographs 
[84, 85, 94, 95], while other studies directly use scatter from experimental data [10]. 
Woven or braided composites are often modeled using a multi-scale approach, where 
uncertainties are propagated from the micro-scale (fibers and matrix) to the meso-
scale (tow geometry) and the macro-scale (coupon level) [11, 15, 85]. Because 
solving RVEs or SVEs using FEM is generally computationally expensive, some 
studies have used stochastic RVEs or SVEs to train surrogate models or fit Reduced 
Order Models (ROMs) [10, 11, 43, 95]. 

Instead of using RVEs or SVEs, some studies have used Mean-Field Homogeniza-
tion (MFH) approaches (e.g., [62] for Short-Fiber Reinforced Composite (SFRPs), 
where Bayesian Interference (BI) was used to identify model parameters) or purely 
analytical models (e.g., [5]) to estimate the random composite response based on 
variability in the constituents. 

The second class of UQ-approaches for composites directly models the macro-
scale (homogenized) composite response without taking into account the con-
stituents’ behavior or distribution. While a number of studies have used random vari-
ables to model effective composite properties (e.g., [48, 57]), at this place only studies 
that used random fields will be covered as these are of more interest for this chapter. 
Furthermore, multiple studies have used spatial random fields to model material 
parameters with purely estimated random field parameters or varying random field 
parameters to examine their influence on structural response (e.g., [64, 65, 97, 103]). 

Of particular interest for this chapter is a stochastic hyperelastic anisotropic mate-
rial model for composites presented in [80]. An inverse method was used to determine 
the random field correlation lengths and variation from experimental Digital Image 
Correlation (DIC) strain distributions based on a maximum likelihood estimation. 
A similar approach was used in [22] to model the stochastic response of additively 
manufactured materials. The authors used a maximum likelihood method to fit model 
parameters from experimental response curves, though mention that a least-square 
method or a Bayesian approach could have been used as well. The correlation length
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was not fitted to experimental data as only the global response was used. However, 
the authors say, given full-field measurements, this could have been inferred as well. 

1.6 Machine Learning Methods for UQ 

With ever increasing popularity due to their versatility and advances in computational 
resources, ML techniques have also increasingly been applied to UQ problems. As 
UQ often requires a large number of model evaluations and computational efficiency 
is required, frequently ML methods are used to create computationally efficient 
surrogate models, which are evaluated instead of or in addition to a high fidelity 
model. Most of these methods have in common that the surrogate model is used in a 
deterministic sense, similar to a deterministic simulation where samples are drawn 
randomly from a distribution for evaluation. Uncertainties are not embedded in the 
neural network surrogates. An example is the use of a neural network as a surrogate 
model for low fidelity simulations combined with a high fidelity FEM model to 
perform UQ in woven composites in [11]. In [39], a neural network surrogate was 
employed to perform MC on Molecular Dynamics (MD) simulations of graphene 
with defects. To increase the efficiency of MC method, in [59] a neural network was 
used to evaluate low cost samples to find points enabling efficient sampling of the 
distribution. Points that were found to efficiently sample the space were then used in 
a high fidelity model to perform MC on groundwater flow. 

To directly embed uncertainty into a neural network, some studies have used 
Bayesian Neural Networks (BNNs). Instead of using deterministic parameters as 
is the case in classical neural networks, in BNNs the weights are represented by 
distributions [26]. This enables the BNN to consider uncertainties in both the data 
and the model itself [71]. A schematic comparison of a classical neural network and 
a BNN  is  given in Fig.  2. In [71] a BNN was used to model the stochastic response 
of composite SVEs with plastic matrix response including both aleatoric (mainly a 
result of random fiber placement in the SVE) and epistemic (result of small datasets) 
uncertainty. Once the BNN was trained, the effective composite response could be 
directly estimated including uncertainties. A similar approach was used in [26] to  
performing time-dependent reliability analysis of structures. 

A small number of studies have used ML techniques to extract stochastic 
microstructure-property relationships. Using Microcomputed Tomography (micro-
CT) images of woven composites, autocovariance functions (two-point statistics) 
were fitted to the microstructure in [70]. This was followed by dimensionality reduc-
tion and training of a linear regression model to predict the elastic properties based on 
the autocovariance function. To create stochastic RVEs, in [14] digitized microstruc-
ture images for multiple different inclusions (porosity, isotropic, anisotropic) were 
used to train a classification tree. The trained model was then used to create new 
microstructures exhibiting the same stochastic features as the training data.
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2 Enhancing Sample Efficiency Through Quasi Monte 
Carlo Simulations 

Monte Carlo (MC) technique is commonly used in engineering applications for UQ 
due to its straightforward and versatile applicability [40]. MC entailed randomly 
drawing several samples for the model parameters from known probability distri-
butions. The underlying deterministic model has to be executed for each instance 
drawn from the distribution, and the model responses are tabulated [40, 98]. The 
output metrics (model responses) are characterized, and appropriate statistical esti-
mates (mean, standard deviation, mode) for the response’s statistical representation 
are computed. 

One significant advantage of MC is that the expected error of the estimates is 
O (

n−1/2
)
, where n is the number of model evaluations. It is independent of the 

dimensionality of the model [75]. However, MC can be practically infeasible in 
computationally expensive applications as its convergence will require numerous 
simulations. Based on the central limit theorem and the continuous mapping theorem, 
the standard error of the mean (.n) of a MC simulation can be used as a measure of 
error [47]:

.n = 
σ̂n √
n 

(13) 

where the variance of the random variate is estimated using the variance of the 
simulations ( σ̂n), with xi being the result of a single random simulation [47]: 

σ̂n =
[||]

(
1 

n 

n.
i=1 

x2 i

)
−

(
1 

n 

n.
i=1 

xi

)2 

(14) 

Fig. 2 Conventional neural network with deterministic weights (a) and BNN with weights repre-
sented by distributions (b) (adapted from [26])
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Fig. 3 Sample point distributions of a uniformly distributed pseudo-random points and quasi-
random, b Sobol sequence exhibiting lower discrepancy (reprinted from [73]) 

QMC technique can reduce the number of samples required to obtain sufficient 
convergence. Instead of drawing samples from a random distribution, samples are 
derived deterministically from Low Discrepancy Sequence (LDSs) [75]. Discrepancy 
describes the non-uniformity of points in a set. Low discrepancy samplings better 
‘fill’ space without exhibiting ‘clumps’ or ‘empty holes’ in space. Examples of LDSs 
are Halton, Faure, Niederreiter, or Sobol sequences [47, 68, 77]. Figure 3 depicts 
the sample distributions obtained by a uniformly distributed pseudo-random sampler 
and the Sobol quasi-random sample in a 2D space. The Sobol LDS distributes point 
samples more uniformly (Fig. 3b) across the sample space. 

Another commonly used method to reduce the number of required samples com-
pared to MC is Latin Hypercube Sampling (LHS) [76]. LHS provides sample points 
that are well spread out over the unit cube and, therefore, can reduce variation in the 
sampled function [76]. However, multiple studies have shown improved convergence 
behavior for QMC using LDSs [49, 54, 76, 90, 91] compared to LHS. Furthermore, 
the superiority of QMC with Sobol sequences over LHS has been shown especially 
for higher-dimensional problems [54, 76]. Since QMC with a Sobol sequence has 
shown improved convergence in multiple studies and for different applications, we 
used a Sobol sequence [77] for spatially mapping strength distributions in this study. 

Obtaining a one dimensional Sobol sequence x1, x2, . . . ,  0 < xi < 1 over a unit 
interval requires a set of direction numbers vi [16]: 

vi = 
mi 

2i 
(15) 

where mi is an odd integer, 0 < mi < 2i . Generally vi are derived from the coef-
ficients of an arbitrarily chosen primitive polynomial P of degree d (coefficients a 
from {0, 1}):
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P ≡ xd + a1xd−1 +  · · ·  +  ad−1x + 1. (16) 

Using the polynomial coefficients, a recurrence relation for calculating vi is 
defined: 

vi = a1vi−1 ⊕ a2vi−2 ⊕  · · ·  ⊕  ad−1vi−d+1 

⊕ vi−d ⊕ 
vi−d 

2d 
, i > d, 

(17) 

with ⊕ being a bit-by-bit exclusive-or operation. By choosing different primitive 
polynomials and generating sequences for every coordinate, extensions to general 
problems with multiple dimensions can be achieved [75]. The implementation of this 
method can be found in [16] and the code used in this study is taken from [17]. 

2.1 Application of QMC for the Modeling of Random Fields 
with KLE 

Generation of a realization of a random field using KLE requires m uncorrelated 
and centered random variables ξi (see Eq. 19) [36], where m is the number of terms 
used in the approximation. To perform QMC, each of the random variables ξi was 
treated as a dimension of a m-dimensional Sobol sequence. Each Sobol number was 
then inverted using the inverse cumulative normal distribution function (Intel MKL 
vdcdfnorminv function in Fortran [45]) to obtain a Gaussian quasi-random variable. 

We now describe the results from testing the hypothesis that the QMC method 
with multi-dimensional low discrepancy sampling converges faster than classical 
MC method. Faster convergence shows as smaller variation between the estimates 
with increasing number of simulations. To test this hypothesis, we performed 10,000 
simulations of additively manufactured specimens, respectively, using MC and QMC 
methods. An elasto-plastic material model was used to model the material response 
and stiffness and strength were modeled using a random field (cross-correlation 
between stiffness and strength was one). Figure 4 shows the floating average of the 
maximum stress (after reaching the maximum stress the material exhibits perfectly 
plastic behavior and accumulates plastic strain at constant stress) during the simula-
tions and the standard deviation (σ̂n) of the estimated maximum stress mean for both 
MC and QMC. Equation (18) defines the standard deviation of the predictions, σ̂n , 
after n simulations where (x j ) is the result of a single random simulation. 

σ̂ 2 n = 
1 
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(18) 

Faster decreasing standard deviation of the mean estimate relates to faster con-
vergence. 

Similar average values of the maximum stress are predicted using MC (37.66 MPa) 
and QMC (37.70 MPa), with generally more stable predictions from QMC (see Fig. 
4). Comparing the standard deviation of the mean estimates, again more stable pre-
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Fig. 4 The shaded intervals represent the 95% confidence interval 

dictions and faster convergence are seen using QMC (see Fig. 4). To quantify the 
improvement in convergence, a power law (anα) fit was made to the standard error 
data. Coefficients (a) and the powers (α) that relate the number of simulations per-
formed (n) to the standard deviation are shown in Fig. 4. The power law fit for MC 
gives an exponent of −0.374 while the QMC fit has an exponent of −0.492. This  
confirms faster convergence of QMC method and shows that QMC method can be 
used to speed-up convergence when using KLE to approximate spatial random fields. 

As an alternative to MC, several studies use bootstrapping methods to reduce the 
computational burden. Uncertainty quantification in composite stochastic damage 
analysis has been performed using small sample sizes and bootstrapping techniques 
[103, 104]. Bootstrapping entails randomly resampling and replacing an initial pop-
ulation of samples (termed as non-parametric bootstrap) and performing statistical 
analysis on the resampled points [41, 102]. This technique can determine the accu-
racy of the initial sample set, but it does not improve the parameter estimates (e.g. 
of the mean) from the sample [41]. The distribution of the bootstrapped samples is 
always centered at the observed statistic of the initial sample set, not on the population 
statistic (e.g. mean of the initial sample, not the population mean) [41]. Since boot-
strapping does not improve the parameter estimate, more samples will be necessary 
to increase the accuracy of the parameter estimate. 

3 UQ Parameter Calibration with Neural Networks 

Identification of random field parameters that describe the spatial variability of the 
material response is a demanding and difficult task. While random fields have been 
more commonly used in material modeling applications, they often require computa-
tionally expensive microstructure analysis [93–95] or inverse optimization methods
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[80] for parameter fitting/model calibration. In other cases, parameter selection is 
based on assumptions of their influence on structural response [103]. 

Extensive work is available on stochastic multi-scale approaches, where the ran-
dom response of continuously reinforced composites is estimated based on analysis 
of synthetic microstructures [93–95]. Similar approaches are employed for woven 
composites in [83, 86], or particle reinforced composites in [38]. 

Several studies previously have shown the feasibility of using neural networks to 
determine model parameters. Certain model parameters cannot be directly obtained 
from experimental measurements. In such situations, neural networks [61] simplify 
the parameter identification or model calibration tasks. Examples of applications 
of neural networks are model calibration of damage models in sheet metals [1] or  
estimation of Hill-plasticity parameters in sheet metals [19]. The performance of an 
iterative optimization approach and a neural network-based approach are compared 
in [61] to identify parameters of the yield function for additively manufactured ABS 
plastic. In [66], the effective model parameters of a machine tool drive system are 
inferred using neural networks and in [55] a CNN is used for identification of material 
porosity and tortuosity in water-saturated porous materials. 

For the present chapter a methodology is developed for modeling additively man-
ufactured structures using Gaussian random fields for strength and stiffness distri-
butions. A CNN is used to extract random field parameters from DIC images, more 
particular the correlation lengths of the stochastic fields. CNNs are a type of Neural 
Network (NNW), using convolutions in place of matrix multiplications in order to 
reduce the number of parameters [55] and are commonly used for image classification 
or regression tasks [2, 30, 53, 60, 101]. In contrast to inverse methods, once trained, 
NNWs allow efficient predictions without evaluating a forward model [55]. A large 
range of engineering applications for NNWs can be found, from model parameter 
estimation [55] similar to the current problem to surrogate models for predicting the 
nonlinear response of composite materials [96]. 

To fully define a Gaussian random field, the mean, standard deviation, and a 
covariance function are required. The chosen exponential covariance function is this 
work is defined by two correlation lengths. The correlation lengths define the corre-
lation between any two points in the random field. Mean and standard deviation for 
stiffness and strength are readily available from experimental tensile tests. A process 
for determining the correlation lengths using strain distributions from DIC images 
from experimental tensile tests is presented. The process consists of two sub prob-
lems [55]: A forward model for simulating additively manufactured specimens using 
the correlation lengths and material parameters as input, and the inverse problem to 
predict the correlation lengths from experimental strain distribution. 

To solve the inverse problem, a CNN is developed and trained using strain distri-
butions obtained from the forward model (FEM simulation) with random correlation 
lengths as input. After training, the strain distributions from DIC measurements are 
fed into the CNN to predict the correlation lengths for the material of interest. 

Once the correlation lengths are determined using the CNN, the random fields 
are fully defined and the forward model can be used to perform MC simulations for 
examining the stochastic model response [81].
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3.1 Karhunen-Loève Expansion 

UQ of stochastic engineering systems requires the correct description of the ran-
domness of model parameters [89]. Spatial random fields can be used to represent 
spatially varying model parameters [89]. The auto-correlation function of an indi-
vidual parameter describes the correlation between two points in space [36, 105]. 
On the other hand, cross-correlation describes similarities between different random 
parameters [105]. 

Instances of random fields can be generated using KLE. KLE can be regarded 
as an abstract discretization of a random process using series expansion of a set of 
orthogonal random variables, based on modal decomposition of the auto-covariance 
kernel [33, 36, 52, 103]. An advantage of KLE is that it has the property of minimizing 
the mean-square error of the finite representation of a random process [36]. The KLE 
of a random process w (x, θ  ) can be written as a truncated sum of m elements [36]: 

w (x, θ  ) = w (x) + 
m.
i=0 

ξi (θ )
.

λi fi (x) . (19) 

x is the position vector in the domain D, θ belongs to the space of random events 
θ ∈ ., C (x1, x2) denotes the covariance function with the two position vectors x1 
and x2, w (x) is the expected value of w (x, θ  ), and ξi are centered and uncorrelated 
random variables. λi and fi (x) can be found as solution to the integral equation [36]:

.

D 

C (x1, x2) fi (x1) d x1 = λi fi (x2) . (20) 

We used an absolute exponential kernel to represent the covariance function for 
a two-dimensional Gaussian random field [36, 103]: 

C (x1, x2) = σ 2 exp
(

−|x1 − x2| 
l1 

− 
|y1 − y2| 

l2

)
, (21) 

where the parameters l1 and l2 govern the rate in x and y direction, respectively, at 
which the correlation between two points x1 and x2 in the domain decays and are 
commonly called correlation lengths. σ 2 is the variance. It should be noted that this 
covariance function was a modeling assumption and was mainly chosen for ease of 
implementation and the ability to represent non-isotropic covariance (by choosing 
different l1 and l2). It is possible that a different covariance function would better fit 
the encountered data.
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3.2 Computational Model 

A nonlinear FEM code was developed in-house to efficiently model stochastic prob-
lems. The code is written in Fortran and is based on the Intel MKL Pardiso direct 
solver. OpenMP is used to allow multiple simulations to be run in parallel, which 
enables a large number of simulations to be solved in a short time. On a standard 
workstation with an 8 core, 3.20 GHz, AMD Ryzen 7 2700 processor, 100,000 sim-
ulations required for training of the NNW were performed in less than two days. 

The FEM code uses a small strain formulation and an elasto-plastic material model 
with incremental J2 plasticity and isotropic hardening [13], using ascending pairs 
of plastic strain and corresponding stress as input to define the yield surfaces. The 
code is used for modeling additively manufactured specimens. The random fields for 
stiffness and yield stress distributions are discretized using two-dimensional KLE 
for in-plane (xy-plane) variations of the material parameters. Through the thickness 
(z-direction) the material parameters are held constant. Correlation between points 
in the two-dimensional random field is governed by two correlation lengths, one 
for each spatial direction. The computational implementation of KLE is based on 
the Matlab toolbox FERUM, developed at University of California at Berkeley [27]. 
Running a FEM simulation, the KLE is evaluated at each integration point. 

In Fig. 5 three realizations of a random Gaussian field using KLE are depicted with 
different correlation lengths, where l1 is the correlation length of the random field 
in spatial x-direction and l2 in y-direction. It is supposed that the correlation length 
is a result of the material microstructure resulting from the additive manufacturing 
process and hence the correlation lengths for the stiffness field are similar to the 
correlation lengths of the strength field. 

3.3 Parameter Estimation Using a Neural Network 

The objective of this research is to estimate parameters describing a spatial random 
field based on DIC images by using a NNW, which is trained on data obtained from 
FEM simulations. A brief introduction to NNWs is given in the following section. 

Artificial NNWs can be viewed as function F : x → y with input 
x = [x1 x2 . . .  xm]T and the output y = [y1 y2 . . .  ym]T [96]. A NNW is built from 
artificial neurons, performing a weighted sum operation on the input [55, 96]. In Fig. 
6 a neural network with a single hidden layer is exemplary depicted, with each dot 
representing a neuron and each arrow a connection between two neurons [55]. The 
network has an input layer with m inputs x1, . . . ,  xm , a hidden layer with n output 
activations a1, . . . ,  an , and an output layer with i outputs y1, . . . ,  yi . The activations 
a1, . . . ,  an are given with the inputs x1, . . . ,  xm by Refs. [55, 96]: 

a j = σ

(
m.

k=1 

w (1) jk  xk + b(1) 
j

)
j = 1, . . . ,  n (22)
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Fig. 5 Three realizations of the random stiffness field at different correlation lengths [73] 

with w (1) jk  a weight associated with the respective neuron connection, a bias term 

b(1) 
j , and the non-linear activation function σ . The weights w jk  are obtained through 

training of the NNW [96]. Due to fast training performance the Rectified Linear Unit 
(ReLu) function σ (x) = max (0, x) is a commonly used activation function [53, 55, 
56]. Similarly to the activations a1, . . . ,  an , the outputs y1, . . . ,  yi of the network are 
calculated having as input the activations from the hidden layer. 

The disadvantage of fully connected NNWs as described above is the possibly 
enormous number of free parameters [12, 55]. For overcoming this problem, CNNs 
can be used, where the matrix multiplication in Eq. 22 is replaced with a convolu-
tion with a set of filter weights w1, . . . , wn to be trained [55, 56]. A convolutional 
layer is schematically depicted in Fig. 7. CNNs are designed to process data sup-
plied in the form of multiple arrays, such as colour images, which consist of three 
2D arrays containing pixel intensities of the three colour channels [25, 56]. Typi-
cally each convolutional layer contains multiple convolutional masks that are applied 
simultaneously for better performance [55]. 

For downsampling, that is reducing the dimension of activations, commonly addi-
tional pooling layers are used in CNNs [53, 55]. By normalizing layer inputs using 
batch normalization layers, acceleration of the training can be achieved [46]. NNWs 
are prone to overfitting, which is shown by good performance for the training dataset 
but poor performance for unknown datasets [55]. Figuratively speaking, overfitting 
occurs when a NNW adapts only to the training samples and is unable to general-
ize [55]. Overfitting can be reduced by using dropout layers [79]. During training,
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Fig. 6 Fully connected NNW with a single hidden layer (a), single convolutional layer (b) (adapted 
from [55]) 

dropout layers randomly drop units and their corresponding connections from the 
NNW, preventing units to co-adapt too much [79]. 

3.4 Network Architecture 

The utilized network architecture for this chapter is roughly based on the AlexNet 
classification network [53]. Instead of the final softmax layer used in the AlexNet 
network for classification, in the current problem a fully connected layer with linear 
activation and a single output is used for each correlation length to perform the 
regression task [30, 60]. The network consists of five convolutional layers with batch 
normalization before the ReLu activations in each layer and maximum pooling in the 
second and fifth convolutional layers, respectively. Compared to the AlexNet network 
the number of filters in the convolutional layers is smaller, which reduces the number 
of unknowns. After the convolutional layers, the input is flattened and two fully 
connected layers with batch normalization and dropout are used. These layers are then 
connected to one fully connected layer for each correlation length, respectively. Using 
one output layer with one node for each correlation length prediction, respectively, 
allows evaluation of training parameters for each correlation length individually. A 
schematic overview of the network architecture is given in Fig. 7 and a more detailed 
description of the individual layers with input and output parameters can be found 
in Table 1. As input images with a size of 160 px×30 px and 3 colour channels are
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Fig. 7 Schematic depicting the CNN architecture used in this work [73] 

Table 1 CNN architecture used in this work 

Layer no. Type and nonlinearity Input size Output size 

Input 160 × 30 × 3 160 × 30 × 3 
1 Convolution (5 × 5, 16 filters), Batch 

normalization, Activation (ReLu) 
160 × 30 × 3 160 × 30 × 16 

2 Convolution (3 × 3, 32 filters), Batch 
normalization, Activation (ReLu), Max 
Pooling (2 × 2) 

160 × 30 × 16 80 × 15 × 32 

3 Convolution (3 × 3, 64 filters), Batch 
normalization, Activation (ReLu) 

80 × 15 × 32 80 × 15 × 64 

4 Convolution (3 × 3, 64 filters), Batch 
normalization, Activation (ReLu) 

80 × 15 × 64 80 × 15 × 64 

5 Convolution (3 × 3, 128 filters), Batch 
normalization, Activation (ReLu), Max 
Pooling (2 × 2) 

80 × 15 × 64 40 × 7 × 128 

6 Flatten 40 × 7 × 128 35,840 

7 Fully connected, Batch normalization, 
Activation (ReLu), Dropout (0.5) 

35,840 2048 

8 Fully connected, Batch normalization, 
Activation (ReLu), Dropout (0.25) 

2048 1024 

9 2 output layers: Fully connected, Activation 
(linear) 

1024 2 × 1 

used. The network has 75.6 million parameters. For implementation of the CNN in 
Python, the machine learning toolboxes Tensorflow and Keras are used. 

3.5 Experimental 

For predicting the correlation lengths of additively manufactured structures, four 
tensile tests of additively manufactured specimens are performed utilizing DIC to 
measure the surface strain distribution. The specimens are manufactured from ABS 
plastic using Fused Deposition Modeling (FDM) with the specimen geometry accord-
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Fig. 8 Average stress-strain 
curve of experimental tensile 
test [73] 

Table 2 Experimentally determined material parameters 

Average Young’s modulus 2075 MPa 

Young’s modulus standard deviation 415 MPa 

Average maximum stress 42.1 MPa 

Maximum stress standard deviation 2.11 MPa 

Poisson’s ratio 0.4 

ing to ASTM D638 specimen Type IV [9]. The specimen thickness is 1 mm. During 
printing 100% infill is used with the printing orientation always parallel to the speci-
men edge. Tests were performed at room temperature and with a displacement rate of 
5 mm/min. In Fig. 8 the average stress-strain curve from the performed tensile tests 
is depicted and Table 2 gives an overview of the determined material parameters. 

3.6 Neural Network Training 

Using the material parameters given in Table 2, the training dataset for the CNN 
is created. 100,000 simulations with random correlation lengths ranging from 0.5 
to 6 mm are performed. In the training set simulations a strain of 0.5% is applied. 
The KLE for discretizing the random fields is truncated after 1500 elements. Subse-
quently, an image of the major strain distribution for each simulation is exported from 
Paraview using a Python macro. The colour legend for the training images covers 
two standard deviations around the mean strain value (see Fig. 15) with values higher 
or lower being the same colour as the maximum or minimum of the legend, respec-
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Fig. 9 Loss function and mean absolute error for both output variables during training [73] 

tively. The same colour legend range will later be used for predicting the correlation 
lengths from DIC images. 

The training dataset is split so that 80% of the images are used for training and 20% 
of the images are used for validation in order to evaluate the training performance. 
Additionally, data augmentation consisting of horizontal and vertical shifting and 
horizontal and vertical flipping of the images is used to prevent overfitting [101]. 
The training data is normalized before training using the Power Transformer from 
the scikit Python library to improve performance. Training is carried out using the 
Adam optimiser in Tensorflow [51] with mean squared error as loss function. The 
model is trained for 300 epochs with a batch size of 50. After finishing 300 epochs, 
the weights of the best epoch based on validation loss are used. 

Figure 9 depicts the loss function progress for training and validation datasets 
during training and Fig. 9 shows the mean absolute error for both correlation length 
predictions as additional performance metrics. Improved performance in the predic-
tions of the correlation length in x-direction (i.e. along the width of the specimen) 
can be observed. After about 100–150 epochs loss and validation loss remain prac-
tically stable and the network has reached its generalization capability. An increase 
in validation loss is not observed, showing that overfitting does not occur. 

For validation of the CNN, previously unseen validation images at three different 
pairs of correlation lengths (l1 = l2 = 1, l1 = l2 = 3, l1 = l2 = 5) with 200 realiza-
tions for each length pair are fed through the trained network and the predictions 
are compared to the expected values. A comparison of the estimated and expected 
values can be seen in Fig. 10. Over all 600 test images an absolute percentage error of 
10.3% is observed. Histograms of the percentage error distributions for both correla-
tion lengths are given in Fig. 11. The best performance is seen at smaller correlation 
lengths with more scatter at larger correlation lengths.
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Fig. 10 Comparison of expected and estimated values using a set of validation images [73] 

Fig. 11 Histograms of the prediction error for both correlation lengths [73] 

It should be noted at this place that the purpose of this research was not to find an 
optimal NNW architecture for the given problem, but rather show the feasibility of 
using a NNW for the given problem. 

3.7 Optimization of Neural Network Architecture 

Application of neural networks to engineering problems requires design of suitable 
network architectures. However, development of high performing neural network
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architectures commonly requires considerable expertise. Recently, Neural Architec-
ture Search (NAS) methods have shown to produce competitive network architectures 
with performance comparable or surpassing human developed architectures [29, 58, 
72, 99, 106, 107]. To improve performance of the network presented in this chapter, 
NAS could be used for architecture optimization. 

Compared to hyperparameter optimization, which generally requires a good initial 
model to generate superior network architectures, NAS is more flexible and can 
design good model architectures from the ground up [106]. Successful developments 
of NAS methods have been shown in [106, 107] with generated network architectures 
showing better performance than human designed networks. In [106] a Recurrent 
Neural Network (RNN) controller is applied to generate network architectures. The 
controller first generates a sample architecture, which is trained until convergence 
is reached [72, 106]. Using the performance metrics of the sample architecture, the 
controller RNN is updated to predict more promising sample architectures. This loop 
is repeated for multiple iterations. Because NAS requires multiple iterations of fully 
training different model architectures it is very computationally expensive. 

To reduce the computational burden, in [72] Efficient Neural Architecture Search 
(ENAS) is proposed. Instead of individually training each sample architecture (child 
model) the authors share weights between all child models. The necessity to fully train 
the model at each iteration is therefore removed while strong performance is shown. 
To facilitate shared weights of the child models, the search space is represented as 
a single Directed Acyclic Graph (DAG) [72]. Nodes in the DAG represent local 
computations while the edges of the graph represent the flow of information (see 
Fig. 12) [72]. Therefore, each child model can be represented as a subgraph of the 
DAG with the parameters shared among all possible architectures. 

ENAS uses a Long Short-Term Memory (LSTM) [42] RNN as controller and 
alternately trains the shared parameters of the child models and the parameters of 
the controller [72]. During training of the controller parameters, the expected reward 
function is maximized, which is computed on the validation set of the child models. 

Fig. 12 Representation of the ENAS search space as a DAG with 6 nodes. An arbitrary model in 
the search space defined by the controller is depicted with red arrows, where node 1 is the input 
node and the concatenated outputs of nodes 3 and 6 is the model output (adapted from [72])
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Fig. 13 DIC images used for predicting the experimental correlation lengths and showing major 
strain distribution during tensile testing [73] 

To design a CNN, ENAS allows optimization of individual convolutional and 
reduction cells and subsequent connection of the individual cells, rather than design-
ing the entire CNN [72]. Nodes in the DAG represent the computations performed 
in the local cell (identity, convolution with kernel size 3×3 or 5×5, or average or 
maximum pooling layers). The controller RNN chooses the connections between the 
nodes and the operations to apply at the sampled nodes [72]. 

3.8 Estimation of Experimental Correlation Lengths 

DIC images are used for estimating the experimentally observed correlation lengths 
with the trained CNN. As DIC is prone to noise especially at very small strains and 
only the qualitative strain distribution is of interest for predicting the correlation 
lengths, DIC images are not evaluated within a fixed strain range but rather within 
the linear response range once strain localizations visually stabilized. The utilized 
images from four tensile tests are depicted in Fig. 13. 

The trained CNN is used to predict the correlation lengths for all four images. 
Results of the predictions are given in Table 3. Predicted values for the correlation 
length in the x-direction all lie within close range of each other, while the predictions 
for correlation length in the y-direction show more scatter. While further experimental 
tests are required to better compare predictions of the CNN, similar predictions for 
all four specimens support the presented methodology. 

Having the predicted correlation lengths and with that the fully defined random 
fields, the forward model can be used to simulate the tensile test and perform statistics 
on the model response. For this study, 200 realizations of the random fields were sim-
ulated and compared to the experimental results (see Fig. 14). Variations in stiffness 
and yield strength are observed for the simulations as expected and generally good 
agreement with the average experimental curve can be seen. A single realization of 
the strain field is depicted in Fig. 15, exhibiting strain localizations similar to the 
strain field observed using DIC.
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Table 3 Predictions for correlation lengths for DIC images 

Specimen lx ly 

1 1.75 0.77 

2 1.59 1.05 

3 1.79 1.40 

4 1.68 0.87 

Average 1.70 1.02 

Standard deviation 0.08 0.28 

Fig. 14 200 runs of the 
forward model using the 
determined parameters and 
comparison with the 
experimental curve [73] 

4 Concluding Remarks 

In this chapter, we adapted a methodology using a neural network to estimate model 
parameters for modeling stochastic variations of stiffness and strength of additively 
manufactured structures. KLE was used to create instances of correlated random 
fields. The covariance function of the two-dimensional random fields requires two 
correlation lengths. We trained a neural network using strain distributions obtained 
from simulations with known correlation lengths. Once trained, the network was 
used to estimate correlation lengths for additively manufactured specimens (solving 
the inverse problem). With known random field parameters, stochastic simulations 
with variability of the stiffness and strength can be performed for UQ of printed 
structures. 

Validation of the trained CNNs on previously unseen validation images showed 
good prediction accuracy for the correlation lengths. However, especially larger cor-
relations lengths displayed relatively large prediction errors. Prediction accuracy for 
large correlation lengths could be improved in future work by using a larger simu-
lation domain to better capture the effects of large correlation lengths. Finally, the 
performance of the networks could be improved using NAS.
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Fig. 15 Major strain distribution for a realization of the random field using the predicted correlation 
lengths at an applied strain of 2% [73]
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Future work will include performance improvements of the presented methodol-
ogy. Additional experimental effort will also be necessary to validate the estimated 
parameters. 
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Radial Basis Function-Based Uncertain 
Low-Velocity Impact Behavior Analysis 
of Functionally Graded Plates 

P. K. Karsh, R. R. Kumar, Vaishali, and S. Dey 

1 Introduction 

Functionally graded material changes its material properties, density, composition, 
and microstructure across the volume. It is a hybrid of composite material in which 
two dissimilar materials, namely ceramic and metal, are non-homogenously inter-
mixed to form a graded structure [1]. They are designed to perform specified func-
tions with automobiles, biomedical, marine, aerospace, and civil applications. In 
bio-medical applications, implants are made by FGM because most parts of the 
human body are made of FGM-like structures. The conventional composite mate-
rials are produced by homogenous elastic laminates that bond together to intensify 
the mechanical properties. The material properties at the interface of two laminates 
are abruptly changed. This can create enormous intermediate stress, leading to the 
delamination of laminates. The phenomena of delamination mainly occur at the 
higher load and temperature during the service of the composite structure. This 
lacuna of the composite structure is overcome by using FGMs in which there is no 
interface inside the system. So, the stress distribution inside the system is smooth. The 
FGM structures are mainly employed where one side of the plate requires sufficient 
thermal resistance while the second side of the plate requires good yield strength 
[2]. They are graded structures in which two materials are distributed following
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Fig. 1 FGM plate subjected to impact loading 

various laws such as power law, sigmoid law, and exponential law. The present model 
consists of a cantilever plate structure with top surface ceramic rich. In contrast, the 
bottom surface is metal-rich, and the various other material properties are distributed 
following power-law (refer to Fig. 1). The distribution pattern of materials inside the 
plate can be controlled by the controlling parameter called exponent index (power-
law index in case of power-law). FGM’s material properties depend on the spatial 
position of the individual material on the bulk material so that FGM has varying 
material properties on the entire volume. 

Many FGM structure applications are subjected to impact loading during the 
service life, starting from manufacturing to end-use. Due to this impact loading, 
deformation may occur in the plate and impactor, affecting the FGM structure’s 
functionality. So, it is necessary to analyze the characteristic of FGM structure due 
to impact loading. In the past, composites and FGM have obtained considerable 
attention in research work in impact problems, such as Soto et al. [3] worked on low-
velocity impact and compression behavior of composite by employing the numerical 
approach to find the damage resistance of the panel. Hsieh et al. [4] conducted experi-
ments on nanocarbon aerogels for determining the impact and non-impact properties, 
considering different impact energies. Thorsson et al. [5] employed a shell-based 
finite element method to determine the reinforced composite’s impact behavior and 
failure mechanism. He also defined fiber rapture and matrix cracking by using the 
non-destructive inspection method. Schwab et al. [6] analyzed the high-velocity 
impact response of composite laminated panels, considering different impact veloc-
ities and impact angles. The results illustrate that the results obtained from experi-
ments and simulations have fair agreements. Sun et al. [7] conducted a comparison 
study between thermoset and thermoplastic polymer composites’ impact responses



Radial Basis Function-Based Uncertain Low-Velocity Impact … 79

by employing numerical and experimental approaches. Elamin et al. [8] worked on  
the impact of a composite sandwich structure subjected to the very low-temperature 
environment known as an arctic condition. The experimental results illustrate that 
the extremely low temperature significantly affects the damage behavior of the sand-
wich composites. Similarly, Karsh et al. [9] worked on FGM plates and carried 
out probabilistic and non-probabilistic impact responses by employing the artificial 
neural network and fuzzy approach. Mao et al. [10] determined the FGM coated 
shallow spherical shell’s interfacial damage behavior experiencing low-velocity 
impact loading by employing the numerical method. Kiani et al. [11] worked on  
the FG-beam structure and analyzed the low-velocity impact characteristic using 
the numerical approach considering the thermal effects. Runge–Kutta approach and 
Hertz contact law are applied to find the impact of different parameters on the FGM 
beam’s impact responses. Najafi et al. [12] utilized HOSDT for determining the 
nonlinear impact behavior of the FGM beam subjected to noncentral loading. The 
modified Hertz’s contract law (HCL) is applied to assess the impact behaviors. Eght-
esad et al. [13] worked on FGM considering sigmoid law for material properties 
gradation and analyzed high-velocity impact behavior. Free vibration, bending, and 
buckling responses for graded material [14–16] and low-velocity impact [17–19] 
responses for several combinations of composites have been studied using a deter-
ministic approach. Dey et al. [20, 21] analyzed low-velocity impact behavior by 
employing FE methods on conical shells considering delamination effects. Simi-
larly, in the past, the radial basis function model was applied in many engineering 
fields for uncertainty analysis, such as Liu et al. [22] for analyzing the static behavior 
considering uncertainty in input parameters. Er et al. [23] carried out machine vibra-
tion analysis using the modal analysis and the radial basis function approach. Li 
et al. [24] also applied RBF for the structure’s reliability analysis, while [25] used  
it to analyze global sensitivity. Some researches are also carried out considering 
stochastic nature in various structures [9, 26, 27]. 

In the last paragraph, a thorough literature review is presented in which most of the 
research was carried out in deterministic regimes. As discussed earlier, FGM has a 
nonhomogeneous mixture of two materials; therefore, it can be considered as a highly 
complex structure. From the design stage to the manufacturing stage of FGM, there 
are many uncertainties involved, which results in the deviation in values from their 
deterministic value. These deviations may affect the impact responses of the FGM 
structure. FGM structure’s impact responses depend upon the material and geomet-
rical properties of the plate and impact parameters such as impact angle. Here, the 
FGM plate’s stochastic transient low-velocity impact parameters are determined by 
considering the variabilities in material properties by employing a surrogate-based 
RBF model. As already known, MCS is the conventional method to handle proba-
bilistic as well as non-probabilistic uncertainty quantification problems. The MCS 
considered every possible combination of input variables leads to low computational 
efficiency. The traditional MCS required thousands of finite element simulations, 
which leads to high cost and time. In a layered/graded structure such as FGM, finite 
element simulation is an expansive process that requires time and cost. To mollify 
with this demerit of the conventional MCS, a surrogate-based RBF is introduced in
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this chapter. By doing this, the number of FE simulations required is significantly 
less than traditional MCS, leading to higher computational performance without 
affecting the meticulousness of the results. 

2 Mathematical Formulation 

The equation for dynamic analysis is given by Dey et al. [28] 

[M( ̂ω)]{δ̈} + [K ( ̂ω)]{δ} = {F} (1) 

The contact force {F∗ 
C} in the impact loading can be represented as 

{F} = {
0 0 0  . . .  F∗ 

C . . .  0 0 0
}T 

(2) 

The equation the impactor motion is given in Eq. (3) 

m(I ) ̈δ(I ) + F∗ 
C = 0 (3)  

wherein m(I ) and δ̈(I ) denotes impactor’s mass and acceleration, respectively. The 
force at the time when the elastic impactor touches the FGM plate is called the contact 
force and is determined by employing the modified Hertzian contact (MHC). Here, 
the impact loading is applied at the middle of the plate, as shown in Fig. 1. The  
contact force

(
F∗ 
C

)
for that is given by Sun and Chen [29]. 

F∗ 
C = KM ψ

1.5 0 < ψ  ≤ ψmax (4) 

KM = 
16 

3π 
1 

K P + KI 

/
B 

λ 
(5) 

where KM , ψ , and ψmax represent modified contact stiffness, local indentation, and 
maximum indentation, respectively [30]. C and λ are the constant, and for the present 
study, λ = 2 is considered. The local indentation can be obtained by 

ψ(t) = δI (t)Cosθ − δP (xc, yc, t)Cosφ (6) 

where δI is impactor displacement and δP is plate displacements, at point of loading 
(xc, yc) in the z-direction, while θ is oblique impact angle and φ is twist angle. At 
the loading point, the contact force components are 

Fix  = 0, Fiy  = 0, Fiz  = F∗ 
C (7)
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The transient nature of the contact force (F∗ 
C ) can be observed with .t time 

intervals. Here, Newmark’s integration scheme [31] is employed for evaluating time-
dependent equations. By applying the Newmark’s integration scheme in Eqs. (1) and 
(3), succeeding equations at (t + .t) time can be obtained as 

[ K̃ P ]{δ}t+.t =
{
F̃∗ 
C

}t+.t 
(8) 

[ K̃ I ]{δI }t+.t =
{
F̃∗ 
C

}t+.t 
(9) 

where effective stiffness matrix for target plate is [ K̃ P ] and for impactor is [ K̃ I ] and 
is represented as

[
K̃ P

]
= [K (ω)] + [Kσ ] + c0[M(ω)] (10)

[
K̃ I

]
= c0mI (11) 

For t + .t , the impact responses such as plate and impactor displacements are 
determined by

{
F

}t+.t = {F} + {F∗ 
C}t+.t + [M(ω)](c0{δP}t + c1{δ̇P}t + c2{δ̈P}t ) (12) 

δI = 
F 

t+.t 
I 

m I 
(13) 

where, 

F 
t+.t 
I = mI (c0δ

t 
I + c1δ̇t I + c2δ̈t I ) − F∗t 

C (14) 

Plate and impactor’s acceleration and velocity can be calculated as 

Fix  = 0, Fiy  = 0, Fiz  = F∗ 
C (15) 

{δ̈P}t+.t = c0({δP}t+.t − {δP}t ) − c1{δ̇P}t − c2{δ̈P}t (16) 

δ̈t+.t 
I = c0(δt+.t 

I − δt I ) − c1δ̇t I − c2δ̈t I (17) 

{δ̇P}t+.t = {δ̇P}t + c3{δ̈P}t + c4{δ̈P}t+.t (18) 

δ̇t+.t 
I = δ̇t.t 

I + c3δ̈t I + c4δ̈t+.t 
I (19)
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At initial boundary condition 

{δP} = {δ̇P} = {δ̈P} =  0 (20)  

δI = δ̈I = 0 and δ̇I = V (21) 

The value of constants of integration can be obtained by 

c0 = 1 

X.t2 
, c1 = 1 

X.t 
, c2 = 

1 

2X 
− 1, c3 = (1 − Y ).t, c4 = Y.t (22) 

where X = 0.5 and Y = 0.25. Here, we have considered an isoparametric quadratic 
element for the FE formulation having eight nodes (refer to Fig. 2). The expression 
for shape function Ŝi can be shown as 

Ŝi = 
(1 + ϑϑi )(1 + εεi )(εεi + ϑϑi − 1) 

4 
(for i = 1, 2, 3, 4) (23) 

Ŝi = 
(1 − ϑ2)(1 + εεi ) 

2 
(for i = 5, 7) (24) 

Ŝi = 
(1 − ε2)(1 + ϑϑi ) 

2 
(for i = 6, 8) (25) 

where for element, the local natural coordinates are represented by ε and ϑ . 
In the case of FGM, the material properties gradation takes place following 

different laws. Here, we have considered power law, which is given as [32]

Fig. 2 Discretization of target plate into 8 × 8 mesh size  
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E( ̂ω) = EAl + (EZr  − EAl )

[
z 

t 
+ 

1 

2

]p 

(26) 

μ( ̂ω) = μAl + (μZr  − μAl )

[
z 

t 
+ 

1 

2

]p 

(27) 

ρ(  ̂ω) = ρAl + (ρZr  − ρAl )

[
z 

t 
+ 

1 

2

]p 

(28) 

where EAl , EZr  , μAl , μZr  , and ρAl , ρZr  are the elastic modulus, Poisson’s ratio, and 
mass density of aluminium and zirconia, respectively. ‘p’ shows the power-law index 
and ‘t’ is the plate thickness, while ( ̂ω) represents the degree of stochasticity. 

3 Radial Basis Function (RBF) 

RBF model predicts the system responses for the structural analysis by considering 
the combination of all stochastic input parameters. An RBF network used radial 
function as activation function [33]. Hardy [34] first applied the multi-quadric (MQ) 
radial function to interpolate scatter data for geographical analysis where more than 
thirty functions are interpolated. Later on, Kansa [35] employed Hardy’s MQ radial 
function for the partial differential solution of hydrodynamic problems. In the RBF, 
function responses are monotonically incremented or decremented from the central 
point with the radial distance [36]. The input pattern is given to the input layer, which 
connects the network to the environment. The input pattern is the m-dimensional 
vector, which the RBF function will classify. 

RBF is the meshless computational approach to solve the problem expressed in 
the irregular domain. It is extensively applied in computer graphics, surface recon-
struction, medical applications, fuzzy systems, pattern recognition, geosciences, and 
neural network because of its unique benefits such as superior convergence, mesh-
less, and simplicity [37]. RBF is employed for large scatter data with m-dimensional 
where m > 2 which is based on the distance [38]. The distinctive feature of this 
model is that it does not require mesh generation; only geometrical properties are 
required to determine the distance between two pairs of points. It is easy to calculate 
the distance in both the low and high dimensional problems, so the RBF is much 
easier than the finite element analysis. The RBF model establishes the relationship 
between vectors of ‘m’ real-valued input features (variables) y = (y1, y2, y3, . . . ,  ym) 
and single value output variable ‘z’. The surrogate model’s objective is established 
using the finite number ‘m’ of input–output data sets (training observation/data cases)(
y(i), z(i )

)
, i = 1, 2, 3, . . .  ,  m to predict the output for unknown input parameters. 

This data set
(
y(i), z(i )

) ∈ D influences the hypothesis f (x), which depends on the 
center point distance and f (||y− y j , γ ||) the shape parameters. The RBFcentered at 
y j are shown as [39]
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f j (y) = f (||y− y j
||||) ∈ Dd , j = 1, 2, 3, . . .  d (29) 

wherein domain D, the Euclidean distance is the f (||y− y j
||||) = r between pair of 

points. In standard form, RBF is given by Biazar and Hosami [40] 

f j (y) ≡ e−γ 2r2 (For Gaussian spline) 

f j (y) ≡
(
r2 + γ 2

)− 1 
2 (For inverse multi-quadric) 

f j (y) ≡ 
.
r2 + γ 2 (For multi-quadric) 

f j (y) ≡ r2 log r (For thin plate) (30) 

The shape parameter γ 2 = 1 is assumed for the present study. It influences the 
precision of results, but it should be noted that true values in the sampling point 
are equal to the approximate function’s functional values. After obtaining the RBF 
model outcomes, it is compared with the results of MCS for verification. The entire 
process followed for the present study is illustrated in Fig. 3.

4 RBF-Based Probabilistic Analysis of FGM Plates 

In this chapter, the probabilistic input parameters taken are material properties, 
power-law exponent, temperature, and oblique impact angle. The effects of other 
input parameters are acknowledged as follows: 

(a) Degree of stochasticity in material properties: 

y1{E( ̂ω), G( ̂ω), μ( ̂ω), ρ( ̂ω)} =  ϕ[{E(z)}( ̂ω), {G(z)}( ̂ω), {ρ(z)}( ̂ω), {μ(z)}( ̂ω)] 

(b) Power-law exponent: 

y2( p, ω̂) = ϕ[p, {E(z)}( ̂ω), {G(z)}( ̂ω), {ρ(z)}( ̂ω), {μ(z)}( ̂ω)] 

(c) Temperature: 

y3(T , ω̂) = ϕ[T , {E(z)}( ̂ω), {G(z)}( ̂ω), {ρ(z)}( ̂ω), {μ(z)}( ̂ω)] 

(d) Impact angle: 

y4(θ, ω̂) = ϕ[θ,  {E(z)}( ̂ω), {G(z)}( ̂ω), {ρ(z)}( ̂ω), {μ(z)}( ̂ω)] 

(e) Initial velocity of impactor: 

y5(V , ω̂) = ϕ[V , {E(z)}( ̂ω), {G(z)}( ̂ω), {ρ(z)}( ̂ω), {μ(z)}( ̂ω)]
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Fig. 3 Flowchart describing the present study’s complete methodology

where ϕ represents the MCS operator for both combined and individual vari-
ation of input variables, while ω̂ is the degree of stochasticity. For simulating 
material properties’ uncertainties-based stochastic approach, random variation 
in material properties with the predefined bond is considered. The considered 
variation occurs randomly in the limit of ±C% concerning the deterministic 
value, where C represents the degree of stochasticity. For obtaining accurate 
outcomes from the original MCS, approximately 104 numbers of simulations 
are required, which is enormous. We aim to make this process time-efficient 
without negotiating with the results’ accuracy. For this purpose, the RBF model 
is employed, which needs a significantly fewer number of simulations.
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5 Results and Discussion 

In this chapter, FGM plate having cantilever boundary condition (l = 1 m,  b = 
1 m, and t = 0.002 m). The FGM plate have following material properties, EAl 

= 70 GPa, υAl = 0.25, ρAl = 2707 kg/m3, EZr  = 151 GPa, υZr  = 0.3, ρZr  = 
3000 kg/m3 [41]. Two validation is performed, the first validation is of FE code 
results with the previously published paper. The second validation is of the results of 
the RBF approach with that of the MCS approach. Figure 4 illustrates the validation 
of FEM code in which the present analysis results are compared with previously 
published results [23] with considering time step 1 μs, and it was found that the 
obtained results have a good accord with the results in previously published papers. 
Figures 5 and 6 illustrate the validation of the results of RBF with the results of 
MCS. Figure 7 presents the probability density function (PDF) plots of the MCS and 
RBF model considering different sample sizes (n). It was found that with an increase 
in the sample size of the RBF model, results are closer to the MCS results. For 
the sample size 1024, the RBF model has good agreement with the MCS approach. 
Figure 6 portrayed the scatter plots between the RBF model results and the original 
FE model considering the sample size 1024. Table 1 shows the convergence study of 
the RBF model’s sample size. It was observed that for sample size 1024, the result 
is closer to that of MCS results. Here, the parametric study determined the effects of 
different input parameters on the low-velocity impact responses. Figure 7 illustrates 
the influence of the different degrees of stochasticity (C ± 5%, 10%, 20%) in all the 
material properties of FGM on the transient impact responses. It was found that on 
incrementing the degree of stochasticity, the area of bound increases. 

Figure 8 shows the outcome of the power-law exponent (p). It was found that 
on incrementing the power-law exponent value, there is a decrement in CF’s value. 
In contrast, for PD and ID, it increases due to significant reductions in the plate’s 
stiffness. Figure 9 illustrates the outcome of temperature (T ). It was found that the 
value of CF decreases with an increase in the temperature from 300 to 900 K, while

Fig. 4 Validation of present 
study by comparing time 
history of contact force of 
present study and previously 
published paper [11]
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Fig. 5 Probability density function of low-velocity impact responses for MCS and RBF
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Fig. 6 Scatter plots of low-velocity impact responses for MCS and RBF model
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Fig. 7 Effect on stochastic transient impact responses due to change in the degree of stochasticity 
(C)
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Table 1 Convergence study for various sample sizes by employing the RBF model 

Transient 
impact 
parameter 

Method Sample size Maximum 
value 

Minimum 
value 

Mean value Standard 
deviation 

Maximum 
CF (N) 

MCS 10,000 628.974 597.697 611.771 4.276 

RBF 256 622.796 602.263 611.948 3.174 

512 624.229 600.813 611.852 3.722 

1024 625.032 599.785 611.757 3.989 

Maximum 
PD (m) 

MCS 10,000 0.1082 0.1008 0.1044 0.0011 

RBF 256 0.1070 0.1016 0.1040 0.00081 

512 0.1074 0.1012 0.1043 0.00096 

1024 0.1074 0.1010 0.1044 0.0010 

Maximum 
ID (m) 

MCS 10,000 2.54 × 10–4 2.42 × 
10–4 

2.48 × 10–4 1.81 × 
10–6 

RBF 256 2.52 × 10–4 2.43 × 
10–4 

2.56 × 10–4 1.33 × 
10–6 

512 2.53 × 10–4 2.42 × 
10–4 

2.52 × 10–4 1.56 × 
10–6 

1024 2.54 × 10–4 2.42 × 
10–4 

2.48 × 10–4 1.68 × 
10–6

for PD and ID, it increases with an increase in the temperature due to reduced stiffness 
with an increase in the temperature. Figure 10 portrayed the outcome of the impact 
angle. It was found that for CF and PD, it decreases with an increase in the impact 
angle. In contrast, for ID, it increases with an increase in the impact angle. Figure 11 
shows the outcome of the initial velocity of the impactor. It was found that with 
an increment in the value of the impactor’s initial velocity, all responses drastically 
increase because there is an increment in the impactor’s kinetic energy.

6 Conclusions and Future Perspective 

The present chapter’s novelty includes the stochastic low-velocity impact responses 
analysis of the FGM cantilever plate by employing the surrogate-based RBF model. 
The combined effects of stochasticity in the FGM plate’s material properties are 
considered random input parameters. The modified contact law and NTI approaches 
are utilized to determine the stochastic transient impact responses. The FE code 
is developed for the present analysis. RBF model is integrated with the MCS for 
constructing an efficient computational framework. The RBF model results with 
sample size 1024 have good agreement with MCS results in the convergence study. 
The parametric study finds the response of various input parameters on the stochastic 
transient low-velocity impact responses. The results illustrate that all the parameters
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Fig. 8 Effect on stochastic transient impact responses due to change in power-law exponent (p)
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Fig. 9 Effect on stochastic transient impact responses due to change in temperature (T )
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Fig. 10 Effect on stochastic transient impact responses due to change in impact angle (θ )
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Fig. 11 Effect on stochastic transient impact responses due to change in initial velocity of the 
impactor (V)
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such as stochasticity, power-law index, temperature, impact angle, and initial velocity 
of impactor significantly affect the impact responses. In the future, the employed 
framework can be utilized for the other dynamic analysis of layered structures. 

Acknowledgements The third author received the final support from the MHRD, Govt. of India 
during the research period. 
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Application of Machine Learning 
in Determining the Mechanical 
Properties of Materials 

Naman Jain, Akarsh Verma, Shigenobu Ogata, M. R. Sanjay, 
and Suchart Siengchin 

1 Introduction 

As per the national research councils of India material characterization should 
describe feature such as structure of material, composition, defects, etc. with appli-
cation. Material characterization involves chemical, physical and mechanical prop-
erties which describe the material in best manner. To understand the physics of 
engineering material under the action of external forces (which may be of contact 
and non-contact type) is known as mechanical characterization of material. These 
mechanical properties play an important role in characterization of material which 
helps the research to find its correct application. Evaluation of mechanical prop-
erties relies on experimental data [1] obtained from distractive and non-distractive 
testing. And mathematical model (based on governing law) which interpretiate the 
mechanical properties from data obtained from experiment. Increasing demand of 
the society result in discovering of new material having superior properties with vast 
range of application are been required. Evaluation in material science field can be 
best described into four phases or paradigms [2]. First phase start from stone-age past 
back to thousands of years where by only metallurgical observation help in predicting
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the characteristic of material, this is purely empirical. Second phase start near about 
sixteenth century where scientists have developed mathematical models to correlate 
the physical relations. In these paradigms conventional laws have been formulated in 
the form of mathematical equation. But with time the complexity of developed math-
ematical model become too complex, result in raising question on the solution obtain 
from the above analytical methods. In the mid of nineteenth century, advancements 
in computational science increased that gave rise to the third phase. Any mechanical 
properties of the material cannot be best described by only one mathematical model 
or conventional law; there may be several concept which may describe the single 
property in best way. Therefore experimental data is been required which is been 
interpreted through mathematical models with the help of computational science. 
Molecular dynamic and density function theory are been some of the examples in 
material science in this paradigm. Data generated from experiment and simulation 
from computer give rise to fourth phase where calculation of mechanical properties 
is based on large set of data also known as data driven paradigm [3]. Large data set 
obtained from different experiments including structure patterns help in determining 
the hidden correlation which were not visible in small data sets result in horizon 
of twenty-first century research. Figure 1 represents the four paradigms of material 
science starting from stone-age to twenty-first century.

2 Big-Data 

To meet the specific requirement of industries or scientist discovery of novel material 
or unknown properties of known materials is been evaluated on the basic of data 
obtained from different source which may or may not relate the property in theoretical 
concepts. But contain some hidden correlation that may describe the behavior of 
the material and the huge amount of data obtained from different source comes 
under big-data. Big-data is been characterized by five-V models i.e. volume: concern 
about the size of the data, velocity: data generation speed, variety: diversity of data 
generated, veracity: quality and accuracy of data generated and value: value provided 
the data generated [4, 5]. Development in sensors helps in collection of data, but 
bigness of data have their own challenges such as storage, visualization, analysis, 
and retrieval. Suppose data obtained from heterogeneous sources (from different 
experiments) have the problem of correlation in between them, inconsistencies within 
it, some missing value, reliability issue, etc. These are the major challenges comes 
in the path of scientist while working in the field of material science. In the field 
of computational material science, European center of excellence, Novel Material 
discovery (NOMAD) having concept “FAIR” of big-data i.e. Findable for anyone 
interest, easily Accessible, standard representation which make it Interoperable and 
Reusable [6]. Different stages involve in mechanical characterization of material are 
and also shown in Fig. 2, data obtained from the heterogeneous source may first pre-
process to identify the correlation of in between the data; after that identification of 
key feature/factor which may help in data reduction/selection; after that mathematical
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Fig. 2 Different stages involve in mechanical characterization of material 

model based on machine learning is applied on the data; finally this machine learning 
model will predict the mechanical property on the basic of data provided to the model. 
At last predicted value of mechanical property is been validated. Therefore after big-
data computer intelligence plays an important role where machine learning comes 
into picture. 

3 Machine Learning 

Machine learning (ML) should be describe as generating computer intelligence with 
the help of algorithm which perform certain task on the given relevant data [7]. Next 
paradigm in the field of material science is application of artificial intelligence and 
machine learning [8–10]. Increase in computational power help the scientific commu-
nity to involve lab automation, parallel experiments and effective experiment design 
also known as high throughput experimentation (HTE). Through HTE correlation 
in processing, microstructure and composition of material [8–11] is been possible. 
ML models are broadly classified into four categories: (1) Supervised Learning: In 
this type of model labeled data is used to train the model and predicts the outcome 
[12]. Some supervised learning algorithms are neural networking, linear regression, 
Naive Bayes, etc. (2) Unsupervised learning: In this type of model unlabeled data is 
used to train the model, clustering of data is done and the outcome is been predicted. 
Some unsupervised learning algorithms are k-nearest neighbors, k-mean clustering, 
etc. (3) Semi-supervised learning: In this type of model some data is labeled data 
and some is unlabeled [13]. (4) Reinforced learning: this model is based on reward 
and penalty approach [14]. ML has wide application in every area of science and day 
to day activities such as communication, transportation, medical, business, material 
science, social media, and industrial research [15]. In the field of material science 
ML is used to predict new stable materials [16–18], predicting of material proper-
ties [19–21], inorganic chemistry [22–24], predicting properties of material [25–27], 
analyzing complex reaction [28], understanding crystal structure [29], guide exper-
imental design [30], etc. In this chapter a brief review of application of machine 
learning in the field of determining the mechanical properties such as tensile strength, 
fatigue behavior, visco-elastic study, and etc. have be done.
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4 Tensile Strength 

Characterization of material is done through determining the mechanical properties 
such as tensile strength, yield strength, % elongation, etc. It is the behavior of material 
under the action of external forces. Mechanical properties of material depend upon 
many factors such as microstructure, alloying composition, fabrication processing 
parameters, and other external factors. As per present scenario most of the researcher 
employ the universal testing machine to determine the mechanical properties of mate-
rial. But there is no mathematical model where all the above governing factors will 
be include, therefore the role of machine learning comes into picture. Wang et al. 
[31] applied the machine learning algorithm to determine the elongation and yield 
strength of reduce activation ferritic/martensitic steels (RAFM). To perform the ML 
algorithm database is been developed through experiments. And to maintain dimen-
sional equality normalization was performed as preprocessing method for feature 
engineering. About 80% database is been used to train the ML model and 20% 
to test. Initially there are about 19 feature, after artificial selection 8 feature (due 
to narrow data range following were content Ni, Nb, V, Mn, Mo, neglected; due to 
testing accuracy following were neglected content of P, S; and due to small dataset of 
time, temperature of austenitizing is been neglected) were ignored. Random forests 
model was employed as ML algorithm to find out the impact of remaining 11 features 
(content of C, Cr, W, Si, V, Ta, Ti, N, B, Temp., and Time) on yield strength and elon-
gation of RAFM. Moreover, last-place elimination rule was also been employed to 
eliminate the feature which less correlate. Results show that tempering temperature, 
content of C and tempering time show the highest correlation in predicting the yield 
strength of RAFM followed by content of Cr, Ti, W and B. Outcomes of ML model 
shows similarity with RAFM steels principle of physical metallurgy i.e. formation 
of MX carbonitride during tempering process of RAFM steel play an important role 
in strengthening mechanism [32]. 

Sasikumar et al. [33] predict the ultimate tensile strength of epoxy/unidirectional 
carbon composites using back propagation algorithm based on Artificial Neural 
Network (ANN). Acoustic Emission (AE) response of epoxy/unidirectional carbon 
fiber is been recorded, AE sensors were placed on both side of the specimen. Total 
of about 18 dataset were generated and three mode of failures were studied i.e. (1) 
fiber breakage: since most of the load is taken up by the fiber, therefore highest 
energy and amplitude is been generated, (2) delamination (in case of unidirectional 
fiber splitting of fiber): duration of this mode is short and amplitude and energy is 
also lesser than fiber breakage failure and (3) matrix cracking: this failure occurs 
throughout the test. AE characteristic produce were recorded for each failure mode 
i.e. AE hits and ultimate tensile strength. Three layers ANN model were used to fit 
the data obtained with 45 neurons at middle layer, Levenberg-Marguart algorithm 
employed with linear transfer function. Results show about 9.5% error which makes 
ANN more provident method to predict the tensile strength using AE emission.
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Santos et al. [34] apply machine learning approach to predict the mechanical 
properties with foundry process parameter. 25 variable parameters were taken into 
account for 889 casting datasets. About 10 different ML classifiers such as Bayes 
TAN, Bayes Hill Climber, Bayes K2, Naive Bayes, KNN algorithms were used. 
Results show that Hill Climbing classifier give best result for lower training datasets 
whereas in case other classifier their accuracy increases with increase in training 
dataset. 

Sterjovski et al. [35] apply the artificial neural networks to predict the mechanical 
properties of steels. Focus of the work is on to predict the impact strength of quenched 
and tempered pressure vessel steel exposed to multiple postweld heat treatment cycles 
on the basic of alloy content and heat treatment processing parameter (Model 1); 
hardness of the simulated heat affected zone of weldment in pipeline and tap fitting 
steels after in service welding on the basic of alloy contents and cooling time (Model 
2); and the hot ductility and hot strength of various micro alloyed steels over the 
temperature range for strand or slab straightening in the continuous casting process on 
the basic of treatment conditions and chemical composition (Model 3). ANNs model 
variables is classified into material characteristics (composition of alloying element, 
such as %C, %Mn, %Cr, etc., thickness and hardness) and processing parameters 
(temperature, cooling rate, time, etc.). For Model 1 10 input variable i.e. cooling 
type, time, thickness, orientation, temperature, content of C, Cr, Mn, and B were 
studied. In Model 2 16 parameters were taken and 9 were taken for Mode 3. For all 
the models content of carbon play a significant impact. For Model 1 holding time 
and temperature play important role, impact strength decreases with PWHT time. In 
Model 2 with decrease in cooling rate from 150 to 30 °C/s result in drop in hardness. 
For Mode 3 with increase in test temperature hot tensile strength decreases. 

Datta et al. [36] apply the concept of neural networks and genetic algorithms in 
designing multiphase steel for balanced strength and ductility. Major challenges 
in multiphase steel to use the optimum amount of alloying elements such that 
it has maximum strength without compromising the ductility. Moreover, thermo-
mechanical controlled processing parameters such as cooling rate, rolling tempera-
ture, reheating temperature and deformation in rolling stages also play an important 
role. For modeling of neural networking thermo-mechanical controlled processing 
parameters and alloy composition were taken as input variable and yield strength, 
elongation and tensile strength as output parameter. Further to reduce the neural 
network connectivity two methods were employed. First is intuitive pruning algo-
rithm [37] which is used to remove the lesser significant connections. In second 
approach genetic algorithm [38, 39] (predator prey algorithm and pareto front is 
employed to minimize the training error). Results show that rolling temperature 
does not play any significant role in predicting the yield strength and ultimate tensile 
strength of multiphase steel. Reason regarding that conclusion is that rolling temper-
ature is maintain higher that the recrystallization temperature therefore amount of 
dislocation during rolling is lesser due to which alteration in yield strength and ulti-
mate tensile strength is insignificant. Major factor which influence the multiphase 
steel are precipitation hardening and post rolling cooling rate. Results show that 
carbide forming elements have less effect as compare to Cu (strain hardening) in
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case ultimate tensile strength. Whereas cooling rate after rolling play important role 
in microstructure construction and found to most significant input variable even for 
percentage elongation also. 

Zhang et al. [40] applied the deep learning concept for elasticity imaging of 
non-homogeneous material through Physics-Informed Neural Networks (PINNs) on 
the basic of which diseased and normal tissue cab be identified. Accomplishment 
of objective was done using two neural network one for solution approximation 
and other for unknown material estimation. The objective is to determine the mate-
rial properties by observing displacement data for plain strain problems for incom-
pressible Neo-Hookean hyper-elastic materials. Formulation loss function involves 
displacement data, physics information of partial differential equation, boundary 
condition and incompressibility constraint. 

Matzbower et al. [41] applied the concept of neural networking to approximate 
the ductility and strength of welding shipbuilding steel alloys. Database of 189 weld 
steel alloys samples were been generated which include chemical composition (such 
as content of C, Mn, Si, Cr, Ni, Mo, Cu, S, P etc.), elongation and cross-section area 
reduction and weld cooling rate as an input variable and ultimate tensile strength 
and yield strength as output variable. All input variable were been normalized within 
the range of ± 0.5. About 80 neural models were created with varied number of 
hidden units and 5 random initial seed set. The output y is the linear function of 
bias and hyperbolic tangent transfer function. Results show that about ¼ dataset 
doesn’t satisfied the model in case yield strength. Noteworthy input variable which 
had significant impact on yield strength are content of Mn, C, Ni, Ti, Mo and cooling 
rate. 

Shigemori et al. [42] applied the concept of Just-In-Time (JIT) methodology to 
developed quality design system for steel. Focus of the work is to decide the best 
manufacturing procedure as per the desire quality target for steel bar. Initially the 
production of steel slabs is done by altering the chemical composition. To obtained 
desire shape and size cold working (rolling process) of the steel slab heated to 
specific temperature is done. Desirable mechanical properties and microstructure 
is been obtained through cooling process which may further be temper rolled and 
heat treated to again modified the properties. In this work quality index of the steel or 
output parameter taken were tensile strength, yield strength, toughness and elonga-
tion. And on the other hand alloying element content, cooling process, rolling process 
and extraction temperature were taken as input parameter for mathematical model. 
Mathematical model is based on locally weighted regression approach type of JIT 
modeling which can be employed for nonlinear processes. Quality designing system 
consists of three models first one to select the initial input values so that value of initial 
objective function (it is deviation of product quality from target value) is minimum; 
second one for locally weighted regression models which generate nonlinear rela-
tion between quality and manufacturing condition, and third module is for deriving 
the optimal manufacturing conditions by employing quadratic programing methods. 
Results show that accuracy of locally weighted regression is higher as compared 
linear regression.
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Swaddiwudhipong et al. [43] employed the least square support vector machines to 
characterize the aluminum alloys (Al6061 and Al7075). Previously many researcher 
had used reverse analysis through iterative process but due to high nonlinear nature 
make it complex. Other approach is to use analytical model developed between load-
indentation parameters and material properties. Latter on concept of artificial neural 
networking is also been adopted by the researchers [44, 45] for material character-
ization when single indenter is been used to extract the data for thin films, which 
further extended to elasto-plastic materials [46]. In present work validated results 
obtained from FEA (using ABAQUS software) of indentation tests using conical 
indentor based on large strain and deformation model were taken as input in least 
square support vector machines (LS-SVM). The four LS-SVM models were devel-
oped using MATLAB 6.5 based on structural risk minimization principle. Problems 
like over fitting and large deviation are overcome by regularization and final unction is 
obtained with incorporation of regularization and loss function. Outcome shows that 
LS-SVM model gives more accurate result of Young’s modulus and yield strength 
rather than position’s ration. 

5 Fatigue and Creep 

Behavior of material under the action of cyclic loading is known as fatigue. Fatigue 
behavior/characteristic of material is determined by calculating the no. of cycles 
before failure also known as fatigue life. Abdalla and Hawileh [47] employed radial 
basis function (RBF) ANN for modelling and simulation of fatigue life (low-cycle 
fatigue life) of steel bar. For training the ANN model input parameters were maximum 
tensile strain (sinusoidal axial strain with 0.05 Hz frequency ranging from 3 to 10% 
beyond yield point) and strain ratio (−1,−0.75,−0.5, −0.25 and 0). And no. of cycles 
to fail the material is been evaluated through fatigue test taken as output parameter 
which is been evaluated by Coffin-Manson equation [48–50]. ANN model is based on 
back-propagation feed forward with random selection of initial weight values. ANN 
model consist of two additional hidden layers with four neurons in each layer. First 
hidden layer consist of Gaussian activation function while one output layer and two 
additional hidden layers consist of tangent hyperbolic activation function. Accuracy 
of ANN model is high with the normalized square error 0.0428 and R value 0.9869. 

Application ANN also been used predict the failure life of composites mate-
rial now a days. Lee et al. [51] predict the fatigue life of the carbon and glass 
fiber reinforced epoxy composites using ANN method. Object of the work is to 
develop the model for predicting the fatigue life for newly developed/existing mate-
rial having lesser fatigue testing results. Only approach available is developed math-
ematical model using physical laws by evaluating material properties and damage 
at microstructure which is time consuming and yet satisfactory result is also not 
obtained. Dataset is been obtained by fatigue testing of material with R rations 0.1– 
0.5. Three input parameters were taken i.e. are stress ratio, stress range and mean
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stress and on the other hand fatigue life was taken as output parameters. ANN model 
prediction give good result for median life as compared to minimum failure life. 

Agarwal et al. [52] determine the fatigue strength of steel based on composi-
tion and processing parameter by employing different data science techniques such 
as ANN, decision trees and regression. Database is been obtained from MatNavi 
(National Institute of Material Science) which is world largest database developed 
at Japan. Database consists of low alloy steels, spring steels and carburizing steels 
having 25 input variable parameters having following classifications: (1) Chemical 
content such as weight percentage of different alloying element C, Si, Mn, S, Ni, 
Cr, Mo, Cu, etc.; (2) Upstream processing parameters i.e. reduction ratio, ingot size, 
non-metallic inclusions, etc.; (3) Heat treatment parameters such as time, temper-
ature, and processing conditions for different process, and; (4) Mechanical proper-
ties such as yield strength, ultimate tensile strength, %elongation, hardness, fatigue 
strength, impact value, etc. Preprocessing of database is done for feature selection 
and R, WEKA and MATLAB were used as data processing software. Result shows 
that tempering time, Carburization temperature and Diffusion temperature have the 
highest correlation with fatigue strength. About 12 different ML models were used 
out of which MPR and M5 model tress show the best result with R2 value of 0.98. 

Zhang et al. [53] applied the concepts of genetic algorithm and support vector 
machine (SVM) to determine the fatigue life of material. SVM machine learning 
technique is applied when the database contain smaller sample with good accuracy 
result. In this technique nonlinear mapping of input variable into infinite-dimension 
space by creating hyper plane which classify the database into classes. Kernel func-
tion (Gauss function) was also been incorporated to solve nonlinear problem through 
SVM. Purpose for introducing the kernel function is to overcome the dimensionality 
problem, help in nonlinear transformation expressions and provide different mapping 
space having different properties. Accuracy of SVM depends upon the three factors: 
Penalty factor, higher is the value higher is the fitting but time consuming also even 
too high value result in over-fitting; Lower fitting accuracy, higher is value lower 
the no. of support vectors result is reduction in the complexity of the accuracy of 
model; γ, smaller is the value, poor performance of radial based function and vice 
versa but too high value may cause poor generalization ability. Genetic algorithm 
approach was employed to optimize the parameters as parameter selection is one of 
the major problem where theoretical guidance cannot help. SVM model was used to 
predict the P91 steel base metal and welding consumable taken from literature of Ji 
[54]. Holding time is taken as input parameter whereas fatigue life as output param-
eter. Genetic algorithm-SVR shows the highest accuracy with R2 of 0.99 on training 
sample. The authors have a vast experience in the field of molecular dynamics and 
experimental characterization of composites materials [55–106].
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6 Conclusion 

This chapter shows the various machine learning techniques applied by different 
researchers towards characterization of mechanical properties of material. These 
articles review literature on the application of machine learning in the field of 
fatigue failure, creep-recovery behavior of material, tensile strength, etc. Utilization 
of machine learning techniques in the field of material characterization is growing 
day by day. ML has a vast future in the field of material characterization which is 
not only limited to above characterization techniques. 
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Machine Learning Prediction 
for the Mechanical Properties 
of Lightweight Composite Materials 

Lin Feng Ng and Mohd Yazid Yahya 

1 Introduction 

The exploitation of the earth has continuously increased at a worrying rate over 
the past decades. Undoubtedly, the extensive consumption of natural resources will 
leave a profound negative impact on the global climate and biodiversity. Therefore, 
researchers and engineers are being surrounded by this issue and urged to take crit-
ical steps to avoid environmental degradation. A majority of the polymer matrix on 
the market are derived from fossil fuels. The radical increase in the production of 
these polymer matrices eventually further increases the depletion rate of this natural 
resource. Furthermore, these fossil fuel-based polymer matrices show a high persis-
tence in the environment. The high persistence characteristic of the polymer matrices 
in the environment could lead to waste accumulation after their service life for a long 
period. All of these factors contribute to environmental degradation and pollution. 
On this note, it is important to reduce the use of petroleum-based polymer matrices 
to protect our mother earth and preserve the environment. 

One of the alternative ways to reduce the reliance on petroleum-based polymer 
matrices is to incorporate fibre reinforcement to form fibre-reinforced polymers 
(FRPs). The amount of polymer matrices can be reduced by introducing a certain 
percentage of fibre reinforcement in FRPs. In addition to reducing the use of polymer 
matrices, the incorporation of fibre reinforcement in FRPs was found to improve the 
mechanical, physical and thermal properties of the materials. Thus, the addition of
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fibre in FRPs is regarded as a promising and appropriate strategy to combat the envi-
ronmental issues related to waste accumulation and pollution. FRPs are composed of 
multiple phases which are in intimate contact. Each of the solid phases in FRPs has 
its own distinctive properties. Since FRPs are formed by combining reinforcement 
and polymer matrix, it offers the opportunity to the engineers to tailor the mechan-
ical properties of the materials to meet the criteria for certain engineering applica-
tions. Nevertheless, the mechanical properties of FRPs are not only governed by fibre 
and matrix properties. Specifically, fibre-matrix compatibility, fibre orientation, fibre 
content, and environmental factors also significantly influence the mechanical prop-
erties of composites. As of today, intensive research studies have been experimentally 
performed to optimise the mechanical performance of FRPs [1–5]. 

Mechanical characterisation of FRPs through experimental works or the predic-
tion using artificial intelligent techniques is of utmost importance in composite design 
and development. The importance of mechanical characterisation has driven innu-
merable researchers to conduct investigations on this topic. Generally, the research 
studies are often dedicated to a particular topic such as the manufacturing process, 
combination of different constituents in FRPs, process parameters or environmental 
conditions. In addition, some of the research studies focused on optimising FRPs 
through chemical or physical modifications of the reinforcement. The findings 
obtained from these literature studies definitely can provide an insight into the FRPs 
and serve as valuable information to predict the characteristics of particular FRPs. 
Nonetheless, many research studies on FRPs were not performed with an intention 
for certain engineering applications, thus limiting the use of such FRPs in real-life 
applications. 

The experimental investigation has been the conventional way to explore the 
mechanical performance of FRPs. However, an experimental investigation is time-
consuming and often requires a high cost for material preparation and equipment. 
Besides, introducing a new manufacturing technique or material combination in 
FRPs involves intensive uncertainties with hefty costs before reaching the goals and 
objectives. However, it is worth mentioning that the hefty cost can be reduced with the 
help of fundamental and in-depth knowledge in the field of composite materials. To 
completely resolve the problem, searching for a low-cost and efficient way to predict 
the mechanical properties of FRPs is essential. By applying the mathematical and 
computational models, the best combination of the different phases in FRPs can be 
determined to provide the optimum mechanical properties to the materials in low-
cost and time-saving ways. In this technological era, a more advanced and promising 
non-destructive testing technique to predict the mechanical performance of FRPs 
has been well-established. This emerging technology is not time-consuming and 
does not require high expenses for material preparation and equipment. With the 
advancement in the field of composite materials and computer science, the use of 
machine learning to predict the mechanical properties of FRPs has been initiated. 
By using machine learning to predict the material properties for FRPs, the hefty cost 
and the time-consuming experimental works can be avoided.



Machine Learning Prediction for the Mechanical Properties … 117

2 Background of FRPs 

Composites have been recognised as well-known materials for the past few decades 
owing to their several promising characteristics compared to metal alloys. The inten-
tion of incorporating reinforcement in the FRPs is to reduce plastics, which could 
cause disastrous consequences to the environment. In the aerospace industry, FRPs 
are the third generation of aircraft materials to replace conventional metal alloys to 
enhance the fatigue performance of the aircraft components. Furthermore, due to 
the lightweight characteristic of FRPs, the energy efficiency of the aircraft can be 
tremendously increased. The achievement in the aerospace industry has stimulated 
the idea of employing FRPs in the automotive industry. In recent years, FRPs have 
found applications in automotive industries such as interior door panels, bumpers, 
transmission tunnels and roof pillars. The most popular types of reinforcement for 
FRPs include glass, carbon and aramid fibres. These synthetic fibres have gained 
wide acceptance mainly because of their high strength and stiffness. In particular, 
glass fibre is regarded as the successor over carbon and aramid fibres as the cost of 
glass fibre is relatively lower than carbon and aramid fibres. However, the radical use 
of synthetic fibres has raised ecological and environmental issues as these synthetic 
fibres are non-biodegradable and harmful to human health. Thus, the drop in reliance 
on synthetic fibres is essential to preserve and protect our environment. 

To further reduce the cost of the FRPs, the addition of highly available filler in 
FRPs is considered one of the alternative ways [6]. In addition to cost reduction, 
the presence of filler can help to improve the overall properties of the FRPs, partic-
ularly the wear resistance and stiffness. Examples of filler that are commonly seen 
include molybdenum disulfide (MoS2), copper oxide (CuO), copper sulfide (CuS), 
aluminium oxide (Al2O3), graphite, etc. Nowadays, the increasing voice for bio-
products has changed the research direction towards green materials. On this note, 
rice husk particulate has been employed as one of the potential fillers for FRPs due 
to its high availability. Rice husk is an agricultural waste generated from human food 
processing. Approximately 600 million tonnes of rice husk are produced each year, 
accounting for 20 wt% of rice production [7]. With no potential use, rice husk left as 
agricultural waste has led to disposal problems. Therefore, encapsulating rice husk 
as filler in FRPs can resolve the disposal problems and help improve the mechanical 
properties and wear resistance of FRPs. Moreover, the rice husk consists of 32% 
cellulose, making this filler has high mechanical strength since cellulose is the main 
constituent providing the mechanical strength to the cellulosic materials. 

In recent years, the number of research studies focusing on natural fibres has 
increased drastically, mainly driven by the desire to reduce the reliance on synthetic 
fibre based products. The outcomes of the research studies provide a better under-
standing of the miscellaneous properties of natural fibres and their associated FRPs. 
By comprehensively exploring the potential of natural fibres, it has been attested 
that incorporating natural fibres in the FRPs offers several benefits in terms of envi-
ronmental concerns and mechanical performance. Aside from the commonly cited 
virtues of natural fibre composites such as lightweight, biodegradability, carbon
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dioxide neutral and low abrasion to tools, encapsulating natural fibres in FRPs can 
improve the acoustic damping and specific mechanical properties, which are even 
greater than those of glass and carbon fibre-reinforced composites. The remark-
able acoustic damping characteristic makes natural fibre composites suitable to be 
employed in automotive industries where noise attenuation is a major concern. 
However, it is worth mentioning that the mechanical performance of the natural 
fibre-reinforced composites greatly relies on fibre properties. Growing conditions, 
harvesting period, and extraction technique are the external factors that could have 
a significant impact on fibre properties. In terms of the chemical composition, high 
amount of cellulose may provide greater strength to the natural fibre, whereas the 
high lignin content may retard the moisture uptake of the fibres. Experimental inves-
tigations on the miscellaneous properties of natural fibre-reinforced composites for 
over a few decades have successfully made natural fibres utilised in large-scale engi-
neering applications. As a result, the latest trend of prioritising the use of natural 
fibre in uncounted industrial sectors has led to a drop in reliance on conventional 
synthetic fibres. Although the benefits offered by natural fibres are attractive, it is 
undeniable that they are not a demerit-free natural resource. Batch-to-batch varia-
tion, low mechanical strength, poor compatibility with hydrophobic polymer matrices 
and high moisture affinity are those well-known shortcomings of natural fibres. The 
moisture content in the natural fibres eventually leads to the formation of voids in 
FRPs during the manufacturing process as the moisture may evaporate when heated. 
In order to manufacture natural fibre-reinforced composites with their exemplary 
mechanical properties, their shortcomings must be rectified before being used in 
load-critical engineering applications. The essential precursor to have an optimum 
composite strength is intimate contact between fibre and matrix and fibre wettability. 
In this context, surface pre-treatments or the addition of coupling agents are generally 
performed to elevate the bonding strength between fibre and matrix and reduce the 
moisture affinity. Alkali and silane treatments are the two popular methods to enhance 
the compatibility between natural fibres and hydrophobic polymer matrices. Alkali 
treatment alters the fibre surface structures, exposing a more reactive functional group 
of the cellulose and strengthening the mechanical anchoring between the fibre and 
the polymer matrices. After alkali treatment, a certain amount of unnecessary chem-
ical compositions such as hemicellulose, lignin, wax and impurities is eliminated. 
Instead of modifying the surface structure of the fibre, silane is a coupling agent 
which could simultaneously react with the fibre and the matrix, forming a siloxane 
bridge across the interfacial region, thereby enhancing the fibre-matrix interfacial 
bonding. 

In recent years, kenaf, sisal, pineapple leaf, flax, jute, hemp, and coir fibres have 
been the most commonly explored cellulosic fibres. Abundancy, cost, economic 
value and mechanical properties are taken into consideration in the material selec-
tion for natural fibre-reinforced composites. In fact, natural fibres can be grouped 
into several categories based on their origins, such as bast, leaf, seed and fruit. The 
properties of cellulosic fibres from different origins are varied. For instance, the bast 
fibres generally have a higher mechanical strength than fibres from other origins, 
whereas leaf fibres mostly have greater ductility than other types of cellulosic fibres.
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In comparison with synthetic fibres, the mechanical properties of natural fibres are 
considered weak, and the moisture uptake deteriorates their mechanical properties 
to a further extent. The low mechanical properties and high moisture sensitivity of 
natural fibres have necessitated the hybridisation of natural with synthetic fibres in 
FRPs. Innumerable research studies have been conducted to explore the mechan-
ical properties of hybrid composites either reinforced with natural/synthetic fibres 
or natural/natural fibres [8–12]. In order to maximise the hybridisation effect, the 
fibres in the composite materials should be strain compatible. Hybrid composites 
can be formed by merging different types of natural fibres or combining natural 
with synthetic fibres. Compared to non-hybrid natural fibre-reinforced composites, 
the mechanical properties and the moisture resistance are apparently improved when 
hybridising natural with synthetic fibres in FRPs. This is primarily due to the remark-
able mechanical properties and moisture resistance of synthetic fibres. Ng et al. [13] 
studied the mechanical properties and water absorption behaviours of pineapple 
leaf/glass fibre reinforced hybrid composites. The hybridisation has led to a positive 
impact on the mechanical properties of the materials. Besides, the water absorption 
and the diffusion coefficient of the hybrid composites were significantly reduced in 
comparison with non-hybrid pineapple leaf fibre-reinforced composites. Although 
synthetic fibres can improve the mechanical properties and moisture resistance, the 
presence of synthetic fibres in the hybrid composites undermines the environmental 
friendliness of the materials. Apart from the natural/synthetic fibre based hybrid 
composites, hybrid composites can also be formed by combining multiple types of 
natural fibre. In this case, the shortcomings of one fibre could be compensated by the 
advantages of another natural fibre. As mentioned above, the mechanical properties 
and the affinity to water molecules are governed by the chemical composition of 
natural fibres. By combining different types of natural fibre, it is anticipated that the 
balance in mechanical properties and moisture absorption could be attained without 
compromising the environmental friendliness. 

3 Non-destructive Testing for FRPs 

Today, many non-destructive methods, either for inspection or material testing 
purposes, have been successfully developed. The use of these non-destructive 
methods for FRPs indeed can help to reduce the inspection and material testing 
costs. Apart from visual inspection and coin-based tap testing, ultrasonic and radio-
graphy inspections are being widely employed in industries to identify the internal 
damages and flaws of FRPs. It is undeniable that the efficiency of material testing and 
inspection can be greatly enhanced with the aid of computer science. For instance, 
the accuracy of the damage detection is highly dependent on the data interpreta-
tion of the trained human inspectors. However, the data interpretation might be too 
subjective, and it might vary with different human inspectors. In addition, it is diffi-
cult to assure the accuracy of the outcomes from the tap testing since human factors 
greatly affect the results. At this point, a computer-aided tap test was introduced to
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improve the accuracy of conventional tap testing. The acoustic response signal and 
contact time are recorded using an acceleration sensor, and this response signal is 
utilised to analyse the internal flaws of FRPs. It can be seen that the development of 
computer-aided damage inspection techniques is continuously increasing, indicating 
the essential role of computer science in determining the internal flaws of FRPs. 

Apart from computer-aided tap testing, digital image correlation (DIC) is also 
regarded as another powerful tool for damage assessment of FRPs. It is a user-friendly 
and cost-effective method to monitor the strain and deformation of the materials, 
which are considered two important properties in engineering and construction areas 
[14]. Recently, it can be seen that the use of DIC to measure the strain and deformation 
of composites has apparently increased, mainly due to the rapid growth of computer 
and data acquisition technologies. By employing DIC, the images of the composite 
materials are taken using a camera consisting of a charged-coupled device that can 
convert the electrical signal to digital values. In comparison with the conventional 
types of equipment used to monitor the strain evolution, such as extensometer and 
strain gauge, DIC can offer more accurate results as the conventional equipment is 
often imperfectly attached to the measurement surface, which could have a negative 
impact on the accuracy of the results. 

Unlike the optical imaging technique such as DIC, acoustic-based ultrasonic and 
radiographic inspections are among the early established non-destructive inspection 
technique for engineering materials. The most common internal flaw, such as delam-
ination, can be easily detected by X-ray radiography, provided that the orientation 
of the delamination is not perpendicular to the X-ray beam. With the technological 
transformation throughout the years, X-ray computed tomography has been devel-
oped to analyse the three-dimensional nature of the damaged FRPs. The computing 
power of X-ray computed tomography allows the users to gain more understanding 
of the three-dimensional damage morphology of FRPs. Although X-ray radiography 
and computed tomography are very efficient in determining the delamination, X-ray 
is hazardous and harmful to human health. Thus, it is not recommended to utilise 
X-ray radiography in daily maintenance routine. Ultrasonic inspection is another 
exhaustive technique to detect the internal damages of composite materials. The ultra-
sonic inspection device comprises an ultrasonic transducer, transmitter and receiver, 
and the acoustic signals from the device convey the information that indicates the 
damage mechanism and morphological behaviour of FRPs. The crack location, crack 
size, damage area and other failure characteristics can be easily detected based on 
the acoustic response signals. In addition to damage inspection, advancements in 
computing power, imaging processing and acquisition techniques have led to the 
development of innumerable emerging computer-aided material testing techniques 
for FRPs.
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4 Overview of Machine Learning 

The recent Fourth Industrial Revolution Machine (Industry 4.0) is transforming the 
world into a new era with a wealth of data that focuses on interconnectivity, automa-
tion, artificial intelligence, and real-time data. Inevitably, big data is one of the tech-
nologies, that plays a crucial role in leading Industry 4.0 towards success. In the 
age of big data, advanced technology is needed to analyse and handle these massive 
amounts of data intelligently. In this context, the knowledge of artificial intelli-
gence and machine learning has become the key to handling and analysing the data. 
Machine learning can be considered a branch of artificial intelligence that concen-
trates on pattern matching and the correlation between different groups of datasets. 
It is commonly referred to as the most popular recent technology in the fourth indus-
trial revolution since it allows systems to learn and improve from experience without 
having to be explicitly programmed [15]. When compared to the physical model, 
machine learning models are more efficient in material design and selection because 
they are able to manage a massive amount of data to identify the best constituents or 
desired behaviours. In the material design process, a predictive model will be built 
using the machine learning approach. This technique has been successfully used to 
predict the microstructures and plastic deformation of metal alloys [16, 17]. Besides, 
an attempt has been given to explore the prediction model for atomistic simula-
tions, electronic structures and chemical similarity. Typically, machine learning can 
be categorised into three major groups, unsupervised learning, supervised learning 
and reinforcement learning. The algorithms are trained in supervised learning using 
the labelled datasets for data classification and outcome prediction. Artificial neural 
networks, naïve bayes, linear regression and logistic regression are examples of 
supervised learning. Conversely, the labelled datasets are clustered and analysed 
using machine learning algorithms in unsupervised learning. These algorithms can 
uncover hidden patterns or data groupings without human interaction. For reinforce-
ment learning, it involves training the machine learning model to make a decision to 
achieve the goals even in an uncertain and complex environment. 

Basically, there are three major steps in building a predictive model using the 
machine learning approach. Figure 1 shows the three major steps in machine learning 
to predict the mechanical properties of FRPs. During the first stage, all the data rele-
vant to the properties of FRPs are compiled to build a comprehensive database which 
is then used to build a machine learning model. The data collection is the single most 
critical step in building the model, as this step is the backbone of machine learning. 
It should be emphasised that the accuracy of the outcomes is highly dependent on 
the quality of the input dataset. In other words, the effectiveness of machine learning 
is governed by the characteristics of the data and the performance of the algorithm 
that has been chosen [18]. All the data related to composite properties are analysed 
to find a recurring pattern, and this pattern will be used to build predictive models 
using algorithms. Subsequently, these predictive models can be applied to predict 
the mechanical properties of FRPs. It is easy to handle a massive amount of complex 
data in machine learning, and this data can be used to predict certain properties which
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Fig. 1 Three major steps in 
machine learning for 
prediction of the properties 
of FRPs 

have not been known yet. Using the historical input data to estimate the unknown 
properties of composite materials could help to improve the performance and save 
cost and time. Machines are required to process the data at a high rate and make a 
decision when the threshold is reached. 

In the recent era of big data, we all have experienced the fruitful benefits of artificial 
intelligence, ranging from medical to engineering. In fact, there are many types of the 
algorithm in machine learning that are needed to perform the data analysis. Figure 2 
summarises the different types of the algorithm in machine learning. Despite a wide 
variety of machine learning algorithms, selecting the most appropriate learning algo-
rithm for certain applications is challenging. This is because each learning algorithm 
has its own distinctive functions. The outputs from the different kinds of learning 
algorithms in a single category may vary, which is highly dependent on the nature 
of the historical input data. In other words, each learning algorithm has its own 
strength for certain applications, and it is impossible to apply only a learning algo-
rithm for all situations. Therefore, it is vital to understand the role and applicability of 
each learning algorithm before applying them in various real-life applications such 
as cyber security systems, medical diagnosis, internet of things data analysis, smart 
systems, etc. Understanding the predicting processes in machine learning has become 
fundamental for obtaining a reliable and accurate outcome. Today, machine learning 
has been applied for the Covid-19 diagnosis, tracing, screening and prediction, and 
sometimes it could perform even better than humans [19–21]. Figure 3 displays the 
different phases in machine learning to predict the future trend of Covid-19 cases. 
It is anticipated that machine learning in real-world applications will continuously 
expand in the future.

5 Machine-Learning Prediction of Mechanical Properties 
of FRPs 

With years of endeavour by scientists and engineers, machine learning, an emerging 
and powerful technology, has risen out of artificial intelligence. It acts as additional 
support to humans in data analysing to predict processes or properties of materials. 
Over the years, the rapid growth of data science and machine learning techniques
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Fig. 2 Different types of algorithm in machine learning

has led to significant growth in the field of composite materials. The prediction of 
mechanical properties of FRPs using the machine learning approach has been initi-
ated in this technological era. Undoubtedly, the machine learning prediction approach 
is regarded as an emerging research field for material and computer sciences [23, 24]. 
In the case of automated fibre placement inspection, the machine learning approach 
could be more advantageous than the conventional approach. In particular, there are 
three major advantages of using machine learning for automated fibre placement 
inspection. First, the machine learning approach can easily identify the boundaries 
that distinguish different types of defects. The second advantage is that corrective 
feedback can be obtained by training the machine learning model. Next, the processes 
in machine learning run in parallel sequence, indicating that the computing time over 
certain architectures can be prominently enhanced. Figure 4 shows the comparison 
between the machine learning and traditional modelling approaches for automated 
fibre placement inspection. Automated fibre placement is the manufacturing process 
for producing sophisticated advanced aerospace structures that are lightweight and 
have outstanding performance. This manufacturing process is complicated with 
several stages of design, planning and manufacturing, and thus the inspection of 
the material quality is particularly important.
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Fig. 3 The different phases of machine learning for the prediction of Covid-19 trend [22]

From the analysis of the previous literature studies, it was noticed that there is 
an increasing trend of using the artificial intelligence approach to forecast certain 
material properties. The successful applications of machine learning in various engi-
neering sectors have inspired researchers worldwide to further extend the applica-
tions of machine learning. Even though there are a few types of machine learning 
algorithms, an artificial neural network (ANN), also commonly known as a neural 
network, has been recognised as an algorithm with remarkable performance when 
used with complex linear and non-linear relationships. As one of the algorithms 
in the category of supervised learning, ANN has been shown to be successful in 
constructing a well-mannered belief model for mechanical properties of materials, 
mainly due to its capability to capture complicated input and output relationships 
based on experimental data. Moreover, neural network models are regarded as a less
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Fig. 4 Comparison between machine learning and traditional modelling approaches (Reprinted 
with permission obtained from [24])

expensive, less monotonous, more productive, and exceptionally trustworthy solu-
tion for estimating material fatigue properties based on data acquired from monotonic 
testing [25]. When constructing an ANN model, the available data set is separated into 
two sets, one for training the network and the other for examining the generalisation 
capabilities of the network. 

The idea of developing the mathematical and computational models of ANN is 
driven by the structural aspects of biological neural networks. This algorithm in 
machine learning was first introduced in 1943, in which the concept of neurons was 
developed. The ability to infer a function from data makes ANN models so useful. 
This is particularly useful when the complexity of the data makes the design of a 
function difficult to be handled by a human. An ANN can be defined as a math-
ematical model that consists of a number of highly linked processing components 
grouped into layers and has been likened to the human brain in terms of architecture 
and functioning. Figure 5 shows the typical mathematical model of the ANN. Among 
all the ANN approaches, the multilayer perceptron (MLP) with a back-propagation 
learning algorithm has attracted the attention of researchers for engineering applica-
tions [26]. In comparison with the single-layer perceptron, MLP is more useful for 
practical applications as it can also be used to learn non-linear functions, whereas 
single layer perceptron can only be applied for linear functions. With the advancement 
in the MLP of ANN, researchers have recently paid a lot of attention to the solution of 
non-linear issues in the physical and mechanical properties of engineering materials. 
Specifically, MLP consists of three classes: input, hidden, and output layers. It should 
be noted that MLP contains single input and output layers, but the hidden layers in 
the predicting stage can be more than one. The input signal will be transmitted to
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the input layer consisting of all the input factors for processing. The prediction and 
classification are done by the output layer. An arbitrary number of hidden layers 
located between the input and output layers serve as a computational engine of MLP. 
The overall architecture of the learning and forecasting system for the mechanical 
properties of the materials is elucidated in Fig. 6. Evaluating the accuracy of the 
machine learning algorithms is a critical step before making a conclusion on certain 
topics. Generally, four common evaluation indicators can be applied to determine the 
accuracy of the algorithms. The regression coefficient (R), root mean square devia-
tion (RMSD), normalised mean squared error (NMSE) and the mean of the absolute 
errors (MAE) are often used as the evaluation indicator for the accuracy of the algo-
rithms. High accuracy and precision can be reached when the errors are approaching 
zero. Each evaluation indicator can be represented by the following Eqs. (1)–(4): 

R =
[
|
|
]1 −

.N 
i=1(xi − pi )2

.N 
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where x is the true value and pi is the prediction from the machine learning, N is the 
total number of data points, x is the mean true value. 

For the past decades, ANN has been widely employed to predict certain properties 
of engineering metal alloys. Ozerdem and Kolukisa [27] forecasted the mechanical 
properties of Cu–Sn–Pb–Zn–Ni cast alloys using the ANN approach. A positive

Fig. 5 Mathematical model of artificial neural networks (Reprinted with permission obtained from 
[27])
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Fig. 6 The overall architecture of the learning and forecasting system (Reprinted with permission 
obtained from [27])

outcome was obtained in which the ANN successfully predicted the tensile strength, 
yield strength, and elongation of the cast metal alloys. It was also found that the 
accuracy of the prediction can be greatly improved by increasing the number of input 
patterns. Asiltürk and Çunkaş [28] predicted the surface roughness of steel using the 
ANN and multiple regression approaches. They revealed that the surface roughness 
value of the steel based on the ANN was more accurate than the multiple regression 
approach. Hassan et al. [29] forecasted the physical properties of aluminium-copper 
hybrid metal alloys using the ANN approach. It was concluded that the predicted 
physical properties of the metal alloys from ANN were in a good correlation with 
the experimental results with a maximum absolute relative error of approximately 
5.99%, indicating that the physical properties of the metal alloys can be accurately 
predicted using ANN approach without the need of performing the experimental 
investigation. Thus, the experimental cost and time can be significantly reduced. 

Apart from engineering metal alloys, the machine learning approach has also been 
increasingly employed to predict the mechanical properties of FRPs in order to obtain 
the best combination of the constituents and various optimum parameters to enhance 
their mechanical performance. ANN approach is not only limited to metal alloys, it 
can also be used as a tool to predict miscellaneous properties of FRPs accurately. A 
recent study performed by Wang et al. [30] focusing on predicting the mechanical
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properties of the tubular structures made of braided carbon fibre-reinforced compos-
ites based on the ANN approach. Satisfactory results were obtained in which the 
average absolute errors of the training and test set were approximately 5% and 10%, 
respectively. In addition, the regression coefficients of both the training and test set 
were above 0.99, demonstrating the high accuracy of the prediction from ANN. 
However, it was mentioned that the accuracy of the ANN prediction was influenced 
by the amount of input experimental data, implying that increasing the amount of 
input experimental data could reduce the errors and improve the reliability of the 
outcomes. Sreekanth et al. [31] evaluated the delamination of the composite beams 
based on glass fibre embedded in the epoxy polymer using the ANN approach. The 
findings indicated that the ANN could predict the location and size of the delam-
ination. Kabbani and El Kadi [32] predicted the tensile properties of composites 
based on unidirectional glass fibre and polypropylene matrix with varying cooling 
rates and fibre orientations. The prediction of mechanical properties was performed 
using the ANN approach. They revealed that the increase in the cooling rate and 
fibre orientation undermined the tensile properties. Interestingly, the prediction using 
the ANN approach yielded similar results compared to the experimental findings, 
with a minimum accuracy of 97% and 90% for tensile modulus and ultimate strain, 
respectively. Khanam et al. [33] intended to optimise and predict the mechanical 
and thermal properties of the composites made of graphene nanoplatelets and linear 
low-density polyethylene. They concluded that the addition of 4 wt% of graphene 
nanoplatelets and the twin-screw extruder speed at 150 rpm endowed the compos-
ites with the highest tensile strength. It was also found that the ANN prediction and 
experimental findings showed a high correlation coefficient with small error. Rout 
and Satapathy [34] studied the mechanical and tribological properties of glass fibre-
reinforced epoxy composites filled with rice husk filler with varying proportions. 
The experimental results showed that the addition of rice husk filler improved the 
hardness, wear resistance, tensile modulus and energy-absorbing capacity, but dete-
riorated the tensile, flexural and interlaminar shear strength of the composites. The 
findings predicted from the ANN approach showed an excellent correlation with the 
experimental results. The error obtained by validating the findings from ANN with 
experimental results can be reduced by increasing the number of test patterns. An 
interesting research study has been performed by Al-Assadi et al. [35], focusing on 
the fatigue properties of composite materials with considering the stress ratio effect 
using the ANN approach. They revealed very promising results where the fatigue life 
of the composite materials can be accurately predicted through the ANN approach 
irrespective of the stress ratio. Fatigue properties of materials are always a chal-
lenge in material science, particularly the composite materials, as these materials are 
composed of two or more different phases, which make the fatigue life assessment 
becomes complicated and it usually requires a very long time to gain understanding 
regarding the fatigue properties of the materials. Therefore, there is a great prospect 
in using the ANN approach to predict the fatigue life of the materials without too 
much dependence on experimental investigation.
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Since natural fibres have gained wide acceptance and popularity among 
researchers worldwide, the research studies involving natural fibres as the potential 
reinforcement for the FRPs are continuously growing. With the recent rapid growth 
of the emerging machine learning in conjunction with Industry 4.0, a growing trend 
in research studies predicting the mechanical properties of natural fibre-reinforced 
composites has been noticed. Atuanya et al. [25] explored the mechanical properties 
of FRPs based on date palm wood fibre-reinforced recycled low-density polyethylene 
with different fibre contents and sizes using an artificial neural network approach. 
It was found that the findings predicted by artificial neural networks were in good 
agreement with the experimental results, showing a coefficient of correlation of above 
0.99. Egala et al. [36] predicted the tribological properties of epoxy-based compos-
ites reinforced with unidirectional short castor oil fibre using regression and ANN 
predictive models with single- and multi-hidden layers. They reported that ANN with 
multiple hidden layers manifested the highest accuracy in predicting the tribological 
properties, followed by ANN with a single hidden layer and regression model. Keerthi 
Gowda et al. [37] studied the mechanical properties of untreated and alkali-treated 
coir/sisal fibre-reinforced polyester composites with varying composite thicknesses 
and fibre volume fractions. The results demonstrated that the ANN models could 
accurately predict the mechanical properties of natural fibre-reinforced composites 
regardless of fibre types, fibre content, composite thickness and chemical treatment, 
with a correlation coefficient of 0.999 between the predicted properties and the exper-
imental findings. Balaji and Jayabal [38] determined the mechanical properties of 
zea fibre-based polyester composites with different fibre lengths, fibre contents and 
moulding pressures. An ANN predictive model was constructed to anticipate the 
mechanical properties of the composites. They found that the ANN approach can 
be used to forecast the mechanical properties of the composites accurately with an 
absolute error percentage of less than 4%. Jayabal et al. [39] identified the influence 
of fibre length, fibre diameter and calcium carbonate filler content on the mechan-
ical properties of coir fibre-reinforced polyester composites. They revealed that the 
prediction from the ANN approach was in good agreement with the experimental 
results with MAE percentages of 0.98%, 0.86% and 0.44% for the tensile, flex-
ural and impact strength, respectively. Ornaghi et al. [40] investigated the dynamic 
mechanical properties of hybrid composites consisting of sisal/glass fibre embedded 
in the polyester polymer matrix using experimental and ANN approaches. The hybrid 
composites were prepared with varying relative fibre ratios. It was revealed that the 
increase in the glass fibre content augmented the dynamic mechanical performance 
of the hybrid composites. Overall, the prediction obtained from the ANN approach 
fitted well with the experimental findings. Shyam et al. [41] mechanical characterised 
the alkali-treated banyan/glass fibre-reinforced epoxy hybrid composites using ANN 
and deep neural network approaches. As expected, the incorporation of glass fibre 
significantly improves the mechanical properties of the hybrid composites. Both 
approaches have been identified that can accurately predict the mechanical proper-
ties of the hybrid composites with an average performance up to 90% in the confusion 
matrix. Al-Jarrah and AL-Oqla [42] performed a novel research study in predicting 
the mechanical properties of various natural fibres as a potential reinforcement for
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FRPs. Surprisingly, the ANN model successfully predicted the mechanical properties 
of the natural fibres with an overall percentage for the correct classifications up to 
95.6% based on only two properties as the input data: cellulose and moisture content. 
These findings are indeed very helpful for the designers and scientists to select the 
most appropriate natural fibres to tailor the mechanical properties of FRPs. 

Table 1 summarises the literature studies using the machine learning approach to 
predict the mechanical properties of FRPs. It can be seen that the predictive model 
using ANN provides a very promising solution to the issues related to the mechan-
ical properties of FRPs. The optimum parameters and influences of various factors 
on the mechanical properties of FRPs can be accurately predicted using the ANN 
approach. Furthermore, with the computational power in the recent technological 
era, data analysis can be done by using a reliable computer and respective software. 
Following the findings obtained in the aforementioned literature studies, the predic-
tion of the mechanical properties of FRPs using the machine learning approach is 
in good agreement with the experimental findings, showing an excellent correlation 
coefficient. Therefore, it is anticipated that the machine learning approach could 
substitute the experimental approach to reduce the overall costs and time.

6 Conclusion 

FRPs have been well-known materials for the past few decades. Throughout the 
years, it can be seen that the applications of FRPs are continuously expanding, from 
the aerospace sector to the automotive and marine sectors. Traditionally, the mate-
rial properties are investigated and evaluated through experimental works. However, 
performing an experimental investigation is time-consuming and expensive. In addi-
tion, resource and equipment constraints are often the limitations of experimental 
investigation. These obstacles trigger the researchers to search for other alternative 
methods to characterise the material properties. Today, one of the most promising 
mathematical tools that has entered the field of material science is machine learning. 
In the era of big data, the availability of massive datasets, improvements in algo-
rithms, and exponential increases in computer power have resulted in an unprece-
dented surge of interest in machine learning. Machine learning methods are now 
widely used for large-scale classification, regression, clustering, and dimensionality 
reduction problems involving high-dimensional input data. Indeed, machine learning 
has demonstrated superhuman powers in a variety of sectors. As a result, machine 
learning algorithms power many aspects of our daily life. There are several types of 
learning algorithms in machine learning, and each algorithm has its own benefits and 
shortcomings for certain practical applications. Therefore, the selection of the most 
appropriate algorithm has become the critical step prior to the prediction of material 
properties. 

Among the machine learning algorithms, ANN has demonstrated its remarkable 
performance when used with complex linear and non-linear relationships. ANN is 
categorised as supervised learning, which is capable of constructing a well-mannered



Machine Learning Prediction for the Mechanical Properties … 131

Table 1 Summary of the literature studies using machine learning approach to predict the 
mechanical properties of FRPs 

Fibre Matrix Factor References 

Synthetic fibre 

Carbon Epoxy Effect of number of fibre layer [30] 

Glass Epoxy Effect of delamination size [31] 

Glass Polypropylene Effect of cooling rate and fibre 
orientation 

[32] 

Graphene nanoplatelets Polyethylene Effect of graphene content 
and twin screw extruder speed 

[33] 

Glass Epoxy Effect of rice husk filler 
content 

[34] 

Glass, graphite, carbon Epoxy, polyester Effect of stress ratio and 
material type 

[35] 

Natural fibre 

Date palm wood Polyethylene Effect of fibre content and size [25] 

Castor oil fibre Epoxy Effect of fibre length, nomal 
load and sliding distance 

[36] 

Coir, sisal Polyester Effect of composite thickness, 
fibre content and chemical 
treatment 

[37] 

Zea Polyester Effect of fibre length, fibre 
content and moulding pressure 

[38] 

Coir Polyester Effect of fibre length, fibre 
diameter and filler content 

[39] 

Sisal, glass Polyester Effect of relative fibre ratio [40] 

Banyan, glass Epoxy Effect of hybridisation [41] 

Flax, pineapple, jute, cotton, 
sisal, ramie, kenaf 

– Prediction of mechanical 
properties of various types of 
natural fibre 

[42]

belief model for material properties, primarily due to its capability to capture compli-
cated input and output relationships based on experimental data. Using the ANN to 
predict the mechanical properties of composite materials will save a lot of money 
and time for scientists and engineers since they can safely utilise these networks to 
anticipate material behaviours under different conditions. From the previous liter-
ature studies, ANN is not only limited to those conventional metal alloys, but it 
can be considered an efficient mathematical tool to predict the mechanical, phys-
ical and wear properties of the FRPs, displaying a high correlation coefficient with 
the experimental findings. In contrast, expensive experimental runs take time and 
can result in mistakes owing to testing imperfections, machinery, or manufacturers. 
To secure the general growth of manufacturing businesses, encouraging computa-
tional modelling to minimise the above-mentioned limitations is essential. Given 
the success of ANNs in this evaluation, emerging machine learning approaches for
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process modelling and parameter optimisation of composite material characteristics 
are strongly recommended. 
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Ballistic Performance of Bi-layer 
Graphene: Artificial Neural Network 
Based Molecular Dynamics Simulations 

Kritesh Kumar Gupta, Lintu Roy, and Sudip Dey 

1 Introduction 

The low strength-to-weight ratio of conventional ballistic proof materials has stimu-
lated the interest of the research community in developing a novel class of materials 
with high strength and low weight. Graphene, the lightest (density 0.77 mg/m2) and 
strongest (tensile strength 130 GPa) material known to date could be a promising 
candidate for such material advancements. The recent efforts to develop graphene-
reinforced materials have revealed that graphene imparts exceptional operational 
capabilities in the developed composite structures [18, 20, 29, 30]. To this end, 
in 2014 [19] conducted the laser-induced projectile impact test on the multilayer 
graphene (thickness ≈ 10–100 nm) and observed that multilayered graphene absorbs 
the projectile kinetic energy 10 times better than the macroscopic steel at the projec-
tile velocity of 600 m/s. Whereas, Ávila et al. [2] and O’Masta et al. [23] investigated 
the ballistic resistance of graphene reinforced composites. They both reported that the 
addition of graphene significantly increased the ballistic performance of developed 
composite materials. The observations drawn from such experimental studies piqued 
the interest of the research community to explore the ballistic capabilities of graphene 
and other nano-materials [3, 5, 16, 34]. The recent advent of improved computational 
prowess has inspired researchers to utilize the molecular dynamics (MD) simulation 
approach as an alternative to characterize the nano-scale materials experimentally. 
Over the last few years, the characterization of a wide range of materials through MD 
simulations of high-velocity ballistic impact is increased in the research community 
[6–9]. For instance, [36] simulated the high-velocity penetration of silica and nickel
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nanoparticles on the pristine and defected graphene sheets. They studied the specific 
penetration energy of the impacted graphene sheets and discovered that the inherent 
defects in the graphene sheets significantly reduce graphene’s ability to withstand 
high-velocity impact. Similarly, the follow up atomistic studies of the high-velocity 
impact on the bilayer graphene and other Van der Waals hetero-structures has revealed 
that the hybrid graphene structures can absorb the high kinetic energy before failure 
[24, 26, 33, 35, 38]. 

The MD simulation has seen widespread use in recent years, and it has been 
demonstrated to be effective in producing results with acceptable accuracy [11, 28]. 
However, one of the most noticeable limitations of MD simulation is its computa-
tional cost. Even with high-performance computing, the need to perform MD simu-
lations on a large scale to gain a better understanding of material behaviour may 
be computationally intensive and expensive. This inherent limitation of the conven-
tional MD simulation approach significantly hinders the seamless characterization 
of nanoscale materials. The combination of machine learning (ML) methods and 
traditional MD simulation can undoubtedly be effective in addressing this issue. 
With the rise of machine learning and artificial intelligence in recent years, a large 
number of studies have been conducted, adapting ML algorithms with MD simula-
tions for a diverse range of materials and reporting the results with high accuracy 
[12–15, 21, 27]. 

The concise literature review presented in the preceding paragraphs highlights 
previous efforts to investigate graphene and its hybrid structures’ ballistic perfor-
mance. However, the studies reported so far only considered the deterministic 
approach, wherein the graphene structures are tested for a few discrete parametric 
influences. To have a complete insight into the material behaviour it is essential to 
gather the responses for large scale unknown sample points within the occurrence 
bounds of the considered input parameters. Hence, in the present study, we carried 
out a series of MD simulations of high-velocity impact on the bilayer graphene 
(BLG) where the impact velocity of a spherical diamond projectile is varied from 1 
to 7 km/s (refer to Fig. 1a). The range of impact velocities considered in the present 
study encompasses the velocity of bullets observed during the military combat and 
the impact velocity of hails observed during the space exploration and flight [1, 4]. 
The present study aims to combine the Monte Carlo sampling, MD simulations and 
artificial neural network (ANN) based machine learning (ML) model to reveal the 
deep insights of the ballistic performance of BLG (refer to Fig. 1b). In this regard, 
the impact velocity (Vi) of a projectile is considered as the input parameter, while 
the corresponding specific penetration energy (E∗

p) of BLG and residual velocity of 
the projectile after impact (Vr) are considered as the desired quantities of interest for 
the regression problem. Besides the numerical responses, the post-impact behaviour 
of BLG is also classified into four different stages viz. R, PP1, PP2 and CP, based on 
the extent of damage to the BLG and the post-impact trajectory of the projectile. The 
dataset constructed with the MCS based MD simulation is further used to construct 
the ANN based regression and classification model. The computational capability 
of ANN based regression model is assessed on the basis of the percentage error 
between the original and predicted response and for the classification model, true
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positivity rate is considered as the accuracy measuring criteria. The designed compu-
tationally efficient ANN model is deployed to evaluate the performance measures for 
large scale unknown sample points within the occurrence bounds of the considered 
impact velocity of projectile (1–7 km/s). The scientific contribution of the present 
article lies in revealing the deep insights of the ballistic performance of the BLG by 
successfully integrating the MCS, MD simulation and ANN. That further serves two 
purposes: first, it proposes a framework to reduce the computational cost associated 
with large scale MD simulations, and second, it utilises the proposed framework to 
gather responses for large scale unknown points within the considered range of impact 
velocity, which would otherwise remain unexplored due to the exorbitant nature of 
conventional MD simulation. The numerically quantifiable and behavioural find-
ings of this study will pave the way for the development of graphene-based ballistic 
armour and a new class of composites for high-velocity impact protection. 

Fig. 1 The machine learning based ballistic behaviour of BLG. a The molecular model of BLG 
(with size = 200 Å × 200 Å) and spherical diamond projectile (with diameter = 25 Å) used in the 
series of MD simulations, where the impact velocity of the projectile is varied from 1 to 7 km/s. 
b The depiction of the computationally efficient model developed by the successful integration of 
Monte Carlo sampling, MD simulation, and ANN based machine learning (ML) model



138 K. K. Gupta et al.

2 Modelling and Simulation 

2.1 MD Setup 

The inter-atomic and intra-atomic modelling in the MD simulation is performed by 
using the predefined semi-empirical force fields. The accuracy of results derived from 
the MD simulation is greatly influenced by the adoption of the appropriate force field. 
In the present study, we modelled the interatomic interactions of C–C atoms in both 
layers of BLG by the AIREBO-morse force field. The AIREBO-morse force field 
consists of the modification of the conventional AIREBO force field, wherein the 
Lennard–Jones potential is replaced with morse potential to perfectly demonstrate 
the high-pressure deformation and breaking of bonds. The AIREBO-Morse potential 
can be mathematically represented as 
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And the Morse term can be represented as 
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The parameters E and req denotes minimum energy terms (depth and location) 
and α denotes the modified curvature of the potential energy with the minimum 
separation [22]. The interlayer distance between the two layers of graphene was 
kept at 3.4 Å, and the separation was modelled with the Lennard–Jones potential 
with energy parameter as 0.00239 eV and distance parameter as 2.5 Å [37]. The 
square-shaped AA stacked BLG (perfectly overlapped two graphene sheets with the 
interlayer distance of 3.4 Å) structure (200 Å × 200 Å) is impacted with the spherical 
diamond projectile (diameter ≈ 25 Å) in the present study. The spherical diamond 
projectile is modelled with Tersoff [32] force field as it is the best suited potential 
to model C–C interaction in the diamond. The distance between the top layer of the 
bilayer structure and the centre of the spherical diamond projectile is kept as 75 Å. 
The interaction between BLG and diamond is modelled with the morse force field. 

The MD simulations are performed in LAMMPS [25] environment and the 
dumped trajectories are visualized in OVITO [31]. The BLG is modelled through 
VMD [17]. The MD simulation of high velocity is performed by enforcing the peri-
odic boundary condition in the x and y direction of the BLG while the length of 5 Å
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on all the four edges of BLG are clamped by setting the force and velocity compo-
nent to zero. The small iteration time step of 0.5 fs (femtoseconds) is used while 
performing the MD simulations. At first, the conjugate gradient method is enforced 
for 25 ps (picoseconds) to minimize the potential energy of the BLG structure. In 
the next step, the Berendsen thermostat is enforced for the next 25 ps to thermalize 
the system at room temperature (≈ 300 K). At last, the simulation of high-velocity 
impact is performed on the BLG structure within an NVE ensemble, wherein the 
rigid diamond projectile is advanced with high velocity for another 20 ps. 

The ballistic performance of the BLG structure is assessed on the basis of the 
post-impact residual velocity of the projectile (Vr), specific penetration energy (E∗

p) 
of the BLG, and the behaviour of BLG against the high-velocity impact. The post-
impact trajectory of the projectile is observed to determine the residual velocity 
of the projectile. The negative sign of residual velocity denotes the rebound of the 
projectile, whereas the positive sign indicates the complete penetration. The specific 
penetration energy of the BLG is determined by using the following relation [8] 

E∗ 
p = 

K Ei − K Er 

M 
(3) 

The KEi and KEr refer to the initial and residual kinetic energy of the projectile, 
respectively. The difference of both kinetic energies is divided by the term M which 
denotes the mass of the impacted zone. The mass of the impacted zone is determined 
by the following equation 

M = π.R2 .Nl .ρA (4) 

where R denotes the radius of the impacted zone (same as projectile), Nl denotes 
the number of layers, and ρA denotes the area density of graphene which is taken as 
0.77e−6 kg/m2 in the present study [16]. 

2.2 Artificial Neural Network 

An artificial neural network (ANN) is an adaptive system that learns by utilising 
interconnected nodes or neurons in a layered structure similar to the human brain. 
A neural network can learn from data, which enables it to be trained to recognise 
patterns, classify data, and forecast future events. A neural network abstracts the 
input by breaking it down into layers. It, like the human brain, can be trained using a 
large number of examples to recognise patterns in speech or images. Its behaviour is 
defined by how its elements are connected, as well as the strength, or weights, of those 
connections. During training, these weights are automatically adjusted according to 
a predefined learning rule until the artificial neural network correctly performs the 
desired task. A neural network is a combination of several processing layers that 
are inspired by biological nervous systems and use simple elements that operate in
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parallel. It is made up of three layers: an input layer, one or more hidden layers, and an 
output layer. There are several nodes, or neurons, in each layer, with each layer using 
the output of the previous layer as its input, so neurons connect the different layers. 
Each neuron typically has weights that are adjusted during the learning process, and 
as the weight changes, the strength of that neuron’s signal changes [10]. 

2.2.1 ANN Based Regression 

In the present study, the feed-forward back-propagation ANN model is developed for 
enforcing the successful regression. The model is comprised of two layers, in which 
20 hidden neurons is provided in the first layer. The Levenberg–Marquardt training 
function is employed to train the model. While training the ANN based regression 
model, the hold-out cross-validation scheme is adopted to prevent the under-fitting 
or over-fitting of the model. In this regard, the used dataset is divided into three sets, 
wherein 80% of total samples are used as train data, 10% of total samples are used 
as test data, and the remaining 10% of the total samples are used as the validation 
data. The performance of the developed model is assessed on the basis of percentage 
error observed in the predicted values. 

2.2.2 ANN Based Classification 

The present study also depicts the utility of ANN based classification in characterizing 
the behaviour of the considered material system. The ANN based classification model 
is developed by using the scaled conjugate gradient backpropagation. Similar to 
the regression model, the classification model is also comprised of two layers and 
20 hidden neurons in the first layer, The same hold-out cross-validation scheme is 
employed for the classification model as well, as employed in the regression model. 
The performance of the ANN based classification model is assessed on the basis 
of the confusion matrix, wherein the true positivity rate is observed to justify the 
applicability of the classification model. 

3 Results and Discussion 

Prior to performing the MD simulations for a large number of samples, the observa-
tions drawn from the high-velocity impact of a diamond projectile on single-layer and 
bilayer graphene are validated with previous literature findings. The specific pene-
tration energies (E∗

p’s) of the single-layer graphene and bilayer graphene derived 
from the MD simulation of high-velocity impact are found in agreement with the 
corresponding values reported in the past. For instance, [16] reported E∗

p values of 
40.8 MJ/kg and 25.2 MJ/kg for single layer and bilayer graphene, respectively, with 
the high velocity (Vi = 5 km/s) impact of rigid fullerene (diameter = 12.1 Å). While,
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we obtained 42.9 MJ/kg and 23.6 MJ/kg for the single-layer and bilayer graphene, 
respectively, after replicating the simulations; the obtained values are within 6% 
error. In another study, [34] reported the penetration energy of single-layer graphene 
as 4156 eV when a graphene monolayer is impacted (Vi = 2 km/s) with a spher-
ical diamond projectile (diameter = 68 Å). With the replication of the simulation, 
we obtained the penetration energy as 4197.51 eV (≈ 1% error). To ensure the 
reproducibility of the results obtained from the MD simulations, each simulation is 
performed five times, and there is no deviation in the results found. With adequate 
confidence in the findings of the MD simulation, the simulations are performed for 
the large set of samples. In this regard, the input variable Vi is perturbed within the 
range of 1–7 km/s (10–70 Å/ps) with the help of the Monte Carlo sampling technique. 
The sample space with 128 instances is constructed with the help of MCS. In the next 
step, the MD simulations of high-velocity impact are performed on the AA stacked 
BLG for each instance in the samples space. The corresponding E∗

p and Vr values 
are deduced from the findings of the MD simulations as explained in Sect. 2.1. The  
significant damage to both layers is observed at the impact velocity of 6.1 km/s and 
the complete penetration of BLG occurred at 6.65 km/s. Previously, complete pene-
tration of the graphene system has been reported at relatively lower impact velocity 
(1–2 km/s). The increased diameter (140 Å) of the spherical projectile used in the 
high-velocity impact simulations can explain this [3]. To keep the MD simulations 
computationally feasible, we used a spherical diamond projectile with a diameter 
of 25 Å. The deterministic responses concerning the ballistic performance of AA 
stacked bilayer graphene is presented in Fig. 2, wherein the variation of post-impact 
residual velocity of the projectile (Vr) and specific penetration energy (E∗

p) of bilayer 
graphene is represented with respect to the increase in impact velocity (Vi). It can be 
noticed from Fig. 2a, b that with the increase in Vi the response measures increases. 
It’s worth mentioning that the sign convention for denoting the projectile’s residual 
velocity determines the projectile’s post-impact movement direction (in Fig. 2a). The 
distinct colours of scatter points shown in Fig. 2a reveals the post-impact behaviour of 
AA stacked bilayer graphene at different impact velocities. The green points denoted 
as “R” corresponds to the rebound of the projectile without any damage to the bilayer 
graphene sheet, the yellow points denoted as “PP1” refers to the first stage of partial 
penetration where the top layer of BLG is penetrated and the projectile rebounds 
after impact, the orange points denoted as “PP2” refers to the second stage of partial 
penetration where both layers of BLG is penetrated and projectile still rebounds after 
impact, and the red points denoted as “CP” refers to the complete penetration of the 
BLG with no rebound of the projectile. It is evident from Fig. 2 that up to the impact 
velocity corresponding to the PP2 stage, the E∗

p values follow a clear increasing 
trend, whereas after the PP2 stage E∗

p values exhibits the stagnation in the former 
increase.

The dataset generated by MCS-driven MD simulations of high-velocity impact 
on bilayer graphene is used to train, test, and validate the ANN model. To keep 
over-fitting and under-fitting in check, the hold out cross-validation scheme is used, 
in which 13 individual samples from the total sample space are separated for testing 
and validation of the model. The primary screening of the model is performed
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Fig. 2 The deterministic ballistic responses of BLG (derived from 128 MD simulations). a The 
variation in the residual velocity of spherical projectile (Vr) with respect to the increase in impact 
velocity. b The variation in the specific penetration energy (E∗

p) of BLG with respect to the increase 
in impact velocity

first to determine the applicability of the ANN model in the current scenario. The 
observations drawn from the primary screening are depicted in Fig. 3. 

Figure 3a, b reveals that for both responses, ANN is capable of providing predic-
tions with acceptable accuracy up to an impact velocity of 6.5 km/s. This indicates 
that the developed model is incapable of predicting the desired quantities associ-
ated with the sudden transition of bilayer graphene from PP2 to CP stage. As the 
primary screening of the ANN model suggested, we employed the range of impact

Fig. 3 The primary screening of ANN based regression model. a The comparison of the residual 
velocity of spherical projectile (Vr) drawn from MD simulations and ANN model. b The comparison 
of specific penetration energy (E∗

p) drawn from MD simulations and ANN model. Both the plots 
revealed that the ANN model is capable of predicting the responses prior to the PP2 stage this can 
be explained by the sudden transition of BLG from the PP2 stage to the CP stage 
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velocity from 1 to 6.5 km/s (112 samples) to construct the predictive model. The 
accuracy of the developed model is assessed on the basis of the percentage error in 
the predicted quantities. The validation of the developed ANN model is represented in 
Fig. 4. Figure 4a, b illustrates the model’s goodness of fit for each response, whereas 
Fig. 4c, d displays the created model’s generalisation capabilities for each response 
in terms of % error in the predicted quantities. The validation of the developed ANN 
model, depicted in Fig. 4, revealed the computational accuracy and capability of the 
model to generalise the predictions of both the responses of high-velocity impact 
(with the impact velocity ranging from 1 to 6.5 km/s). 

With sufficient confidence in the developed ANN model, the model is further 
deployed to predict the responses for the large unknown sample points. In this regard, 
the MCS is used to generate the 10,000 samples with the same range of variation in 
impact velocity (1–6.5 km/s) as used earlier. The Vr and E∗

p values are determined

Fig. 4 The validation ANN based regression model developed by considering impact velocities in 
the range of 1–6.5 km/s. a The scatter plot of original E∗

p values and ANN predicted E
∗
p values. 

b The scatter plot of original Vr values and ANN predicted Vr values. c The probability density 
function plot for indicating the probability of percentage error in the ANN predicted E∗

p values. d 
The probability density function plot for indicating the probability of percentage error in the ANN 
predicted Vr values 
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Fig. 5 The ballistic responses predicted for MCS based large scale unknown samples using the 
developed ANN based regression model. a The comparison of the residual velocity of projectile 
drawn from MD simulations and ANN model. b The comparison of specific penetration energy of 
BLG drawn from MD simulations and ANN model 

for the generated 10,000 samples by using the developed ANN models. Figure 5 
illustrates a comparison of the responses obtained from MD simulations and ANN 
predictions. It is evident from Fig. 5, that the variation profile of the ballistic responses 
derived from the ANN model corresponding to the change in impact velocity follow 
the same trend as the responses drawn from MD simulations. This indicates the sound 
generalization capability of developed ANN based regression model. 

As illustrated earlier in Fig. 2a the BLG exhibits four different stages (R, PP1, 
PP2, and CP) as the impact velocity increases from 1 to 7 km/s. Besides the ANN 
based predictive model for numerically quantifiable responses, we also constructed 
the ANN based classification model to differentiate the impact velocity on the basis of 
sustaining behaviour of BLG against the high-velocity impact. Similar to the former 
model the dataset for the classification is divided into three different sets (102 samples 
for train data, 13 samples for test data, and 13 samples for validation data). During the 
training of the classification model the test data and validation data is used to assess 
the accuracy of the model. The confusion matrix corresponding to train data, test 
data, validation data, and combined datasets is illustrated in Fig. 6a. The ANN based 
classification model exhibited a 96.1% overall positivity rate in terms of predicted 
responses. As the classification model resulted in the promising accuracy in the 
predictions, the model is further deployed to predict the behaviour of BLG for the 
large number (10,000 samples) of MCS driven samples, where the impact velocity 
ranged from 1 to 7 km/s. Again, the findings of ANN based classification model are 
compared with the findings derived from the MD responses (refer to Fig. 6b).

It is evident from Fig. 6b that labels corresponding to the responses gathered from 
the ANN model perfectly overlap with the labels corresponding to the responses 
drawn from the MD simulations.
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Fig. 6 The validation and outcome of ANN based classification model. a The confusion matrices 
corresponding to the train data, test data, and validation data. The combined confusion matrix is 
provided with the title “All Confusion Matrix”, which emphasizes the generalization capability of the 
classification model. The model is 96.1% capable of classifying the data with correct labels. b The 
PDF plots comparing the prediction of the classification model (for MCS driven 10,000 unknown 
samples) and the original responses gathered from series of MD simulations (128 samples)

4 Conclusion and Future Perspective 

In the present article, the ballistic performance of AA stacked bilayer graphene is 
assessed by performing the MD simulations. The series of MD simulations of the 
high-velocity impact of the spherical diamond projectile (dia = 25 Å) on the AA 
stacked BLG is performed. However, one of the most noticeable limitations of MD 
simulation is its computational cost. Even with high-performance computing, the 
need to perform MD simulations on a large scale to gain a better understanding of 
material behaviour may be computationally intensive and expensive. To mitigate 
this lacuna we demonstrated the successful integration of MD simulation with the 
artificial neural network. The desired responses (post-impact residual velocity of 
projectile (Vr), specific penetration energy of BLG (E∗

p), and sustaining behaviour 
of BLG against the high-velocity impact) for the MCS driven sample space are 
evaluated by performing 128 MD simulations. The impact velocity (Vi) is consid-
ered as the control variable in the present study which is perturbed using the MCS 
approach from 1 to 7 km/s. The deterministic responses drawn from the MD simula-
tions revealed that the complete penetration (CP stage) of BLG occurs at the impact 
velocities beyond 6.5 km/s. Prior to the CP stage, the impacted BLG exhibits three 
different stages viz. R  stage which denotes the rebound of the projectile without any 
damage to the BLG, PP1 stage which denotes the first stage of partial penetration 
where the top layer of BLG is penetrated and the projectile rebounds after impact, and 
PP2 stage which refers to the second stage of partial penetration where both layers of 
BLG is penetrated and projectile still rebounds after impact. With the increase in the



146 K. K. Gupta et al.

impact velocity of the projectile, the increase in the Vr and E∗
p values is observed. 

The constructed dataset is further used to train, test and validate the ANN based 
regression and classification models. The developed ANN-based machine learning 
models are found to be capable of accurately predicting responses for large scale 
unknown sample points. The machine learning based molecular dynamics simula-
tion framework proposed in this study will undoubtedly reduce the computational 
costs associated with nanoscale material discovery. The scientific contribution of the 
present article lies in revealing the deep insights of the ballistic performance of the 
BLG by successfully integrating the MCS, MD simulation and ANN. The proposed 
framework is utilised to predict the responses for large scale unknown points within 
the considered range of impact velocity, which would otherwise remain unexplored 
due to the exorbitant nature of conventional MD simulation. The numerically quan-
tifiable and behavioural findings of this study will pave the way for the development 
of graphene-based ballistic armour and a new class of composites for high-velocity 
impact protection. 
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Parameters in an ANN-Based Committee 
Networks Model for Estimation of Steel 
Girder Bridge Load-Ratings 
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Notations 

CN Committee networks; 
D Dead load effect; 
de Barrier-edge distance; 
DF Live load distribution factor; 
f 'c Compressive strength of concrete; 
fy Yield stress of steel; 
Kg Longitudinal stiffness parameter; 
L Span length; live load effect in Eq. (1) 
L AN  Ns Total number of ANNs in CN model; 
L FE  M FEA result for live load effect; 
MSE Mean square error; 
nb Number of girders; 
RF Load rating factor; 
RFANN RF predicted by ANN; 
RFFEM RF obtained from 3D FE analysis;
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s Girder spacing; 
ts Deck thickness; 
α Skew angle 

1 Introduction 

In girder-type bridges, the load rating is critical for bridge management and capacity-
evaluation decisions, such as load posting, overweight vehicle permits, rehabilita-
tion and replacement prioritizations and needs. The practicing bridge engineering 
community primarily relies on the load rating for the safe-load carrying assessment 
of in-service bridges. Accurate and more refined load ratings are increasingly desir-
able for the older bridge assets designed for lower historical standards, allowing them 
to remain in service and potentially carry loads even exceeding their original design 
loads. In the modern bridge specifications [1, 2], the safe-load carrying assessment 
of girder bridges is based on a simple, component-based loading rating approach 
that can be rapidly used for the existing bridge inventory. This one-dimensional (1D) 
approach, commonly known as girder-line analysis, uses transverse load distribution 
factors to approximate 3D-bridge behavior. In steel girder bridges, each composite 
girder is treated as an independent free body with simple supports for capacity eval-
uation. The load distribution factors account for the transverse bridge continuity 
provided by composite deck-slab and cross-frames. System-level bridge studies [3– 
10] have demonstrated that AASHTO-based load distribution factors are mostly 
conservative in various bridge geometries, resulting in conservative load ratings than 
refined alternative approaches. 

Detailed load testing or finite element-based load ratings are more accurate and 
higher than AASHTO line-girder analysis. The actual 3D bridge behavior involving 
component interactions leading to system-level complexities that influence load 
distribution behavior is well captured in these rigorous methods and obscured in 
line-girder analysis. As per NCHRP Synthesis 453 [11], load rating analysis by 
refined approaches is employed in a small subset of strategically selected bridges in 
the inventory. In the survey of 43 DOTs in United States, only 24 used detailed load 
rating strategies for some selected bridges in their inventories justified as special 
cases, such as removing load posting restrictions. 

In a recent research study [8], artificial neural networks (ANNs)-based models 
were examined for their potential applications in the load rating predictions of girder-
type bridges. The authors proposed ANN-based models for a high prediction accuracy 
of refined load ratings when used on a subset of steel girder bridges in the Nebraska 
bridge inventory. ANN-based load rating factors as network outputs were mapped to 
the girder bridges’ influential structural and geometric properties (network inputs) 
and were referred to as governing parameters. The geometric properties included 
were girder spacing, span length, presence or absence of cross-frames, longitudinal 
stiffness, skew angle, barrier distance, number of girders and deck thickness. Among
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the material properties, the steel-yield strength of girders and compressive strength 
of the concrete deck was included in the network inputs. Sofi and Steelman [8] 
proposed and compared the prediction accuracy of two ANNs-based models: (1) 
committee networks (CN) having combinations of diverse trained ANNs for output 
averaging and (2) single-best-network consisting of individual best trained ANN. 
The CN-based approach was superior to the single-best-network model in mitigating 
prediction errors in load rating predictions on girder bridges. 

The present study aims to quantify the sensitivity and significance of the input 
governing parameters in each of the two ANN-based models proposed by Sofi and 
Steelman [8], i.e., (1) single-best-network and (2) committee networks (CN). The 
network inputs to these prediction models were randomly perturbed around their 
mean values, taking one parameter at a time. The perturbed inputs were generated by 
adding normally distributed, small random variations to the training data set. Then 
the variance on the predicted load-rating outputs was used to define the sensitivity 
of the governing bridge inputs in the prediction models. 

2 Methodology 

2.1 Bridge Datasets 

This study obtained a dataset consisting of single span, composite steel girder bridges 
from the National Bridge Inventory [12], using Nebraska Department of Transporta-
tion (NDOT) bridge records to demonstrate the ANN-model (CN and single-best-
network models) sensitivity analysis. The selection of bridges was limited to single-
span, multi-beam concrete deck composite superstructures carrying up to two lanes 
of traffic. A dataset of 254 steel girder bridges, 61 existing and 193 hypothetically 
generated, was randomly selected to provide training and testing datasets for ANN 
models. The existing set was randomly selected and represented the Nebraska target 
bridge population sample for the parameters available in NBI [12], i.e., bridge span, 
width and skew angle. The hypothetical bridge dataset was designed with governing 
parameters to have parameter distributions similar to the existing set. Table 1 lists 
the effective ranges of the input governing parameters for ANN models based on the 
existing bridge subset.

2.2 Load Rating 

The load rating is used for the assessment of the safe load-carrying capacity of the 
bridges and is typically expressed as a scale factor of the rating load, referred to as 
the rating factor (RF > 1 implies a structure has the load-carrying capacity greater 
than the rating load). The load rating of highway bridges is commonly expressed
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Table 1 Governing parameters and their effective ranges 

Parameter No. Bridge parameter Effective range 

1 Span length (L) 20–89 ft (6.10–27.13 m) 

2 Girder spacing (s) 32–99 in. (813–2515 mm) 

3 Longitudinal stiffness (Kg) 6200–325,800 in.4 (2.58 × 109–135.61 
× 109 mm4) 

4 Cross frames Present or absent 

5 Number of girders (nb) 4–11 

6 Skew angle (α) 0–45° 

7 Barrier distance (de) (–) 8–34 in. (−203 to 864 mm) 

8 Deck thickness (ts) 5–9 in. (127–228.6 mm) 

9 Conc. compressive strength ( f 'c ) 2.5–4 ksi (17.24–27.58 MPa) 

10 Steel yield stress (f y) 30–50 ksi (206.85–344.75 MPa)

at inventory or operating levels [2]. The operating load represents the maximum 
live load that the bridges can be occasionally subjected to, such as oversized loads 
requiring special permits. RFs corresponding to operating level has a lower reliability 
index than the current design practice. The inventory rating level having a reliability 
index similar to the design specifications represents the lower bound on the safe 
live load-carrying capacity of the structure that the bridge can safely withstand for 
an infinite period. The present study quantifies the sensitivity of input governing 
parameters for moment load ratings at the inventory level. 

2.2.1 AASHTO Load Rating 

AASHTO bridge specifications [1, 2] provide a simplified one-dimensional (1D) line 
girder analysis approach for the design and rating of girder bridges. In this simpli-
fied 1D method, an individual girder is treated as simply a supported beam, and the 
transverse continuity of the bridge is taken into account through distribution factors 
(DFs). The DFs represent the maximum fraction of a single design lane (design load) 
resisted by each girder. This approach is commonly known as the ‘distribution factor 
method.’ AASHTO specifications provide semiempirical equations as functions of 
bridge geometry (i.e., span length, girder spacing, longitudinal girder stiffness, skew 
angle and deck thickness) for the calculation of DFs in girder bridges. The girder 
spacing is the most significant factor influencing the load distribution behavior of 
girder-type bridges. The AASHTO-based inventory load rating factor (RF; repre-
senting the minimum value of the critical girder) can be expressed as a function of 
girder capacity (C), dead load (D), and live load effect (DF · L), including the impact 
factor (IM) in Eq. (1). 

RF  = C − γd D 
γL (DF  · L + I M) 

(1)
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2.2.2 Refined Load Rating 

The precise representation of actual transverse load distribution through plate flexure 
of the deck slab and consideration of distribution effects by the cross frames etc., 
can be obtained through 3D finite element (FE) modeling than line-girder-based 
distribution factors. Thus, when live load effects are directly obtained from a more 
exact 3D FE analysis, the load rating tends to be less conservative than the AASHTO-
based distribution factor approach. The refined load ratings based on 3D FE-based 
modeling can be obtained by Eq. (2), where notations represent the same quantities 
as in the AASHTO-based rating, except that live load effects were obtained from 3D 
FE analyses. Accordingly, there is no need for a distribution factor in Eq. (2), and 
“DF  · L” in the former is replaced by L FE  M  for the live load moments in the latter. 

RF  = C − γd D 
γL (L FE  M  + I M) 

(2) 

2.3 FE Modeling and Calibration 

The refined load ratings needed to train ANNs were obtained from detailed FE 
modeling in ANSYS 19.0 [13]. The schematic flow showing the detailed FE simula-
tion procedure is available elsewhere [9]. All the FE analyses used in the present study 
for generating refined girder moments were linear elastic. A detailed calibration of 
the adopted FE modeling methodology was performed against documented results of 
destructive testing performed on a full-scale laboratory model bridge at the Univer-
sity of Nebraska-Lincoln [14]. The detailed FE model calibration, such as geometry, 
material simulations, experimental details, etc., for the ultimate validation of labora-
tory model bridge (referred to here as the Nebraska bridge) are available elsewhere 
[8, 15]. Figure 1 shows the Nebraska bridge modeling and details, including geom-
etry, FE modeling and calibration against experimental load–deflection results. The 
geometry creation, selection of elements in numerical models, mapped meshing, the 
post-processing element results from integration points, etc., were customized using 
ANSYS parametric design language (APDL), [16]-based macros for automation 
and consistency, similar to studies [17–21]. The resultant moment for the composite 
girder was computed within the effective width of the deck as defined in Sect. 4.6.2.6 
of Ref. [1]. A summary of FE simulation is provided here.

The concrete deck was simulated with 8-node solids and discretely reinforced 
by link elements in the top and bottom layers (Fig. 1b). The steel girders and web-
stiffener plates were idealized with 4-node shells. The cross-frames were simulated 
with 2-node Timoshenko beam elements. The composite action between the concrete 
deck and the steel girders was simulated by multipoint constraint (MPC) rigid beam 
elements. Simply supported boundary conditions were used on the numerical models



154 F. A. Sofi et al.

Fig. 1 Nebraska bridge: a bridge geometry and loading; b FE model; c model calibration

by restraining the translational degrees of freedom (i.e., roller and pin support simu-
lations) on the bottom nodes of steel girders at the ends. The material nonlineari-
ties were included only for the calibration model, i.e., the Nebraska bridge using 
the triaxial failure surface of Willam and Warnke [22] for concrete and isotropic-
hardening plasticity for steel with Von Mises yield criteria [23]. For all bridges used 
for ANN training in this study, linear elastic material properties were assumed (such 
as for concrete Young’s modulus Ec = 4700

.
f 'c MPa, Poisson’s ratio vc = 0.2 and 

in steel Es = 200,000 MPa, vs = 0.3) were assumed from [1]. The compressive 
strength of the concrete deck ( f 'c) and yield stress of steel ( fy) were based on the 
typical values documented for the existing bridges. For bridges with unknown infor-
mation (particularly, old and poorly documented assets) material properties were 
based on recommendations provided in [2], Sects. 6A5.2.1 and 6A.6.2.1. 

The maximum moment responses at the critical sections near the midspan were 
obtained for standard truck loading (HS20-44). The location of critical sections was 
based on the influence line analysis. The number of design lanes for each bridge 
analysis was determined as per Sect. 3.6.1.1 of [1]. In some bridges with roadway 
widths ranging from 5.49 to 7.32 m (18–24 ft) only two traffic lanes were assumed 
(refer to Sect. 6A.2.3.2 of [2]). The FE analyses were performed for various combi-
nations of HS20 trucks, transversely positioned in single up to a maximum number 
of design lanes possible on the bridge. The critical moment values were obtained 
for each exterior and interior girders. The wheel loads on the FE model for rear 
and front wheels were simulated using a series of point loads distributed over 500 × 
200 mm and 250× 100 mm patch areas, respectively. As per AASHTO specifications



Quantifying the Sensitivity of Input Parameters in an ANN-Based … 155

[1], multiple presence factors were applied to FE-based moment values. The refined 
load ratings were based on the most critical moments obtained for each exterior and 
interior girders. 

2.4 Committee Neural Networks (CN) 

Artificial neural networks (ANNs) mimic the functional abstraction of the biological 
neurons as robust and adaptive computational units that can approximate multidimen-
sional, complex and nonlinear functions without prior knowledge of the underlying 
nature or assumptions of the function. When trained with sample cases of inputs 
and outputs (i.e., patterns), ANN can generalize the relationship of the function by 
mapping inputs with outputs. Thus, ANNs can predict outputs on similar other inputs 
that were not encountered during training. Multi-layered feedforward architecture is 
commonly used for regression analysis in engineering applications [8, 21, 24–27]. 

A combination of ANNs can be more robust in prediction accuracy than the 
individual best of the networks that went into the combination [28, 29]. This diverse 
combination of multiple base-learner networks is referred to as this study’s committee 
network (CN) model. A committee consisting of diverse networks in size and char-
acteristics (such as network architectures, training by different algorithms, variation 
in data subsets, etc.) can complement generalization ability in learning and provide a 
more reliable and robust prediction model. Figure 2 shows the CN prediction model 
for load rating of steel girder bridges proposed by Sofi and Steelman [8]. This CN 
model consisted of LANNs = 4 separate subcommittee members (each formed by 
multiple independently trained ANNs). Sofi and Steelman formed the subcommit-
tees by variations of network architecture (one vs. two hidden layers) and learning 
algorithms (Levenberg–Marquardt, LM [30] vs. Bayesian-regularization, BR [31]). 
For example, a subcommittee designated I-(m)-O-(LM-k-ANNs) in Fig. 2 indicates a 
combination of k ANNs having I inputs and O outputs in each network. Each network 
has an architecture consisting of m neurons in a single hidden layer and is trained by 
Levenberg–Marquardt’s (LM) error minimization algorithm. Sofi and Steelman used 
equal weight factors for all four subcommittees’ outputs in a linear combination to 
obtain CN model prediction (y), as given by Eq. (3): 

y = 1 

L AN  Ns  

L AN  Ns. 

j=1 

y j (3)

where y j = output from jth individual network in a subcommittee, and an output 
from the jth individual subcommittee in the CN.
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Fig. 2 Committee networks (CN): I-(m)-O-(LM/BR-k ANNs) subcommittee consisting of k ANNs; 
I = network inputs; m = hidden layer neurons; O = network outputs; LM/BR = Levenberg– 
Marquardt/Bayesian regularization training algorithms

2.5 Sensitivity Analysis of Network Inputs 

Sensitivity analysis is essential for inputs feeding into the network, mainly when 
limited datasets are available for training ANNs. The requirement for training data 
patterns increases many folds with more network inputs, leading to a complex input– 
output mapping having additional network parameters (weights and biases) for new 
connections within the ANN. Sensitivity analysis of inputs can help minimize the 
number of inputs without affecting network performance by providing the relative 
significance of each governing parameter in the input–output mapping relationship 
of the prediction models. The relative importance of each governing parameter (i.e., 
ANN inputs) is quantified based on the small random changes in the given input 
parameters one at a time in the training dataset and measuring its corresponding 
influence on the network output. 

This study’s sensitivity analysis of the network inputs was based on the approach 
provided in [29]. For both CN and single-best-network models, each input parameter 
was randomly perturbed around their mean values by adding noisy random numbers 
with normal Gaussian distribution while keeping all other parameters at their mean
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values. The added input-perturbation had a zero mean, while the variance (σ 2 xi ) for 
each network input was kept at a constant 10% of the actual variance calculated in 
the design set data. Accordingly, the change in the network output (i.e., load rating 
in the present study) for the given input variance (σ 2 xi ) was taken as the sensitivity 
(Sxi ) of the governing parameter xi, and can be calculated by Eq. 4 [29]: 

Sxi = 
.P 

p=1 

.O 
j=1 

( 
y jp  − y j p  

)2 

σ 2 xi 
(4) 

where, y jp  = is the jth network output for pth pattern in the ANN model. The number 
of network outputs (O) represented the single moment load rating in the present study. 
The total number of data patterns (P) and variance (σ 2 xi ) of the input perturbation were 
used from the design dataset. 

3 Discussion of Results 

Sofi and Steelman [8] optimized the network architectures for subcommittee 
members forming a committee networks (CN) model. Figure 2 shows the archi-
tectures for each optimized subcommittee of the CN model. Similarly, the single-
best-network (i.e., 10-(3)-1-BR) was established to compare sensitivity analysis 
results on a common design dataset of 100 bridges provided in Appendix along with 
load ratings. For sensitivity analysis, each of the 10-governing parameters (network 
inputs) was assigned their average values from the design set. Then a random input 
perturbation was added to each parameter such that this perturbation had a Gaussian 
distribution (i.e., mean = 0; variance σ 2 xi = 10% of variance in design set for the 
selected parameter), while keeping all others parameters at their mean values. The 
resulting load-rating output variance per unit variance of the typical input-network 
parameter was taken as sensitivity (Sxi ) of the governing parameter xi, calculated 
using Eq. (4). 

Figure 3 shows the results of the sensitivity analysis for (1) committee networks 
(CN) and (2) single-best-network models. The sensitivity was demonstrated in 
terms of parameter importance for each of the 10-input governing parameters. The 
parameter-importance represents relative sensitivity (in terms of percentage) by 
normalizing sensitivity values with the sum of the sensitivities of all the network 
inputs. It is evident that girder spacing, barrier-edge distance and bridge span length 
are the most influencing parameters for the network output (i.e., moment load ratings) 
for both ANN-based prediction models (Fig. 3). The spacing between girders has the 
highest importance of 46% in the CN model than the 42% in the single-best-network 
model.

The barrier edge-distance depicted the highest importance at 46% in the single-
best-network model compared to 35% in the CN model. The significance of girder 
spacing for moment load-rating as the single most influencing parameter can be seen
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Fig. 3 Relative importance of the governing parameters for moment load-rating prediction using 
single-best-network and committee networks (CN) models

from the context that it is a well-established analogy for equal importance in the 
transverse load distribution of girder type bridges [32]. In comparison, the barrier-
edge distance can become critical for those girder bridges where the exterior girder 
controls the load rating, which happens to be the case for 81% of the design set 
bridges in the present study. 

4 Conclusions 

This study quantified the sensitivity and demonstrated the importance of the 
governing parameters (i.e., network inputs) in the moment-based load rating of 
composite steel girder bridges. The load rating factors were predicted using two 
ANN-based approaches originally proposed by Sofi and Steelman [8], i.e., (1) single-
best-network and (2) committee networks (CN) models. A 10% variance as a random 
perturbation on a design set of 100 bridges for each network input around the mean 
input values illustrated the variance in load rating (network output), which was used 
to define the importance of each governing parameter in the network. Among studied 
network-input parameters, i.e., girder spacing, span length, presence or absence of 
cross-frames, longitudinal stiffness, skew angle, barrier distance, number of girders, 
deck thickness, steel-yield strength and compressive strength of the concrete, the
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spacing between girders in the CN model and the barrier-edge distance in the single-
best-network model were seen as the most influential parameters for moment-based 
load rating with a sensitivity of about 46% in this study. 

Appendix 

The representative design set (100 patterns) used for ANN model sensitivity 

Bridge 
number 

Type [Existing 
(E)/Hypothetical 
(H)] 

Design 
load 

Bridge model information (inputs for ANN) 

L (m) s (m) Kg (1 × 
109 mm4) 

CF (1 
or 0) 

nb (No.) α 
(deg.) 

1 H H15 11.28 1.68 8.74 1 6 0 

2 E HS20 7.28 0.81 8.58 1 10 0 

3 H H15 10.06 1.57 9.01 1 6 0 

4 H H15 7.01 1.32 4.66 1 5 0 

5 H H15 19.20 2.16 49.21 1 5 0 

6 H H15 14.02 1.07 12.98 1 7 0 

7 E HS20 8.53 1.22 26.67 0 7 0 

8 H H20 24.99 2.06 116.74 1 5 0 

9 H H15 13.72 2.49 24.25 1 4 0 

10 E HS20 8.15 1.19 17.56 0 7 0 

11 E HS20 10.36 1.57 35.51 1 6 30 

12 H HS20 9.75 1.40 25.41 0 6 40 

13 H H20 8.23 0.86 7.25 0 7 0 

14 E HS20 8.79 1.82 30.95 1 5 20 

15 H H20 19.81 1.73 51.16 1 6 45 

16 E Unknown 22.60 2.51 132.45 1 4 0 

17 E HS20 11.89 1.75 40.64 1 6 15 

18 E Unknown 15.24 1.50 36.48 1 7 0 

19 H H15 6.10 1.65 4.13 0 6 35 

20 H HS20 23.16 1.73 83.78 1 6 0 

21 E HS20 8.81 0.86 8.26 1 11 0 

22 E Unknown 6.91 1.79 5.31 0 5 0 

23 H HS20 8.53 2.11 13.20 0 5 0 

24 H HS20 11.58 1.24 23.37 0 6 0 

25 H HS20 23.47 2.08 102.18 1 5 20

(continued)



160 F. A. Sofi et al.

(continued)

Bridge
number

Type [Existing
(E)/Hypothetical
(H)]

Design
load

Bridge model information (inputs for ANN)

L (m) s (m) Kg (1 ×
109 mm4)

CF (1
or 0)

nb (No.) α

(deg.)

26 H HS20 7.92 2.16 15.24 0 5 0 

27 E Unknown 19.51 1.68 72.96 1 6 0 

28 H HL93 6.10 1.42 6.44 1 7 0 

29 E HS20 7.32 1.19 11.32 1 7 0 

30 H H15 21.34 1.52 55.17 1 6 0 

31 E HS20 14.84 1.77 58.44 1 6 0 

32 H H20 27.13 1.35 129.71 1 6 0 

33 H HS20 6.40 1.30 5.45 0 7 0 

34 H H15 13.72 1.37 23.68 1 5 0 

35 H HS20 25.60 1.30 131.57 1 6 0 

36 E HS20 11.86 1.81 36.55 1 6 0 

37 H HS20 17.98 1.83 73.79 1 6 15 

38 E HS20 10.62 2.39 21.56 1 5 0 

39 H H15 24.69 1.73 81.06 1 6 0 

40 H H15 6.71 1.30 2.59 1 6 0 

41 H H20 11.58 1.42 14.53 1 7 0 

42 H HS20 22.86 2.13 135.63 1 5 0 

43 E HS20 13.50 2.11 69.18 1 5 0 

44 E Unknown 14.56 1.41 32.76 1 7 20 

45 H H15 8.84 1.42 6.44 1 7 0 

46 H HL93 6.71 1.24 9.28 1 7 0 

47 H H15 24.08 1.88 76.87 1 6 0 

48 E HS20 17.86 1.93 64.85 1 5 0 

49 E HS20 10.67 1.78 43.26 1 6 30 

50 E HS20 17.89 1.79 96.93 1 5 0 

51 E HS20 10.67 2.12 27.52 1 5 30 

52 H H15 8.53 1.55 6.22 0 6 0 

53 H HS20 10.36 1.09 6.82 1 7 0 

54 H H20 19.20 0.89 39.80 1 7 0 

55 H H15 12.19 0.81 9.56 1 10 0 

56 E HS20 7.62 1.79 7.19 1 6 0 

57 H HS20 15.24 1.75 49.74 1 6 10 

58 H HS20 11.58 1.09 12.52 1 7 0 

59 H H20 16.15 1.35 55.17 0 7 0 

60 H HS20 8.23 2.26 20.10 1 4 10 

61 H HS20 12.19 1.12 21.05 0 6 0 

62 H HS20 8.84 1.65 11.95 0 6 0
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(continued)

Bridge
number

Type [Existing
(E)/Hypothetical
(H)]

Design
load

Bridge model information (inputs for ANN)

L (m) s (m) Kg (1 ×
109 mm4)

CF (1
or 0)

nb (No.) α

(deg.)

63 H HS20 11.28 1.65 21.06 1 6 0 

64 H H20 11.89 1.42 16.48 1 7 0 

65 H H20 14.33 0.81 24.83 1 11 0 

66 E HS20 16.15 1.22 75.75 1 7 0 

67 H H20 14.33 0.97 19.92 1 7 0 

68 E Unknown 6.25 1.52 5.33 1 6 0 

69 H H20 12.80 0.81 23.68 1 11 0 

70 E HS20 11.86 1.69 43.26 1 6 0 

71 E HS20 18.03 1.54 93.07 1 6 0 

72 H HS20 10.97 1.32 23.92 1 6 0 

73 E HS20 8.53 1.22 18.91 0 7 0 

74 H H15 8.23 1.45 10.63 0 6 0 

75 H HS20 17.07 1.45 49.74 1 6 0 

76 H H15 9.45 0.91 8.74 1 6 15 

77 H HS20 7.62 1.19 7.77 0 6 0 

78 E Unknown 8.84 1.96 25.75 0 5 45 

79 H H15 17.68 2.18 46.55 1 5 0 

80 E Unknown 15.06 1.70 26.29 0 6 0 

81 H H20 7.92 1.35 7.44 1 5 0 

82 H HS20 8.84 1.17 12.28 0 7 0 

83 H H15 6.71 1.75 3.39 1 6 25 

84 H HS20 12.80 2.11 38.12 1 5 0 

85 E HS20 17.98 1.75 90.87 1 6 0 

86 H HS20 11.28 1.91 40.61 0 5 0 

87 H H15 8.23 1.50 7.68 1 6 0 

88 H HS20 9.45 1.50 12.73 0 7 0 

89 H H20 6.71 0.81 8.85 0 9 0 

90 H H15 14.33 2.24 36.55 1 4 0 

91 H H20 8.23 1.60 8.74 1 5 0 

92 H H15 8.53 0.81 6.62 1 7 45 

93 E HS20 7.62 2.29 19.32 1 4 0 

94 H H15 17.37 1.88 49.74 1 6 30 

95 H HS20 17.68 1.68 56.24 1 6 0 

96 H HS20 11.28 0.89 21.56 1 6 25 

97 H HS20 10.97 1.40 18.99 1 7 0
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(continued)

Bridge
number

Type [Existing
(E)/Hypothetical
(H)]

Design
load

Bridge model information (inputs for ANN)

L (m) s (m) Kg (1 ×
109 mm4)

CF (1
or 0)

nb (No.) α

(deg.)

98 E HS20 8.84 1.75 18.99 1 6 30 

99 H H20 14.63 1.47 26.91 1 7 0 

100 H H15 10.06 1.42 12.61 1 7 30 

Bridge 
number 

Bridge model information (inputs for 
ANN) 

Moment rating factor (RF) 

de (m) ts (mm) f'c (MPa) Fy (MPa) AASHTO 
(LRFD) 

FEM ANN 
(single) 

ANN 
(committee) 

1 0.20 165 20.69 344.75 0.930 1.112 1.122 1.137 

2 −0.02 178 20.69 248.22 1.482 3.221 2.813 2.963 

3 0.20 178 24.13 248.22 1.050 1.227 1.241 1.262 

4 0.43 140 27.58 248.22 1.291 1.475 1.678 1.592 

5 0.25 152 20.69 248.22 0.742 0.920 0.931 0.931 

6 0.30 140 20.69 248.22 0.676 0.832 0.839 0.803 

7 0.61 178 20.69 248.22 2.874 3.559 3.613 3.485 

8 0.30 178 24.13 248.22 1.007 1.229 1.209 1.199 

9 0.25 178 24.13 344.75 1.181 1.384 1.527 1.444 

10 0.06 152 20.69 248.22 2.810 3.412 3.104 3.135 

11 0.03 178 20.69 248.22 2.628 3.657 3.407 3.459 

12 0.30 203 20.69 248.22 2.412 3.566 3.586 3.472 

13 0.74 203 27.58 344.75 1.661 2.820 2.309 2.676 

14 0.01 178 20.69 248.22 3.177 3.640 3.746 3.658 

15 0.25 178 20.69 248.22 0.837 1.258 1.237 1.197 

16 0.12 167 20.69 248.22 1.304 1.534 1.509 1.497 

17 −0.11 178 27.58 248.22 2.563 3.178 3.108 3.105 

18 0.08 203 27.58 344.75 2.137 2.720 2.693 2.654 

19 0.28 127 20.69 248.22 1.075 1.795 1.828 1.791 

20 0.25 165 27.58 344.75 1.689 2.040 1.975 1.902 

21 0.25 203 27.58 248.22 1.401 2.682 2.676 2.702 

22 0.07 127 20.69 248.22 1.232 1.425 1.425 1.405 

23 0.23 203 27.58 344.75 2.953 3.134 2.955 3.037 

24 0.86 152 27.58 248.22 1.327 1.779 1.762 1.864 

25 0.28 165 27.58 344.75 1.734 2.211 2.177 2.144 

26 0.28 216 24.13 248.22 2.255 2.421 2.674 2.490 

27 0.06 178 20.69 344.75 1.880 2.277 2.209 2.163 

28 0.15 178 17.24 248.22 1.717 2.055 2.055 2.128 

29 0.16 178 20.69 248.22 2.379 2.775 2.714 2.741
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(continued)

Bridge
number

Bridge model information (inputs for
ANN)

Moment rating factor (RF)

de (m) ts (mm) f'c (MPa) Fy (MPa) AASHTO
(LRFD)

FEM ANN
(single)

ANN
(committee)

30 0.28 165 20.69 206.85 0.682 0.819 0.819 0.839 

31 0.25 203 24.13 344.75 2.359 2.815 2.949 3.019 

32 0.28 178 17.24 248.22 0.894 1.072 1.150 1.128 

33 0.25 191 17.24 248.22 1.510 1.692 1.641 1.827 

34 0.76 165 20.69 248.22 0.844 1.089 0.994 1.067 

35 0.25 152 20.69 248.22 1.260 1.472 1.579 1.513 

36 0.20 178 24.13 344.75 2.453 2.929 3.132 3.133 

37 0.30 229 17.24 248.22 1.142 1.458 1.484 1.545 

38 −0.20 178 27.58 248.22 1.643 1.912 2.084 1.989 

39 0.23 178 17.24 248.22 0.675 0.826 0.802 0.840 

40 0.28 203 20.69 344.75 1.032 1.594 1.687 1.770 

41 0.20 165 17.24 248.22 0.903 1.069 1.036 1.100 

42 0.30 178 20.69 248.22 1.327 1.599 1.627 1.644 

43 0.04 203 20.69 248.22 2.214 2.666 2.495 2.635 

44 0.03 203 27.58 344.75 2.247 3.081 2.947 2.978 

45 0.18 178 17.24 248.22 0.986 1.192 1.234 1.238 

46 0.69 191 24.13 248.22 1.836 2.405 2.391 2.507 

47 0.30 140 17.24 248.22 0.655 0.782 0.776 0.828 

48 0.10 178 27.58 344.75 2.126 2.521 2.547 2.486 

49 0.20 203 20.69 248.22 2.523 3.620 3.615 3.605 

50 0.00 178 27.58 248.22 2.225 2.452 2.556 2.557 

51 0.03 178 27.58 248.22 2.145 2.704 2.730 2.746 

52 0.23 140 27.58 248.22 1.317 1.449 1.432 1.468 

53 0.36 178 27.58 344.75 1.304 1.716 1.764 1.771 

54 0.66 165 27.58 248.22 0.808 1.339 1.331 1.270 

55 0.76 203 20.69 344.75 0.747 1.565 1.354 1.464 

56 0.05 152 20.69 248.22 1.443 1.647 1.627 1.606 

57 0.25 165 17.24 227.54 1.113 1.345 1.411 1.429 

58 0.23 178 27.58 248.22 1.309 1.601 1.551 1.553 

59 0.25 165 20.69 248.22 1.709 1.898 1.781 1.795 

60 0.23 152 17.24 206.85 1.590 1.741 1.779 1.780 

61 0.28 165 27.58 248.22 1.619 1.876 1.926 1.933 

62 0.28 165 20.69 248.22 1.716 1.804 1.774 1.761 

63 0.28 165 20.69 248.22 1.385 1.561 1.543 1.567
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(continued)

Bridge
number

Bridge model information (inputs for
ANN)

Moment rating factor (RF)

de (m) ts (mm) f'c (MPa) Fy (MPa) AASHTO
(LRFD)

FEM ANN
(single)

ANN
(committee)

64 0.28 165 27.58 248.22 1.349 1.559 1.578 1.560 

65 0.30 191 20.69 248.22 0.838 1.701 1.688 1.674 

66 0.61 178 20.69 248.22 1.764 2.392 2.121 2.293 

67 0.30 203 20.69 344.75 0.955 1.710 1.777 1.767 

68 0.46 178 20.69 248.22 1.578 1.796 1.742 1.782 

69 0.51 165 20.69 206.85 0.846 1.557 1.546 1.595 

70 0.00 203 20.69 248.22 2.285 2.709 2.885 2.763 

71 0.49 203 20.69 248.22 1.745 2.092 1.934 2.068 

72 0.81 165 27.58 206.85 1.339 1.738 1.759 1.793 

73 0.61 178 20.69 248.22 2.281 2.848 2.889 2.817 

74 0.64 203 17.24 248.22 1.410 1.759 1.783 1.695 

75 0.25 165 17.24 248.22 1.105 1.298 1.326 1.291 

76 0.15 165 20.69 248.22 0.940 1.774 1.699 1.702 

77 0.84 165 27.58 248.22 1.339 1.838 1.901 1.904 

78 0.05 152 20.69 248.22 2.811 3.118 3.213 3.268 

79 0.23 191 20.69 248.22 0.811 0.999 1.029 1.031 

80 0.03 152 20.69 248.22 1.041 1.100 1.136 1.089 

81 0.23 165 20.69 248.22 1.349 1.652 1.668 1.615 

82 0.58 178 20.69 248.22 1.518 1.976 2.053 2.027 

83 0.18 191 20.69 344.75 1.239 2.016 2.046 2.030 

84 0.25 203 20.69 248.22 1.459 1.747 1.758 1.751 

85 −0.11 178 17.24 248.22 1.661 2.019 1.965 1.965 

86 0.79 178 17.24 206.85 1.323 1.573 1.644 1.661 

87 0.81 178 24.13 248.22 1.102 1.407 1.450 1.420 

88 0.41 152 20.69 248.22 1.435 1.647 1.528 1.610 

89 0.23 127 17.24 206.85 1.135 2.144 2.241 2.212 

90 0.74 178 20.69 248.22 0.933 1.130 1.016 1.117 

91 0.30 165 20.69 227.54 1.308 1.523 1.423 1.408 

92 0.46 165 27.58 248.22 1.133 2.399 2.275 2.337 

93 0.53 191 24.13 248.22 2.949 3.162 2.784 2.643 

94 0.28 165 17.24 206.85 0.699 0.952 1.051 1.078 

95 0.23 178 20.69 248.22 1.222 1.447 1.409 1.370 

96 0.66 178 27.58 248.22 1.332 2.351 2.471 2.477 

97 0.25 178 20.69 248.22 1.518 1.739 1.790 1.784
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(continued)

Bridge
number

Bridge model information (inputs for
ANN)

Moment rating factor (RF)

de (m) ts (mm) f'c (MPa) Fy (MPa) AASHTO
(LRFD)

FEM ANN
(single)

ANN
(committee)

98 −0.11 178 20.69 248.22 2.358 2.947 3.054 3.043 

99 0.22 165 20.69 206.85 0.857 1.039 1.066 1.053 

100 0.30 191 20.69 206.85 1.148 1.650 1.649 1.640 
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Estimating Axial Load Capacity 
of Concrete-Filled Double-Skin Steel 
Tubular Columns of Multiple Shapes 
Using Genetic Algorithm-Optimized 
Artificial Neural Networks 

Fayaz A. Sofi, Hazim Wani, Mohammad Zakir, and Manzoor A. Tantray 

Notations 

Do Outer diameter/edge dimension of outer steel tube; 
Di Outer diameter/edge dimension of inner steel tube; 
f '
c Unconfined compressive strength of concrete (standard cylinder); 
fyo Yield stress for outer steel tube; 
fyi Yield stress for inner steel tube; 
h Column height; 
I Number of inputs; 
m Number of neurons or nodes per hidden layer; 
O Number of network outputs; 
Pult, AN N ANN-based prediction for axial load capacity; 
Pult,exp Experimental axial load capacity; 
Pult,FE  M FE-based axial load capacity; 
Pult,GA-AN N GA-ANN model prediction for axial load capacity; 
ti Thickness of inner steel tube; 
to Thickness of outer steel tube.
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1 Introduction 

The new generation composite columns with concrete core sandwiched between 
inner and outer steel tubes are concrete-filled double-skin steel tubular (CFDST) 
columns. These composite columns are optimized for a high strength-to-weight ratio 
similar to an earlier generation of concrete-filled steel tubes (CFSTs). The CFDST 
columns offer many benefits compared to traditional reinforced concrete or steel 
columns, including better stiffness, improved energy absorption, residual axial load-
carrying capacity and better ductility under dynamic and cyclic loads, provide higher 
strength compared to lesser weight, and have excellent fire resistance [1–7]. Both 
single and double-skin tubular columns have been widely used for civil engineering 
applications, such as bridge piers, columns and beams in high and medium-rise 
buildings, pile foundations, etc. [8]. The inner steel tube acts as the longitudinal rein-
forcement in these tubular columns, provides confinement to the concrete core and 
prevents its spalling [9–13]. For structural efficiency and aesthetic appeal, multiple 
shapes of CFDST columns have evolved using combinations of circular and square 
hollow steel sections, i.e., circle-circle (CC), circle-square (CS), square-square (SS) 
and square-circle (SC) cross-sections (Fig. 1). Accordingly, the CFDST columns of 
different cross-sectional shapes show varying behavior of confined concrete under 
axial compressive loading [8]. 

Each cross-sectional shape of CFDST columns has been extensively dealt with 
within the literature. In CC shape, Wei et al. [3] investigated the effects of varia-
tions in steel tube dimensions and sandwiched polymer concrete on CFDST column 
behavior. Experimental studies on CC shape [14, 15] showed confined concrete 
failure in CFDST columns due to local buckling deformations. Tao et al. [14] studied 
the failure modes of CFDST columns by varying the diameter-to-thickness ratio of 
steel tubes and the resulting column hollow ratio, i.e., inner-to-outer tube diam-
eter ratio. For estimating the ultimate axial load capacity of CFDST columns, Tao 
et al. also proposed a simple equation based on the superposition of outer-tube-
based CFST strength with inner steel tube strength. Other researchers studied the 
behavior of CC-shaped CFDST columns by performing detailed finite element (FE) 
simulations [2, 16–21] addressing the key issues for numerical simulations (such as

Fig. 1 CFDST column cross-sectional shapes (SS = square-square; SC = square-circle; CC = 
circle-circle; CS = circle-square) 
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constitutive modeling for confined concrete and steel, interactions between CFDST 
column components, etc.), and extended parametric variations in steel tube dimen-
sions, concrete strengths, loading types, etc. Similarly, experimental studies on CS 
[22], SS [23] and SC [24] columns have investigated the effects of various parame-
ters, such as hollow ratio, steel and concrete strengths, the width-to-thickness ratio of 
the inner tube, etc. on CFDST column behavior. The FE-based studies for CS [25], 
SC [18, 19, 26–28] and SS [1, 16, 29] cross-sectional shapes of CFDST columns have 
addressed various modeling issues, and extended influence of different geometry and 
material parameters ranges on the nonlinear column behavior. 

Artificial neural networks (ANNs) are computational units with functional 
abstraction similar to biological neurons. ANNs are robust and adaptive in approxi-
mating complex, nonlinear multidimensional functions without the need for prior 
knowledge of nature or assumptions of the function. Figure 2 shows the multi-
layered feedforward architecture of ANNs, which is commonly used for mapping 
relationships between inputs and outputs [30–35]. Recently, ANNs have been used 
for predicting the structural responses of confined columns, including axial stress 
of FRP-confined concrete in circular columns [36], the ultimate axial load-carrying 
capacity of CFSTs [37–40] and CC-shaped CFDST columns [41]. Evolutionary 
algorithms, such as genetic algorithms (GA), can be efficiently used for the global 
solution search of the best network variables (i.e., weights and biases) in an ANN. 
The application of GAs requires randomly created individual solutions that are eval-
uated by a fitness function. The best pool of parents can then be used to generate the 
next population of solutions by recombination, crossover, and mutation inspired by 
biological genetics and survival of the fittest. These successive population genera-
tions can potentially lead to an optimal global solution for the optimization function 
evaluated by fitness criteria.

The main objective of the present study is to minimize the absolute maximum 
errors in estimating the ultimate axial load capacity of CC, CS, SC and SS-shaped 
CFDST columns using a hybrid GA and the multi-layered feedforward ANN model. 
A dataset of 171-CFDST columns (i.e., 51 of CC, 43 of CS, 38 of SC and 39 of SS 
shapes) was generated, i.e., 151 hypothetically generated and 20 existing columns 
using influential geometric and material properties referred to herein as governing 
parameters in this study. The hypothetical columns were randomly created using 
random combinations of governing parameter variations within their effective ranges. 
A detailed nonlinear FE methodology was first validated against documents test 
results of 40 CFDST columns specimens for different column cross-sections, such 
as CC [14, 15], CS [22], SC [24] and SS [23]. Then the validated FE modeling was 
used to analyze all 151-hypothetical columns to evaluate their ultimate axial load-
bearing capacity. The proposed GA-ANN-based hybrid prediction model can be a 
more effective and practical tool for estimating the axial load-bearing capacity of 
CFDST columns of multiple cross-sectional shapes.
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Fig. 2 Artificial neural network architecture (feedforward network): b = biases; Pult. = desired 
target; W = weights; y = output

2 FE Modeling and Simulation 

The ultimate (peak) axial load capacity of CFDST columns used in ANN training 
was obtained from detailed nonlinear FE modeling for each cross-sectional shape 
using ANSYS 19.0 [42]. The schematic of the FE modeling framework is provided 
elsewhere [43]. In this consistent FE modeling procedure, custom-developed ANSYS 
parametric design language (APDL) [44]-based macros were used for automation in 
geometry creation, mapped meshing, the post-processing of element results, similar 
to Refs. [45, 46]. The constitutive material modeling for confined concrete and steel 
tubes was taken from documented literature on each cross-sectional column shape 
(details provided in Sect. 2.2 Constitutive Material Models). A summary of the 
adopted nonlinear FE simulation is provided in the following subsections. 

2.1 Element Selections 

Figure 3a shows the elements used to simulate different components of the CFDST 
column. The four-node shell elements (Shell 181), having 6 degrees of freedom 
(DOFs) per node, were used to idealize steel components (i.e., inner and outer tubes 
and top and bottom base plates). The concrete core was simulated by eight-node 
solid elements (Solid 185), having 3-DOFs per node. Interaction between steel tubes 
and concrete core was idealized with zero-length two-node rigid beams (MPC184)
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Fig. 3 FE modeling of CFDST columns: a element types; b mapped meshing in cross-sections 

through kinematic relationships between DOFs of solid and shell elements. Surface-
to-surface bonded type contact represented the interaction between steel endplates 
and concrete core at column end. This bonded type contact was simulated using 
4-node contact elements (Conta 173), which were overlaid on the concrete cross-
sections. The steel endplates provided the target surface using target elements (Targe 
170). Similarly, node-to-surface type bonded contact simulated interaction between 
steel tubes and the endplates, using single-node contact elements (Conta 175) against 
target elements overlaid on steel endplates. 

A mesh sensitivity analysis was performed for nonlinear FE analysis (NLFEA) 
results. The calibration study on the numerical models of CFDST columns of multiple 
shapes showed a maximum element size up to 15 mm in cross-sectional geometry, 
and 20 mm along the longitudinal axis of the column was sufficient for obtaining 
convergent results against documented experiments from literature (details provided 
in Sect. 2.4 FE Modeling Validation). The steel endplates were idealized with linear-
elastic behavior and were meshed with a coarse element size of 15–20 mm. Figure 3b 
shows the details of mapped meshing used in multiple cross-sectional shapes of 
CFDST columns, i.e., CC, CS, SS and SC shapes.
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2.2 Constitutive Material Models 

The steel and concrete in CFDST composite columns were simulated with nonlinear 
axial stress–strain curves, typical failure criteria and plastic flow rules. The 
microplane failure theory [47] based failure surface was assumed for confined 
concrete with a kinematic-hardening plasticity flow rule. For steel components, 
nonlinearity with isotropic-hardening plasticity was adopted with the Von Mises 
yield criterion [48]. The simulation of stress–strain curves for steel and confined 
concrete in NLFEA were dependent on the cross-sectional shape of the CFDST 
columns and are given in the following subsections: 

2.2.1 Steel 

Figure 4a shows the elastoplastic axial stress–strain curve for the steel assumed for 
NLFEA in this study, similar to Ref. [49]. In the present study, the elastic modulus of 
steel (Es) and Poisson’s ratio (νs) were taken equal to 200 GPa and 0.3, respectively. 
After the onset of yielding in the validation cases, the hardening modulus (i.e., the 
slope of the second linear segment) of the stress–strain curve was taken equal to 
1/100th of the initial elastic modulus (i.e., E1 = 0.01Es). In all other FE models 
(i.e., excluding validations cases), a perfectly elastoplastic stress–strain relationship 
(i.e., E1 = 0 in Fig. 4a) was assumed in the NLFEA.

2.2.2 Concrete 

CC and CS Shapes 

The confined concrete axial stress–strain curve for CC and CS shapes of CFDST 
columns was simulated as given in Eqs. (1)–(9), similar to Ref. [21]. Figure 4b 
compares the axial stress–strain curves for unconfined and confined concrete ideal-
ized for CC and CS shapes of CFDST columns in this study. The confined concrete 
axial stress ( f ')–strain (ε) relationship, as proposed by Saenz [50], is given in 
Eqs. (1)–(8). 

f ' = Eccε 

1 + (R + RE − 2)
(

ε 
εcc

)
− (2R − 1)

(
ε 

εcc

)2 + R
(

ε 
εcc

)3 (MPa) (1) 

where the confined concrete modulus, Ecc = 4700
.

f '
cc (MPa), based on ACI-318 

[51]. The parameters Rσ and Rε are both taken equal to 4.0, as suggested by Hu 
and Schnobrich [52], and other variables RE and R are given by Eqs. (2) and (3), 
respectively.
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Fig. 4 Constitutive stress–strain models for CFDST columns: a steel tubes; b confined concrete in 
CC and CS shapes; c confined concrete in SS and SC shapes

RE = 
Eccεcc 

f '
cc 

(2) 

R = 
RE (Rσ − 1) 
(Rε − 1)2 

− 
1 

Rε 
(3) 

Mander et al. [53] initially provided peak axial compressive stress ( f '
cc) at the  

corresponding strain (εcc) in the confined concrete, as given by Eqs. (4) and (5): 

f '
cc = f '

c + k1 fl (MPa) (4) 

εcc = εco
(
1 + k2 

fl 
f '
c

)
(5) 

where k1 and k2 are constants equal to 4.1 and 20.5, respectively, were recommended 
by Richart et al. [54]. The f '

c = 0.8 fc; unconfined cylinder strength of concrete and 
corresponding unconfined strain (εco) is taken equal to 0.003 in this study. Hu and 
Su [17] suggested effect of lateral confining pressure ( fl) as the minimum value 
obtained from Eqs. (6)–(8):
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fl = 8.525 − 0.166
(
Do 

to

)
− 0.00897

(
Di 

ti

)
+ 0.00125

(
Do 

to

)2 

+ 0.00246
(
Do 

to

)
×

(
Di 

ti

)
− 0.00550

(
Di 

ti

)2 

≥ 0 (6)  

fl 
f yi 

= 0.01844 − 0.00055
(
Do 

to

)
+ 0.00040

(
Di 

ti

)
+ 0.00001

(
Do 

to

)2 

+ 0.00001
(
Do 

to

)
×

(
Di 

ti

)
− 0.00002

(
Di 

ti

)2 

(7) 

fl 
f yo 

= 0.01791 − 0.00036
(
Do 

to

)
− 0.00013

(
Di 

ti

)
+ 0.00001

(
Do 

to

)2 

+ 0.00001
(
Do 

to

)
×

(
Di 

ti

)
− 0.00002

(
Di 

ti

)2 

≥ 0 (8)  

where the diameter-to-thickness ratios of outer (Do/to) and inner (Di /ti ) are used 
for finding fl . The  fyo and fyi = yield stresses of the outer and inner steel tubes, 
respectively. In Fig. 4b, the descending segment’s last point corresponds to axial 
stress, f ' = rk3 f '

cc as per Refs. [17, 55]. The parameter, k3 represents concrete 
degradation and is given by Eq. (9), Hu and Su [17]: 

k3 = 1.73916 − 0.00862
(
Do 

to

)
− 0.04731

(
Di 

ti

)
− 0.00036

(
Do 

to

)2 

+ 0.00134
(
Do 

to

)(
Di 

ti

)
− 0.00058

(
Di 

ti

)2 

≥ 0 (9)  

The reduction factor (r ) was used as 1.0 for fc ≤ 30 MPa, [56], and 0.5 for 
fc ≥ 100 MPa, [57]. The linearly interpolated values were used for intermediate 
cube strengths in this study. For CS shaped CFDST columns, outer width (Bi ) of the  
square inner tube was used instead of inner diameter (Di ) in Eqs. (1)–(9), similar to 
Hassanein et al. [25]. 

SS Shape 

For NLFEA of SS-shaped DSTC columns, the confined concrete stress–strain model 
initially proposed by Mander et al. [53] and later modified by Zhao et al. [4] was used 
in this study. This analysis-oriented axial stress (f ')–strain (ε) model for confined 
concrete in SS-shaped CFDST columns is given by Eqs. (10)–(16):
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f ' = 
f '
cc

(
ε 

εcc

)
rm 

rm − 1 +
(

ε 
εcc

)rm (10) 

f '
cc = f '

c

[
1 +

(
to 
B0

)(
fy0 
f '
c

)]
(11) 

εcc = εco
[
1 + 5

(
f '
cc 

f '
c 

− 1
)]

(12) 

εco = 0.002 + 0.001
(

f '
c − 20 
80

)
(13) 

rm = Ec 

Ec − Esec 
(14) 

Ec = 3320
.

f '
c + 6900 (ACI 1984) (15) 

Esec = 
f '
cc 

εcc 
(16) 

SC Shape 

Figure 4c shows this study’s confined concrete axial stress–strain curve used in 
NLFEA of SC-shaped CFDST columns. This stress–strain model can be divided 
into four segments, i.e., OA, AB, BC, and CD (Fig. 4c), thus representing a modified 
version derived from the previous constitutive confined concrete model of the SS-
shape (i.e., Eqs. 10–16). Segment OA can be obtained from the previous axial stress– 
strain model of the SS-shape for f '

cc = γc f '
c [53]. Liang [58] suggested reduction 

factor (γc) for accounting effects of column size, concrete quality and the loading 
rate on confined concrete strength, as per Eq. (17): 

γc = 1.85D−0.135 
c (0.85 ≤ γc ≤ 1.0) (17) 

where, Dc = depth of the concrete core in the column. Liang [58] also recommended 
strain (εcc) at f '

cc be used as per Eq. (18). 

εcc = 

⎧ 
⎪⎨ 

⎪⎩ 

0.002 for f '
cc ≤ 28 (MPa) 

0.002 + f
'
cc−28 
54,000 for 28 < f '

cc ≤ 82 (MPa) 
0.003 for f '

cc > 82 (MPa) 
(18) 

The remaining segments of the axial stress–strain model (Fig. 4c), i.e., AB, BC 
and CD used in this study, were as also suggested by Liang [58] and given in Eq. (19):
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f ' = 

⎧ 
⎨ 

⎩ 

f '
cc for εcc < ε  ≤ 0.005 

βc f '
cc + 100(0.015 − ε)

(
f '
cc − βc f '

cc

)
for 0.005 < ε  ≤ 0.015 

βc f '
cc for ε >  0.015 

(19) 

where factor (βc) accounts for the concrete ductility and is given by Eq. (20) as  
suggested by Liang [58]. The ultimate strain used in this study for confined concrete 
was limited to 0.03 in FE simulations of SC-shaped CFDST columns. 

βc = 

⎧⎪⎨ 

⎪⎩ 

1.0 for  Bs 
to 

≤ 24 
1.5 − 1 

48 
Bs 
to 

for 24 < Bs 
to 

≤ 48 
0.5 for  Bs 

to 
> 48 

(20) 

2.3 Loading and Boundary Conditions 

In this study, displacement-based loading and boundary conditions were applied to 
the endplate nodes of the numerical models. In the transverse directions (i.e., x and y 
global coordinate directions), both top and bottom endplates nodes were restrained 
against lateral translations. Whereas along the longitudinal axis of the columns (i.e., 
global z-direction), the translation was constrained at a single node located near 
the centroid of the bottom endplate. The compressive loading was applied in the 
longitudinal direction (−z coordinate axis) by prescribing the displacement equal to 
1/6th of the column height on the nodes of the top endplate in multiple load steps. 

2.4 FE Modeling Validation 

The nonlinear FE modeling methodology used in this study was first validated against 
the documented test results of 40 CFDST columns of multiple shapes, i.e., 16 speci-
mens of CC [14, 15] and 8 specimens each of CS [22], SC [24] and SS [23] shapes. 
Figure 5a–d compare the typical experimental and analytical axial load–deflection 
characteristics of nominally identical specimens for SS, SC, CC, and CS shapes of 
CFDST columns, respectively. Table 1 summarizes the plotted results for the ultimate 
axial load capacity of these typical specimens of CFDST columns. The analytical and 
experimental axial load–deflection curves agree closely (Fig. 5). The mean ratio of 
FEM-to-experiment ultimate capacity on all 40 CFDST column specimens was close 
to 1.0 (Appendix 2). Thus, the validation of FE modeling provided the confidence 
that the adopted methodology in the present study has captured well the compressive 
behavior of multiple shapes of CFDST columns and can be reasonably extended for 
further generation of datasets for ANN model training and testing.
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Fig. 5 FE modeling validations against documented axial load–deflection characteristics: a SS; b 
SC; c CC; d CS shapes 

Table 1 Comparison of experimental and FE-based axial load capacity of typical CFDST columns 

Column label Ultimate axial-load capacity Pult,NLFEA 
Pult.,Exp 

Pult., Exp. (kN) Pult., NLFEA (kN) 

CC1a 1790 1818 1.02 

CC2a 1791 1.02 

CS 1050 1074 1.02 

SC1a 1725 1789 1.04 

SC2a 1710 1.05 

SS1a 1194 1189 1.00 

SS2a 1210 0.98 

a Nominally identical CFDST column specimens
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3 Discussion of Results 

3.1 Datasets for Neural Network 

This study’s main objective was to reduce the maximum prediction errors by reopti-
mizing the ANN-based model using GA. A total of 171-composite CFDST columns 
(patterns) consisting of multiple cross-sectional shapes (i.e., 51 of CC, 43 of CS, 
38 of SC and 39 of SS shapes) were used for demonstration of the case study by 
predicting their ultimate axial load capacity (i.e., peak loads, Pult.). The total dataset 
of 171 patterns was randomly categorized into two representative subsets, the design 
and testing sets. For network training and optimization of architecture, the design set 
was used. In contrast, the testing set was never shown to the network during training 
and was exclusively used to check the trained network’s generalization prediction 
ability. The number of data patterns in the design set was varied from 20 to 120 
columns to arrive at the optimized design set size of 100 patterns (Appendix 1), 
resulting in a minimum mean absolute error (MAE) on the testing set. Accordingly, 
the remaining 71 data patterns (Appendix 2) were used exclusively in the testing set. 
The ANN training requires partitioning the design set into training, validation, and 
algorithmic-testing subsets. 

The error minimization algorithms use the training dataset for computing opti-
mized weights and biases in the network by computing the gradients. The validation 
patterns were used for checking the network overfitting to training data during this 
optimization process. The network generalization performance is compared during 
training using algorithmic-testing set patterns. Clear evidence of the poor division of 
the design set into training, validation, and algorithmic-testing subsets can be seen 
when different iterations are needed for validation and algorithmic-testing data errors 
to reach a minimum [35]. The partitioning of the design set used proportions of 70% 
for training, 15% for validation and 15% for algorithmic-testing subsets in this study. 

3.2 ANN Model Predictions 

Optimizing the network architecture results in an efficient prediction model with 
enough network parameters, i.e., weights and biases, which can model the input– 
output mapping complexity of the problem in question. A too-large network size can 
sacrifice the network generalization ability by making the input–output mapping too 
specialized for the design set. A network with too few parameters results in poor 
input–output mapping ability.



Estimating Axial Load Capacity of Concrete-Filled Double-Skin … 179

In this study, two network architectures [9-(m)-1 and 9-(m-m)-1] consisting of 
one or two hidden layer(s) between an input layer (with 9-inputs) and an output 
layer with single output were optimized for hidden layer neurons (m). The network 
architectures were trained with selected error minimization algorithms (i.e., Leven-
berg–Marquardt LM, [59]; and Bayesian-regularization BR, [60]) to choose the best 
network based on mean square error (MSE) on the testing set. Out of the four trained 
network architectures, i.e., 9-(m)-1-BR, 9-(m-m)-1-BR, 9-(m)-1-LM, and 9-(m-m)-1-
LM, respectively, with m optimized to equal to 9, 4, 9 and 5 neurons in the hidden 
layer(s) were obtained. The optimized network, i.e., 9-(4–4)-1-BR, showed about 7% 
mean absolute error for the testing set, which was the minimum among all considered 
network architectures. The best performing network 9-(4–4)-1-BR was selected as 
the ANN prediction model in this study. 

Figure 6 shows the performance of the ANN-based prediction model (i.e., 9-(4– 
4)-1-BR) for estimating the ultimate axial load capacity (Pult.,ANN) of the  CFDST  
columns of multiple cross-sectional shapes. The equal and fittings lines between the 
predicted and the actual (i.e., FE-based and experimental) ultimate axial load capacity 
are also shown in Fig. 6. The ANN-based prediction model showed a reasonably 
good prediction performance on CFDST columns of multiple shapes (i.e., CC, CS, 
SC and SS cross-sections). The absolute mean and maximum errors on the design 
set can be seen at about 3 and 18% for the design set, and 7 and 26% for the testing 
set, respectively (Fig. 6a). Between predicted and actual axial load capacity, the 
high R-square values of 0.9957 and 0.9587, respectively, for the design and testing 
sets demonstrate a close agreement between ANN model predictions and the actual 
CFDST column load-carrying capacities.

3.3 Hybrid GA-ANN Model Predictions 

The genetic algorithm (GA) was used to reoptimize the network parameters (i.e., 
weights and biases) of the mapping function represented by the best-performing 
ANN model [9-(4-4)-1-BR]. This re-optimization process was based on the design set 
patterns to reduce the maximum prediction error in the testing set patterns. Accord-
ingly, all network weights and biases in the mapping function represented by the 
ANN model were taken as parameters for optimization by GA. The fitness function 
was taken as the mean square error (mse) function on the design set. An initial popu-
lation of 100 members represented by the weights and biases of the ANN model 
was created for GA by adding random values in the ranges of −0.03 to 0.03 to the 
original network parameters. The population members were ranked based on their 
fitness function values to determine the best-performing parents for generating a 
future population. The entire population of weights and biases were divided into 
elite and non-elite groups by having the top 30% ranked members in the former and 
the remaining members in the latter. The non-elite group was subjected to mathemat-
ical mutation and single-point crossover processes to generate the best-performing 
offspring on the fitness function evaluation. These processes regenerated the next
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Fig. 6 Actual axial load capacity versus network model predictions for CFDST columns: a ANN 
model; b GA-ANN model; design set = 100 columns; testing set = 71 columns

generation population consisting of elite members from the previous generation and 
offsprings of the non-elite group. The whole procedure was repeated for about 10,000 
iterations till a top-ranked member of weights and biases was obtained based on 
fitness evaluation (i.e., lowest mse value) on the design set. 

Figure 6b shows the performance of the hybrid GA-ANN prediction model for 
estimating the ultimate axial load capacity (Pult., GA-ANN) for CFDST columns of 
CC, CS, SC and SS cross-sectional shapes. The maximum errors for estimating 
Pult., GA-ANN in the GA-ANN prediction model have decreased from 26 to 14% for the 
testing set and 18 to 14% for the design set. For both ANN and GA-ANN prediction 
models, the mean absolute error for the testing set can be seen as similar at about 7% 
(Fig. 6b). Also, the R-square value has improved for the GA-ANN prediction model 
compared to the ANN model, i.e., from 0.9587 to 0.9666 for the testing set. 

4 Conclusions 

This study presented a hybrid genetic algorithm optimized-artificial neural network 
(GA-ANN)-based approach for estimating the ultimate axial load capacity of 
concrete-filled double-skin steel tubular (CFDST) columns for different combina-
tions of circular and steel tube cross-sections, i.e., CC, CS, SC and SS shapes. A 
total dataset of 171-CFDST columns (i.e., 51 of CC, 43 of CS, 38 of SC and 39
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of SS shapes) was analyzed using nonlinear finite element analysis to obtain their 
ultimate axial load capacity and was used in the case study for demonstration. The 
governing inputs in both ANN and GA-ANN prediction models were geometry and 
material properties of CFDST columns, i.e., inner and outer steel tube diameter, thick-
ness, cross-sectional shape, height and yield strength, and unconfined compressive 
strength of sandwiched concrete. Based on the results of this study, it is concluded 
that a hybrid GA-ANN prediction model is more accurate and can significantly 
reduce the maximum prediction errors than the ANN model in estimating the axial 
load capacity of CFDST columns of multiple cross-sectional shapes (i.e., about 26 to 
14% error reduction in this study). The proposed GA-ANN prediction model can be 
a potentially practical tool for estimating the axial load capacity of CFDST columns. 

Appendix 1 

The design set of 100 columns used for ANN design (training, validation and 
algorithmic testing)
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Appendix 2 

The testing set of 71 columns (51 FE-analysed and 20 actual tested columns) used 
for testing ANN and GA-ANN model performances
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