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Preface

This book entitled, NanoBioenergy: Application and Sustainability Assessment,
provides ecofriendly nanomaterials as green catalysts to enhance biofuels.
Nanomaterials work as catalysts in various steps of different biofuels production
options in order to improve the productivity of the bioenergy. Nevertheless, synthe-
sis cost of the nanomaterial may be the hindrance to limit the biofuels production
process. Therefore, green synthesis of nanomaterial may play a potential role to
improve sustainability of overall biofuels process. Based on this concept, this book
has been divided into nine focused chapters in which Chaps. 1 and 2 explore
feasibility and applications of nanomaterial to improve biofuels production. Whereas
Chaps. 3 and 4 deal with the possibility of nanomaterial application in gaseous
biofuels and biosynthesis of nanomaterial through microbial process. Further,
Chaps. 5 and 6 are focused on green synthesis of iron nanomaterial for biohydrogen
and other biofuels applications while Chaps. 7, 8, and 9 discuss green synthesis of
nanomaterials using waste biomass and microbial cultures and contributions of
nanomaterials in microbial fuel cells application. The book certainly sets a potential
milestone that overcomes the high production cost and low productivity issues
related to waste to bioenergy production.

Varanasi, Uttar Pradesh, India Manish Srivastava
P. K. Mishra
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Chapter 1
Application of Nanomaterials
for Renewable Energy Production

Gaurav Kumar Pandit, Ritesh Kumar Tiwari, Shanvi, Manisha Verma,
Veer Singh, Kundan Kunal, Ghufran Ahmed, and Ramesh Chandra

Abstract The ever-increasing demand for energy due to the rapidly increasing
industrialization and urbanization compels the research community to devise ways
to transition from non-renewable sources of energy to renewable energy sources.
The burning of fossil fuels is the primary source of energy that we are utilizing today.
Apart from the fact that it is not sustainable and is likely to diminish by 2050 (if we
continue using it at the same rate), it also poses severe adverse threats to the
environment due to harmful greenhouse gases (GHGs). Thus, we must look for
ways to utilize renewable energy in ways so that it can fulfill our energy demands
without causing harm to the environment. The efficiency of production and storage
of renewable energy needs to be enhanced. Nanotechnology is one such field that is
being explored and studied extensively lately due to its practical applications in
renewable energy. This chapter discusses the primary classification of nanomaterials
and their applications in various renewable energy generation and storage, such as
solar energy, hydrogen energy.

Keywords Non-renewable energy · Renewable energy · Fossil fuels ·
Nanotechnology · Solar energy · Wind energy · Hydrogen energy · Hydrogen
economy
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1.1 Introduction

Energy is very crucial for the holistic progress of any country (Stern 2011; Barnes
et al. 2011). The energy demand increases exponentially due to the rapid increase in
industrialization and urbanization (Graham 2009; Mazur 1994). The significant
portion of energy that we are utilizing today comes from the burning of fossil
fuels. But the burning of fossil fuels has many deleterious effects on the environment
attributed to the release of harmful greenhouse gases (GHGs). It also adversely
impacts human health (Kataki et al. 2017). It is cited as the primary contributor to the
increasing global warming. As stated by the US Energy Information Administration,
the all-consuming of fossil fuels in 2016 caused a substantial 76% of the US
greenhouse gas emissions. Also, fossil fuels are representatives of non-renewable
sources of energy; that is, they cannot be utilized sustainably. If we continue using
fossil fuels at the same pace for our energy needs, it is reported that we will fall short
of this energy source by 2050 (Satyanarayana et al. 2011; Demirbas 2009). Thus, it is
very imperative that we look for other sources of energy having some of the essential
attributes of sustainability and minimal harmful effect on the environment. Renew-
able sources of energy are the potential alternatives having the characteristics above.
Renewable energy is any energy source that can fulfill the existing energy demands
without compromising the energy needs of the future as well. In other words, they
are a form of a sustainable source of energy. Renewable energy sources such as solar
energy, hydrogen energy, wind energy, geothermal energy, and biomass energy
have the potential to generate electricity, heat, and light, which can be utilized for
various purposes without having deleterious impacts on the environment. Nowa-
days, much interest and research have been attentive on the practice of Nanotech-
nology in the renewable energy field. Nanotechnology is basically the science of
materials in the nanoscale (diameter having less than 100 nm mostly).
Nanomaterials, owing to their very small size, confer many technological and
engineering advantages for the parts or equipment associated with renewable energy
generation. Various beneficial aspects of nanomaterials have been explored in
renewable energy generation, such as wind energy, solar energy, hydrogen energy,
etc., and efforts are being made to transition the use of nanotechnology for renewable
energy production to a commercial scale. Let us know more about the use of
nanotechnology in renewable energy generation.

1.2 Classification of Nanomaterials

Nanomaterials can be classified according to various parameters. Broadly, they can
be classified into (Mageswari et al. 2016): (1) Nanoparticles, (2) Nanoclays, and
(3) Nanoemulsions.
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1.2.1 Nanoparticles

Nanostructures and composites are the two forms in which nanoparticles can exist.
Their size range from 1 to 100 nm (Hasan 2015). They can be of various shapes,
sizes and can be composed of different types of materials. Based on the materials
they are composed of, nanoparticles can be (Mageswari et al. 2016; Jeevanandam
et al. 2018; Ealia and Saravanakumar 2017)

1.2.1.1 Organicnanoparticles

These nanoparticles are favorable choices for drug delivery. Some of the character-
istics which make them a favorable candidate for this purpose are: (1) They are
biodegradable; (2) They are not toxic by nature; (3) Some of them form a hollow
core and are called nanocapsules. They are believed to be sensitive towards light and
heat (Tiwari et al. 2008), such as liposomes and micelles; (4) Suitable for targeted
drug delivery. Besides their general characteristics such as morphology, size, etc.,
their field of application is also determined by their drug-carrying capacity, drug
delivery system (whether encapsulated or adsorbed) as well as stability. Some
examples are liposomes, ferritin, micelles, and dendrimers.

1.2.1.2 Inorganic Nanoparticles

They do not contain carbon. They comprise metal and its oxides-based
nanoparticles.

1.2.1.3 Carbonnanoparticles

It consists of carbon entirely. Examples: Fullerenes, carbon nanofibers, carbon
nanotubes (CNT), etc.

1.2.2 Dimension-Based Nanomaterials Classification

The nanomaterials classification based on dimension is achieved by considering the
pattern of the electron trail alongside the various dimensions in the nanomaterials.
Pokropivny and Skorokhod proposed this system of classification in 2007
(Pokropivny and Skorokhod 2007). Based on the dimension, nanoparticles can be
of different types (Jeevanandam et al. 2018; Mageswari et al. 2016):



4 G. K. Pandit et al.

1.2.2.1 0D

In these types of nanomaterials, the electrons movement is enmeshed in all three
dimensions, or they are confined within the dimensionless space. Examples are
fullerenes, molecules, metal carbides, etc.

1.2.2.2 1D

The electrons movement in this type is restricted in one dimension, in the
X-direction. Examples include nanotubes, filaments, fibers, etc.

1.2.2.3 2D

The movement of electrons is confined in the X-Y plane. Examples- Layers.

1.2.2.4 3D

The movement of electrons can occur along the X, Y, and Z directions (Siegel 1993).

1.2.3 Classification Based on the Origin of Nanomaterials

1.2.3.1 Natural

They are naturally present in the Earth’s sphere, i.e., atmosphere comprising of
hydrosphere, lithosphere, troposphere, and even the biosphere. It is noteworthy to
mention here that the biosphere includes all the microorganisms and the higher
organisms, which include humans (Sharma et al. 2015; Hochella et al. 2015). Either
natural processes or some sort of anthropogenic activity serves to produce these
nanomaterials.

1.2.3.2 Synthetic

They are fabricated or engineered and are generated by processes that may be
physical, biological, chemical, or hybrid methods such as mechanical grinding,
etc. One of the significant challenges with these nanomaterials is difficulty in
assessing whether the current knowledge is sufficient in forecasting their behavior
or if they exhibit any environment-related activity that is distinct from the
nanomaterials occurring naturally (Wagner et al. 2014).
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1.2.4 Nanoclays

They are the other types of nanomaterials, the preparation of which exploits the
hydrophilic or charged characteristics of clay molecules. The charged groups can be
ammonium, aryl/alkyl, phosphonium, or imidazolium, either in the aqueous or solid-
state. X-ray diffraction, gravimetric analysis, Fourier transform infrared (FTIR)
spectroscopy, and inductively coupled plasma can be used for chemical
characterization.

1.2.5 Nano-Emulsion

These types of nanomaterials are in the form of soft materials and are generated by
dispersing the solid materials, droplets, and polymers in the viscous liquid. It is
generally synthesized by using either of the two methods:

1. High-energy emulsification includes microfluidizer, ultrasonication, and high-
pressure homogenization.

2. Low energy emulsification includes techniques like phase inversion temperature,
solvent displacement, and phase inversion composition.

The given figure (Fig. 1.1) shows the general classification of nanomaterials.

1.3 Synthesis of Nanomaterials

The route for the synthesis of nanomaterials can be physical, chemical, or biological
(Mageswari et al. 2016).

Fig. 1.1 Types of nanomaterials
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1.3.1 Physical Methods

These include physical techniques to synthesize nanomaterials. One of the main
advantages of physical methods over chemical methods is that nanomaterials have a
uniform distribution as they are devoid of solvents. Some of the techniques include:

1.3.1.1 Laser

It uses Transmission Electron Microscopy to emit high-energy electron beams and
irradiate surfaces to synthesize nanomaterials of various forms. Examples are carbon
nanocapsules, nanotubes, etc.

1.3.1.2 Arc-Discharge

Two methods, including higher frequency plasma and direct current arc plasma, can
be applied for this technique. This is mainly used to synthesize fullerenes.

1.3.1.3 Combustion

In this technique, the activation energy barrier is overcome by the heat generated
during the exothermic reaction. It is fast and has the potential to form a wide range of
ceramic oxides.

1.3.1.4 Evaporation–Condensation

In this technique, first, the metals, ceramics, or alloys are allowed to evaporate and
react with each other using gases. Later, they are subjected to condensation, leading
to the formation of nanomaterials.

1.3.1.5 Laser Ablation Method

This is an advanced technique that allows for the controlled synthesis of
nanomaterials with respect to the composition and size of particles. In this, the target
is subjected to vaporization followed by controlled condensation with well-defined
pressure and temperature parameters. It can be used to synthesize various nitrides,
carbides, and metal oxides at the nanoscale.
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1.3.2 Chemical Methods

These methods allow for the extensive quantity synthesis of nanomaterials in a
controlled manner (Hyeon 2003). There are many methods for synthesizing
nanomaterials by chemical means (Chaki et al. 2015; Umer et al. 2012; Anbarasu
et al. 2015; Yu et al. 2009).

1.3.2.1 Chemical Reduction

It is the most applied technique for the synthesis of nanomaterials in the form of
colloids. It involves the chemical reduction of inorganic as well as organic reducing
agents.

1.3.2.2 Oxidation

The process of oxidation can be used to form nanomaterials of alloys, metals, or
oxides, either in water or some other organic solutions.

1.3.2.3 Microemulsion

It involves the separation between two immiscible phases in space, that is, between
reducing agent and metal in two-phase aqueous organic systems. Quaternary ammo-
nium salts are used to mediate the interface between two phases. Stabilization of the
clusters of the metal is achieved as the stabilizer molecules are capped in the
non-polar aqueous medium, which is then transferred to the organic phase.

1.3.2.4 Sol-Gel Process

In this method, the first formation of sol is achieved by dispensing precursors in
suitable solvents, which upon drying, are put in solid (gels) to form a polymeric
network. When the gel is subsequently dried to be subjected to operations such as
sintering and calcination, ceramic products are formed. Other chemical synthesis
methods include polymerization, microwave-assisted synthesis, UV-initiated photo-
reduction, irradiation, etc.

Some drawbacks of physical and chemical methods of nanomaterial synthesis
(Mageswari et al. 2016; Hebbalalu et al. 2013):

1. Complex protocols.
2. High operational costs.
3. The presence of minor toxic components makes their biological use questionable.
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Table 1.1 Synthesis of nanomaterials using various biological agents

Biological
agent

Plants Azadirachta indica, Lemon grass, Garcinia
mangostana, etc.

Gold, Silver, Copper, Alumin-
ium oxide, etc.

Bacteria E.coli, sulfate-reducing bacteria, Bacillus
subtilis,etc.

Cadmium sulfide, Magnetite,
Titanium oxide, etc.

Fungi Aspergillus flavus, F.oxysporum, Agaricus
bisporus,etc.

Silver, Lead sulfide, Zinc sul-
fide, Silver, etc.

Yeast Saccharomyces cerevisiae, Extremophilic
yeast, Yarrowia lipolytica, etc.

Titanium oxide, Manganese
oxide, Gold, Silver, etc.

Actinomycetes Rhodococcus sp., Nocardiopsis sp., S.
albidoflavus, etc.

Gold, Silver, etc.

1.3.3 Biological Synthesis

Biological production of nanomaterials is more environment-friendly and thus
preferred more over physical and chemical modes (Hebbalalu et al. 2013; Sastry
et al. 2003; Kruis et al. 2000; Ahmad et al. 2003).

The given table (Table 1.1) enlists some of the biological agents with examples
for the synthesis of nanoparticles.

1.4 Nanomaterials: Applications in Renewable Energy

The advancements in nanotechnology, together with the fact that nanomaterials hold
several benefits to be applied for renewable energy, have in all opened a new domain
of research. Some of the attributes of nanomaterials that make them a preferred
choice for various renewable energy applications are (Hussein 2015):

1. They provide greater capacity for energy storage and efficiency for lighting and
heating.

2. The energy so generated with the use of nanotechnology can help curtail
pollution.

The nanomaterials, having their one or more dimensions at the nanoscale, tend to
disobey conventional rules of physics and thus express remarkable properties com-
pared to their larger entities. Some of the advantageous features and potential
benefits they show at the nanoscale are their strength, electrical conduction capacity,
and reactivity increase.
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1.4.1 Solar Energy

Solar energy is one of the primary sources which can be harnessed to produce
renewable energy. The sunlight that is reflected on the Earth’s surface annually
surpasses the total resources that we use. It is noteworthy to mention here that the
sunlight of 1 h equates to more than the total energy consumed annually (Vayssieres
2009). Thus, it is of utmost relevance to utilize this most excellent energy source to
meet the energy requirements efficiently and inexpensively. There are two ways by
which we can use solar energy (Ghasemzadeh and Shayan 2020; Esmaeili Shayan
et al. 2020):

1. To directly produce electricity utilizing sunlight.
2. Solar thermal energy can be used in high-temperature power plants to generate

electricity. Or for ventilation in houses and processing of hot water when used in
low-temperature power plants.

Nanotechnology can be used to improve heat and electricity generation. Nano-
technology can be exploited to increase the efficiency of solar cells in many ways
(Sarbu et al. 2017):

1. Nanotechnology can be used to enhance the storage of solar power.
2. The efficiency of solar cells can be boosted using nanowires.
3. Sunlight absorption and retention can be enhanced.

1.4.1.1 Improved Absorption and Capture of Solar Energy

Nanomaterials having the capacity to emit and capture light such as Silver, gold, or
quantum dots, and fluorescent nanofibers may be employed to advance the func-
tioning of solar cells (Esmaeili Shayan and Najafi 2019). Based on their dimen-
sions, these nanoparticles can absorb different wavelengths and become excited.
After this these nanoparticles emit the absorbed energy in the form of radiation
with a different wavelength or from the earliest one. Owing to their photoelectric
properties, which help in the conversion of solar light to electricity, however, they
tend to absorb wavelengths that are beyond the visible spectrum. A fascinating
improvement of 64% in the performance of solar energy is observed when
projected simulating the quantum-based cell theory. Quantum dots of silver sulfide
and silver selenide tend to immensely enhance the response of the solar cell to
light. It has been observed that almost a 4% increase in the production of electrical
energy is seen with these quantum dots when compared to routine pigment-
sensitive cells. Hence, such quantum dots are very relevant to increase the effi-
ciency of solar cells.
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1.4.1.2 Nanofluids

Nanofluids, owing to their high heat transfer coefficient in heat exchangers or
engines, serve to rise the economy and performance. Many businesses and academic
institutes are adopting solar batteries and heaters.

1.4.1.3 Photocatalysts

These are stable semiconductors generating an electron-hole pair as they collect
photons, thus interfering with the molecules at the surface level. Some of the
advantages of nano-photocatalysts with respect to solar cells are:

1. The performance of the solar cells can be enhanced dramatically as the absorption
of light can be improved attributed to their property of absorbing specific light
spectra.

2. The absorption of sunlight and the performance of the solar cells also get
improved as they render a clean atmosphere free from air pollutants and obstacles
to light. This is due to their anti-dust, self-cleaning, and anti-steam properties.

3. They also help in improving the energy-transfer capacities.

1.4.1.4 Nanotechnology in the Storage of Power

Nanotechnology is also being increasingly used for the storage of power. Many
factors such as environmental conditions, including temperature, hours, photope-
riod, and atmospheric patterns, tend to impact solar power generation systems
production, rendering the consistent supply of output not feasible in such cases
(Achkari and El Fadar 2020). Owing to the fact that the ordinary or conventional
batteries have certain loopholes such as inefficient capacity, heavyweight and poor
performance and therefore, Lithium batteries are in trend nowadays (Walker 2013).
Lithium-ion batteries utilize organic solvents for the purpose of electrolytes instead
of gas used in conventional batteries. But liquid electrolytes have strong electrical
resistance, and nanomaterials are being utilized to increase the electrolyte’s effi-
ciency. Nanotechnology aims to boost the conductivity by sixfolds by adding
powers in the form of nanoparticles (silicon oxide, zirconium oxide, etc.) to
non-aqueous electrolytes.

The given figure (Fig. 1.2) displays some of the general approaches in which
nanotechnology can be applied in solar energy sector.
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Fig. 1.2 Approaches for nanotechnology applications in solar energy

1.4.2 Renewable Hydrogen Energy and Use
of Nanotechnology

Hydrogen energy is also being explored as a clean source of renewable energy for it
only produces water upon consumption in fuel cells. Solar water splitting has been
considered as one of the most efficient ways of producing hydrogen energy. The
hydrogen so produced can then be utilized by fuel cells for the generation of
electricity, with water being the only emission. This also paves the way for the
effective utilization of solar energy and its conversion (Mao et al. 2012). For the
purpose of ensuring efficient and optimum utilization of solar energy for hydrogen
energy production, the efficacy of solar water splitting systems must be increased.
Also, the storage capacity and performance of fuel cells should be enhanced to make
hydrogen energy the primary contributor to the prospective renewable energy-based
economy.

The given figure (Fig. 1.3) shows the general framework for production of
hydrogen energy using solar water splitting-

1.4.2.1 Nanomaterials-Based Electrodes for Photo-Electrochemical
Water Splitting

Water splitting by photo-electrochemical (PEC) means been the fascinating way of
hydrogen energy production amongst other techniques. Fujishima and Honda first
pioneered Solar energy-induced splitting of water in PECs, wherein they used TiO2

anode and Pt cathode to generate oxygen and hydrogen, respectively (Fujishima and
Honda 1972). In this system, once the anodes are irradiated by sunlight, and if the
irradiated energy has energy larger than its bandgap, then electrons are generated in



12 G. K. Pandit et al.

Fig. 1.3 A general
framework for hydrogen
energy production using
solar water splitting

the conduction band, and holes are generated in the valence band respectively (Chen
et al. 2010). As a result of this, water gets oxidized at the TiO2 anode liberating
oxygen, and the photogenerated electrons are transferred to the Pt cathode to produce
hydrogen. However, oxygen production at the photoanode is kinetically limited for
splitting of water in the PEC process, and so, nanostructured photoanodes were
designed for PEC water splitting leading to the production of oxygen.TiO2, which is
the most widely used semiconductor for PEC-based water splitting, has a very large
bandgap of almost 3.2 eV (Chen and Mao 2007; Ni et al. 2007). This renders the
TiO2 anode inefficient and incapable of absorption of light in the visible and infrared
range. Thus, photoanodes were designed to introduce either a donor or acceptor level
in the forbidden gap to narrow the bandgap of TiO2. This makes the photoanode
TiO2 sensible to visible light (Chen et al. 2010; Chen and Mao 2007). For instance, a
TiO2 doped nanocrystalline film showed a more excellent efficient water splitting
phenomenon with 11% accounting for total energy conversion and 8.35% of
photoconversion efficiency, attributed to the enhanced capability to absorb visible
light (Khan et al. 2002). The morphology of TiO2 is also of considerable importance
since the morphology impacts the capability of transfer of charge. TiO2 nanotube
arrays were designed and examined by Grimes and co-workers for water splitting by
PEC, and it was found that they render more efficient charge separation owing to
their architecture (Rani et al. 2010; Mor et al. 2005, 2007). The photoelectric
conversion efficiency of almost 16.5% could be obtained under UV illumination
when nanotubes of 24 μm in length were fabricated electrochemically in an ethylene
glycol-based electrolyte (Mao et al. 2012).
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1.4.2.2 Nano-Photocatalysts and Hydrogen Production

Bard in 1979 designed a photocatalytic water splitting system based on the concept
of photoelectrical splitting of water. He utilized particles or powders of semicon-
ductors as photocatalysts (Bard 1979). Electrons and holes photogenerated at the
conduction and valence bands, respectively, are transferred to photocatalysts, where
they participate in a redox reaction leading to oxygen and hydrogen production.

Some of the fundamental characteristics to be considered for photocatalysts are
(Mao et al. 2012):

1. Relevant band gaps and structures to ensure optimum absorption of sunlight are
needed to drive oxygen and hydrogen production.

2. Efficient transferability of holes and electrons.
3. High catalytic reactivity of surface for half-reactions.

Extensive research and efforts have been put in the past decades to meet the
specific requirements and ensure efficient generation of hydrogen from water (Chen
et al. 2010; Shen et al. 2011; Osterloh 2008; Shen and Mao 2012; Maeda and Domen
2010).

1. Surface Layer Disorders
As mentioned earlier, TiO2 is the most widely studied photocatalyst, but it has

a wide band gap, limiting its absorption efficiency. To narrow its bandgap, doping
with ions is done, but this also has a drawback. The energy levels created by
doping can then act as recombination centers for photoinduced charges and
deleteriously impact the photocatalytic activity of doped TiO2 (Chen and Mao
2007). To circumvent this issue, a new approach of surface layer disorder was
envisioned for the enhanced absorption of solar energy by TiO2 nanocrystals
(Chen et al. 2011). Surface disordered black TiO2 nanocrystals obtained by
hydrogenation of anatase TiO2 nanocrystals at 200 °C for a duration of 5 days
in 20.0- bar H2 atmosphere, produced hydrogen at a constant rate. The hydrogen
production rate so observed (10 mmol h-1 g-1 of photocatalysts) and efficiency
as close to 24% of solar energy conversion is almost two times greater than most
semiconductor photocatalysts’ yield (Chen et al. 2010). This observation is
attributed to the efficient energy harvesting from UV to near infrared by the
surface disordered black TiO2 and the retardation in recombination of charge
(Mao et al. 2012).

2. Cocatalysts
Loading of cocatalysts onto photocatalysts is considered as an efficient strat-

egy for optimal water splitting due to increased photocatalytic activity for the
formation of hydrogen or oxygen. Different materials have been developed as
proficient cocatalysts in the past few decades, such as sulfides and oxides of
metal, transition metals, etc.
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1.4.2.3 Solid-State Nanomaterials (Hydrogen Storage)

Storage of hydrogen is very crucial to realize the full potential of hydrogen energy
economy or renewable energy economy. It can be stored in various ways—as a
cryogenic liquid, pressurized gas, or inappropriate solid-state materials such as
carbon materials, metal organics, or metal hydrides. Of all these ways, solid-state
hydrogen storage is the most efficient and technically feasible approach. Material
specified surface interactions determine the capacity of storage and kinetics in case
of solid-state storage, either through strong chemisorption or weaker dispersed
physisorption (Liu et al. 2012; Abbasi and Abbasi 2011; Froudakis 2011;
Dagdougui 2012; Ding and Yakobson 2011). Metal hydrides (reversible chemisorp-
tion), particularly MgH2, are essential representatives of the candidates for solid-
state hydrogen storage attributed to their high capacity of hydrogen storage and
comparatively high weight percentage (7.6%) of hydrogen in MgH2 besides the fact
that magnesium is also available abundantly (Mao et al. 2012; Sakintuna et al. 2007).

However, there are certain limitations with these metal hydrides:

1. Poor reaction kinetics
2. High thermodynamic stability
3. High enthalpy of formation of bulk MgH2 rendering it incapable of producing

hydrogen at temperatures below 300 °C

And so, it is needed to reduce the enthalpy to make MgH2 a potent candidate for
storage systems. Alloying Mg with metals such as Al or Ni can help in
circumventing this enthalpy issue. However, they tend to substantially decrease
hydrogen weight percentage (Bouaricha et al. 2000; Hirata et al. 1983). A better
option is the sandwiched Mg nanoparticle layer as Pd/Mg/Pd thin films deposited by
the PLD approach. This nanoparticle film proves beneficial in the reduction of
enthalpy of formation, and so, the thermodynamic barrier to the formation of hydride
can be catered (Barcelo et al. 2010).

1.4.3 PEMFCs and Nano-Electrocatalyst

Polymer Electrolyte Membrane (or Proton Exchange Membrane) Fuel Cells are very
potent in the conversion of clean energy for they can generate electricity without
pollution and combustion at an astounding conversion efficiency of 70% by
harnessing hydrogen’s chemical energy. This renders them as a highly eligible
candidate to replace combustion engines both for stationary and mobile purposes
(Yuan et al. 2012). In this system, ionization of hydrogen occurs at the anode
liberating protons and electrons, which subsequently recombine at the cathode and
reduce oxygen to water. Electrocatalysts are needed to improve the kinetics of
reduction of oxygen at cathode, which otherwise, because of slow kinetics, can
significantly cause voltage loss in PEMFCs. Pt is regarded as a good electrocatalyst
for this purpose; however, owing to its scarcity and very high cost, efforts have been
made in the past few decades to devise low-Pt alloys for the reduction in the use of Pt
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in fuel cells (Chrzanowski and Wieckowski 1998). Some of the non-Pt
electrocatalysts include metal carbides, metal chalcogenides, metal oxides, metal
nitrides, and macrocycles. Attributed to the high resistance against corrosion and
wear, non-Pt chromium nitrides electrocatalysts such as CrN (highly crystalline CrN
nanoparticles) and Cr2N are the prospective electrocatalysts (Volz et al. 1998;
Lackner et al. 2006).

1.4.4 Nanotechnology and Wind Energy

Wind energy is also a type of renewable energy in which wind turbines are used to
convert the wind’s kinetic energy into another form such as electrical or mechanical
energy, which can then be utilized for various functional applications. Wind energy
is believed to be less detrimental to the environment when compared to other energy
sources, for wind turbines do not burn the fuels for the generation of electricity. For
the optimum utilization of wind power plants, wind speed should be a minimum of
13–15 m/s and 10 m/s for the smaller ones. However, the wind speed is always not
uniform and optimum, which limits the efficiency of these plants up to 30–60%
(Hussein 2015). It is noteworthy to mention here that the square of the length of the
wind turbine and the energy production are proportionally related (Dalili et al. 2009;
Sherif et al. 2005). This is where nanotechnology steps in. Nano-composites enable
the fabrication of a longer blade with greatly enhanced strength. This can be
attributed to their superb and efficient stiffness and strength-to-weight ratios. Nano-
technology via low-friction coatings and nano-lubricants also serves to reduce the
loss of energy due to various tribological problems such as scuffing, wear, etc.
(Hussein 2015).

1.4.5 Nanotechnology in Other Renewable Energy Sources

1.4.5.1 Biofuels

• It may successfully lead to the generation of biofuels from solid wastes
(Mahmood and Hussain 2009). Nanotechnology also serves to increase the
yield of biodiesel production. It has been observed that KF/CaO nanocatalyst
led to biodiesel production with a yield of 96.8%. It has also been stated that it
could also be used for the conversion of oil with high acid value into biodiesel
efficaciously (Wen et al. 2010). It has also been stated that a more “greener”
production of biodiesel could be obtained with the use of nanocatalyst (Konwar
et al. 2014). Sajith et al. (2010) concluded that the emission of nitrogen oxides
compounds and hydrocarbons could substantially be reduced with the addition of
particles of cerium oxide in the nano range on biodiesel (Sajith et al. 2010).
Hipólito et al. (2014) stated that they could obtain a biodiesel yield of 97–100%
using STNT following a chemical reaction of 8 h duration (Hipólito et al. 2014).
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1.4.5.2 Geothermal Energy

Nanofluids can prove to be crucial in cooling the pipes exposed to very high
temperatures during the extraction of geothermal energy from the crust of the
Earth. They can also be utilized for cooling purposes in components such as
electronics and sensors in drilling machines (Hussein 2015).

1.5 Conclusion and Future Perspectives

It can evidently be stated that nanotechnology is playing a significant part in
producing various renewable energies. Nanomaterials greatly influence the absorp-
tion capacities of various devices involved in the conversion and utilization of
renewable energy. Various aspects of nanotechnology are being explored and
exploited lately. As the need for clean energy generation increases due to multifar-
ious problems associated with conventional energy sources, i.e., burning fossil fuels,
the demand for renewable energy production is also increasing exponentially.
Nanotechnology finds its wide applications in almost all renewable energy
sources—solar energy, hydrogen energy, biofuels, geothermal energy, wind energy,
etc. Nanomaterials can be efficiently used for the storage of renewable energies, such
as solar energy and hydrogen energy. They also boost the efficiency of renewable
energy-producing devices; for example, nano-composites can be used to fabricate
longer blades with enhanced strength, which will ultimately increase wind energy
generation efficiency.

1. Nanotechnology is one of the critical factors for the complete realization of the
“Hydrogen Economy.”

2. It is mandatory to study, research, and explore more about nanotechnology so that
its shortcomings can be managed and its transition to commercial status can be
accomplished entirely soon.
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Chapter 2
Applications of Nanomaterials in Liquid
Biofuels Production

B. S. Naveen Prasad, S. Sivamani, and B. Saikat

Abstract Liquid biofuels are mainly used as fuels in power generation and trans-
portation sectors. The common liquid biofuels include biooil, bioethanol, and
biodiesel. Nanomaterials are gaining more significance today mainly because of
their large surface area and reusability. The present review focuses on the application
of nanomaterials in the production of liquid biofuels. Woody biomass, agricultural
and agro-industrial residues, aquatic and marine biomass, animal residues, and waste
generated from large-scale commercial activities are the feedstocks to produce liquid
biofuels. Biooil is produced by either pyrolysis or liquefaction of biomass, whereas
bioethanol and biodiesel are produced by fermentation and transesterification of
biomass, respectively.

Keywords Nanomaterials · Biooil · Bioethanol · Biodiesel

2.1 Introduction

Liquid biofuels are alternative fuels to conventional petroleum-based fuels that are
used mainly for power generation and transportation (Salvi et al. 2013). Liquid
biofuels can be produced by any of the following processes: Physicochemical,
thermochemical, and biochemical processes (Fig. 2.1). Physicochemical processes
involve extraction of oil from vegetable seeds or animal fats and transesterification
of oils to biodiesel (Akbar et al. 2009). Thermochemical conversion converts
biomass to liquid biofuels through liquefaction and pyrolysis (Zhang et al. 2010).
Biochemical processes convert sugary feedstocks to bioethanol through fermenta-
tion (das Neves et al. 2007). Liquid biofuels include vegetable and animal oils,
biodiesel, biooil, and bioethanol (Table 2.1). Biooil is produced by either pyrolysis
or liquefaction of biomass, whereas bioethanol and biodiesel are produced by
fermentation and transesterification of biomass, respectively (Demirbas 2011).
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Fig. 2.1 Biomass conversion processes for liquid biofuels production

Table 2.1 List of liquid
biofuels and their production
processes

Liquid biofuel Production process

Vegetable oil Solvent extraction

Animal oil Melting

Biodiesel Transesterification

Biooil Liquefaction and pyrolysis

Bioethanol Simultaneous hydrolysis and fermentation

Vegetable oils are produced by solvent extraction, whereas animal oils are produced
by melting of fats (Srinivasan and Jambulingam 2018).

2.2 Biomass Conversion Processes for Liquid Biofuels
Production

Extraction is the term used to describe the process of extracting triglycerides from
oilseeds (Yusuf 2018). This is accomplished by utilizing a variety of chemical,
biochemical, and mechanical techniques designed to maximize yields while mini-
mizing product quality degradation. It is the most critical step in the oil processing
process and is determined by the part of the kernel, seed, or pulp that contains the oil
(Subroto et al. 2015). In most industries, such as food and pharmaceuticals, the
separation of bioactive compounds of interest requires the use of a large amount of
solvent (water, n-hexane, ethanol, chloroform, methanol, petroleum ether, etc.).
Researchers have spent decades focusing their efforts on developing more efficient
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Fig. 2.2 Oil extraction methods

and environmentally friendly methods of extraction (Sheikh and Kazi 2016). Extrac-
tions have progressed from conventional solvent and mechanical extractions to more
advanced non-traditional techniques such as Supercritical Fluid Extraction (SFE),
ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE)
(Fig. 2.2). Grinding is a critical operation in the preparation of materials for oil
extraction, regardless of the method used, because it can result in high oil yields and
have a beneficial effect on downstream operations when performed properly (Alonge
and Jackson 2018; Nde and Foncha 2020).

2.2.1 Processing of Animal Fat

The process begins with a series of purification steps, followed by modification to
create more usable products and finally packaging (Sharma et al. 2013). Settling and
degumming are used to remove proteins from animals or plants, carbohydrates
residues, phosphatides, and water. Settling entails the passive storage of heated
fats in conical-bottomed tanks (Chakrabarty 2003). Degumming is a process that
removes phospholipids by adding water at a concentration of 1–3% at temperatures
between 60 and 80° for 30–60 min. A small amount of acid is frequently added to
water to raise the hydrogen content of the phospholipids. The term “neutralization”
refers to the process of washing oils with strong alkaline water solutions to remove
nonglyceride fatty materials (sodium hydroxide). Bleaching is a critical step in the
production of fatty acids. Frequently, crude oils contain pigments that give off
undesirable colors (carotenoids, gossypol, etc.) or promote lipid oxidation (chloro-
phyll). Bleaching darkens fats and oils by adsorbing colorants on bleaching earth
and/or charcoal or by chemical reactions involving their oxidation or reduction.
Deodorization is a critical step in the oil refining process due to consumer demand
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Fig. 2.3 Processing of animal fat

Fig. 2.4 Transesterification of vegetable oil or animal fat

for extremely bland or flavorless fats and shortenings (Shahidi 2005). Fractionation
is the process by which a fat or oil partially crystallizes at a given temperature
(Tirtiaux 1983). For a period of time, the fat is kept at the crystallization temperature
to allow for the formation of equilibrium or near equilibrium between crystallizing
and non-crystallizing triacylglycerols. Hydrogenation, the direct addition of hydro-
gen to fatty acid double bonds, is used to modify large amounts of fats and oils. This
process modifies the molecular structure and the geometry, number, and location of
double bonds (Figs. 2.2 and 2.3).

2.2.2 Transesterification

The conventional biodiesel production process involves the transesterification of
vegetable oils, animal fats, or waste cooking oils. Transesterification is a chemical
reaction in which a glyceride reacts with an alcohol (typically methanol or ethanol)
in the presence of a catalyst to produce fatty acid alkyl esters and an alcohol
(Fig. 2.4). Transesterification can be carried out on any fatty acids derived from
plants or animals, as well as used cooking oils (UCO). Rapeseed, sunflower, soy, and
oil palm are the most frequently used vegetable oils. Transesterification is a revers-
ible reaction that occurs when the reactants—fatty acids, alcohol, and catalyst—are
combined. Catalysts can be used with either a strong base or a strong acid. Sodium or
potassium methanolate is primarily used on an industrial scale. Raw biodiesel and
raw glycerol are the end products of the transesterification process. These raw
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materials are then cleaned in a subsequent procedure. FAME (fatty acid methyl ester)
biodiesel is produced when methanol is used as the alcohol (Sivamani et al.
2021a, b). Purified glycerol is suitable for use in the food, cosmetic, and
oleochemical industries. Additionally, glycerol can be utilized as an anaerobic
digestion substrate.

2.2.3 Liquefaction

The indirect liquefaction process is a promising technology comprised of two stages.
A thermochemical gasification process is used as the first stage. After the raw
material reacts with air or steam in this process, syngas is produced. CO, CO2, H2,
and H2O are the principal components of syngas. The second stage employs the
time-honored Fischer–Tropsch (F–T) reaction. The mixture would be used in the F–
T process to generate a variety of chemicals, including methyl alcohol, dimethyl
ether, and ethyl alcohol, but little research has been conducted on the higher alcohols
derived from biomass syngas. The most significant challenges are developing a
novel catalytic reactor for the typically smaller scale of biomass conversion pro-
cesses and developing catalysts for specific chemicals based on the molar ratio of H2

to CO (Chornet and Overend 1985). To illustrate the indirect liquefaction process,
we will use the synthesis of ethyl alcohol as an example.

Direct liquefaction (particularly hydrothermal processing) occurs in a
non-oxidative atmosphere, where biomass is fed into a unit at lower temperatures
as an aqueous slurry, with the product being biocrude in the liquid state. These
processes are primarily concerned with the production of a liquid product that is a
hydrocarbon with an atomic H:C ratio of 2 and a boiling point of 170–280 °C.
Numerous processes have been developed in the coal-to-liquids conversion process.
The primary goals of converting coal and biomass to liquids are to generate liquids,
remove undesirable components (e.g., sulphur, oxygen, nitrogen, minerals), and
create a material with a higher energy density that will flow (Behrendt et al. 2008).
The combination of thermal decomposition and hydrogenation under pressure is one
of the primary processes for directly converting coal to liquids.

2.2.4 Pyrolysis

Pyrolysis is the process of heating an organic material, such as biomass, without
oxygen. Due to the absence of oxygen, the material does not burn, but the chemical
compounds that comprise it (cellulose, hemicellulose, and lignin) thermally decom-
pose into combustible gases and charcoal. The majority of these combustible gases
can be condensed into a combustible liquid called pyrolysis oil (biooil), though
certain gases (CO2, CO, H2, light hydrocarbons) are permanent. Thus, pyrolysis of
biomass produces three products: a liquid called biooil, a solid called biochar, and a
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Fig. 2.5 Liquefaction/pyrolysis for liquid biofuels production

gaseous called biochar (syngas). The percentage of these products is determined by a
number of variables, including the composition of the feedstock and process param-
eters (Fig. 2.5). However, all other factors being equal, the yield of biooil is
optimized when the pyrolysis temperature is around 500 °C and the heating rate is
high (i.e., 1000 °C/s), i.e., when fast pyrolysis conditions are used (Aswin et al.
2020). Under these conditions, biooil yields 60–70 wt. % can be obtained from a
typical biomass feedstock, while biochar yields range from 15–25 wt. %. The
remaining 10–15% is syngas. Slow pyrolysis is a term that refers to processes that
use lower heating rates, and the primary product of these processes is typically
biochar. Pyrolysis can be self-sustaining, as the syngas and a portion of biooil or
biochar combustion provide all of the energy required to drive the reaction.

2.2.5 Fermentation

Microbes (mostly strains of the yeast Saccharomyces cerevisiae) convert sugar
(glucose, fructose, or other monosaccharides) to ethanol during the fermentation
process (Chandrasekaran and Sivamani 2018). Monosaccharides are formed directly
from disaccharides that have been broken down by invertase enzymes or from starch
that has been hydrolyzed by amylase enzymes. Apart from ethanol, water, and
carbon dioxide are also produced. Equation (2.1) represents the glucose-to-ethanol
conversion:

C6H12O6 þ 2ADP þ 2Pi→ 2C2H5OHþ 2CO2 þ 2H2Oþ 2ATP ð2:1Þ

The most common processes produce a fermentation broth containing between
5 and 10% ethanol by volume, as ethanol is toxic to microorganisms. Due to the use
of adapted and specialized yeasts, more advanced facilities can increase the concen-
tration by up to 20%. The theoretical yield coefficient for the conversion of glucose
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to ethanol is 0.51 g ethanol/g glucose. The theoretical maximum yield of ethanol
cannot be exceeded.

2.3 Applications of Nanomaterials in Biooil Production

Biooil is a dense complex mixture of organic compounds that have been oxygenated.
It has a fuel value of about 50–70% that of petroleum-based fuels and can be used as
boiler fuel or converted to renewable transportation fuels. Its density is greater than
1 kg L-1, making it more cost-effective to transport than biomass. As such, we
envision a distributed processing model in which numerous small-scale pyrolyzers
(i.e., farm scale) convert biomass to biooil, which is then transported to a centralized
location for refining. Our studies demonstrate that when distributed “farm scale”
systems are used to feed a central gasification plant (for the production of Fisher–
Tropsh liquids), the transportation cost savings alone are sufficient to offset the
higher operational and biomass costs (Aswin et al. 2020).

Yasir et al. (2014) published a review article on the development of supported
nanocatalysts over the last few decades, comparing the catalytic performance and
deactivation rate of catalysts used to upgrade biooil to create a value-added and
efficient transportation fuel. Upgrading biooil obtained through biomass pyrolysis is
one of the most attractive technological and economic methods of producing fuel.
Developing cost-effective, long-lived, and highly active catalysts is a significant
challenge in this area of study. The addition of support material to the nanocatalyst
not only extends its life but also provides additional active sites and reduces the cost
of the catalyst by reducing the amount of active metal used. Additionally, proper
support selection facilitates the active phase’s efficient dispersion. Overall, signifi-
cant progress has been made toward improving the hydrodeoxygenation reaction
through the use of various nanosized rare earth metal support materials with
increased catalytic efficiency. These materials will eventually be implemented in
industries for the purpose of upgrading pyrolysis biooil.

Xu et al. (2021) developed an integrated process that incorporates catalytic
co-pyrolysis of biomass/plastic wastes and in-line catalytic upgrading of pyrolysis
gas to produce aromatics-rich biooil and carbon nanotubes simultaneously (CNTs).
The effect of the ratio of feedstocks on the properties of biooil and carbon nanotubes
was determined. Additionally, the carbon deposition reaction mechanism was inves-
tigated during the system’s operation. The results indicated that co-feeding plastic to
biomass increased the selectivity of monoaromatics (benzene, toluene, and xylene)
from 5.6% for pure biomass to 44.4% for a 75.0% plastic ratio, while decreasing
naphthalene and its derivatives from 85.9 to 41.7%. At a plastic ratio of 25%, the
greatest synergistic effect on BTX selectivity was observed. The multi-walled
carbon nanotubes were synthesized successfully on a nickel catalyst using pyrolysis
gas as a feedstock. For pure biomass, the smallest yield of CNTs with ultrafine
diameters of 3.9–8.5 nm was obtained via disproportionation of CO derived from the
decarboxylation and decarbonylation of oxygenates on the ZSM-5 acid sites. With
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the increase in plastic ratio, sufficient hydrocarbons were produced to support the
growth of CNTs, endowing them with long, straight tube walls and uniform diam-
eters (16 nm). The yield of carbon nanotubes increased to 139 mg/g catalyst.
Additionally, the decreased CO2 inhibited dry reforming of C1–C4 hydrocarbons
and deposited carbon, thereby avoiding excessive etching of CNTs. Thus, when the
plastic ratio in the feedstock exceeded 50%, high-purity carbon nanotubes with
fewer defects were fabricated. The strategy is expected to enhance biomass
pyrolysis’s sustainability and economic viability.

Saber et al. (2016) conducted a review of techniques for producing and upgrading
biooil from algae (micro- and macro-algae). This article also discusses the chemistry
and properties of biooil, as well as future research recommendations. Due to the
depletion of oil reserves, renewable fuels must be developed to replace petroleum-
based fuels. Fuels derived from biomass that emit no net CO2 are a promising
alternative to fossil fuels. Biooil has been considered as a possible alternative fuel
source. Currently, two major processes for producing biooil from biomass are
available: pyrolysis and hydrothermal liquefaction. Pyrolysis necessitates the drying
of feedstock, increasing the process’s energy consumption. Hydrothermal liquefac-
tion, on the other hand, takes place in an aqueous environment, making it ideal for
aquatic plants and wet biomass. One of the primary difficulties in applying biooil is
the oil’s low quality. Biooil has undesirable properties such as a high oxygen content
and acidity, necessitating its upgrading prior to being used as a fuel.

Zahid et al. (2018) investigated recent advances in pyrolysis. The increasing
importance of carbon-based nanomaterials for a variety of applications in the
modern era has prompted efforts to develop cost-effective methods for facile syn-
thesis from abundantly available wastes. By thermally treating organic waste,
pyrolysis in a broad spectrum is frequently used to synthesize carbon nanostructures.
The growth mechanism of nanoparticles dictates their functional distribution based
on their size, medium, and physicochemical properties. The growth of carbon
nanomaterials is a complex process that is significantly influenced by temperature,
catalyst, and precursor type. Nowadays, significant progress has been made in
improving the techniques for growing nanomaterials, thereby paving the way for
commercial production of carbon-based nanomaterials. The methods that use
hydrocarbon-rich organic waste as a feedstock are the most promising. This review
discusses the different pyrolysis techniques used to synthesize carbon-based
nanomaterials, specifically carbon nanotubes (CNTs), carbon nanofibers (CNFs),
and graphene (G).

Using iron (Fe) and cobalt (Co) particles as susceptors, Debalina et al. (2017)
synthesized nanostructured biochar from lignocellulosic biomass, sugarcane
bagasse. The experiments were conducted in a bench-scale pyrolysis reactor at a
temperature of 500 °C using 600 W microwave power. The effect of the bagasse:
susceptor composition on the quality of biochar was investigated using a variety of
characterization techniques, including scanning electron microscopy, porosimetry,
X-ray diffraction, and Raman spectroscopy. When Fe was added as a susceptor,
nanoparticles, and nanotubes with an average diameter of 30–120 nm and 20–50 nm,
respectively, were formed. Due to the increased rate of localized heating caused by
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Table 2.2 Summary of literature for biooil production

Raw material Nanomaterial used Process Product Reference

Biomass Nanocatalysts Pyrolysis Biooil Yasir et al. (2014)

Plastic waste Carbon nanotube Pyrolysis Biooil Xu et al. (2021)

Micro- and macro-
algae

Nanoparticles Liquefaction Biooil Saber et al. (2016)

Organic waste Carbon-based
nanomaterials

Pyrolysis Biooil Zahid et al. (2018)

Sugarcane bagasse Fe and Co nanoparticles Pyrolysis Biooil Debalina et al.
(2017)

the addition of more Fe particles, the size of nanoparticles and nanotubes increased.
In comparison to biochar obtained without the addition of susceptor, the biochar
obtained with the addition of susceptor was higher in carbon content. By adding a
mixture of Fe and Co as a susceptor, small graphitic flakes and fine nanotubes were
formed. In addition to biochar, the compositions of biooil and non-condensable
gases were determined. In biooil, the major organic functionalities were furan
derivatives, simple phenols, guaiacol, syringol, and their derivatives. When 20 wt.
% Fe and 33.3 wt.% Fe + Co were used as susceptors, the maximum energy recovery
was 49%. Apart from CO2 and CO2, adding Fe resulted in a high yield of H2 and
CH4 gases. Thus, microwave pyrolysis is demonstrated to be a promising technique
for tailoring the morphological properties of biochar via metallic susceptors while
also producing high-quality biooil and gases. The literature review for biooil pro-
duction is summarized in Table 2.2.

2.4 Applications of Nanomaterials in Bioethanol
Production

Bioethanol is generated through the fermentation of fermentable sugars derived from
biomass. In bioethanol production, the use of nanomaterials is uncommon.
Nanomaterials have the potential to be used to immobilize enzymes used in the
production of bioethanol (Anushya et al. 2019). Bioethanol is an oxygenated biofuel
that contributes to air pollution reduction.

Singhvi et al. (2021) used a greenly synthesized nanomaterial, functionalized
few-layer graphene (FFG), to depolymerize cellulose moieties derived from corn cob
(CC). Additionally, they investigated the combined effect of cellulase and a very low
concentration of FFG (0.02 weight % of biomass) on the hydrolysis of CC-derived
cellulose, demonstrating a 38% increase in hydrolysis when compared to the control
(i.e., without FFG). In cellulose, the hydroxyl groups adjacent to the 1,4 glycosidic
linkages form a crystalline structure, making depolymerization difficult. Notably,
hydrolysis experiments were conducted under mild conditions, i.e., 50 °C, resulting
in the formation of fermentable sugars without the formation of inhibitor
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compounds. Additionally, hydrolyzed CC cellulose was used to ferment bioethanol
by Saccharomyces cerevisiae, which produced 1.53 times the amount of ethanol
when FFG was added. Additionally, the solid residue was used to fabricate cellulose-
based nanocomposite films. We attempted to create a zero-waste process here by
utilizing each component, which is an attractive sustainable option. To our knowl-
edge, this is the first report on the cellulase mimicking activity of FFG nanosheets
and their application to the hydrolysis of CC cellulose for enhanced bioethanol
production, which may eliminate the need for expensive cellulase enzymes required
for biomass hydrolysis. Thus, the FFG-associated biomass to bioethanol conversion
process may pave the way for the development of green, sustainable biofuel tech-
nology with a primary application as a transportation fuel.

Devi et al. (2021) discussed the role of nanotechnology and nanomaterials in
pretreatment, enzymatic hydrolysis, and fermentation steps during bioethanol pro-
duction, as well as in transesterification to improve the efficiency of the biodiesel
manufacturing process. Due to the rapid depletion of fossil fuels and the world’s
growing population, demand for alternative and renewable energy sources is gaining
global attention. At the moment, the majority of the world’s energy needs are met by
fossil fuels, which is rapidly depleting them. The combustion of fossil fuels, on the
other hand, contributes to environmental problems such as global warming and
pollution. Biofuels such as bioethanol and biodiesel are gaining popularity around
the world due to their renewable nature, environmental friendliness, and safety.
There is an abundance of lignocellulosic biomass that can be converted to bioethanol
via pretreatment, hydrolysis, and fermentation. Numerous physical, chemical, and
biological pretreatments are used to prepare biomass for enzymatic hydrolysis;
however, these approaches have some limitations that can be overcome through
the use of alternative, cost-effective, and environmentally friendly technologies such
as nanotechnology. Magnetic nanoparticles can be used to immobilize enzymes
during the enzymatic hydrolysis process, enhancing the efficiency of the process.
Additionally, the microorganisms can be immobilized in a variety of matrixes,
including magnetic nanoparticles, which can aid in the production of ethanol.
Additionally, magnetic nanomaterials can be recycled and repurposed through the
use of magnetic fields. Additionally, nanocatalysts can be used to improve the yields
of the transesterification process used to produce biodiesel. By lowering processing
costs and increasing productivity, nanotechnology can play a critical role in biofuel
production.

Leo and Singh (2018) examined a variety of novel approaches and current trends
in the retroactive application of nanotechnology to bioethanol production. The
twenty-first century’s technological advancements and global energy requirements
have resulted in alarming global warming and the depletion of non-renewable fossil
fuels. The search for alternative energy sources in order to reduce our reliance on
fossil fuels has resulted in increased interest in biofuels such as bioethanol. Due to its
eco-friendly and renewable characteristics, bioethanol is an extremely useful fuel
additive. Bioethanol production utilizes fermentation technology to convert
carbohydrate-rich biomass to biofuel, though high production costs and some
technical difficulties have been identified as disadvantages. Nanotechnology has
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Table 2.3 Summary of literature for bioethanol production

Raw material Nanomaterial used Product Reference

Corncob Functionalized graphene Bioethanol Singhvi et al. (2021)

Lignocellulosic feedstocks Nanomaterials Bioethanol Devi et al. (2021)

Carbohydrate Nanomaterials Bioethanol Leo and Singh (2018)

Cellulosic materials Nanoparticles Bioethanol Kushwaha et al. (2018)

the potential to assist in overcoming these obstacles and ensuring the sustainable
production of these biofuels. Numerous nanoparticles and nanomaterials have been
shown to have an effect on the production of bioethanol and other biofuels.

Kushwaha et al. (2018) discussed the current state of the art in the application of
nanoparticles in various stages of bioalcohol production (bioethanol/biobutanol).
Only when biofuels are decoupled from food crops will they become globally
competitive. All non-food feedstocks for the production of bioalcohols
(bioethanol/biobutanol) present inherent difficulties in converting cellulose to sim-
pler sugars that can be fermented to produce end products. Due to the high cost of the
process currently used to convert complex cellulosic feedstocks to sugars, the
biofuels obtained via these routes are not economically viable. Globally, enormous
efforts are being made to convert second- and third-generation feedstocks to
bioethanol/biobutanol, and several prominent global energy producers are investing
significant sums of money to make this dream a reality. With the application of
various nanoparticles, the complexity and cost of the various stages of bioalcohol
production can be reduced. To understand the economics of bioethanol production, a
three-pronged approach is required, beginning with improved crop production
technology, improved feedstock processing, and the development of new biofuels
such as biobutanol and renewable hydrocarbons. Numerous nanoparticles have been
used in the production of biofuels, including iron oxide, nickel cobaltite, zinc oxide,
and various nanocomposites. By incorporating these nanomaterials into various
bioconversion processes, we can achieve sustainability by lowering raw biomass
processing and production costs, as well as minimizing negative environmental
impacts. The bioethanol production literature review is summarized in Table 2.3.

2.5 Applications of Nanomaterials in Biodiesel Production

Transesterification of vegetable or animal fat results in the production of biodiesel.
Catalysts for biodiesel synthesis are classified as homogeneous, heterogeneous, or
biological (Fig. 2.6). Catalysts that are homogeneous are in phase with the feed
mixture. Catalysts that are heterogeneous are in a phase different from the feed
mixture. Catalysts derived from biological sources are enzyme- or microorganism-
based. Catalysts classified as heterogeneous are further classified into three catego-
ries: acid, base, and functional materials. Functional materials are those that exhibit
one or more properties that can be altered significantly in response to external stimuli
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Catalysts for biodiesel synthesis

Homogeneous

Acid Base

Heterogeneous

Acid Base Functional

Biological

Enzyme Microbe

Fig. 2.6 Catalysts used for biodiesel synthesis

in a controlled manner. Nanomaterials are functional materials that contribute to the
production of biodiesel (Sivamani et al. 2021a, b).

Xie et al. (2018) sought to develop magnetically recyclable solid catalysts for use
in the production of biodiesel. To accomplish this, magnetically susceptible Fe3O4/
MCM-41 composites with a core-shell structure were synthesized, and sodium
silicate was then cross-linked onto the magnetic materials using epichlorohydrin.
Numerous techniques were used to characterize the core-shell structured magnetic
support and resulting solid catalyst. The results of the characterization indicated that
the sodium silicate was chemically bonded to the Fe3O4/MCM-41 composites
without causing obvious damage to the magnetic support structure. The solid
catalyst exhibited a strong magnetic response and extraordinary catalytic activity
in the transesterification of soybean oil to produce biodiesel, with an oil conversion
of 99.2% after 8 h of reaction using a methanol-to-oil molar ratio of 25:1 and a
catalyst loading of 3 wt. % at reflux of methanol. Additionally, simple magnetic
decantation was used to separate the solid catalyst from the reaction mixture without
significant mass loss, and the solid catalyst could be reused five times for heteroge-
neous transesterification.

Wang et al. (2015) synthesized crystalline Fe/Fe3O4 core/shell magnetic
nanoparticles (MNPs) with sulphamic acid and sulphonic acid functionalized silica
coatings that demonstrated excellent stability. They investigated their catalytic
properties using oleic acid esterification and glyceryl trioleate transesterification as
model reactions for biodiesel production. In the esterification of oleic acid, acid
functionalized MNPs exhibited excellent catalytic activity. However, MNPs
functionalized with sulphamic acid exhibited increased reactivity in the
transesterification reaction of glyceryl trioleate. Magnetoprecipitation allows recov-
ery of both acid-functionalized MNPs. The sulphamic acid functionalized MNPs
maintained a high degree of reactivity (>95% conversion) over the course of five
continuous reaction runs, indicating their potential for biodiesel production from
low-grade feedstocks such as waste cooking oil containing a high concentration of
free fatty acids.

De Medeiros et al. (2020) synthesized and investigated the use of bulk, fiber,
acid- and thermal-treated carbon nitrides as heterogeneous catalysts for canola oil
transesterification to biodiesel. While biodiesel remains one of the most promising
sustainable alternatives to fossil fuel-derived energy, process limitations and high
production costs associated with the use of homogeneous catalysts have limited
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global acceptance and adoption. While heterogeneous catalysts have been proposed
as viable alternatives, they have a number of disadvantages, including a high metal
content and a high price. As a result, a search for novel and affordable alternatives is
underway. Although graphitic carbon nitride macrostructures have been extensively
investigated for photocatalytic applications, their role in catalyzing chemical reac-
tions remains relatively unexplored. A conversion of 96% was achieved with a
catalyst loading of 1 wt. %, a low oil to methanol ratio of 1:24, and reaction
temperatures and times of 150 °C and 3 h, respectively. Carbon nitrides provide a
high-temperature stable, cost-effective, and metal-free alternative to the numerous
metal-containing heterogeneous catalysts proposed for biodiesel production, while
maintaining >90% biodiesel conversion.

Bharti et al. (2021) discussed nanoferrite heterogeneous catalysts for biodiesel
production from soybean and canola oil. Transesterification is the primary route of
synthesis because it is simple, cost-effective, allows for better process control, and
yields a high conversion rate. The depletion of fossil fuels and the resulting pollution
necessitate the development of alternative, renewable energy sources such as
biofuels. Current challenges include developing efficient processes and catalysts
for the conversion of a variety of feedstocks to biofuels. Catalysis with nanoferrites
and composites enables yields greater than 95% conversion at 80 °C in 1–2 h with
less than 5.0 wt.% catalyst loading. With a moderate alcohol/oil molar ratio, i.e.,
between 12:1 and 16:1, conversion yields of greater than 90% are achievable.
Catalyst recovery is simplified by the magnetic properties of nanoferrite, which
can be reused up to four times without losing more than 10% of its catalytic
efficiency.

Ibrahim et al. (2019) synthesized solid acid catalysts based on ZrO2 for use in
environmentally friendly applications such as biodiesel production. Environmental
pollution control is a difficult area for heterogeneous catalysts because it requires the
avoidance of hazardous materials in chemical synthesis. ZrO2 loading was carried
out on a variety of supports (Al2O3, Fe2O3, TiO2, and SiO2) using a hybrid sol-gel
auto combustion method. The properties of the structure, the surface, and the acidity
are examined. Catalytic activity was determined by converting stearic acid to ester
and then producing biodiesel. Because of its large surface area and abundance of
Lewis acid sites, ZrO2/SiO2 has the highest conversion rate. The conversion rate
reached 48.6% under optimal reaction conditions of 120:1 alcohol/acid molar ratio,
0.1 catalyst mass ratio to acid, 3 h reaction time, and 120 °C reaction temperature.
Additionally, the catalysts were reused for at least five runs without experiencing
significant activity loss.

Bet-Moushoul et al. (2016) synthesized five different types of calcium oxide-
based catalysts supported on gold nanoparticles (AuNPs) (dubbed nanocatalysts),
including commercial CaO, eggshell, mussel shell, calcite, and dolomite, and used
them in the synthesis of biodiesel. The transesterification process was performed
optimally at 65 °C, with a methanol-to-oil molar ratio of 9:1, a reaction time of 3 h,
and a catalyst loading of 3%. Optimal conditions resulted in an oil conversion rate of
90–97% and a glycerol concentration of 3.9–4.3 (mg/kg) for all samples. By
comparing supported AuNPs catalysts to conventional CaO catalysts, gas
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chromatographic analysis revealed that a high-quality biodiesel product was synthe-
sized. The results of the reusability test indicated that all prepared nanocatalysts
could be reused up to ten times without losing activity. The impregnation method
was found to yield the highest catalytic activity for CaO–AuNPs nanocatalysts.

Hara (2009) discussed the environmentally friendly production of biodiesel using
a variety of heterogeneous catalysts, including solid bases, acid catalysts, and
immobilized enzymes. The production of esters of higher fatty acids from plant
materials is highly desirable for biodiesel production. Heterogeneous catalysts may
open up new avenues for producing biodiesel in an environmentally friendly man-
ner. Particulate heterogeneous catalysts can be easily separated from products after
the reaction, allowing the catalyst to be reused, resulting in less waste and energy
consumption. Diesel engines are compact and powerful, offering numerous benefits
in terms of energy efficiency and cost. As a result, the production of higher fatty acid
esters from plant materials has gained interest in recent years as a means of
producing biodiesel, a clean-burning alternative fuel. Biodiesel is primarily pro-
duced industrially using “soluble” catalysts such as alkali hydroxides and liquid
acids. Purification of products and catalyst separation require a significant amount of
energy, and these catalysts are also nonrecyclable. This process consumes a signif-
icant amount of energy and generates a significant amount of chemical waste.
Following reaction, particulate heterogeneous catalysts can be easily separated
from products, allowing the catalyst to be reused and consuming less energy.

Ambat et al. (2019) investigated the production of biodiesel from rapeseed oil
using a Fe3O4-CeO2 nanocatalyst that was potassium-impregnated. We investigated
the catalytic conversion of rapeseed oil to triglyceride methyl ester using various
concentrations of potassium-impregnated Fe3O4-CeO2. The Fe3O4-CeO2

nanocatalyst with a 25 weight % potassium impurity produced the most biodiesel.
The nanocatalyst was characterized using FTIR, XRD, SEM, TEM, BET, and the
Hammett indicator to determine its basicity. GC-MS, 1H, and 13C NMR were used
to characterize the biodiesel. Additionally, the optimal reaction parameters for
transesterification were determined using 1H NMR, including the catalyst concen-
tration (wt. percent), the oil to methanol ratio, the reaction time, and the reaction
temperature. The maximum yield of 96.13% was obtained at a catalyst concentration
of 4.5 weight %, a ratio of 1:7 oil to methanol, and a temperature of 65 °C for
120 min. Biodiesel was found to have an acid value of 0.308 mg KOH/g and a
kinematic viscosity of 4.37 mm2/s. The flash point and density of the fuel were also
determined. The reusability of the catalyst was investigated, and it was found to be
stable for up to five cycles without significant activity loss. Utilizing a distillation
process setup, excess methanol was recovered following the transesterification
reaction.

Baskar et al. (2017) used manganese-doped zinc oxide as a heterogeneous
catalyst to synthesize biodiesel from Mahua oil. XRD and SEM analysis were
used to characterize the manganese-doped zinc oxide nanocatalyst. SEM and XRD
analysis confirmed the catalyst’s hexagonal structure and 24.18 nm particle size.
Biodiesel production has accelerated in recent years as a result of the environmental
benefits associated with its ability to reduce pollution. Heterogeneous catalysts are
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preferred for producing biodiesel due to their ease of recovery and lack of aqueous
treatment requirements. The transesterification of fatty acids into biodiesel using
transition metal oxide results in a rapid conversion of the fatty acids to their methyl
esters. The optimum process conditions for a maximum biodiesel yield of 97% were
determined to be a catalyst concentration of 8% (w/v), an oil to methanol ratio of 1:
7% (v/v), a reaction time of 50 min, and a reaction temperature of 50 °C. FTIR and
GC-MS analysis both confirmed the presence of methyl esters in biodiesel.

Dantas et al. (2015) proposed to evaluate the performance of the nanomagnetic
catalyst Ni0.5Zn0.5Fe2O4 in the transesterification of soybean oil to produce biodiesel
by varying the processing conditions (temperature, molar ratio of oil to alcohol, and
catalyst amount) during the catalytic reaction. Magnetic catalysts can be easily
removed from the reaction process, which reduces the amount of wastewater gener-
ated. The catalyst was prepared via combustion and characterized via XRD, BET,
magnetic measurements, and gas chromatography. The results indicated the forma-
tion of the inverse spinel phase B(AB)2O4, with an isotherm profile classified as type
V and a hysteresis loop classified as type 3 (H3), and a surface area of 48.39 m2g-1.
The magnetic hysteresis curve exhibited the typical behavior of soft magnetic
materials with a saturation magnetization of 55 emu/g. Chromatographic analysis
confirmed the catalytic activity of the magnetic nanoparticles and the direct effect of
processing conditions on the conversion to esters.

Dantas et al. (2020) synthesized magnetic nanoparticles (MNP) of
Ni0.5Zn0.5Fe2O4 using a combustion reaction, with a special differential in the
production, starting at a scale of 10 g/production and reproducible up to 200 g/
production, and used and reused them as heterogeneous magnetic nanocatalysts in
biodiesel production reactions. The nanocatalysts synthesized were extremely effi-
cient in the production of biodiesel from soybean oil via the methyl and ethyl routes.
It exhibited the highest activity in the esterification reaction, with conversions
reaching 99.54 0.16% via the methyl route and 99.38 0.18% via the ethyl route.
Maximum conversion of transesterification occurred at a rate of 14%. The viscosity,
density, acidity, and iodine ratios of biodiesel were determined, and the obtained
values indicate that the produced biodiesel complies with the specifications appli-
cable to the quality standards for commercialization. The XRD, BET, TEM, AGM,
and TPD techniques were used to characterize MNP. Additionally, the nanocatalyst
was recovered using a simple external magnetic field (magnet) and reused three
times without significant loss of catalytic activity, indicating high stability. Thus, the
nanoferrite Ni0.5Zn0.5Fe2O4 can be validated as a novel environmentally responsible
catalyst for heterogeneous catalysis in the field of biodiesel production.

Dantas et al. (2018) used a catalyst composed of Ni0.5Zn0.5Fe2O4 nanoferrite in
esterification reactions. Biodiesel is a biodegradable fuel made from renewable
biomass such as soybean and cottonseed oil. It can be made in a variety of ways
and requires a catalyst to catalyze the reactions. Iron spinel is an excellent material
for catalyzing the reactions involved in the production of biodiesel. The nanoferrite
was synthesized on a large scale, 200 g/batch, where the reaction time and temper-
ature were monitored and the material was characterized using XRD and surface area
measurements. The biodiesel was produced by methyl and ethyl esterification of
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acidified soybean oil and cottonseed oil at a temperature of 160 °C for 1 h, with a
molar ratio of 1:15, 3% catalyst, and chromatographic analysis. The nanoferrite
exhibited enhanced peaks corresponding to the spinel’s majority crystal phase and a
surface area of 64.17 m2/g. The methyl route converted 99.08% of the soybean oil,
while the ethyl route converted 98.38%. The methyl route yielded 88.79% of
cottonseed oil, and the ethyl route yielded 78.65%.

Dantas et al. (2017) investigated the effect of Cu2+ doping on the structure,
morphology, and magnetic properties of Ni0.5Zn0.5Fe2O4 nanoferrites in preparation
for their use in methyl transesterification of soybean oil to produce biodiesel. The
nanoferrites with a composition of Ni0.5 × Cu × Zn0.5Fe2O4 (0.0 × 0.4) were
synthesized via combustion reaction in a conical reactor with a batch size of 10 g
and characterized via X-ray diffraction, textural analysis using N2 adsorption,
magnetic measurements, thermal analysis using temperature-programmed desorp-
tion, and biodiesel analysis using gas chromatography. All compositions produced a
single phase of the inverse spinel type B(AB)2O4 and isotherms of adsorption/
desorption with the same profile, classified as type V, with a hysteresis loop type
3 (H3). However, increasing the doping concentration of Cu ions from 0.0 to 0.4 mol
resulted in a reduction of 37% in surface area and 36.4% in saturation magnetization.
However, the ferrimagnetic property was retained, and the material is still strongly
attracted by a magnet. Additionally, the presence of Cu ions increased the conver-
sion values of methyl esters obtained through soybean oil transesterification by
5.5–85%. These findings suggest that NiZn nanoferrite compositions doped with
Cu2+ could be used as heterogeneous nanocatalysts for biodiesel production.

Dantas et al. (2016) synthesized mixed nanoferrites of Ni0.5Zn0.5Fe2O4 and
Ni0.2Cu0.3Zn0.5Fe2O4 in batches of 10 g using urea as fuel and a conical reactor as
a heating source, and then tested them as heterogeneous nanocatalysts in the
transesterification and esterification reactions of soya bean oil via the methyl The
time and temperature of the reactions were monitored throughout the synthesis, as
well as the evolved gases and the color of the emitted flames. XRD, EDX, FTIR,
SEM/EDS, BET, and gas chromatography analysis were used to characterize the
samples. The reaction was carried out for 1 h with 10 g of oil, a molar ratio of 1:
12 oil:alcohol, and a catalyst concentration of 2% (w/w), all at 180 °C. The XRD
patterns and FTIR spectra revealed the presence of the B(AB)2O4 inverse spinel
phase type. The morphology revealed the formation of fragile agglomerates with a
high surface area. Chromatographic analysis revealed excellent results in the ester-
ification reactions for both samples under the tested conditions, with particular
emphasis on Ni0.5Zn0.5Fe2O4, which converted 91.4% of methyl esters and 77.8%
of ethyl esters, respectively, while the Ni0.2Cu0.3Zn0.5Fe2O4 sample converted
75.1% and 65.1%, respectively. The methyl and ethyl transesterification conversions
were 14% and 2% for the Ni0.5Zn0.5Fe2O4 sample, respectively, and 11% and 3% for
the Ni0.2Cu0.3Zn0.5Fe2O4 sample, respectively.

Dantas et al. (2013) investigated the performance of Ni0.5Zn0.5Fe2O4 ferrite
doped with 0.1 and 0.4 mol of Cu as a catalyst for the transesterification of soybean
oil to biodiesel in the presence of methanol. SEM, nitrogen adsorption, and X-ray
diffraction were used to characterize the samples. The reaction was carried out for
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2 h at a temperature of 160 °C with 10 g of soybean oil, a molar ratio of oil to alcohol
of 1:10, and a catalyst concentration of 4% (w/w). Gas chromatography was used to
characterize the reaction product, confirming that it was converted to methyl esters.
Only a Ni0.5Zn0.5Fe2O4 ferrite phase with a crystallite size of 29 nm was observed in
the diffraction patterns. Surface area and particle size of samples doped with 0.1 and
0.4 mol of Cu were 22.17 m2g-1 and 50.47 nm, respectively, and 23.49 m2g-1 and
47.64 nm, respectively. Both samples had a brittle block-shaped agglomerate mor-
phology and a broad particle size distribution. A comparison of the two catalysts
revealed that the catalyst doped with 0.4 mol of Cu performed better, achieving a
conversion rate of 50.25%, compared to the catalyst doped with 0.1 mol of Cu,
which achieved a conversion rate of 42.71%.

Dantas et al. (2014) evaluated the performance of the new catalysts
Ni0,5Zn0,5Fe2O4 (pure) and Ni0,1Cu0,4Zn0,5Fe2O4 (doped with 0.4 mol of Cu2+) as
nanoferrites in transesterification reactions of soybean oil methyl ester. Both samples
were synthesized using urea as a fuel source and a resistance heating coil in the
stoichiometry of the combustion reaction. Time and combustion temperature were
recorded during synthesis. They were later characterized using X-ray diffraction
(XRD), thermogravimetric analysis (TGA), textural analysis (BET), and catalytic
tests on a bench. The transesterification reaction conditions were as follows: 10 g oil,
2 h reaction time, 1:20 molar ratio of oil to alcohol, 4% (w/w) catalyst, and a reaction
temperature of 160 °C. Finally, gas chromatography was used to characterize the
reaction product for its conversion to methyl esters. Only the inverse spinel phase,
typical of Ni-Zn ferrite, was detected in both samples, with crystallite sizes of 26 and
29 nm, respectively. Thermogravimetric analysis revealed that the samples are
thermally stable, losing only 4.9 and 3.7% of their weight, respectively. The surface
area and particle size were 48.89 m2g-1 and 23 nm, respectively, while the surface
area and particle size were 18.06 m2g-1 and 62 nm. The conversion rates of
Ni0,5Zn0,5Fe2O4 and Ni0,1Cu0,4Zn0,5Fe2O4 were 13% and 50%, respectively, indi-
cating that the sample containing copper converted 26% more effectively, indicating
that copper is a promising catalyst for the transesterification reaction, which aims to
produce biodiesel. Research focusing on the global energy transition to renewable
energy sources undoubtedly indicates that the use of biodiesel would be a viable
option for increasing rural income, reducing spending on oil derivatives, and creat-
ing new job opportunities.

Erdem et al. (2018) demonstrated the fabrication of an inorganic shell composed
of silica on the surface of magnetic iron oxide nanoparticles through the deposition
of preformed colloids and functionalization of these particles. Chlorosulphonic acid
is used to functionalize magnetic nanoparticles that are uncoated and coated with a
silica layer via the Stöber method. Magnetic nanoparticles (MNPs) with a diameter
of 10–13 nm have the potential to be used as an acid catalyst in the production of
biodiesel due to their superparamagnetic properties. Various methods such as XRD,
EDX, FTIR, and VSM were used to characterize the prepared nanoparticles. The
catalytic activity of coated and uncoated solid acids was investigated in the palmitic
acid-methanol esterification reaction, which is used in industry to synthesize biodie-
sel. Although the thin silica layer presents only a minor impediment to magnetism, it
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can significantly accelerate mass transportation due to its relatively porous structure,
and the magnetic core may be more stable in the acidic reaction medium due to the
covering process. As a result, coating strategies may be an effective means of
enabling MNPs to be used in acid-catalyzed esterification.

Kelarijani et al. (2019) investigated the effect of nanomagnetic catalysts on
rapeseed oil-based biodiesel production. The catalysts produced were characterized
using X-ray diffraction (XRD), transmission electron microscopy (TEM), a BET
surface area analyzer, and a vibrating sample magnetometer (VSM). Ultrasonic
irradiation was used for 35 min at various lithium/Fe3O4 and lithium/ZnO–Fe3O4

molar ratios. The highest yield of 99.8% was obtained with a Li/Fe3O4 molar ratio of
3/1 and a Li/ZnO–Fe3O4 molar ratio of 3/1. The vibrating sample magnetometer
demonstrated that the catalysts were easily separated due to their ferromagnetic
properties, even after they were regenerated and used for esterification again. After
three times of regeneration and application, the superparamagnetic behavior of the
particles demonstrated a high yield of catalyst recovery. Additionally, the results
indicated that when compared to the conventional mechanical stirring method, using
the basic nano magnetic catalyst and ultrasonic waves at a frequency of 37 kHz could
reduce the reaction temperature and time, while increasing the yield of biodiesel. The
viscosity and flash point of the fatty acid methyl esters produced met the ASTM
D6751 requirements.

Firouzjaee and Taghizadeh (2017) synthesized a nanomagnetic catalyst com-
posed of CaO/NaY-Fe3O4 and used it to produce biodiesel from canola oil. X-ray
diffraction, field emission scanning electron microscopy, the Brunauer-Emmett-
Teller method, Fourier transform infrared spectroscopy, and the vibrating sample
magnetometer method were used to characterize the structure of the catalysts. To
optimize the effect of operating variables on the yield of the transesterification
reaction, such as the methanol/canola oil molar ratio, the amount of catalyst, and
the reaction time, a Box-Behnken design was used. The cubic model predicted the
optimal values for these variables and they were found to be extremely close to the
experimental values. Due to diminishing oil supplies, alternative fuels such as
biodiesel are necessary.

Ghalandari et al. (2019) synthesized a KOH/Fe3O4@-Al2O3 nanocatalyst using
the Fe3O4@-Al2O3 core-shell structure as a support and KOH as the active compo-
nent. X-ray diffraction (XRD), field emission scanning electron microscopy
(FE-SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared
(FTIR), Brunauer-Emmett-Teller (BET), and vibrating sample magnetometry
(VSM) were used to characterize the prepared samples. We investigated the
transesterification of canola oil to methyl esters (biodiesel) in the presence of a
KOH/Fe3O4@-Al2O3 nanocatalyst with a magnetic core and a mesoporous shell. To
optimize the effect of critical operating variables on biodiesel yield, a response
surface methodology (RSM) based on the Box-Behnken design (BBD) was used.
Under optimal reaction conditions, a yield of 97.4% biodiesel was achieved.
Between experimental and predicted results, there was excellent agreement.

Gurunathan and Ravi (2015) investigated the optimal transesterification reaction
and its kinetics for the production of biodiesel from neem oil using a copper doped
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Table 2.4 Summary of literature for biodiesel production

Raw material Nanomaterial used Product References

Soybean oil Fe3O4/MCM-41 Biodiesel Xie et al. (2018)

Glyceryl trioleate Functionalized Fe/Fe3O4 Biodiesel Wang et al. (2015)

Soybean and
canola oil

Nanoferrites Biodiesel Bharti et al. (2021)

Stearic acid ZrO2 nanoparticles Biodiesel Ibrahim et al. (2019)

Rapeseed oil Impregnated Fe3O4-CeO2 Biodiesel Ambat et al. (2019)

Mahua oil Doped ZnO Biodiesel Baskar et al. (2017)

Soybean oil Nanomagnetic Ni0.5Zn0.5Fe2O4 Biodiesel Dantas et al. (2015)

Soybean oil Magnetic nanoparticles Biodiesel Dantas et al. (2020)

Soybean oil Nanoferrite Biodiesel Dantas et al. (2018)

Soybean oil Mixed nanoferrites Biodiesel Dantas et al. (2017)

Soybean oil Nanoferrite doped with Cu Biodiesel Dantas et al. (2016)

Soybean oil Nanoferrite doped with divalent
copper

Biodiesel Dantas et al. (2013)

Soybean oil Nanomagnetic particles Biodiesel Dantas et al. (2014)

Canola oil Carbon nitrides Biodiesel de Medeiros et al. (2020)

Vegetable oil Gold nanoparticles Biodiesel Bet-Moushoul et al. (2016)

Vegetable oil Magnetic nanoparticles Biodiesel Erdem et al. (2018)

Rapeseed oil Nanomagnetic catalyst Biodiesel Kelarijani et al. (2019)

Canola oil Nanomagnetic catalyst Biodiesel Firouzjaee and Taghizadeh
(2017)

Canola oil Magnetic mesoporous
nanocatalyst

Biodiesel Ghalandari et al. (2019)

Neem oil Copper doped ZnO Biodiesel Gurunathan and Ravi
(2015)

ZnO (CZO) nanocatalyst. Researchers have chosen heterogeneous nanocatalysts to
improve vegetable oil transesterification to biodiesel. AFM analysis confirmed the
CZO nanocatalyst’s highly porous and non-uniform surface, which results in the
aggregation of CZO nanoparticles into multi-layered nanostructures. The yield of
97.18% biodiesel was obtained in 60 min at a temperature of 55 °C using a 10%
(w/w) CZO nanocatalyst and a 1:10 (v:v) oil:methanol ratio. Using recycled
nanocatalyst in the sixth cycle, a yield of 73.95% biodiesel was obtained. GC–MS
and 1H NMR analysis were used to confirm the biodiesel obtained. On the basis of
testing reaction kinetic models for biodiesel production, a first-order kinetic model
with R2 = 0.9452 was found to be the most closely fitting to the experimental data.
The transesterification of neem oil into biodiesel using CZO nanocatalyst required an
activation energy of 233.88 kJ/mol. Table 2.4 summarizes the biodiesel production
literature review.
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2.6 Conclusion

In this review article, the applications of nanomaterials in the production of liquid
biofuels were discussed. Liquid biofuels include vegetable and animal oils, biodie-
sel, biooil, and bioethanol. The biomass conversion processes used to produce liquid
biofuels are solvent extraction, melting, transesterification, liquefaction, pyrolysis,
and fermentation. The feedstocks for liquid biofuels include woody biomass, agri-
cultural- and agro-industrial-based residues, aquatic materials, animal, domestic, and
industrial residues. Nanomaterials are gaining more significance today mainly
because of their large surface area and reusability. Nanomaterials find limited
application in the production of vegetable and animal oils. Biooil and bioethanol.
But nanomaterials are widely used heterogenous catalysts for biodiesel production.
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Chapter 3
Applications of Nanomaterials in Gaseous
Biofuels Production

B. S. Naveen Prasad, B. Saikat, and S. Sivamani

Abstract Nanotechnology is being studied in several sectors, including medical,
engineering, the environment, electronics, military, etc. Many studies are being
conducted to advance knowledge in terms of size, capacity, and cost. The
nanomaterials are synthesized and characterized by different methods, and it is
used for the different applications. The review presented here is on the role of
nanomaterials in biogas and biohydrogen production. The addition of NP increased
the yield of biogas and biohydrogen, the influence of size and shape of metal oxide
NP and metallic NP on biogas and biohydrogen production.

Keywords Biogas · Biohydrogen · Nanoparticles · Microorganisms

3.1 Introduction

Throughout the preceding century, nanotechnology has grown in popularity. A
flurry of research initiatives is now being conducted on nanotechnology. Nanotech-
nology is well-defined as the “evolving, synthesizing, characterization, and applica-
tion of materials and electronics at the nanoscale.” The prefix “nano” is used as a
phrase in every field, including commercial advertising. True, the word “nano”
comes from either the Greek nanos or the Latin nanus, which both imply “dwarf.”
It includes chemistry, physics, solid state physics, materials science, and biosci-
ences. As a result, mastery of a single discipline will no longer suffice; a thorough
understanding of physics, chemistry, material science, solid state physics, and bio-
sciences will be needed. Nanotechnology is the science of altering matter at the
atomic level to create unique nanomaterials with a variety of features, whereas
nanoscience is the study of the atom arrangement and nanoscale properties (Singh
and Gupta 2016). Nanotechnology is gaining popularity in practically every engi-
neering field, yet the general public is unaware of its practical applications. Despite
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this, it is being more widely used in medical, engineering, the environment, elec-
tronics, the military, and security. Despite the fact that this technology has applied to
a wide application, new unique nanomaterials have the potential to be developed in a
variety of industries for the advancement of mankind. The growth of information in
terms of size, capability, and cost fascinates and inspires researchers. As a result,
there is a lot of desire in the medical and scientific industries to miniaturize products
to save money. In the future, nanotechnology will rule all aspects of human life,
including living, working, and communicating. As a result, interest in the topic
develops, prompting a discussion of nanotechnology’s fundamental and major
characteristics. Nanomaterials are the foundational and indispensable elements of
nanotechnology. Nanomaterials are with a size of fewer than 100 nm in at least one
dimension. In other words, they are far smaller than microscale. Nanomaterials have
a size of about 10-9 m or one billionth of a meter. Nanoparticles differ from bulk
materials in terms of their physicochemical qualities, which are mostly governed by
their size and shape. Surprisingly, by altering their form and size at the nanoscale
level, nanoparticles develop a distinct personality with new features and capabilities.
Nanomaterials come in a variety of morphologies, including nanorods,
nanoparticles, and nanosheets, and are defined by their dimensionality.
Nanoparticles are zero-dimensional nanomaterials, nanorods, or nanotubes are
one-dimensional nanomaterials, and films/layers of type one or two-dimensional
nanomaterials. The physical properties of two or more particles will change as a
result of their interaction. Bulk nanomaterials, also known as three-dimensional
nanomaterials, are made up of a range of compounds. Nanotechnology has the
potential to improve human living standards when combined with other
interconnected technologies (cognitive sciences, biotechnology, and information
technology), with applications in areas like pharmaceutical development, electron-
ics, life sciences, etc., (Demetzos 2016; Wolf and Medikonda 2012). Because of its
dynamic physicochemical features, nanotechnology has the potential for industrial
use. Nanoparticles are expected to grow in economic relevance greatly in the
foreseeable future, likely from 2000 tons in 2004 to 58,000 tons recently. (Shi and
Ma 2010; Shi and Ma 2011). Nanoparticles used in a various industry, biofuel
production and environmental cleanup (Srivastava et al. 2014). Nanoparticles can
boost the efficiency of green fuels like bioethanol and biohydrogen, hence
nanomaterials could help boost biofuel production (Srivastava et al. 2015).
According to the findings, nanomaterials could be employed to improve cellulase
production, strength, and catalytic activity. Furthermore, the inclusion of
nanoparticles increases the processing of lignocellulosic biomass (Srivastava et al.
2015). Depending on their stoichiometry, goethite, ferrihydrite, magnetite, wüstite,
hematite, maghemite, and other iron oxide nanoparticles have a range of crystalline
phases. Fe3O4 and g-Fe2O3 are the most studied FeO-NPs. (Cavas et al. 2013;
Haddad et al. 2015), including the pretreatment and hydrolysis of biomass to form
sugars (Cavas et al. 2013; Haddad et al. 2015; Ubale and Belkhedkar 2015;
Srivastava et al. 2017a, b).
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3.2 Nanomaterial Synthesis and Characterization

Methods for making nanomaterials Nanoparticles can be made in three different
methods. The specifics are (1) Biological methods, (2) Physical methods (3) Chem-
ical methods. The biological process is simple and fast, often involving only one
step, and it is also environmentally friendly. Microbes, as well as diverse plant parts,
could be employed to create nanomaterials in this situation, as shown in Fig. 3.1.

3.2.1 Microorganisms Are Used to Make Nanomaterials

Microorganisms like bacteria, fungi, and algae could be used to generate a variety of
nanomaterials from aqueous metal salt solutions. Living animals will produce
nanoparticles utilizing a protein as part of the biomineralization process. Under
anaerobic conditions, magnetotactic bacteria, for example, use magnetosomes, are
used for the synthesis of magnetic FeO nano crystals, to prepare magnetic particles
(Krishnan 2016; Bazylinski et al. 1994); Faivre and Schuler (2008); Schüler and
Frankel (1999); Timko et al. (2012) reported that homogeneous particles with a core
diameter of 20–45 nm can be produced in vitro. Magnetosomes, despite this, show
good magnetic properties in medical applications such as hyperthermia (Hergt et al.
2005; Molcan et al. 2016). Photosynthetic bacteria like Rhodopseudomonas
capsulata were used to make gold nanoparticles with a size of 10–20 nm. The
bacterial enzyme NADH-dependent reductase is important in the transformation of
Au ions into Au-NPs (He et al. 2007). Pseudomonas microbes from alpine habitats
were used to make extracellular palladium nanoparticles (Schlüter et al. 2014).

Fig. 3.1 Green synthesis
approach for nanoparticles
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3.2.2 Fungi Are Used

Extracellular silver nanoparticles were made using the Fusarium oxysporum fungus.
The enzymatic activity of NADH-reductase produces long-term stable nanoparticles.
In fungal cells, the amount of protein released is higher than in bacterial cells
(Ahmad et al. 2003). Animal feed, food, medications, textile sector, and paper sector
all use it these days.

3.2.3 Algae Usage

In 2007, Singaravelu et al. studied the Au-NPs production using Sargassum wightii.
Ninety-five percent of the product was ready after only 12 h of incubation. They
investigated how algae can be utilized to manufacture nanoparticles, something that
has not been done before. Some bacteria, fungi, and algae are pathogenic, necessi-
tating the creation of safety procedures.

3.2.4 Nanomaterials Are Being Synthesized for Use
as Biological Templates

A biological mechanism could be used to create nanoparticles within the organism.
The following are the key tools used to create this biological template. To make
distinctive and technologically advanced nanostructures, scientists use biological
templates like proteins and DNA. Biosensors (Zhang et al. 2019), bioNEMS, and
bioelectronics systems can all benefit from this nanoparticle (Zhang et al. 2017a, b).
Nanocomposite materials rely heavily on proteins. Prokaryotes and eukaryotes, for
example, have ferritin as an intracellular iron-storage protein. Iron oxide is accumu-
lated and then released in a controlled manner. It balances iron deficiency and excess
in humans by acting as a buffer. It is made up of a protein shell with an iron oxide
core. For obtaining apoferritin, the core containing FeO can be the selective disso-
lution without harming surrounding proteins. FeO or any other nanoparticle can be
used to fill the blank core of apoferritin. It has now been developed a protein with an
inorganic nanocomposite. From horse spleen ferritin, Fan et al. (2010) made
Au-NPs. Wu et al. (2008) used biotin to bind a yttrium phosphate radionuclide
nanoparticle to apoferritin. The nanoparticles can also be assembled with the help of
the DNA templates. Plasmids are DNA molecules with a closed circular form found
in a wide range of bacteria. 5–10 nanometer CdS DNA nanoparticle compound can
be produced by spin coating a mixture of plasmid DNA and cadmium perchlorate.
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3.2.5 Plant Components Are Used to Prepare Nanomaterials

The nanoparticles were also made with plants and plant extracts. Metal NPs are
reduced by phytochemicals found in plants. In the production of nanoparticles,
phytochemicals such as flavones, organic acids, and quinones act as natural reducing
agents. Au-NPs of different forms are generated from the biomass of the Medicago
sativa (alfalfa) plant (Gardea-Torresdey et al. 2003) and the leaves of the Pelargo-
nium graveolens (Geranium) plant (Pandian et al. 2013). Au core-Ag shell bimetallic
nanoparticles and bimetallic Au, Ag and are made via Azadirachta indica (neem)
leaves. The Plant contains sugars/terpenoids that act as reducing agents (Shankar
et al. 2004). Au nanotriangles are made from leaf extract of aloe vera (Chandran
et al. 2006). Cobalt, zinc, Silver, nickel, and copper nanoparticles are made from
plants such as Helianthus annuus (sunflower) (Banerjee et al. 2014) and Brassica
juncea (Indian mustard) (Banerjee et al. 2014).

3.2.6 Physical Methods Can Be Used to Prepare
Nanomaterials

Physical methods are split into two categories: top-down and bottom-up approaches.
Mechanical milling is a method for crushing bigger materials into smaller particles
that works from the top down. The difficulty in achieving the proper particle size and
shape is the method’s principal disadvantage (Thakore et al. 2014). Due to flaws in
lattice features formed during the milling process, the magnetic properties of the
samples generated by the milling operation differ from normal particles of the same
size (Dutz et al. 2007). The “bottom-up” technique is used to condense nanoparticles
in a liquid or gaseous phase, with the larger materials emerging from the chemical
combination of the smaller ions.

3.3 Characterizations of Nanomaterials

The nanoparticles have one-of-a-kind physicochemical properties. Nanoparticles
have a wide range of qualities depending on their size and form. A variety of devices
must be employed to determine the properties of nanoparticles. UV Spectrophotom-
eter, FT-IR Spectroscopy, Atomic Force Microscopy (AFM), Transmission Electron
Microscopy (TEM), Scanning Electron Microscopy (SEM), Vibrating Sample Mag-
netometer (VSM), SQUID, Energy Dispersive X-ray Spectroscopy (EDS), X-ray
Photoelectron Spectroscopy (XPS), Magnetic Force Microscopy (MF), Vibrating
Sample Magnetometer (Galloway et al. 2015).



48 B. S. Naveen Prasad et al.

3.3.1 Nanoparticle Surface Morphology, Surface Area, Size,
and Shape

The size and form of nanoparticles are most important factors in defining their
characteristics. TEM, FESEM, and AFM can all be used to investigate surface
morphology. These approaches will produce images that show whether
nanoparticles are spherical, rod-shaped, or porous, as well as their morphology.
TEM will provide information on the composition, shape, and crystallinity of
nanoparticles, as opposed to SEM. The signals will reveal the surface topography
and sample composition. The surface topography and composition of the sample will
be revealed by these signals. As a result, the samples’ surfaces should be electrically
conductive at the very least. SEM and TEM can accomplish the same tasks as AFM,
but only on dry samples. HRTEM, FESEM, and XRD for assessing the size of
nanoparticles. In comparison to light microscopes, TEM can collect high-resolution
images. The TEM can be used to determine crystal orientation, lattice gap, electron
structure, aggregation state, and electron phase shift. Using the TEM, it is simple to
find the nanoparticle size (Gabbasov et al. 2015). The size is calculated using the
Scherrer equation and XRD spectroscopy. The size of nanoparticles is determined by
the strong XRD peaks. Because non-crystalline nanoparticles contain big XRD
peaks, size determination is more difficult than with a TEM as seen in Fig. 3.2.
The surface area of nanoparticles was calculated using the Brunauer–Emmet–Teller
method.

3.3.2 Mineral and Element Content Determination

Elemental composition and surface morphology of a sample can be determined by
EDS in conjunction with TEM and SEM. Inductively Coupled Plasma Mass Spec-
troscopy and Atomic Absorption Spectroscopy are two techniques that can be used
for elemental computations. AAS will not be used to apply solid nanoparticles
directly. Before using, they must first be dissolved in the appropriate acids or
bases. XRD may be used to figure out what minerals are in aggregated crystalline
nanoparticles (Kubickova et al. 2013). XPS can also provide information on the
composition of elements.

3.3.3 Nanoparticle Structure and Bonding Types

To obtain the structure and bonding qualities, a variety of methods can be applied.
Techniques such as XPS, FT-IR, Raman Spectroscopy, TGA, and XAS are helpful.
The metal–oxygen connections will be confirmed using XPS and FTIR. It is possible
to preserve data on the binding energy and oxidation state of materials with various
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elemental compositions. The structure and spinel lattice of a substance are deter-
mined via Raman spectroscopy. XAS will provide the neighboring atoms, oxidation
states, bond length, coordination number, and any other necessary information
(Gräfe et al. 2014; Reddy et al. 2012).

3.4 Nanomaterial Applications in Biogas Production

Anaerobic digestion is regarded as a complex biological procedure that combines
hydrogen sulfide (H2S), methane (CH4), water vapor, carbon dioxide (CO2), hydro-
gen, and ammonia with complex organic wastes. Anaerobic digestion consists of
several steps process including four types of microbiological phases: hydrolysis,
acetogenesis, acidogenesis, and methanogenesis, all of which are driven by a
microbial community, as shown in Fig. 3.3 (Abdelsalam et al. 2016).
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Fig. 3.3 Mechanism of Anaerobic Digestion Process

The sluggish rate of biological degradation of composite biological layers and
lignocellulosic layers restricts the effectiveness and efficiency of AD processes.
Furthermore, toxic constituents such as relatively higher molecular weight organic
compounds and ammonium derivatives in sewage water, high demand for ammonia
and Hydrogen sulphide intensity throughout and biochemical oxygen demand
(BOD), COD total basicity, and salinity at certain levels may necessitate initiate
treatment processes such as heat and acid/alkali because toxic components may
reduce the AD process’ effectiveness (Ahmed and Rodrigues 2013).

The recent introduction of various innovations under the Integrated Biofuels
Production Scheme, such as biogas production, bioaugmentation, anaerobic
co-digestion, and so on, as well as the use of nanoparticles (NPs), are attracting
more attention due to their small size and various notable features.

Furthermore, nanoparticles have higher field of volume ratios, which increases
the number of active sites, which is a requirement for increasing various reactions.
NPs, for example, might make hydropower processes easier by offering large surface
areas per volume ratio for microbes to adhere to organic molecules’ active sites
(Hsieh et al. 2016). Otherwise, NPs can boost yield by acting as the donors of
electron and cofactors of essential number of enzymes in diverse biological pro-
cesses (Ali et al. 2017).

Richard Feynman invented the term nanotechnology at the first meeting of the
American Physical Society. A rolled sheet of carbon known as fullness/sentence
force was discovered in the tubular construction in subsequent years. Eric Drexler
produced the first scientific publication on nuclear engineering 22 years after
Feynman’s famous presentation on the topic of nanotechnology.

Introducing the Basics of Nanotechnology, which he published in 1986, was a
seminal work. Dresler was the first batch of student to get a doctorate degree in the
course of molecular-based nanotechnology in the year 1991, despite the fact that he
delivered a recognized course on the arena of nanotechnology and nanomaterial
formation in the year 1987. They work with their own bulk materials, which have a
variety of chemical, physical, and biological properties.
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Fig. 3.4 Classification of NPs for biogas production

In biogas, the potential for nanoparticles to be used in a range of disciplines,
including the treatment of pollutants from soil and water, is virtually unaltered. Scott
(2006) addressed the overall prospect of improving biogas production from animal
manure of observed NPs in one of the first experiments (Ambuchi et al. 2017).

However, the effect of particle size of a few metal oxides (CuO as well as ZnO)
on the biogas production as well as CH4 in the anaerobic digestion process, which
was only discovered in 2011. The researchers noted an accumulation of NPs in
municipal wastes in the following years, due to the increased use of these chemicals
in numerous businesses. In the same year, it began looking into the impacts of
numerous metallic oxide and metallic NPs on the AD of Municipal Slides (Amen
et al. 2017).

Preliminary research has found that certain NPs at particular concentrations (e.g.,
Ag and TiO2) may not have a negative impact on AD processes in methane in
addition to biogas production, as well as the number of microbiological organisms
participating in their variety (Au, CeO2). This can have a negative impact on the
procedure. The effects of NPs on AD were continuing to be explored in the
subsequent years, and certain additional NPs (such as copper oxide, nZVI, zinc
oxide, selenium oxide and titanium dioxide) were also researched.

In light of the foregoing, this study focuses on new research on a sophisticated
application of different nanomaterials utilized to increase/progress biogas as well as
generation using AD processes (Amen et al. 2018). The NPs in this study are
separated into three different categories: (1) ZVMNPs, (2) carbon-based NPs &
(3) metallic and metal oxide nanoparticles as shown in Fig. 3.4.

3.4.1 Role of Biological Sensors for the Monitoring of Biogas

Anaerobic digestion evaluation, uninterrupted checking of volatile fatty acids and
organic matter is used to develop mediators for the situation of unstable progression.
The depletion of fossil fuels has sparked a surge in public interest in biogas
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production. AD provides the benefit of absorbing energy production from industrial
waste, so addressing a contemporary issue (Zhou et al. 2019). Improvements in
several economic and technological areas have emerged from the long-term sustain-
ability of efficient methane generation and process stability.

These include the right feedstock mix, biogas purification technology, and appro-
priate biogas furnace conditions depending on a variety of biochemical as well as
physical and factors like pH of the solution, alkalinity of the solution and quality of
gas evolved from the process. Reactor acidification occurs as a result of the manu-
facture and synthesis of alcohol and unstable fatty acids (e.g., propionate, acetate,
butrate). Gas chromatography, spectroscopy as well as high-performance liquid
chromatography are the most popular procedures for determining acid composition,
and they are normally performed by an external source as part of a high-cost analysis
(Gonzalez-Estrella et al. 2013).

3.4.2 Nanomaterial

Both ethnographic and natural resources are used to make nanoparticles. NP con-
centrations can reach dangerously high levels in waste mud. The toxicity and
impacts of NPs in the sludge treatment stream, on the other hand, are currently
being studied. The hazardous potential of plants and bacteria, as well as the sludge
dehydration process, are determined by the effects of the sludge AD process on NP
and CO2 nanoparticles. Nanoparticle concentration is crucial in identifying their
significance in the creation of methane and biogas.

Although not all nanoparticles activate the microbial digestion system, as com-
pared to controls, certain nanoparticles dramatically limit production rates. The
exposure density of 1000 mg/L of ZnO resulted in 64.3% biogas volume and
47.7% methane. The barrier effect can be overcome after 14 days of exposure to
zinc oxide at the concentration used for permanent exposure.

3.4.3 Role of Oxides of Metal Nano Particles in Anaerobic
Ingestion Process

Oxides of metal NPs offer distinct chemical and physical features, including smaller
size, superior surface structure, higher volume ratio, solubility, and strong catalytic
action. The effect of chemical and physical properties of oxides of metal-based NPs
on the AD process can vary according to size, density, type of NP, HRT, and
layering type. This emphases on the influences of concentration and size of metallic
oxide NPs on biogas manufacturing; AD procedure durability; production of H2S
and other contaminants in biogas manufacture from the standpoint of different levels
and HRT (Baniamerian et al. 2019).
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3.4.4 Influences on the Yield of Biogas

The AD process produces biogas, which is a useful and significant byproduct.
Biogas yield has critical index to assess AD process’ efficacy. The consequence of
Fe3O4 NP on methane output of metropolitan compact waste was studied by certain
researchers. Fe3O4 NP was tested at concentrations of 50, 75, 100, and 125 mg/L.
The addition of 76 mg/L Fe3O4 NP boosted methane generation by 54.3%,
according to the findings. Adding high quantities of Fe3O4 NP, on the other hand,
resulted in limited CH4 generation.

The effects of Fe3O4 NP at three types of diverse concentrations on biogas
manufacture from poultry waste were studied: 16, 60, and 150 mg/L. In comparison
to controls, the addition of 120 mg/L Fe3O4 NP is caused by a 28% rise in CH4
manufacture. The effect of Fe3O4 NP at 25 mg/L on methane manufacture from
cattle manure was studied by certain researcher.

When Fe3O4 NP was added, biogas and methane manufacture is increased by 1.8
as well as 2.5 times, respectively. According to some researchers, adding 120 mg/g-
TSS iron oxide NP increased methane manufacture by 12%. Insolubility of Fe2O3

NPS and electron transfer may cause this increase in methane manufacture to be
disrupted. Farghali et al. (2019) looked at the iron oxide and titanium dioxide effects
of NP on the making of biogas from cattle dung.

Biogas and CH4 generation rates were 1.1, 1.16, and 1.19, 1.21 times for Fe2O3

NP, 30 & 150 mg/L concentrations respectively. The authors assume that this
discrepancy is because to changes in NPS size, experimental settings, and levels,
as these outcomes are inferior to those reported by way of Abdelsalam et al. (2016).
Furthermore, TiO2 NPs in the concentration of 600 mg/L produced 339.25 mg/g VS
of biogas and CH4 of 194.31 mg/g VS.

Low-density (12 mg/L) CeO2 NPs methane as well as biogas manufacture
increased by 12%, according to Gonzalez-Estrella et al. (2013); however, adding
concentrations beyond 100 mg/L CO2 NP lowers biogas output compared to the
control technique. The drop in biogas manufacture could be related to the high
hardness of sludge and the low diffusion characteristics of CO2 NP in the media,
according to the scientists. Mu et al. (2011) looked at how varying concentrations of
four types of NPs (TiO2, Al2O3, SiO2, and ZnO) affected CH4 production during
Sludge AD (Gottschalk et al. 2013).

In case of quantities used up to 160 mg/g-total TSS, TIO2, SiO2, and Al2O3 NP
had no inhibitory impact; however, ZnO NPs had an inhibitory impact when the dose
was increased. When TiO2, CO2, Al2O3 NP up to dosage of 160 mg/g-Total
Suspended Solids lowered the control reaction by 40 and 160 mg/g-TSS compared
to the nitrogen and CH4 generation control response, CH4 generation was equivalent
to control, respectively, 100% by a whopping 18.9% (Pieta et al. 2018).
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3.4.5 Influences on the Stability of Oxygen Limiting Ingestion
Method

COD, volatile fatty acids (VFS), volatile solids (VS), and Total solids (TS) are
essential pointers; so, observing these values is adequate to assure AD process and
metabolic stability. The influence of CO, Nickel, iron, and Fe3O4 NP on the
breakdown of TS and VS was explored by Abdelsalam et al. (2016) and found to
be 4.99% and 4.36%, respectively, with the largest loss of TS and VS recorded.
These findings are consistent with those of Ali et al., respectively. Ali et al. (2017),
who found that adding 78 mg/L Fe3O4 NP reduced total solid and volatile solid by
32.15 and 42.15%, correspondingly, as linked to controls (Ramesha et al. 2011).

The effects of Fe2O3 NP on VS reduction were also examined by some
researchers. When compared to the control technique, the VC reduction for 30%
and 150 mg/L Fe2O3 NPs was 1.03 and 1.15 times, respectively, after 30 days. The
use of metallic oxide NP in AD has an impact on TS and VS digestion, as well as
microbial activation at various stages of the anaerobic digestion process. Some
researcher also found methanogenic bacteria in anaerobic granular sludge with
eight NPs (CuO, ZnO, CeO2, Al2O3, Fe2O3, TiO2, SiO2, and MnO3). There are a
few activity’s effects.

ZnO NPs had an IC50 value of 52–222 mg/L, whereas CuO, CeO2, Al2O3,
Fe2O3, TiO2, SiO2, and MnO3 have no effect on methane-producing bacteria.
According to Zhang et al. (2017a, b), increases to ZnO NP have a detrimental impact
on hydrolysis-acidification, VFA, and biogas generation (Suanon et al. 2017).

According to the authors, a rise in ZnO NP may effectively block hydrolysis-
acidification, particularly in sludge-containing proteins. This finding is in line with
Mu et al. (2011), who found that TiO2, Al2O3, CuO, and ZnO only had no effect on
the formation of soluble proteins and sugars during acidification and high levels of
ZnO in methane NP hydrolysis. NP had an impact on the layer (Güngör-Demirci and
Demirer 2004).

3.4.6 Influences on the Contaminants Like Hydrogen
Sulphide for the Production of Biogas

H2S and different sulfate is mostly created during the AD process by bacteria
scattering H2S sulfate or by proteinaceous material depletion. The presence of
hydrogen sulfide (H2S) in biogas can impair the life of pipes and other structures.
To reduce the H2S level in biogas and the toxicity of sulfide of methanogenic
bacteria, a combination of oxygen or sulfide precipitation or anaerobic bioreactors
could be used. Endogenous chemical drive oxidants, like H2O2, ferrous salts,
nitrates, and ferrite (VI), be unsuccessful to manage H2S in drainage sludge pro-
cesses over time and can harm AD (Batstone and Jensen 2011).
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The use of metallic oxide NPs in AD will affect biogas production and future
phases, as well as the reduction of H2S in biogas mixes. Several studies have been
undertaken on the effects of metallic oxide nanoparticles on hydrogen sulfide and
other pollutants present metal organic synthesis. Farghali et al. (2019) looked at the
significance of hydrogen sulfide mitigation as well as TiO2 and Fe2O3 NP on cattle
manure biogas generation. H2S Fe2O3 nanoparticles decreased 2.13 and 2.38 times
when compared to 20 and 100 mg/L supplementary controls. Hassanein et al. (2019)
investigated the effects of three different Fe2O3 nanoparticles concentrations on H2S
generation in poultry litter. Adding 15, 50, and 100 mg/L iron oxide nanoparticles to
the control system reduced hydrogen sulfide by 8.3%, 26.1%, and 9.27% (Thanh
et al. (2016).

3.4.7 Influence of Metal Nanomaterial (Zero-Valance)
for the Production of Biogas

The pure metals like Cu, Fe, Ni, Ag, and Co are zero-valent metallic NPs. In
comparison to the bigger part, zero-valent metallic NPs have exhibits physical and
chemical properties because of the effects of quantum surface and small object
(Hassanein et al. 2019).

This section of the review discusses the effects of various sizes, densities, and
types of zero-valent metallic nanoparticles on production of biogas, AD method
strength, Hydrogen Sulfide, as well as other contaminants to digest and produce
biogas at various levels of HRT.

3.4.8 Influences on the Yield of Biogas

Amen et al. (2018) investigated the impact of 5 types of different concentrations of
zero-valent Fe-NPs (nZVI) on municipal sludge statistics AD to CH4 content
(100, 250, 500, 1500, and 3000 mg/L). Growing biogas output decreased by 19%
and 9.5% when zero-valent Fe-NPs of 50 and 100 mg/L were added, respectively;
however, when 260, 600, 1600, and 3500 mg/L of nZVI were added, amount of
biogas increased by 1.29, 1.41, 1.83, and 2.15 times, respectively. The effects of
different concentrations of nZVI (600, 1600, 1900, and 2300 mg/L) on CH4 as well
as biogas manufactured from sludge were also investigated by the researcher (Han
and Yan 2016).

The nZVI addition of 1200 mg/L increased biogas generation cumulatively by
18.11% over the control sample. These are matched with Suanon et al. (2017) and
Zhou et al. (2019). Microorganism activity was inhibited, and aggregate biogas
production was lowered by 28.30% and 46.45%, respectively, when 1200 and
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Table 3.1 Summary of application of NP in AD

NP type Size in nm Main effect

Fe3O4 94–400 H2S yield increased 8%

Fe2O3 20–40 Methane yield increased 2 times

ZnO <100 Methane yield increased 1.18 times

CeO2 50 Methane yield decreased 35%

TiO2 25 Methane yield increased 2 times

SiO2 20 No change

Fe 200 Catalyst reactivity enhanced

Ni 30 Methane yield increased 1.19 times

Co 30 Methane yield increased 1.17 times

Ag 100 Methane yield decreased 74%

Carbon-based NPs 10 Methane yield increased 51%

300 mg/L nZVI were added. Due to changes in NP size, as well as residue type and
experiment, this could be the case (Rokaya et al. 2019).

Hassanein et al. (2019) studied the impacts of three types of NPs (Ni, Fe, and Co)
in poultry litter biogas generation at three different concentrations. Ni NPs is found
to be 11 mg/L, Co NPs is found to be 5.6 mg/L, and Fe NPs is found to be 120 mg/L
which enhanced CH4 generation by 37.48%, 25.7%, and 28.1%, respectively, as
associated to control. This is matched with Abdelsalam et al. (2016), who found that
nanoparticles produced methane and biogas of the three NP additions (Carpenter
et al. 2015) (Table 3.1).

Fe NPS additions, according to Abdelsalam et al. (2016), can boost CH4 gener-
ation in two ways.

For starters, Fe aids in the production of NPS acetate. Second, Fe NPs reduce CH4

by acting as direct electronic donors. In addition, the size and form of Fe NP are
critical for improving biogas and CH4 generation, according to the findings. By
introducing 2 mg/L Co between the three different types of Co nanoparticle con-
centrations (0.6, 1.2, and 2.5 mg/L). Abdelsalam et al. (2017a) found that production
of biogas reduced by 0.95 times in comparison with reference sample (Su et al.
2013). AG NPs & Fe effects on CH4 production AD were examined by Wang et al.
(2016). Substrate CH4 production increased by 120% when treated by 10 mg/g-TSS
Iron nanoparticles, while methane production fall by 73.52% as compared to the
500 mg/g-TSS Iron nanoparticles control. Because Iron nanoparticles increase
quantity of bacteria and activate critical enzymes, but 500 Ag NPs suppress them,
the scientists believe that adding 10 mg/g TSS may boost CH4 production. CuO and
AgO NPs were also discovered to impede methanogenesis by Gonzalez-Estrella
et al. (2013).
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3.4.9 Influences on the Stability of Oxygen Limiting Ingestion
Method

The impacts of nano zero-valent ion of 160 nm and 0.2 mm of powder iron on AD
methodologies in sewage sludge were investigated by Sanon et al. Adding powder
iron and nZVI raises the pH for the first week, then reduces it after that, but not
below the under-year level.

In this scenario, the water may operate as an oxidant, and the oxidation was
carried out from FeO to Fe2+, which may raise the pH for the first week, but after
that, the creation of VFA causes a fall in pH, which is consistent with Zhou et al.
(2019) and Zia has discovered that adding 1000 mg/L nZVI resulted in a function of
pH that was well-regulated. Furthermore, when compared to controls, COD removal
efficiency rose by 53.4 percent and 65.2%, respectively, for powder iron and nZVI
(Hao et al. 2019).

In addition, the addition of Fe enhanced the CH4 concentration of iron powder
and nZVI by 11.6% and 3.1%, respectively. Zhou et al. (2019) discovered that
adding nZVI to VFA, coenzyme F420, TS, VS, and COD resulted in a downward
trend in 30 days, which matched Abdelsalam et al. (2016), discovered that VS and
TS increased pancreatitis by 24.47% and 16%, when compared to a 30 mg/L
NP. The morphology of the sludge in the control test was rod-like, whereas the
morphology of the sludge with nZVI additions was spherical, according to SEM
pictures (Sreekrishnan et al. 2004).

The cobalt and nickel nanoparticles effect on methanogenic activity was exam-
ined by Abdelsalam et al. (2017a, b). At dosages of 0.6 mg/L and 1.2 mg/L, Co NP
has a beneficial on methanogenic activity. Nickel nanoparticles have influence on
methanogenic activity at all concentrations. All dosages of cobalt & nickel increased
the breakdown of total solids and poly volatile solids, with the exception of 2.2 mg/l
cobalt nanoparticles.

3.4.10 Influences on the Contaminants like Hydrogen
Sulphide for the Production of Biogas

Hassanein et al. (2019) investigated how three different types of Ni, Ko, and Fe NPs
influenced hydrogen sulfide concentration phases in poultry litter. Although the
rising H2S fell by 6.7% when compared to 5.4 mg/L nanoparticles coupling fur-
naces, there was no significant difference between 120 mg/L Fe nanoparticles and
7 mg/L Ni nanoparticles in comparison with the controls. Su et al. (2013) investi-
gated the nano zero-valent ion effects on the amount of hydrogen sulfide in the
production of biogas by sludge through aerobic digestion.

According to the findings, adding 0.1% nZVI to biogas resulted in a 98% drop in
H2S content. The zero-valent metal nanoparticles addition to biogas affects not only
the level of hydrogen sulfide but also the levels of other pollutants such as carbon
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dioxide and ammonia. Carpenter et al. (2015) looked the effect of nano zero-valent
ion on the carbon dioxide levels of biogas. Two forms of nZVI were used for the two
concentrations. When using the equal concentration of 1.25 g/L and nZVI, synthe-
sized, the carbon dioxide level of the biogas was reduced by 48 and 57% (Hassanein
et al. 2019).

Zhou et al. (2019) nZVI studied the effects of NH3. Ammonia is produced when
amino acids are low (NH3). The level of NH3 inside the reactor is critical. When NH3

concentrations are high, bacteria, on the other hand, block the utilization of NH3 in
their nitrogen sources with suitable flexibility. The amount of NH3 in the plain is
related to its pH. Jia et al. (2017) looked at how different ammonium nitrogen nZVI
concentrations (0, 600, 1200, 1800, and 2400 mg/L) affected the results. When
1200 mg/L nZVI was added, ammonia nitrogen was considerably reduced, and the
authors assume that ammonia nitrogen is reduced.

Overall, the negative effects of Fe+ and Fe3+ metallic ions in establishment of
anaerobic microbial populations, as good as the time reduction behind AD pro-
cesses, may be to blame for these biogas generation advances. During syntrophic
methanogenesis, however, the use of Fe3O4 NP can aid in the transfer of directly
intersected electrons (Tian et al. 2017).

It should be emphasized, however, that large quantities of these metallic oxides
can hinder methanogenesis by acting on acetoclastic methanogens. CuO, Fe2O3

NPs, for example, have been demonstrated to restrict acetoclastic methanogen and
H2-consuming methanogen, respectively, reducing methane synthesis. In both
groups, high quantities of CeO2, Mn2O3 NP were linked to methane inhibition.

NPs with Zn, Cd and Cd have been linked to interference with production of
biogas, in contrast to the metallic and metallic oxide NPs mentioned above, which
have shown favorable benefits in specific quantities. These metallic species can
block or kill the microbes that cause Alzheimer’s disease, effectively stopping the
disease from progressing. Changes in the membrane characteristics of microorgan-
isms and/or the promotion of oxidative stress might affect cellular processes
(Kaushal and Baitha 2019).

Because metal oxides require O2 or sunlight to form reactive oxygen species, the
northern side is rarely observed in AD. Temizel et al. studied the nano ZnO effect on
municipal solid waste digestion using both traditional and bioreactor methods.
Biogas production has been reduced by up to 15% in both conventional and
bioreactor mode, presumably due to ZNO’s inhibitory effect on methanogenic
microbes (Wang et al. 2016).

Furthermore, over 98% of ZNOs can survive for a long time in the waste matrix,
with an unknown fate and environmental impact. Mu et al. (2011) found the impact
of ZnO NP on generation of biogas has no influence on methane production at a
concentration of coenzymes F420 dependent on 6 mg/g-TSS 150, 30 and 1 mg zinc
oxide reduced NPs/g to 66.2%, 89.8%, and 99.3%, respectively, of total stagnant
water present.

The presence of mutant-producing CuO nanoparticles, a similar mechanism was
found while reducing biogas by ZnO NP, mostly due to the existence of acetoclastic
methane rather than hydrogen-consuming methane. Lunadelisisk et al. reported on
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Table 3.2 Summary of application of carbon-based NP in AD

Carbon-based NP type Size in nm Main effect

G 6 Methane yield increased

GO 10 Methane yield decreased 7%

MWCNT 200 Methane yield increased 46.9%

CNT 2 VFA yield increased 49.2%

C60 200 Methane yield increased 33%

the deleterious impacts of both of the above-mentioned NPs on methane generation
(e.g., ZnO, CuO), stressing their harmful effects on aerial species engaged in the AD
process (Cuéllar and Webber 2008).

In their research, using 120 mg/L copper (II) oxide or zinc oxide to minimize
biogas production at 36 °C was found to be effective. Despite the fact that studies
have shown that microorganism adaptation to these nanoparticles from the medium,
such as via bioremediation improves slightly in the last days of testing.

The size of NPs has an effect on Alzheimer’s disease. Smaller NPs, to be more
precise, are preferable. The addition of metallic and metallic oxide nanoparticles,
like Knight, Fe, Co, Fe3O4, Fe2O3, MgO, and Al2O3, identified to improve the
production of biogas and methane content in the literature, however, papers
highlighting the inhibitory effects have also been published. When utilized in high
concentrations, the production process comprises ZnO and TiO2 (Table 3.2).

3.5 Role of Carbon Nano Particles in Anaerobic Ingestion
Process

Carbon-based NPs’ broad use in electronic chemistry and biochemistry eventually
expands to environmental and wastewater treatment plants, causing environmental
problems. As a result, the influence of biogas generation, carbon-based NP, AD,
H2S, and other biogas pollutants must be evaluated at different levels.

3.5.1 Influences on the Yield of Biogas

Dakshin and Bautha evaluated the effects of a mixture of biogas and CH4 levels of
GO NPs on food waste, wheat straw and fertilizer. According to the findings,
introducing GO NPs increased methane output by 2.2 times in comparison with
the control. Hao et al. (2019) looked at how fullerenes & multiwall carbon nanotubes
at two concentrations of 60 g and 600 mg/kg affected biogas and methane production
in sheep dung. When compared to the high concentration (600 mg/kg) control,
multiwall carbon nanotubes and fullerenes yields increased by 47.4% and 34.5%,
respectively (Kulkarni and Ghanegaonkar 2019).
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The Brazilian sugar sector has also looked at the effects of MWCNTTs on
production of biogas from wastewater. The addition of 1500 mg/g-Volatile
Suspended Solids MWCNTS increased generation of biogas by 8.9%. The graphene
NPs impact on the SLAD genogenesis process was proposed by Tian et al. (2017).
This indicates that 30 mg/L and 120 mg/L graphene NP supplementation higher
production of methane by 17.0% and 51.4%.

Direct intersecting electron transfer (DIET) can be facilitated by SWCNTS during
the AD process. The addition of SWCNTS enhanced feedstock consumption and
methane production rates compared to controls, while methane production yields
were unchanged (14 million after 180 hours). DIET, on the other hand, permits
microbes to exchange electrons without requiring direct configuration or hydrogen
transfer.

As a result, materials such as electric vehicles (such as SWCNT) can act as ducts
between electron-receiving and electron-contributing throughout the DIET process.
Worryingly, in the presence of conductive material, methane synthesis is more
efficient than hydrogen, DIET, or electron carriers recognized as linked electron
transfer. A multiwall carbon nanotube (MWCNT) is another electrically conductive
component that can boost production of biogas and methane by converting electrons
to methanogen (Dang et al. 2016).

CNTs can considerably enrich electronic microorganisms like calorimeter SP in
general. Geobacter SP in combination with other bacteria or methanogenic archaea.
(methanosarcina, methenocyta, etc.). MWCNTs, for example, which include the top
two phylloxera, bacterioiditis (11.2%) and pharmacites (0.4.4%) (Ambuchi et al.
2017), can enhance the bacterial community and enhance the environment. Ambuchi
and colleagues found under mesophilic circumstance investigated the effects of
MWCNTs on the AD of granular sludge from the 96-h beer business (Xu et al.
2014).

The findings showed that 1500 mg/L of MMWCNTS, the CH4 generation
increase was larger than in the reference sample (151.8 vs. 106 mL/g of VSS) at
the conclusion of the experimental period. Due to probable interactions between
MWCNT, bacteria, and microbial EPS, SEM scans showed that granules of that
sludge from bioreactors treated with multiwall carbon nano tubes were reduced to
microorganisms. Wang et al. looked the impact of MMWCNTS on the microbial
activities and the structure in AGS for 110° in his recent study (Li et al. 2007).

MWCNTs had no influence on biogas output or COD reduction, but they did
boost overall phosphorus removal by 29.34%. 16 S RNA gene sequencing suggests
that MWCNTs have affected the structure and content of microorganisms but have
had little effect on microbial diversity. The presence of MWCNTs, for example,
relates to the potential for MWCNTs to have negative effects on specific microbial
populations by substituting saccharobacteria protobacteria.

A variety of carbon-based additives can be used to boost the generation of
ash-based nanomaterial to form biogas. Low and others (2012) got micro/nano
bottom ash and micro/nano fly ash from solid waste incinerators and used them to
boost biogas production. A significant rise in biogas generation can be noticed with
varying concentrations of these ashes at 35 °C for 90 days’ time. This observation
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can be linked to the expanded habitat of inorganic bacteria due to the rising nature of
these nanocompounds. Long-term use of fullerene nanoparticles was found with no
effect on biogas generation (Mihranyan et al. 2012).

3.5.2 Influences on the Stability of Oxygen Limiting Ingestion
Method

The impacts of MWCNTS on the AD process sustainability of sugar beets effluent
were also investigated by Ambuchi et al. (2017). Biogas production was improved
with adding the 1500 mg/g-VSS MWCNTS, with no barrier impact, no significant
difference in hydrogen generation, and faster use and removal efficiency of VFA
when compared to greater COD control experiments. Tian et al. (2017) was looking
at significance of graphene NPs on the sludge formed from the methanogenesis
process. When compared to controls, introducing 30 mg/L and 120 mg/L graphene
nanoparticles resulted in a rise in coenzyme F420 content. As coenzyme F420 levels
rise, the rate at which acetate is used rises, and acetate is quickly converted to CH4,
increasing CH4 synthesis.

Dong et al. (2019) studied the nanographene oxide effect on carbon conversion &
methane production at 0.05 and 0.108 g Ng/g volatile solids. It has no influence on
the nitrogen levels in the environment. Furthermore, the presence of coenzyme F420
was lowered when two concentrations of nanographene oxide were used. The
authors believe that the reduction in methane formation caused by the addition of
NGOs is due to the NGOs’ strong organic layer synthesis, which was confirmed by
Fourier spectroscopy (Demirel and Scherer 2011).

3.5.3 Influences on the Contaminants Like Hydrogen
Sulphide for the Production of Biogas

Because of inhibition during AD, some animal manures and slurries include signif-
icant levels of ammonium (NH4). In Alzheimer’s disease, the use of carbon-based
NPs can result in considerable improvements in function. ADB explored the impact
of carbon nanotubes (CNTs) on resistant ammonia in Ian et al. The results demon-
strate that methane yield is equivalent to all concentrations of CNT before ammonia
addition and is better than VFAS service with VFAS concentration 3 g/L and 5 g/L
CNT with 0 g/L and 1 g/L CNT. In comparison to pneumonia bodies, the rate of
specific CH4 generation reduced and the cumulative concentration of VFAs
increased with the addition of ammonia.
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3.5.4 Role of Mixture of Nano Particles in Anaerobic
Ingestion Process

Combining NPSs is a new field in the AD process that takes advantage of their
distinct characteristics. The effects of NPS mixes for AD performance on H2S
content in specially produced biogas are the subject of this section of the review.
Since AD, Hassanein et al. (2019) have looked at the concentration of H2S in
chicken litter as well as the effect of NP mixes on biogas production. High to low
NPS blends reduced H2S production by 100%, 71.9%, 40.9%, and 11.9%,
respectively.

The inclusion of G1 and G2 reduced H2S generation by 150.9% compared to the
control and increased it by 163.6%. It also cuts down on the time it takes to reach
maximum biogas production. After 30 days, however, the VS decrease is 1.14 times
greater than the G1 and G2 controls (Yadvika et al. 2004).

Eduok et al. (2017) investigated the impacts of experienced engineer
nanoparticles on hydrogen sulphide reduction and methane generation from WAS
AD. The alloys employed were Ag2O (20 nm), TiO2 (20 nm), and ZnO (21 nm)
alloys with dry weight concentrations of 250, 2000, and 2800 mg/kg. It showed that
applying tailored NP mixes did not result in marginal rise in methane emission when
compared to the control system. The application of selected NP mixes, however,
lowered H2S by two times in comparison with the reference, demonstrating that
sulfide-reducing microorganisms have an inhibiting effect. The designed NP mixture
also increased the quantity of VFAs by 1.1 times (Nzila 2017).

Amen et al. (2017) used nZVI and zolite mixes and nZVI-coated zolite to
investigate overall eddy performance of household sludge. ICZs were separated
into two groups based on iron concentration: 500 mg/L and 1000 mg/L. Biogas
output increased by 130.8%, 149.9%, and 286.7%, respectively, when compared to
IMZ, ICZ500, and ICZ1000. After 14 days, all bioreactors showed lower ammonia
levels and a higher tendency for COD and total alkalinity throughout digestion than
the control.

3.5.5 Impact on Environment on Biogas Generation
and Nanoparticle Recovery Technologies Within
the AD System

The usage of nanoparticles in a various industry has resulted in significant environ-
mental issues. Many studies have looked into ways to decrease the environmental
risk of nanoparticles in biogas production, as well as approaches to recover
nanoparticles from AD. As a result, this section of the review concentrates on
techniques for lowering the environmental risk of nanoparticles in biogas production
as well as strategies for recovering nanoparticles from AD (Dong et al. 2019).
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3.5.6 Limit the Effects of Nanomaterials on Biogas
Generation on the Atmosphere

The measures to mitigate the environmental risk of nanoparticles in production of
biogas are mentioned below. (1) Because NPC-containing wastes used as an alter-
native to using NP in AD process (Wang et al. 2016); (2) ZNS Digest can restore
replacement using agricultural fertilizers by treating few nanoparticles such as Q and
ZN through AD process; (3) From natural sources nanoparticles are prepared.

3.5.7 Recovery of Nanomaterial in the Anaerobic Digestion
Reactor

Several studies have described methods for recovering NPs within the AD reactor
and identifying nanoparticles when the AD process has finished. Hassanein et al.
(2019) looked into different methods for recovering NPs from an AD reactor.

The techniques of recovery were for the test:
(1) Liquid and hard samples were taken from the four reactors mentioned after

AD, dried at 35 °C for 20 min, (2) liquid and hard samples were taken from the four
reactors after AD, dried at 35 °C for 20 min, (3) Magnetic stray bars covered in
plastic parafilm were used to collect fluid and hard samples from the interiors of the
reactors. The results demonstrate that of the three methods tried, recovering metallic
NPs with a magnetic string bar wrapped in plastic parafilm was the only one that
worked.

Thousand mg/L of concentration, iron nanoparticles were identified in all
NMSPs, and their size was calculated. Low nanoparticles were not identified in
any of the treatments because to low concentrations, while neon NPs were only
found at a concentration of 120 mg/L. The third strategy is preferred because it
combines NP recovery with post-AD tracking, whereas the first and second tech-
niques can only track nanoparticles after AD (Eduok et al. 2017).

3.5.8 Analysis of Energy and Costs Based on NPs Supply

The cost analysis and energy balance were used to explore the effects of various
nanoparticles on biogas output. It was calculated by using the quantity of biogas
produced from 1 m3 of fertilizer. Biogas is a renewable source of energy. It
demonstrates that the maximum energy level of biogas is 1000 mg/L Iron
nanoparticles & 403.0 kWh, with a profit of 676.5 American dollar, but the lowest
is 5 mg/L Iron nanoparticles, when compared to the 192.6 kW reference.
Nanoparticles, on the other hand, not gained any for high concentrations of Iron
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and Iron oxide nanoparticles (>20 mg/L), but fared well when compared to the
density range (0.5–2.0 mg/L) reference.

The three types of NPs employed in the AD process were metallic oxide NP,
ZVNP, and carbon-based nanoparticle. Adding metal oxide nanoparticles has a
variety of effects on biogas production due to the density, kind, and size of NPs.
The combination of ZnO and CeO2 has a considerable inhibitory effect on
methanogenic bacteria.

The Fe3O4 and TiO2 addition to biogas rates has demonstrated to be beneficial.
Furthermore, TiO2 demonstrated a 2.5-fold reduction in H2S generation compared to
the control approach. Adding zero-valent nanoparticles boosted biogas generation,
particularly in non- nanoparticles, although lower cobalt (0.5 mg/L) & gold (10 mg/
g-TSS) concentrations enhanced methane, whereas Co (2 mg/L) increased. High
quantities of NPs in agriculture (500 mg/g-TsS) in CH4 generation. Furthermore,
zero-valent NPs decompose Total Solids, Volatile Solids, VFA, and COD, resulting
in a beneficial effect on ammonia concentration, VFA uptake, and chemical oxygen
demand using carbon-based nanoparticles as in comparison with the reference (Yan
et al. 2019).

Because of its unique characteristics, the nanoparticles combination provides
advantages, and it is a new research topic in the AD approach. H2S generation is
completely inhibited depending on the concentration of the nanoparticle’s mixture.
The use of waste nanoparticles generated by natural nanoparticles, as well as
improved nanoparticle recovery techniques inside AD reactors, can reduce the
environmental risk of nanoparticles in other industries. For high density, Fe3O4

NP (20 mg/L) and Fe provided little benefit, and their inclusion was judged a high
economic burden for AD systems. When compared to the reference, NPs with a wide
range of concentrations (0.5–2 mg/L) produced significant net benefits.

Some possible future consequences of the foregoing analysis are as follows:
(1) the application of NPS mixtures to understand their behavior in relation to
impurities concentrations in biogas; (2) the method of recovering nanoparticles
after digestion can be used to assess the environmental risk in AD process; (3) the
method of recovering nanoparticles after digestion, can be used to assess the
environmental risk in AD process (Yang et al. 2012).

Overall, the nanoparticle cost determines the economic viability of a large-scale
nanoparticles enhanced AD process. Furthermore, there are some environmental
dangers associated with using NP in any business (including the biogas business)
that must be addressed. As a result, it is prudent to investigate AD as a bio mediating
approach for the treatment of contaminated mud in NPs in order to be safe. In this
context, future study should focus on the impact of various NPs on the Alzheimer’s
disease process. Two or more varieties of NP were used simultaneously, for exam-
ple, and potential interactions and beneficial effects should be investigated. In
addition, the presence of NPS supposition and residue of chemicals formed from
NP or NP during the AD process should be recognized in the digest to avoid
pollution of agricultural land (Farghali et al. 2020).

The use of digests from NPS-augmented AD (with specific NPs) to boost the
growth of specific agricultural crops is another area of future research. Furthermore,
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determining the rate of absorption of various NPs in the form of intact NPs or their
derivatives by plants and their deposit sites from polluted soil or water would be
interesting (e.g., stalks, roots, fruits, leaves).

In this case, NPs-contaminated plant parts could be used as biogas boosting
additives in the AD process to figure out the exact dosage.

3.6 Applications of Nanomaterials in Biohydrogen
Production

Because of their unique properties, nanomaterials can assist improve the overall
biomass to biohydrogen conversion method (Kumar et al. 2019; Pugazhendhi et al.
2019). Every phase of cellulosic biohydrogen production technology can be cata-
lyzed by strong electroconductivity, increased surface area, and a high surface to
volume ratio (Taherdanak et al. 2015). Biohydrogen production has been shown to
be boosted by a number of nanomaterials, including Copper, Gold, Silver, Iron,
Nickel, and Titanium, via a variety of biological processes (Taherdanak et al. 2015;
Lin et al. 2016a, b). Nanomaterials, particularly Fe and Ni, act as cofactors in the
active areas of nitrogenase and hydrogenase enzymes, boosting biohydrogen gener-
ation (Taherdanak et al. 2015; Lin et al. 2016a, b).

In the fermentation process, nanoparticles operate as oxygen scavengers, absorb-
ing excess oxygen and reducing the oxidation-reduction potential. This provides the
hydrogenase enzyme with the ideal anaerobic environment, resulting in increased
biohydrogen generation. Using nanoparticles to pre-treat lignocellulosic biomass
can improve lignin removal while also boosting sugar output (Wei et al. 2015). NPs
can also increase synthesis of cellulase enzymes and their heat and pH stability,
allowing for more efficient cellulose hydrolysis and sugar conversion (Srivastava
et al. 2017a, b, c; Ladole et al. 2017; Bilal et al. 2018).

Due to their unique physicochemical qualities, nanoparticles are getting a clear
view to enhance the production process of biohydrogen, and are thus capable of
having a substantial impact on biohydrogen generation (Beckers et al. 2013).
Nanoparticles have a considerable impact on the metabolic activity of microorgan-
isms by increasing effective electron transfer to acceptors, resulting in improved
productivity and biohydrogen productivity (Patel et al. 2018). Because of its small
size and large surface area, the enzyme interacts with the substrate and catalyzes the
biohydrogen production (Vaghari et al. 2016; Sekoai et al. 2019).

Furthermore, nanomaterials with enhanced surface area and quantum size have
ability to absorb and increase the rate of transfer between nanoparticles and
enzymes, resulting in higher H2 production (Patel et al. 2018). Furthermore, in
biological processes for biohydrogen generation, two enzymes are essential for
structural and functional integrity: hydrogenase and nitrogenase, both of which
have Fe and Ni as metallic cofactors at their active sites (Engliman et al. 2017).
Once delivered to bioreactor, nanomaterials, particularly magnetic nanomaterials
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such as Fe and/or Ni, goes to the active sites of these enzymes, enhancing
biohydrogen generation (Mohanraj et al. 2014; Patel et al. 2018).

As a photo-fermentation substrate, organic acids formed as a byproduct of dark
fermentative biohydrogen generation can be used (Zagrodnik and Łaniecki 2017;
Nikolaidis and Poullikkas 2017; da Silva Veras et al. 2017). The nanoparticles can
increase the yield of photo-fermentative biohydrogen synthesis (Dolly et al. 2015).
In addition to fermentative biohydrogen synthesis, nanomaterials used as catalyst in
biohydrogen generation (Nagarajan et al. 2017; da Silva Veras et al. 2017). In
microalgae and cyanobacteria, photocatalytic nanomaterials like TiO2, SiC
nanomaterials to enhance photosystem light absorption, which is essential for
breaking water molecules and biohydrogen generation (Giannelli and Torzillo
2012). NPs bind to these enzymes’ active sites and participate in the ETC, which
speeds up reaction and boosts biohydrogen production. Giannelli and Torzillo
(2012) reported that using Chlamydomonas reinhardtii in a 50 L tubular
photobioreactor in the presence of light nanoparticle (silica) solution, biohydrogen
production was increased to over 850 mL, about 1.7 times higher than control, at a
production rate of 0.17 mL/L/h. Nanomaterials improve not only biohydrogen
output and productivity, but also enzyme reusability, allowing enzymes to maintain
their activity after numerous cycles, completing speed up the reactions, and more
cost-effective.

3.6.1 Biohydrogen Production

Due to its low cost and environmentally friendly character, biohydrogen production
via biological processes has long been believed to be a particularly promising
technology (Engliman et al. 2017; Srivastava et al. 2018). Biohydrogen made from
cheap organic waste found in nature, which is abundant and renewable (Gasparatos
et al. 2011; Thakur et al. 2014; Colmenares et al. 2017). All Biohydrogen genera-
tion’s functional feasibility can solve various concerns, environmental sustainability
and waste management (Nigam and Singh 2011). Two ways for creating biological
hydrogen are bacterial fermentation and cyanobacteria-based bio-photolysis (Harish
et al. 2015). Dark fermentation has more popularity and is currently recognized as an
effective technique for biohydrogen production (Azman et al. 2016).

Though dark fermentation allows for improved biohydrogen synthesis, the
method’s main drawbacks have been recognized as low yield and insufficient energy
recovery from organic substrates. Nonetheless, cellulose-rich organic substrate is the
preferred feedstock for dark fermentation biohydrogen production; the waste’s
complex structure of hemicellulose, lignin, and cellulose must be broken for bio-
conversion into fermentable sugars for further biohydrogen generation (Bajaj et al.
2014; Balat and Balat 2009). According to Fontes and Gilbert (2010), microbial
processing can hydrolyze 1011 tons of plant biomass and generate enough energy to
power. However, biomass must be processed to separate lignin and hemi cellulosic
barriers and release cellulose for enzymatic hydrolysis, which is one of the rate-
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limiting processes of biohydrogen synthesis (Gupta et al. 2016). Peng et al. 2009;
Srivastava et al. 2017a, b, c). Chemical pretreatment is widely used method to
eliminate lignin from biomass, cost of doing so limits the pilot size reaction (Dawson
2005). Furthermore, inefficiency and cellulase enzyme high cost have a significant
impact on the economic viability of biohydrogen generation (Wahono et al. 2014).
According to present discoveries, successfully convert cellulosic biomass into fer-
mentable sugars for biohydrogen production, a low-cost technique for pre-treating it
as well as its enzymatic hydrolysis is required.

Fermentation biohydrogen synthesis requires boosting enzymes that affect the
dark fermentation response in addition to the substrate (Ansari and Husain 2012).
Because fermentative biohydrogen generation is a microbially mediated process,
hydrogenase and nitrogenase, which govern dark fermentation directly (Sompong
et al. 2008; Bastidas-Oyanedel et al. 2015). Improvements in these enzymes, as well
as the addition of metal elements as a co-factor, are required to address the current
limits of biohydrogen-generating technology (Chong et al. 2009). Biohydrogen
synthesis is likewise reliant on bacterial multiplication because biohydrogen
enzymes are microbial enzymes. (Sompong et al. 2008; Bastidas-Oyanedel et al.
2015).

3.6.2 Hydrogen Production Via Dark Fermentation

To explore if Au/Fe–Zn–Mg–Al–O hydrotalcites-supported Au catalysts could
change biohydrogen generation, Wimonsong et al. (2013) created and tested a
number of them. When the catalyst was used, the Au/Zn–Mg–Al hydrotalcite
produced hydrogen yield of 2.74 mol hydrogen per mol of sucrose. When compared
to a control group that did not utilize nanoparticles, the use of ferric oxide
nanoparticles increased H2 generation from Enterobacter aerogenes by 17%.
According to their findings, adding 200 mg/L FeO nanoparticles boosted H2 syn-
thesis via an acetate-mediated route while reducing ethanol production. Addition-
ally, images taken with SEM showed the existence of bacterial nanowires, which are
responsible an effective electron exchanges with neighboring microbial cells (Lin
et al. 2016a, b).

According to Gadhe et al. (2015), the addition of Ni and hematite NPs process for
the production of hydrogen from dairy effluent increased the process efficiency by
over 27% when compared to the individual nanobiocatalysts. Adding ZVFe-
activated carbon micro-electrolysis to a mixed consortia also encouraged Clostrid-
ium sp. enrichment and showed 50% increase in H2 output by Zhang and Shen
(2007). Wang and Wan (2009) improved the hematite nanoparticle concentration
(0–1600 mg/L) on production of hydrogen from sucrose with the pH (4–10.0), and at
optimum pH of 6, 3.57 mol H2/mol of sucrose. Furthermore, TEM study of the
gradual discharge of hematite nanoparticles indicated changes in the morphology of
bacteria as the length rose from 2.0–3.6 m to around 2.6–5.6 m. Furthermore, Zhang
and Shen (2007) discovered that the size of the biocatalysts used had a substantial
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impact on the mixed consortia’s ability to produce hydrogen from sucrose. The
inclusion of 5 nm gold particles improved the bioactivity of hydrogen-producing
bacteria with an HY of 4.47 mol H2/mol sucrose. Mullai et al. found that adding a
small amount of nickel nanoparticles (5.67 mg/L) boosted hydrogen generation
efficiency by 22.7%, resulting in an HY of 2.54 mol H2/mol glucose. Hsieh et al.
(2016) used RTPCR to monitor hydrogenase enzyme activity on hydrogen produc-
tion by Clostridium pasteurianum after adding the of Iron-mediated nanoparticles in
the medium. The addition of Iron-mediated nanoparticles to the medium stimulated
H2 production, but only marginally. As a result, the capacity to track hydrogen
producer activity following nanoparticle addition is critical for a better understand-
ing of the stimulatory impacts of nano-mediated biocatalysts on biohydrogen
production.

3.6.3 Fe and FeO -NPs in Biohydrogen Generation

In dark fermentation, hydrogenase is an enzyme that creates hydrogen under ideal
conditions. [Fe-Fe] hydrogenase is one example of a cluster form (Mullai et al.
2013). Only a few bacteria species have been shown to produce [Fe-Fe]- hydroge-
nase when exposed to high Fe NP concentrations (Bao et al. 2013). When 200 mg/L
hematite nanoparticles added, the amount of hydrogen produced has risen by 32.6%
(Han et al. 2011). According to studies, the ZV Iron Oxide nanoparticles can lower
DO content in the medium, increasing the oxygen-sensitive hydrogenase enzyme
efficiency. When compared to control samples, 150 mg/L concentration of FeSO4

improved the hydrogen generation yield as much as 163%. Starch was also
fermented in a batch fermenter utilizing anaerobic sludge in dark fermentation
conditions (Yang and Shen 2006). Enterobacter cloacae was used in glucose fed
fermentation systems in the absence of light and with 125 mg/L FeO NPs.
Biohydrogen was created at a rate of 258 mL/g VS during the test (Mohanraj et al.
2014). In the cassava starch dark fermentation with Enterobacter aeruginos, FeO
NPs were found to be effective, generating 192.4 ± 1.14 mL/g H2. The conductivity
was high for ferric oxide nanoparticles would boost electron transfer rates, effective
in H2 production, according to the study (Lin et al. 2016b). A recent study combined
200 mg/L FeO NPs/carbon nanoparticles with glucose and mixed bacteria under
anaerobic fermentation conditions to produce 218.63 mL hydrogen/g glucose
(Zhang et al. 2018).

3.6.4 Synthesis of Biohydrogen by Nickel Nanoparticles

[NieFe]-hydrogenase is a cluster that prohibits dark fermentation of substrate by
hydrogenase enzymes, resulting in biohydrogen production. Bacteria generating
[NieFe] hydrogenase may successfully produce biohydrogen by nickel nanoparticles
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in dark fermentation (Bao et al. 2013). Nickel nanoparticles reported for the rise in
hydrogen production with hydrogenases in general. Mullai et al. (2013) discovered
that adding 5.67 mg/L of Ni NPs to dark hydrogen fermentation with glucose
boosted the yield by 22.7%. At 200 mg/L concentration of nickel nanoparticles
were employed to form molasses into 1.30 mol hydrogen per mol hexose by 4.8%
(Engliman et al. 2017).

3.6.5 TiO2 Nanoparticles Are Used to Produce Biohydrogen

According to current research, using 100 mg/L concentration of titanium dioxide
nanoparticles increased H2 generation by up to 46.1%. Titanium dioxide
nanoparticles boosted biohydrogen generation by breaking down proteins and poly-
saccharides into smaller organic compounds bits that hydrogen-producing bacteria
could easily consume. TiO2 also improved nitrogenase activity while decreasing
hydrogen uptake by the hydrogenase enzyme (Zhao and Chen 2011).

3.6.6 Biohydrogen Can Be Produced Utilizing a Variety
of Nanoparticles

Dark fermentation produced around 104.75 ± 12.39 mL of hydrogen per gram in
anaerobic baffled fermenter injected with immobilized sludge by maghemite
nanoparticles. 200 mg/L concentration, Fe2O3/C nanoparticles increased H2 produc-
tion by 33.7%, implying that FOC nanoparticles can enhance the activity of hydrog-
enase enzyme and speed up the dark fermentation (Zhang et al. 2018).
Co-precipitation was employed in a study to make M2+-Mg-Al HT materials. A
maximum hydrogen output of 2.30 ± 0.37 mol hydrogen per mol was found in
concentration range of 0.833 mg/L of Fe-Zn-Mg-Al HTs, which was 44% greater
than the control sample by Wimonsong et al. (2013). To increase biohydrogen
production, Le and Nitisoravut (2015) employed Ni-Mg-Al HT at concentrations
ranging from 83.417 mg/L. Using sucrose as the substrate, approximately
3.37 ± 0.17 of hydrogen per mol of H2 was produced at 250 mg/L concentration
of Ni-Mg-Al and HT. This is due to the simplicity with which magnesium and nickel
can be used to aid electron transport. Using 60 mg/L Ni-Ni graphene nanocomposite,
researchers were able to produce 41.28 ± 1.69 mL/g of Chemical Oxygen Demand
biohydrogen in dark fermentation (Ni-NiGr NC). In this work, industrial wastewater
containing monoethylene glycol is used to generate about 105% biohydrogen. In
addition to Fe, Ti, and Ni NPs, other nanocomposites could be capped or coated to
allow for high biohydrogen synthesis (Elreedy et al. 2017).
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3.6.7 Enhancement of Biohydrogen Production in Dark
Fermentation with Nano Zero-Valent Iron Implanted
on Chitosan

The nZVI/CS used as a catalyst improved production of biohydrogen at Sewwandi
and Nitisoravut 2020. Enterobacter aerogenes carried conducted dark fermentation
utilizing glucose at 37 °C in a mesophilic environment. The presence of nZVI/CS
was confirmed by TEM examination. 243 mL H2/g glucose was the greatest
biohydrogen yield of 30% greater than reference. With a starting pH of 6.8, the
optimum Chitosan-supported nano zero-valent iron concentration was 150 mg/L.
The acetic route was used to make biohydrogen based on the distribution of volatile
fatty acids, resulting in a favorable relationship between H2 yield and CH3COOH
content (VFA) (Table 3.3).

3.7 Conclusion

Nanomaterials are being manufactured and employed in a variety of industries,
which was grown in recent years. Different techniques that it could be utilized to
characterize the required size, shape, and property of nanomaterials, which can then
be used for a variety of applications, including biomedicine, electronic storage

Table 3.3 Summary of literature for production of biohydrogen by using nanomaterial

Nanomaterial
used

1 Hematite NPs Clostridium
butyricum

3.21 mole of hydrogen per mole of
sucrose

Han et al.
(2011)

Fe2O3-Fe3O4/
carbon
nanocomposite

Anaerobic
mixed
bacteria

Percentage yield of hydrogen approxi-
mately 33.7% more

Zhang et al.
(2018)

3 Hematite NPs
and NiO- NPs

Thermophilic
mixed
bacteria

Yield percentage of hydrogen was
approximately 34.38% more and for
α-Fe2O3 NPs was approximately 5.47%
more for NiO NP

Engliman
et al. (2017)

4 Maghemite
NPs

Hydrogenase
enzyme

Hydrogen production upto 33.7% Zhang et al.
(2018)

5 γ-Fe2O3 NPs Enterobacter
aerogenes

Yield percentage of hydrogen approxi-
mately 21% more

Mohanraj
et al. (2014)

6 Ni NPs Anaerobic
microflora

Hydrogen yield 22.71% more than
reference

Mullai et al.
(2013)

7 Nano zero-
valent iron

Enterobacter
aerogenes

Biohydrogen yield was 243 mL H2/g
glucose which was 30% higher

Sewwandi
and
Nitisoravut
(2020)
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devices, and sensors. The use of nanomaterials in the production of biogas and
biohydrogen was reviewed in this review paper. In this article, the effects of metal
oxide and metallic NP on the production of biogas and biohydrogen were explored,
as well as the influence of metal oxide and metallic NP on the production of biogas
and biohydrogen. The potential for employing NPs in real-world industrial settings
to improve biohydrogen production output and quality.
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Chapter 4
Microbial Assisted Synthesis
of Nanophotocatalysts for Dark
Fermentative Hydrogen Generation

Shanthipriya Ajmera, Souvik Roy, M. Noorjahan, J. Immanuel Suresh,
and Debashree Borthakur

Abstract The generation of hydrogen by using nanophotocatalyst in dark fermen-
tation is playing a major role for decades. Nanoparticles recently gained a lot of
interest due to their feasibility to enhance the effect of metabolic engineering by
improving performance or product yield. Biohydrogen produced by the microbes
shows enhanced production in anaerobic conditions using NPs. Whereas, these NPs
improve reaction kinetics with an increased transfer of electrons. Though several
NPs are reported to enhance dark fermentation for hydrogen production.
Nanomaterials have the advantages of cost-effective recovery and recyclability;
therefore, features such as strong electro-conductivity, bigger surface area, and
high surface-to-volume ratio have been researched in silver, gold, palladium, iron,
nickel, copper, and other metals. The renewable capacity of hydrogen is also very
useful for developing the biological production of hydrogen. The production of
hydrogen is done anaerobically both facultative and obligate, microorganisms
include E. coli, Sporolactobacillus spp., Citrobacter intermedius, Enterobacter
aerogenes, and E. cloacae. The sources used in hydrogen production are molasses,
organic wastes, and sludges as substrates. The production of biohydrogen includes
two steps; the Formate pathway and the NADH pathway. H2 is employed for
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hydration of considerable oils for fuel production, food hydration, diminishing
nitrate, perchlorate, and selenite. This chapter also includes the merits of hydrogen
generation by nanophotocatalyst like viable process, effective method, and demerits
like compromised reliability, low substrate conversion efficiency, a consequent low
yield of H2, etc. Some of the safety measures are also followed during the generation
of hydrogen by nanophotocatalyst. Unsafe acts are due to the human elements which
include; physical and mental characteristics, knowledge, skill, and attitudes of the
individuals.

Keywords Nanophotocatalyst · Hydrogen · Dark fermentation · Biofuel ·
Anaerobic fermentation · Sugars

4.1 Introduction

The increasing gap created between the global energy demands and an inadequate
supply of the same has caused a mammoth increase in the usage of fossil fuels.
Presently, exhaustive energy generation by the traditional fossil fuel combustion
methods has lead to a huge depletion of natural resources like combustible geologic
deposits buried underground, along with a significant negative impact on the global
climate following emissions of greenhouse gases (GHGs) in large quantities. Cur-
rently, the CO2 concentration in the atmosphere has crossed a whooping 350 parts
per million (ppm) (Chandrasekhar et al. 2015). This huge rise in CO2 levels in the
atmosphere potentially aggravates the greenhouse effect, resulting in a steep increase
in global temperatures. This gradual, but steep decrease in the global fossil fuel
reserves, and sincere concerns about climatic changes resulting from huge bulks of
GHGs emitted have led new-age scientists to investigate and develop eco-friendly,
nonpolluting, and renewable energy sources (Ayodele et al. 2020).

Production of hydrogen gas by microorganisms has gained significant attention
over the past few decades due to its eco-friendly and recyclable nature, which
involves a highly efficient conversion of substrates in the process. Cyanobacteria,
algae, and bacteria are nowadays widely employed for the large-scale efficient
production of hydrogen gas from organic wastes (Goyal et al. 2013). Improvement
in microbial hydrogen gas production is recently accomplished by introducing new
cutting-edge technologies like bioaugmentation (Marone et al. 2012), cell immobi-
lization (Kumar et al. 2016), microbial electrolysis cell (Kadier et al. 2016), and
genetic engineering (Srirangan et al. 2011). Bio-based energy is gradually showing
its tip as a sustainable replacement of fossil fuel-based energy sources, as it can not
only reduce the prevailing crises in the global energy supplies but also can reduce the
natural calamities soon to befall the world due to global warming. To name, one such
potential alternative is biohydrogen (H2). The high-energy yield/unit mass of this
fuel is 122 kJ/g, which is around 2.75 times more than the yield/unit mass of
conventional hydrocarbon fuels (Chandrasekhar et al. 2015). Combustion of H2

forms H2O as the only major by-product thus reducing GHG emissions. As it is
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Fig. 4.1 The different routes of biohydrogen production

much similar to electricity with regard to the framework of energy systems rather
than fossil fuels, biohydrogen is a much sought-after energy carrier.

Recently, a variety of biological routes for the production of H2 have been
developed (Khabirul Islam et al. 2021). Based on the systems that lead to H2

generation, these routes are grouped into four categories: (1) water-splitting photo-
synthesis (photolysis), (2) photofermentation, (3) dark fermentation, and (4) micro-
bial electrolysis process (electro-fermentation). Figure 4.1 shows the different routes
of biohydrogen production (Hallenbeck et al. 2018; Chandrasekhar et al. 2015).

Each of the above processes has its own characteristic advantages and disadvan-
tages with regard to energy production efficiency and practicality. Hence, the choice
of a suitable biocatalyst, as well as inoculum concerned with H2 production, will be
different for different processes.

Despite the eco-friendly advantages of biohydrogen production, low substrate
conversion efficiencies leading to low production rates, and the production of acid-
rich intermediates from acidogenic processes are some of the demerits that the
biological production of H2 suffers from (Chandrasekhar et al. 2015). To ensure
this, a number of sophisticated techniques for ensuring very high yields of hydrogen
are nowadays being applied, which employ tools of metabolic engineering to reroute
metabolic pathways to improve the efficiency of utilization of substrates through the
microbial expression of heterologous proteins, and to increase the electron flux
required for H+ reduction.

Dark fermentation (DF) is a highly efficient concept for biohydrogen production
(Preethi et al. 2019). DF is a comparatively low-tech, cheap process, producing
moderate rates of H2 and organic removal (Sun et al. 2019a, b). In this method,
complex forms of organic substrates can be utilized by anaerobic microorganisms or
microalgae (Preethi et al. 2019). In this regard, the different avenues still open for
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continued research are in the pretreatment of feedstock, process optimization,
co-fermentation, supplementation of additives such as metal ions (for example,
nickel that accelerates the action of hydrogenase, contributing to an increased
hydrogen evolution) and improving inoculum specificity for H2 production
(Srirangan et al. 2011; Khabirul Islam et al. 2021). Recently, it has been demon-
strated that improved H2 yields, as well as COD reduction rates, are achievable with
the introduction of NiO and CoO nanoparticles to the dark fermentation process
using rice mill wastewater (Khabirul Islam et al. 2021). Nanotechnology can defi-
nitely bring about a path-breaking difference in advanced fermentation, pyrolysis,
biofuel cell, jet fuels, carbon capture storage, catalytic conversion gasification, and
nano-based precision forming technologies (Nizami et al. 2018). Nanoparticles
(NPs) are now the prime areas of focus for scientists because of their ability to
enhance metabolic engineering through the improvement of product yield.
Biohydrogen produced by the microbes under anaerobic conditions shows enhanced
production using NPs. These NPs improve reaction kinetics with an increased
transfer of electrons. Dark fermentation for hydrogen production has been improved
using gold NPs, which shows a stimulatory effect on substrate utilization by 56%
and increases yield by 46%. Their enhanced surface area to volume ratio provides
better accessibility of the binding site with bacteria as well as enzyme (Zhang and
Shen 2007).

4.2 Biohydrogen Production by Dark Fermentation

4.2.1 The Process

DF or heterotrophic fermentation is an alternative route of biohydrogen generation
by anaerobic bacteria and microalgae from substrates, including carbohydrate type
of organic wastes (feedstock) or wastewaters, in the absence of sunlight. It is an
anaerobic process carried out in the dark, directly related to the acidogenesis stage of
the anaerobic sludge digestion process (Antonopoulou et al. 2011).

DF can be represented by the general biochemical reaction:

α� biomassþ β� H2O��! γ� acetic acidþ δ� propionic acidþ ε

� butyric acidþ ζ� valeric acidþ θ

� hexanoic acidþ κ� H2 þ λCO2 þ μ

�microbial biomassþ π� others e:g:, ethanolð
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4.2.1.1 Microbiology

Anaerobic degradation of organic wastes to produce hydrogen is carried out princi-
pally in two main successive stages, acidification and methanogenesis, performed by
specific microorganisms through different complex syntrophic interactions (Sun
et al. 2019a).

In this dark fermentation route of biological production of H2, pure microbial
cultures or a mixture of anaerobic microorganisms can be employed (Antonopoulou
et al. 2011). Microorganisms involved in the process include the facultatively
anaerobic bacteria Escherichia coli, Sporolactobacillus spp., Citrobacter
intermedius, Enterobacter aerogenes, and E. cloacae, and the obligately anaerobic
bacteria Ruminococcus albus, Clostridium beijerinckii, and C. paraputrificum
(Fig. 4.2) (Chandrasekhar et al. 2015).

Biomass from microalgae, rich in their carbohydrate content, is considered an
efficient feedstock for DF, promising elevated H2 productivities. The most promis-
ing microalgal species for this purpose have been found to be Chlorella spp.,
Scenedesmus spp., and Saccharina spp. (Koutra et al. 2020). In them, the heterotro-
phic bacterial population present in the algal biomass slurries produced biohydrogen.

Fig. 4.2 The different bacteria (including cyanobacteria) involved in the biological production of
H2 by dark fermentation
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4.2.1.2 Biochemistry

DF technologies for biohydrogen production have been developed in the laboratory
with substrates like molasses, organic wastes, and sludges, the latter two being rich
in complex carbohydrates. Carbohydrates, lipids, and proteins are hydrolyzed by the
hydrogen-producing enzymes (hydrogenases) in DF. Since no oxygen is produced
or consumed in this reaction, oxygen-labile hydrogenase is less likely to be
inactivated (Antonopoulou et al. 2011).

In the DF process, the anaerobic microbes generate reducing equivalents like
NAD(P)H and FADH2, which are finally reoxidized via the electron transport chain
(ETC) to form energy-rich molecules like ATP. Unlike in aerobic respiration,
anaerobic respiration uses CO2, NO3

-, S0, and SO4
2- as terminal electron acceptors

(TEAs), which are finally reduced with the regeneration of reducing powers
(Chandrasekhar et al. 2015).

Glycolysis or EMP pathway is an anaerobic metabolic pathway in which the chief
substrate glucose (C6H12O6) is catabolized to pyruvate (Show et al. 2019):

C6H12O6 þ 2NADþ → 2CH3COCOOHþ 2NADHþ 2Hþ:

Under anaerobic conditions, the pyruvate so produced goes to the different
acidogenic pathways coupled with H2 production, forming different volatile fatty
acids (VFAs) like propionic acid, butyric acid, acetic acid, malic acid, and others
(Show et al. 2019; Chandrasekhar et al. 2015). The corresponding reactions are:

C6H12O6 þ 2H2 → 2CH3CH2COOHþ 2H2O propionic acid pathwayð
C6H12O6 →CH3CH2CH2COOH 2CO2 2H2 butyric acid pathway

C6H12O6 2H2O→ 2CH3COOH 2CO2 4H2 acetic acid pathway

C6H12O6 2H2 →COOHCH2CH2OCOOH CO2 malic acid pathway

C6H12O6 →CH3CH2OH CO2 ethanol pathway

4.2.2 The Two Hydrogen-Producing Pathways

Interconversion of metabolic intermediates takes place during substrate breakdown
in anaerobic fermentation, which increases the availability of reducing equivalents in
bacterial cells.

The two main hydrogen-producing pathways in DF are the formate pathway and
the NADH pathway (Fig. 4.3) (Chandrasekhar et al. 2015). Recent scientific studies
have shown that these two hydrogen-generating pathways might be linked.

https://www.sciencedirect.com/topics/engineering/producing-hydrogen
https://www.sciencedirect.com/topics/engineering/hydrogenase
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Fig. 4.3 The two hydrogen-producing pathways in Dark Fermentation

1. The Formate pathway: The main enzyme of the formate pathway is formate
hydrogen lyase (FHL) complex. The core FHL complex includes formate dehy-
drogenase (FDH) and hydrogenase (H2ase). This FHL complex catalyzes the
oxidation of formate and reduction of proton to produce molecular H2 and CO2 in
a 1:1 molar ratio. Facultatively anaerobic microorganisms first transform pyru-
vate to acetyl-CoA and formate by the enzyme pyruvate formate lyase and then
produce H2 by the use of the FHL complex. Many genetic engineering studies
have been conducted on the FHL-related genes for regulating the metabolic
reactions of the formate pathway to enhance biohydrogen production (Sinha
et al. 2015).

2. The NADH pathway: This pathway, first reported in the 1980s, uses NADH as
the precursor involved in biohydrogen production. This process is carried out
principally by obligately anaerobic microorganisms. This route of H2 production
via reoxidization of NADH requires ferredoxin (Fd) reduction by NADH-Fd-
oxidoreductase, and the participation of Fd-hydrogenase (Show et al. 2019):

NADHþ Hþ þ 2Fd2þ
���������������!NADH-Fd- oxidoreductase

2Hþ þ NADþ þ 2Fdþ

2Fd2þ 2Hþ
���������������

Fd- hydrogenase
2Fdþ H2
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Fig. 4.4 Hydrogen Production from renewable sources

During fermentation, the H+ released from NADH/FADH with NADH dehydro-
genase is reduced to H2 by hydrogenase with the reduced Fd. On the other hand, the
membrane-bound NADH dehydrogenase and cytochrome bc1 (cyt bc1) protein
complexes, and quinone and cytochrome c, the mobile electron carriers, participate
in the electron transfer through the quinone pool. The redox interconversion between
reduced Q (ubiquinol/QH2) and H+ transfers the electrons to the cyt bc1 and to the
cytochrome aa3 (cyt aa3). The reduced cyt aa3 now reduces Fd, which donates an
electron to the hydrogenase to produce H2 (Chandrasekhar et al. 2015). These
electron transfers are very much affected by the prevailing environmental conditions
(Show et al. 2019). Hence, several detailed scientific studies were conducted to
regulate the metabolism of NADH in order to enhance H2 production. Figure 4.4
shows the H2 production from renewable sources.

4.3 Mechanism of Synthesis of Microorganism-Assisted
Nanoparticles

The processes of both intracellular and extracellular synthesis of nanoparticles
(NP) through microorganisms from metals, metal oxides, or metalloids were prop-
erly documented in the literature (Lahiri et al. 2021). The extracellular method
includes reduction of metal ions for NPs synthesis through microbial enzymes and
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proteins, bacterial or fungal cell wall components, or organic molecules present in
the culture medium, whereas the intracellular system involves initial electrostatic
enchantment of metal ions through carboxyl groups of the microbial cell wall,
resulting in the passage of metal ions via the cells and reduction by intracellular
proteins and cofactors to yield NPs (Lahiri et al. 2021; Siddiqi et al. 2018).
Biochemical mechanisms concerning microorganism-mediated nanoparticle synthe-
sis could also be seen as a part of microbial resistance mechanisms for cellular
detoxification. This involves changes in the solubility of inorganic and toxic ions
through enzymatic reduction and/or precipitation in the shape of nanostructures
(Lahiri et al. 2021). Both extracellular and intracellular biocatalytic synthesis mech-
anisms were proposed, which specifically include oxidoreductase enzymes (e.g.,
NADH-based nitrate reductase, NADPH-based sulfite reductase flavoprotein subunit
α, and cysteine desulfhydrase) and cellular transporters (Lahiri et al. 2021; Grasso
et al. 2019). Nano-size substances are biosynthesized in the microorganisms with the
aid of using binding target ions from the surrounding environment and changing
those toxic metal ions into the corresponding element metal by cellular enzymes.
Based on the region of synthesis of nanoparticles, it may be categorized into
intracellular or extracellular (Lahiri et al. 2021). The intracellular approach includes
transporting ions into the microbial cell to form nanoparticles in the presence of
enzymes. The extracellular mode involves trapping the metal ions on the cell surface
and reducing ions in the presence of enzymes (Lahiri et al. 2021; Li et al. 2011).
Nanoparticles have recently attracted a lot of attention due to their potential to
improve metabolic engineering by enhancing performance or yield. Advanced
fermentation, pyrolysis, jet fuels, catalytic conversion gasification, biofuel cell,
carbon capture storage, and nano-based precision forming technologies can all
benefit from nanotechnology (Nizami et al. 2018) bacterial biohydrogen generation
is boosted in anaerobic environments when Nanoparticles (NPs) are used. By
enhancing the electron transfer rate in the microbial cell, nanoparticles improve
biohydrogen production in the microbial system. The major biological components
for the synthesis of Nanoparticles are given in Fig. 4.5.

The advantage of Nanomaterials are cost-effective recovery/recyclability; there-
fore, features like as strong electro-conductivity, bigger and high surface area-to-
volume ratio have been researched in the silver, gold, palladium, iron, nickel,
copper, and other metals (Mughal et al. 2021). Several NPs have been reported to
improve dark fermentation for hydrogen production, including gold NPs, which
have a stimulatory effect on substrate utilization by 56% and increase yield by 46%.
This increased surface area to volume ratio provides better accessibility to the
binding site with bacteria and enzymes (Zhang and Shen 2007; Sekoai et al.
2019). Figure 4.6 shows the microbial enzymes in bioreduction of metal, metalloid,
and nonmetal ions to nanoparticles (Dasgupta et al. 2017).

To overcome the obstacle of increased nanoparticle dosage for enhancing biofuel
production, various mesoporous NPs have been created. When NPs (zero-valent
metals, metal oxide, and carbon-based NPs) are combined with anaerobic fermenting
bacteria, the hydrolysis process of organic material is accelerated by increased
substrate consumption, and lipase catalyzes biodiesel generation through
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synthesis

Plant extracts
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Gram negative
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(enzymes,
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weed
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Fig. 4.5 The major biological components for the synthesis of Nanoparticles

Fig. 4.6 Microbial enzymes in bioreduction of metal, metalloid, and on metal ions to nanoparticles

transection. Various mesoporous NPs have been developed to overcome the barrier
of increased NP dosage for improving biofuel production. When nanoparticles (NPs)
(zero-valent metals, metal oxide, and carbon-based NPs) are combined with anaer-
obic fermenting bacteria, the hydrolysis of organic material is accelerated by
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increased substrate consumption, and lipase catalyzes biodiesel generation via
transection.

NPs modified enzymes, on the other hand, can withstand harsh environmental
conditions and support increased product synthesis with reusability. Because nano-
technological implementation is still in the laboratory, it necessitates a higher level
of knowledge and technology.

4.3.1 Effect of Nanoparticles on Biohydrogen Production

The applications of NPs include protein immobilization, biosensors, and biofuels
production (Patel et al. 2016, 2018; Mohanraj et al. 2016; Kim et al. 2016; Otari et al.
2016). Biosensors are used for enhancing electron transfer to acceptors. NPs can also
significantly influence the microbial metabolic activity for H2 production through
similar phenomenon under aerobic conditions by efficient transfer of electrons
(Beckers et al. 2013). The positive effect of various NPs, including silver (Ag),
gold (Au), Copper (Cu), Fe, Ni, Palladium (Pd), Silica (SiO2), Titanium (Ti),
activated carbon, carbon nanotubes (CNTs) and composite were observed on BHP
(Mohanraj et al. 2014; Patel et al. 2018; Mohanraj et al. 2016; Zhao et al. 2013a, b).
Briefly, these NPs might be stimulating BHP by their surface and quantum size
effect (Zhang et al. 2007). As surface effect, the smaller the size of NPs larger the
specific surface area, which thus enables a strong ability to adsorb electrons. The
extent of the quantum size is directly co-related with the rate of electron transfer
between NPs and enzyme molecules, such as hydrogenase, which catalyzes the
conversion of H2 to proton and vice versa, either to act as electron sinks or deliver
reducing power from H2 oxidation, as follow: H2 2H+ + 2e-.

4.3.2 The Influence of Nanoparticles on Dark Fermentative
for Hydrogen Generation

The influence of nanoparticles on dark fermentative for hydrogen generation was
presented in two ways.

(1) Chemical-assisted synthesis of nanoparticles and (2) Green synthesis of
Nanoparticles.
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4.3.2.1 Chemical-Assisted Synthesis of Nanoparticles Dark
Fermentative H2 Production

Nickel Nanoparticles

In order to increase the hydrogen (H2) production by dark fermentation, the excess
amount of nickel ferrite nanoparticles (NiFe2O4 NPs) above 400 mg/L decreased the
H2 productivity, whereas moderate quantities (50–200 mg/L) boosted up H2 pro-
duction. The 100 mg/L (37 °C) and 200 mg/L NiFe2O4 NPs (55 °C) groups
produced the greatest H2 yields of 222 and 130 mL/g glucose, respectively, which
were 38.6 and 28.3% greater than the control groups (37 °C and 55 °C).

Soluble metabolites revealed that the NiFe2O4 NPs boosted up the butyrate
pathway, which corresponded to an increase in Clostridium butyricum abundance
in mesophilic fermentation. Using residual algal biomass from the Cyanobacterium
Lyngbya limnetica as a substrate, nickel ferrite nanoparticles (NiFe2O4 NPs)
increased crude cellulase enzyme production. After 72 h, the residual algal substrate
and crude cellulase mediated by NiFe2O4 NPs exhibit roughly 2.5 times increased
filter paper activity, as well as improved pH and thermal stability. Using the Bacillus
subtilis PF 1 bacterial strain, a total of 1820 mL/L of hydrogen was produced in the
dark fermentation. During the dark fermentation, the addition of charcoal (BC) and
metal cofactor nanoparticle Ni0 production of hydrogen is improved. To optimize
hydrogen production, a new hybrid strategy combining artificial neural networks and
response surface methods was used. The impact of operational parameters, such as
BC, metal cofactor Ni0, pH, and microbe dose, on hydrogen production as well as
concentrations of other metabolites, such acetic acid, propionic acid, butyric acid,
and ethanol, were studied extensively.

Cobalt Nanoparticles

The impact of cobalt ferrate nanoparticles on hydrogen production from dark
fermentation was investigated by sol- gel method. These nanoparticles were added
to the fermentation process in small amounts (0.1–0.4 g/L). The highest hydrogen
yield of 205.24 mL/g glucose was obtained at a dosing level of 0.4 g/L, representing
a 31.8% improvement over the control, while excess (0.5 g/L) nanoparticles reduced
hydrogen production by 9.7%. The microbial community demonstrated that the
moderate amount of cobalt ferrate nanoparticles boosted up the abundance of
Clostridium sensu stricto 1, which was dominating and supported the long-term
conversion of glucose wastewater into clean hydrogen, from 14.49 to 18.84%. The
addition of NiO and CoO nanoparticles (NPs) to dark fermentation of rice mill
wastewater employing Clostridium beijerinckii DSM 791 enhanced biohydrogen
generation. Intrinsically generated NiO (26 nm) and CoO (50 nm) NPs with poly-
hedral morphology and high purity were made using a simple hydrothermal
approach. The characteristics of biohydrogen generation were discovered in dose-
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dependent experiments for 1.5 mg/L concentrations of both NPs. Optimal NiO and
CoO dosages increased biohydrogen output by 2.09 and 1.9 times, respectively, as
compared to a control run without NPs.

Iron Nanoparticles

In terms of H2 yield, productivity rate, and metabolites distribution, FONPs effects
on the hydrogen fermentation from glucose and pretreated cassava starch employing
E. aerogenes and FONPs were used to aid dark hydrogen fermentation by increasing
hydrogenase activity of E. aerogenes and electron transfer with 200 mg/L FONPs,
pretreated starch and glucose improved hydrogen yields by 17.0% and 63.1%,
respectively (Lin et al. 2016). When the concentration of FONPs was increased
from 0 to 200 mg/L, the hydrogen output of glucose increased from 164.5 ± 2.29 to
192.41 ± 0.14 mL/g. When the concentration of FONPs was increased to 400 mg/L,
the hydrogen yield of glucose fell to 147.2 2.54 mL/g. FONPs improved the acetate
pathway but weakened the ethanol pathway of hydrogen production, according to
soluble metabolic products. More NAD (nicotinamide adenine dinucleotide) was
available for reducing proton to hydrogen as a result of the metabolic pathway shift
(Lin et al. 2016). Enterobacter aerogenes conducted dark fermentation utilizing
glucose as a carbon source at 37 °C in a mesophilic environment. The morphological
organization of nano-sized zero-valent iron on chitosan was validated by TEM
investigation. 243 mL H2/glucose was the greatest biohydrogen yield, which was
30% greater than the control. The acetic route was used to make biohydrogen,
resulting in a favorable association between hydrogen yield and acetic acid content,
according to the distribution of volatile fatty acids (VFA). Dark fermentation using
Enterobacter aerogenes has the potential to produce biohydrogen. The addition of
iron oxide nanoparticles (Fe3O4 NPs) and date seed- activated carbon
nanocomposites (Fe3O4/DSAC) to the fermentation media boosted hydrogen yield
and productivity. For both additions, the optimal dosage and fermentation duration
were found to be 150 mg/L and 24 h, respectively. Fe3O4/DSAC nanocomposites
outperformed Fe3O4 NPs in terms of hydrogen generation (Nurul Sakinah Engliman
et al. 2017). The 150 mg/L nanocomposites produced a maximum hydrogen yield of
238.7 mL/g, which was 65.7% greater than the standalone Fe3O4 NPs and three
times higher than the yield of the control run without any NPs (78.4 mL/g). The
Fe3O4/DSAC nanocomposites showed great promise for producing biohydrogen
from date fruit wastes (Rambabu et al. 2021). A study using mixed cultures grown
under a thermophilic setting in which iron oxide NPs were added at a very low
concentration (50 mg/L) was successful in improving biohydrogen generation.
When compared to the control test without the addition of iron NPs, the production
rates increased by up to 34%. Both iron (II) oxide and nickel oxide were examined
and found to increase hydrogen output by 34.38% and 5.47%, respectively, above
the control test. The studies on the influence of starting pH were conducted without
the addition of nanoparticles in order to establish the optimum pH for maximum
hydrogen production, which was found to be around 1.78 mol H2/mol glucose at pH
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5.5. These findings indicate that adding iron (II) oxide nanoparticles to the system is
the most important component in increasing hydrogen generation (Engliman et al.
2017). The feasibility of increasing the rate of H2 gas production from glucose
through anaerobic fermentation by mixed bacteria was investigated using ferric
oxide/carbon nanoparticles (FOCNPs). The results showed that an acceptable dose
of FOCNPs enhanced H2 production, whereas an excessive concentration of
FOCNPs reduced it. The greatest yield of 218.63 mL H2/g glucose was obtained
with the addition of 200 mg/L FOCNPs, which was 33.7% greater than the 163 mL
H2/g glucose obtained in the control test without the addition of FOCNPs. However,
400 mg/L FOCNPs reduced H2 evolution to 154 mL/g glucose, which was 5.5% less
than the control. The acetic routes were discovered to be used in the development of
H2. FOCNPs could help anaerobes proliferate by providing more attachment sites.
FOCNPs may also boost hydrogenase activity and electron transfer efficiency, which
is good for bio-H2 evolution. Excessive addition of FOCNPs, on the other hand,
could be harmful to microorganisms, further decreasing H2 generation. Using heat-
shock pretreatment anaerobic sludge in batch reactors, the effects of Fe0 and Ni0
nanoparticles on mesophilic dark hydrogen fermentation from starch were exam-
ined. In the presence of 0–50 mg/L of each Fe0 and Ni0 nanoparticle, a starch
concentration of 0–20 g/L was utilized, with the initial pH of all experiments set to
7. At starch, Fe0, and Ni0 concentrations of 5.37 g/L, 37.5 mg/L, and 37.5 mg/L,
respectively, the maximal yield of hydrogen generation was 149.8 mL/g-VS. This
was over 200% greater than the results from the control group (Taherdanak et al.
2015). The study on the effects of grass hydrogen fermentation by using biochar and
zero-valent iron nanoparticles (Fe0 NPs) results showed that combining biochar
(600 mg/L) with Fe0 NPs (400 mg/L) increased and enriched the microbial activity
of Clostridium species, resulting in excellent hydrogen yielding efficient metabolic
pathways. When biochar + Fe0 NPs added, hydrogen productivity reached 50.6 mL/
g -dry grass, which was 89.8%, 53.3%, and 15.9% highest than the control, indi-
vidual biochar, and individual Fe0 NPs groups, respectively. Fe0 NPs supplemen-
tation increased hydrogen production and hastened the grass fermentation process.
Hydrogen yield and maximal hydrogen yield are best achieved at a dosage of
400 mg/L. The production rates were 64.7 mL/g dry grass and 12.1 mL/h, respec-
tively, which were 73.1% and 128.3% greater than the control group. Fe0 NPs
enhanced microbial activity and altered the dominating bacteria in the system from
Enterobacter sp. to Clostridium sp., resulting in a more efficient pathway for
enhancing hydrogen production. Most critical factors affecting the hydrogen pro-
duction from starch via mesophilic dark fermentation were found to be starch and
Fe0 NPs concentrations. There was some interface between the concentrations of
Fe0 NPs and Ni0 NPs. At a starch concentration of 5 g/L, Fe0 NPs and Ni0 NPs
concentrations of 37.5 mg/L found the greatest experimental hydrogen yield of
147.3 mL/g VS was obtained (Taherdanak et al. 2015). Fe0 NPs supplementation
increased microbial activity and shifted the main microbial community from
Enterobacter to Clostridium sp., resulting in an extra efficient metabolic pathway
that produced more. At a Fe0 NPs dosage of 400 mg/L, the maximum hydrogen
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yield and hydrogen generation rates were 64.7 mL/g -dry grass and 12.1 mL/h,
respectively, which were 73.1% and 128.3% greater than the control group.

Gold Nanoparticles

Gold nanoparticles improve biohydrogen production by attracting microbial cells to
active regions. Because of their tiny size and huge surface area AuNPs (5 nm)
improve the substrate utilization efficiency by 56% and biohydrogen generation
yield by 46% (Zhang and Shen 2007). The AuNPs increase the activity of catalytic
hydrogenase, which plays an important role in H2 production.

Ag Nanoparticles

Silver nanoparticles were added to anaerobic batch reactors to boost acidogenesis
while also producing fermentative hydrogen. Using glucose-fed mixed bacteria
dominated by Clostridium butyricum, the effects of silver nanoparticle concentration
and inorganic nitrogen concentration on cell growth and hydrogen production were
investigated. The silver nanoparticle tests produced significantly highest H2 yields
than the control, with the maximum hydrogen yield (2.48 mol/mol glucose) obtained
at a silver concentration of 20 nmol L-1. The presence of silver nanoparticles
reduced ethanol yield while increasing acetic acid yield. The higher the concentra-
tion of silver nanoparticles, the higher the rate of cell biomass production (Zhao et al.
2013a, b).

4.3.2.2 Green Synthesis of Nanoparticles for Dark Fermentative H2

Production

Phytogenic iron nanoparticles (FeNPs) on dark fermentative hydrogen (H2) produc-
tion by Enterobacter cloacae, a mesophilic soil bacterium FeNPs were made from
FeSO4 utilizing aqueous leaf extract of Syzygium cumini in a quick green with
100 mg L1 FeNPs supplementation, the greatest H2 output of 1.9 mol mol1 glucose
was found, with twofold improvement in the conversion efficiency process of
glucose. On batch fermentative H2 generation from glucose, the effects of FeSO4

and FeNPs were compared. Fermentation tests revealed that FeNPs supplementation
considerably boosted the proportion and yield of H2 compared to the control
(no supplementation) and FeSO4-containing media. FeNPs which was biogenerated
byMurraya koenigii leaf extract as reducing and stabilizing. The influence of FeNPs
was tested using the Clostridium acetobutylicum NCIM 2337 for fermentative
hydrogen production from glucose. The maximum hydrogen yield in the FeNPs
supplemented experiment was 2.33 ± 0.09 mol H2/mol glucose at 175 mg/L of
FeNPs, whereas the highest yield of hydrogen in the control experiment was 1.74
0.08 mol H2/mol Glucose. The comparative investigation revealed that iron oxide
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nanoparticles have a greater enhancing effect on fermentative hydrogen production
than FeSO4. With 125 and 200 mg/L iron oxide nanoparticles, the maximal yields of
hydrogen 2.07 ± 0.07 mol H2/mol with glucose and 5.44 ± 0.27 mol H2/mol with
sucrose were reached, respectively. All the findings suggest that the improvement of
hydrogen production from iron oxide nanoparticle supplementation is significantly
greater than that from ferrous iron supplementation (Lin et al. 2016). The synthesis
and characterization of magnetite nanoparticles (NPs) made from Water hyacinth
(WH) extract, as well as their regulating influence on fermentative hydrogen gener-
ation by Klebsiella sps. from lignocellulosic hydrolysate. With WH-magnetite-NP at
20 mg/L, the greatest cumulative hydrogen generation was achieved with a 23.49%
increase and an optimal Y(H2/S) of 83.20 2.19 mL/g substrate.

Paladium Nanoparticles

PdNPs generated using Coriandrum sativum leaf enhanced the mixed culture hydro-
gen generation from glucose. Adding PdNPs to E. cloacae resulted in a negligible
hydrogen output. But due to the metabolite shift, PdCl2 had an inhibitory influence
on hydrogen generation. The hydrogen yields of E. cloacae and mixed culture with
5.0 mg/L of PdCl2 supplemented trials were 1.39± 0.07 and 2.11± 0.11 mol H2/mol
glucose, respectively. At 5.0 mg/L PdNPs supplementation, the greatest yield of
hydrogen with E. cloacae and mixed culture were recorded as1.48 ± 0.04 and
2.48 ± 0.09 mol H2/mol glucose (Mohanraj et al. 2014).

Cu-NPs

Cu-NPs on biohydrogen generation from glucose and the results were compared to
CuSO4. The reducing agent used in the production of copper nanoparticles (Cu-NPs)
is Murraya koenigii leaf extract which was used as a reducing agent in the produc-
tion of copper nanoparticles (Cu-NPs). Enterobacter cloacae and Clostridium
acetobutylicum were used to investigate the effects of phytogenic Cu-NPs on
biohydrogen generation from glucose, and the results were compared to CuSO4.
The effects of Cu-NPs and CuSO4 (2.5, 5.0, 7.5, 10.0, and 12.5 mg/L) on
biohydrogen production were investigated using E. cloacae at pH 7.0 and
C. acetobutylicum at pH 6.0. The findings imply that adding Cu-NPs to fermentation
at a concentration of less than 2.5 mg/L could boost hydrogen production.

NiO-NPs

The green synthesis of nickel oxide nanoparticles (NiO-NP) from Eichhornia
crassipes (Ec) extract was carried out for the first time, and the regulatory influence
of this NP on fermentative hydrogen production was assessed(Ec-NiO-NP). In the
presence of 20 mg/L Ec-NiO-NP, the highest cumulative hydrogen generation and
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hydrogen yield Y(H2/S) were 4842.19 23.43 mL/L and 101.45 3.32 mL/g substrate,
respectively, which were 47.29% and 37.78% greater than the control without NPs
addition. The results show that supplementing with green-synthesized Ec-NiO-NP
enhances fermentative hydrogen production while also regulating important node
metabolites and functional gene expression (Zhang et al. 2021).

Fe3O4 NPs

The biohydrogen generation capability of date-palm fruit waste was investigated
utilizing Enterobacter aerogenes and dark fermentation. In terms of hydrogen yield,
production rate, and metabolites distribution, the effects of FONPs on hydrogen
fermentation from glucose and pre-treated cassava starch employing E. aerogenes
were investigated. Fe3O4/DSAC nanocomposites outperformed Fe3O4 NPs in terms
of hydrogen generation. The 150 mg/L nanocomposites produced a maximum
hydrogen yield of 238.7 mL/g, which was 65.7% greater than the standalone
Fe3O4 NPs and three times higher than the yield of the control run without any
NPs (78.4 mL/g). In addition to the stimulatory actions of Fe3O4 NPs, the carbon in
the nanocomposites is used as an adsorbent buffer, favoring the medium pH. The
Fe3O4/DSAC nanocomposites showed great promise for producing biohydrogen
from date fruit wastes (Rambabu et al. 2021).

Green FeNP was synthesized by using lignin from empty oil palm fruit. Using
lignin-mediated FeNPs, biohydrogen is generated from wastewaters. In the realm of
bioenergy, soft drink wastewater and corn steep liquor are used. In presence of
lignin-mediated FeNPs, after 48 h of fermentation at 37 °C, BioH2 production was
17.67 0.54 mL under ideal circumstances. BioH2 generation was raised by 91.0%
and 74.3%, respectively, when LMNP and LNMNP were added. Furthermore,
adding 200 mg/L LMNP and LNMNP to the fermentation medium increased
BioH2 yields (mL H2/g COD removed) by 2.8 and 2.3 times, respectively (do
Nascimento Junior et al. 2021).

Ag NPs

Henna (Lawsonia inermis) and DUC2 Actinomycete were used to make green
AgNPs in a batch utilizing varied concentrations of AgNP (0, 40, 80, and 120 g/
mL). All results indicate that the henna-mediated synthesis of AgNP enhanced the
rate of hydrogen yield 1.71 mol H2/mol. Glucose source additionally supplied after
72 h of AgNPs incubation period along with culture C beijerinckii. The results
showed that henna-mediated AgNPs increased the bacterial cell population, whereas
DUC2 AgNPs reduced the bacterial cell population. As a result, the current research
provides a clear picture of how metallic NPs can be used as H2 synthesis catalysts to
boost bioH2 production (Khan et al. 2020). Overall, the influence of individual and
mixtures of NPs on the BHP yield by different organisms has been presented in
Table 4.1.
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4.4 The Large-Scale Production, Merits, and Demerits

Organic wastes from sewage or agriculture can be fed into large anaerobic
bioreactors for the production of H2 through dark fermentative process. This also
helps in achieving the goal of waste treatment. (Antonopoulou et al. 2011). Several
studies reported that the different temperatures required for dark fermentative H2

production are ambient (15–27 °C), mesophilic (30–45 °C), thermophilic (50–60 °
C), and extremely thermophilic (>60 °C) (Chandrasekhar et al. 2015).

In the acidification stage, hydrogen is produced as an intermediate metabolic
product to be later used as an electron donor by the methanogens for methane
production (methanogenesis). Although the transitional hydrogen metabolite is
quite unstable, it is possible to recover this hydrogen if the hydrogen-consuming
methanogenesis can be tactfully repressed by lowering the pH or inhibiting the
methanogens by heat or chemicals. Figure 4.7 shows different applications of
hydrogen outlined (Source—Google).

Hydrogen is taken into account as carbon-free fuel because the only by-product
after its combustion is water. Supply of low-carbon energy for heat, balancing of
electricity at national grid, and application in combustive engine preferred hydrogen
over other hydrocarbon-based gaseous biofuels. From the statistical point of view,
the fertilizers and petroleum companies are considered to be the largest users of H2

which almost account for 37% and 50%, respectively (Nath et al. 2015). The H2 fuel
demand is increased due to the development of H2 engine (Dicks et al. 2004). It is
important to know that hydrogen energy can be used along with many other energies
and hence promote the general efficiency of distributing clean fuel for a variety of
applications. H2 utilization in the longer term depends on the specific needs of the
community.

There are wide applications of current hydrogen utilization described as followed:

• Hydrogen can be used for food hydration, alkali hydration for the production of
fertilizers, and hydration of substantial oils for fuel production.

• H2 can be used for diminishing nitrate, perchlorate, selenite, and a set of other
oxidized water contaminations, due to its electron donor ability (Das and
Veziroglu 2001).

4.4.1 Merits

The following are the merits of the production of biohydrogen by the dark fermen-
tation route (Antonopoulou et al. 2011; Chandrasekhar et al. 2015):

1. The dark fermentation process is a viable process—most promising as compared
to all biological hydrogen production processes.

2. Effective method, its rate being higher than the processes of photofermentation
and photolysis.

https://www.sciencedirect.com/topics/chemical-engineering/biochemical-reactor


(c
on

tin
ue
d)

4 Microbial Assisted Synthesis of Nanophotocatalysts for Dark. . . 97

T
ab

le
4.
1

B
io
hy

dr
og

en
pr
od

uc
tio

n
in

th
e
pr
es
en
ce

of
di
ff
er
en
t
ty
pe
s
of

in
or
ga
ni
c
an
d
or
ga
ni
c
na
no

pa
rt
ic
le
s

N
an
op

ar
tic
le
s

O
rg
an
is
m
s

F
ee
d

P
ro
ce
ss

pa
ra
m
et
er
s

Y
ie
ld

c

H
2
yi
el
d

ef
fi
ci
en
cy

(%
)

R
ef
er
en
ce
s

C
om

po
si
tio

n
C
on

c.
(m

g/
L
)a

M
od

e
W
V

(L
)

pH
T
em

p.
(°
C
)

In
or
ga

ni
c

A
g

20
.0
b

M
ix
ed

cu
ltu

re
G
lu
co
se

B
at
ch

0.
08

8.
5

35
2.
48

67
.6

Z
ha
o
et
al
.

(
,

20
13

a
b)

A
u

1.
0
m
m

A
na
er
ob

ic
sl
ud

ge
A
ce
ta
te

E
A
B

0.
2

7.
2

35
1.
76

na
i

K
ha
n
et
al
.

(
)

20
13

5.
0b

A
na
er
ob

ic
cu
ltu

re
W
as
te
w
at
er

B
at
ch

0.
08

7.
2

35
2.
24

50
Z
ha
ng

et
al
.

(
)

20
07

C
u

2.
5

C
lo
st
ri
di
um

ac
et
ob

ut
yl
ic
um

N
C
IM

23
37

G
lu
co
se

B
at
ch

0.
2

7
37

1.
39

3.
5j

M
oh

an
ra
j
et
al
.

(
)

20
16

E
nt
er
ob

ac
te
r
cl
oa

ca
e
81

11
01

G
lu
co
se

B
at
ch

0.
2

7
37

1.
69

2.
9

F
e

5
A
na
er
ob

ic
sl
ud

ge
G
lu
co
se

B
at
ch

0.
08

5.
5

37
33

8d
37

T
ah
er
da
na
k
et
al
.

(
)

20
15

10
0

E
nt
er
ob

ac
te
r
cl
oa

ca
e
D
H
-8
9

G
lu
co
se

B
at
ch

0.
1

7
37

1.
9

10
0

N
at
h
et
al
.(

)
20

15

40
0

M
ix
ed

ba
ct
er
ia
l
co
ns
or
tiu

m
G
lu
co
se

B
at
ch

0.
25

7
30

1.
23

38
Z
ha
ng

et
al
.

(
)

20
15

25
0

M
ix
ed

cu
ltu

re
an
d
C
lo
st
ri
di
um

bu
ty
ri
cu
m
T
IS
T
R

W
at
er

hy
ac
in
th

B
at
ch

0.
08

7
35

57
.0

d
55

M
ah
m
oo

d
et
al
.

(
)

20
13

31
2

R
ho

do
ba

ct
er

sp
ha

er
oi
de
s
N
M
B
L
-

02
+
E
sc
he
ri
ch
ia

co
li
N
M
B
L
-0
4

M
al
at
e

B
at
ch

0.
06

5.
6

32
3.
10

e
19

.4
D
ol
ly

et
al
.

(
)

20
15

F
e 2
O
3

17
5

C
.a

ce
to
bu

ty
lic
um

N
C
IM

23
37

G
lu
co
se

B
at
ch

0.
2

6
37

2.
33

33
.9

M
oh

an
ra
j
et
al
.

(
)

20
16

80
0

C
lo
st
ri
di
um

pa
st
eu
ri
an

um
C
H
5

G
lu
co
se

B
at
ch

0.
1

7
35

2.
2

10
H
si
eh

et
al
.

(
)

20
16

20
0

E
nt
er
ob

ac
te
r
ae
ro
ge
ne
s

A
T
C
C
13

40
8

G
lu
co
se

B
at
ch

0.
2

6
37

1.
55

17
T
ah
er
da
na
k
et
al
.

(
)

20
15



T
ab

le
4.
1

(c
on

tin
ue
d)

N
an
op

ar
tic
le
s

O
rg
an
is
m
s

F
ee
d

P
ro
ce
ss

pa
ra
m
et
er
s

Y
ie
ld

c

H
2
yi
el
d

ef
fi
ci
en
cy

(%
)

R
ef
er
en
ce
s

C
om

po
si
tio

n
C
on

c.
(m

g/
L
)a

M
od

e
W
V

(L
)

pH
T
em

p.
(°
C
)

12
5

E
.c
lo
ac
ae

81
11

01
G
lu
co
se

B
at
ch

0.
2

7
37

2.
07

21
.8

M
oh

an
ra
j
et
al
.

(
)

20
14

50
A
na
er
ob

ic
sl
ud

ge
G
lu
co
se

B
at
ch

0.
2

5.
5

60
1.
92

53
.6

E
ng

lim
an

et
al
.

(
)

20
17

20
0

E
.c
lo
ac
ae

81
11

01
S
uc
ro
se

B
at
ch

0.
2

7
37

2.
72

4.
8

H
an

et
al
.(

)
20

11

20
0

M
ix
ed

cu
ltu

re
S
uc
ro
se

B
at
ch

0.
8

6
35

1.
78

33
L
in

et
al
.(

)
20

16

20
0

E
.a

er
og

en
es

A
T
C
C
13

40
8

C
as
sa
va

st
ar
ch

B
at
ch

0.
2

6
37

12
4d

63
.1

G
ad
he

et
al
.

(
,

20
15

a
b)

50
A
na
er
ob

ic
sl
ud

ge
D
ai
ry

w
as
te
w
at
er

B
at
ch

0.
1

5.
5

37
16

.7
5f

24
G
ad
he

et
al
.

(
,

20
15

a
b)

20
0

A
na
er
ob

ic
sl
ud

ge
M
ol
as
se
s

w
as
te
w
at
er

B
at
ch

0.
1

5.
5

37
7.
85

f
44

N
as
re
ta
l.
(

)
20

15

25
.0

m
g/
g

V
S
S

A
na
er
ob

ic
sl
ud

ge
S
ta
rc
h

w
as
te
w
at
er

A
B
R

30
6.
7

30
0.
9

57
.8

Z
ha
o
et
al
.

(
)

20
11

F
e 3
O
4

40
0

A
na
er
ob

ic
sl
ud

ge
G
lu
co
se

B
at
ch

0.
08

7
35

1.
53

26
.4

M
al
ik

et
al
.

(
)

20
14

50
M
ix
ed

cu
ltu

re
W
as
te
w
at
er

B
at
ch

0.
1

6
37

44
.3

d
83

.3
R
ed
dy

et
al
.

(
)

20
17

20
0

A
na
er
ob

ic
sl
ud

ge
S
ug

ar
ca
ne

ba
ga
ss
e

B
at
ch

0.
1

5
30

1.
21

69
.6

T
ah
er
da
na
k
et
al
.

(
)

20
15

N
i

2.
5

A
na
er
ob

ic
sl
ud

ge
G
lu
co
se

B
at
ch

0.
08

5.
5

37
25

0d
0.
9

M
ul
la
i
et
al
.

(
)

20
13

5.
7

A
na
er
ob

ic
sl
ud

ge
G
lu
co
se

B
at
ch

0.
7

5.
6

33
2.
54

22
.7

E
lr
ee
dy

et
al
.

(
)

20
17

60
A
na
er
ob

ic
sl
ud

ge
W
as
te
w
at
er

B
at
ch

0.
25

7
55

24
.7

d
23

E
ng

lim
an

et
al
.

(
)

20
17

98 S. Ajmera et al.



(c
on

tin
ue
d)

N
iO

20
0

A
na
er
ob

ic
sl
ud

ge
G
lu
co
se

B
at
ch

0.
2

5.
5

60
1.
3

4.
8

G
ad
he

et
al
.

(
,

20
15

a
b)

10
A
na
er
ob

ic
sl
ud

ge
D
ai
ry

w
as
te
w
at
er

B
at
ch

0.
1

5.
5

37
15

.7
f

16
G
ad
he

et
al
.

(
,

20
15

a
b)

5
A
na
er
ob

ic
sl
ud

ge
M
ol
as
se
s

w
as
te
w
at
er

B
at
ch

0.
1

5.
5

37
6.
73

f
23

.5
M
oh

an
ra
j
et
al
.

(
)

20
14

P
d

5
E
.c
lo
ac
ae

81
11

01
G
lu
co
se

B
at
ch

0.
2

7
37

1.
48

0.
6

G
ia
nn

el
li
an
d

T
or
zi
llo

(
)

20
12

5
M
ix
ed

cu
ltu

re
G
lu
co
se

B
at
ch

0.
2

7
37

2.
48

6.
4

S
iO

2
40

C
hl
am

yd
om

on
as

re
in
ha

rd
tii

C
C
12

4
A
ir
:C

O
2

(9
7:
3)

P
B
R

11
0

4.
2

28
0.
61

g
45

.2
B
ec
ke
rs
et
al
.

(
)

20
13

5.
1

C
.b

ut
yr
ic
um

C
W
B
I1
00

9
G
lu
co
se

B
at
ch

0.
2

7.
6

30
0.
96

4.
3

V
en
ka
ta
M
oh

an
et
al
.(

)
20

08

12
0

A
ci
do

ge
ni
c
m
ix
ed

cu
ltu

re
W
as
te
w
at
er

C
on

t.
0.
16

5.
5

28
7.
02

h
66

6
H
si
eh

et
al
.

(
)

20
16

T
iO

2
50

C
.p

as
te
ur
ia
nu

m
C
H
5

G
lu
co
se

B
at
ch

0.
1

7
35

2.
1

5
Z
ha
o
et
al
.

(2
01

1)

10
0

R
ho

do
ps
eu
do

m
on

as
pa

lu
st
ri
s

W
as
te

sl
ud

ge
B
at
ch

0.
3

8
30

1.
01

f
46

.1
P
an
de
y
et
al
.

(
)

20
15

60
R
.s
ph

ae
ro
id
es

N
M
B
L
-0
2

M
al
at
e

B
at
ch

0.
1

8
32

1.
75

g
69

.9
T
ah
er
da
na
k
et
al
.

(
)

20
15

In
or
ga
ni
c

m
ix
tu
re
s

F
e
+
N
i

37
.5

+
37

.5
A
na
er
ob

ic
sl
ud

ge
B
at
ch

0.
8

7
37

15
0d

20
0

G
ad
he

et
al
.

(
,

20
15

a
b)

F
e 2
O
3
+
N
iO

20
0
+
5.
0

A
na
er
ob

ic
sl
ud

ge
B
at
ch

0.
1

5.
5

37
8.
83

f
62

G
ad
he

et
al
.

(
,

20
15

a
b)

50
.0

+
10

.0
A
na
er
ob

ic
sl
ud

ge
B
at
ch

0.
1

5.
5

37
17

.2
f

27
L
iu

et
al
.(

)
20

12

4 Microbial Assisted Synthesis of Nanophotocatalysts for Dark. . . 99



T
ab

le
4.
1

(c
on

tin
ue
d)

N
an
op

ar
tic
le
s

O
rg
an
is
m
s

F
ee
d

P
ro
ce
ss

pa
ra
m
et
er
s

Y
ie
ld

c

H
2
yi
el
d

ef
fi
ci
en
cy

(%
)

R
ef
er
en
ce
s

C
om

po
si
tio

n
C
on

c.
(m

g/
L
)a

M
od

e
W
V

(L
)

pH
T
em

p.
(°
C
)

O
rg
an

ic
G
ra
nu

la
r

ac
tiv

at
ed

ca
rb
on

10
0

A
na
er
ob

ic
sl
ud

ge
G
lu
co
se

U
A
S
B

5
6.
5

25
1.
42

N
a

V
en
ka
ta
M
oh

an
et
al
.(

)
20

08

10
,0
00

A
ci
do

ge
ni
c
m
ix
ed

cu
ltu

re
S
ta
rc
h

w
as
te
w
at
er

C
on

t.
0.
16

5.
5

28
2.
12

h
94

.5
W
im

on
so
ng

an
d

N
iti
so
ra
vu

t
(

)
20

15

P
ow

de
re
d

ac
tiv

at
ed

ca
rb
on

33
A
na
er
ob

ic
sl
ud

ge
S
uc
ro
se

B
at
ch

0.
06

5.
5

37
1.
3

62
.5

W
im

on
so
ng

an
d

N
iti
so
ra
vu

t
(

)
20

14

33
.3

A
na
er
ob

ic
sl
ud

ge
S
uc
ro
se

U
A
S
B

0.
06

5.
5

37
1.
3

73
V
en
ka
ta
M
oh

an
et
al
.(

)
20

08

50
00

A
ci
do

ge
ni
c
m
ix
ed

cu
ltu

re
S
ta
rc
h

w
as
te
w
at
er

C
on

t.
0.
16

5.
5

28
1.
57

h
44

L
iu

et
al
.(

)
20

12

C
ar
bo

n
na
no

tu
be
s

10
0

A
na
er
ob

ic
sl
ud

ge
G
lu
co
se

U
A
S
B

5
6.
5

25
2.
45

N
a

L
iu

et
al
.(

)
20

12

100 S. Ajmera et al.



4 Microbial Assisted Synthesis of Nanophotocatalysts for Dark. . . 101

CCOMBUSTION

DARK FERMENTATION TRANSPORTATION

ORGANIC ACIDS HYDROGEN

ELECTRICITY
CHEMICAL
INDUSTRY

PHOTOFERMENTATION

FEED STOCK-
DOMESTIC AND

INDUSTRIAL STARCH
CONTAININGWASTES

Fig. 4.7 Application of hydrogen synthesized from renewable sources

3. A wide range of feedstock can be applied as substrates for H2 production by this
method.

4. Simple in operation—does not require expensive and complicated
photobioreactors, as needed for direct biophotolysis and photofermentation reac-
tions. Oxygen removal is also not difficult when the anaerobic conditions are
chosen.

5. Reactor design is not affected by light supply; thus, dark bioreactors exploit
volume more efficiently.

6. It is carried out at ambient temperatures and pressures, without photoenergy,
reducing the cost of hydrogen production 340 times with regard to the photosyn-
thetic processes. So, it is a low-cost production process.

7. Requires low energy input.
8. Exhibits good sustainability.
9. There is a high organic content of the dark fermentation spent. So, dark fermen-

tation can be linked to bioelectrochemical systems such as microbial fuel cells
(MFCs) and microbial electrolysis cells (MECs) as the spent makes an ideal
substrate for them. Hence, the overall energy recovery can be majorly improved
by the conjugation of dark fermentation with bioelectrochemical systems. For
example, in an integrated system using dark fermentation and a single-chambered
MEC with 0.6 V voltage, the general hydrogen recovery was 96% (Singh and Das
2019).
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4.4.2 Demerits

The disadvantages of dark fermentative production of biohydrogen are enlisted
below (Koutra et al. 2020; Show et al. 2019; Antonopoulou et al. 2011;
Chandrasekhar et al. 2015):

1. Compromised reliability.
2. Low substrate conversion efficiency and a consequent low yield of H2 (maximum

4 H2/glucose; 50% less than the theoretical hydrogen yield), primarily because of
the formation of various by-products, in particular, gases, besides other inhibitory
factors like product inhibition. For example, it has been reported that the H2

produced from green algae Chlorella vulgaris and Dunaliella tertiolecta biomass
by anaerobic enriched cultures containing 2-bromoethanesulfonic acid (BESA)
was subsequently consumed by non-methanogenic microorganisms.

3. The process suffers from thermodynamic limitations.
4. Difficulty in the separation of H2 from its mixture with 50–60% CO2. Other gases

present in the mixture may be H2S, CO, CH4, H2O vapor (moisture), and NH3.
Hence, purification of the H2 is essential before it can be utilized.

5. Production of residual COD which is to be removed before discharging that
treated wastewater into the water reservoirs.

6. Production of residual COD which is to be removed before discharging that
treated wastewater into the water reservoirs.

7. Changes in system redox conditions and buffering capacities (there can be
unwanted pH fluctuations).

4.5 Safety Issues and Concerns

Everyone in the lab is responsible for their own safety and the safety of others. One
should be cognizant of potential hazards by conducting all experiments and demon-
strations prior to their implementation. The introductory laboratory should engage
each student in significant experiences with experimental processes, including some
experience designing investigations. We should develop a wide array of basic skills
and tools for experiment and data analysis and help the students to master basic
concepts (Shrivastava 2014). We should understand the role of direct observation
and distinguish between inferences based on theory and the outcomes of experi-
ments and help students to develop collaborative learning skills that are vital to
success in many lifelong endeavors. The laboratory should develop a broad array of
basic skills, tools of experiment, data analysis, and help the students to master basic
concepts (Shrivastava 2014). Laboratory accidents are mainly caused by humans
which includes physical and mental characteristics, knowledge, skill, and attitudes of
the individuals (American Association of Physics Teachers 1998).
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4.6 Conclusion

In this chapter, hydrogen synthesis from renewable biological sources proved to be
an essential way for hydrogen generation. Among several biological hydrogen
production approaches, the Dark Fermentative has been proven to be a practical
approach in biological hydrogen production, especially when it is strengthened by
the addition of chemicals. The involvement of nanoparticles (Ni, Fe) was found to be
more efficient than other approaches as it helps in the transportation of electrons
between the ferredoxin and the hydrogenase. The order of effectiveness in promot-
ing the activities of hydrogenase is based on substrate conversion efficiency and
hydrogen evolution rate which follows the order of metal NPs > metal/metal ions/
metal oxides > other metals (other than Ni, Fe). In order to build the biological
hydrogen production process more feasible and economical for industrial applica-
tions, future endeavors should be centered on the optimized combination of several
hydrogen manufacturing processes with the energy cascade utilization, material
recycling, and recovery. By the combination of wide approaches, it is potentially
possible to produce the maximum hydrogen yield. These novel ways of intensifica-
tion and integration of several hydrogen generation processes, such as
photocatalysis, photofermentation, and dark fermentation processes, will facilitate
the large-scale synthesis of hydrogen.

References

American Association of Physics Teachers (1998) Goals of the introductory physics laboratory. Am
J Phys 66(6):483–485

Antonopoulou G, Ntaikou I, Stamatelatou K, Lyberatos G (2011) Biological and fermentative
production of hydrogen. In: Handbook of biofuels production. Woodhead Publishing, Sawston,
pp 305–346

Ayodele FO, Mustapa SI, Ayodele BV, Mohammad N (2020) An overview of economic analysis
and environmental impacts of natural gas conversion. Sustainability 12:10148. https://doi.org/
10.3390/su122310148

Beckers L, Hiligsmann S, Lambert SD, Heinrichs B, Thonart P (2013) Improving effect of metal
and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production
by Clostridium butyricum. Bioresour Technol 133:109–117

Chandrasekhar K, Lee YJ, Lee DW (2015) Biohydrogen production: strategies to improve process
efficiency through microbial routes. Int J Mol Sci 16(4):8266–8293

Das D, Veziroglu TN (2001) Hydrogen production by biological processes: a survey of literature.
Int J Hydrog Energy 26:13–28

Dasgupta A, Sarkar J, Ghosh M, Bhattacharya A, Mukherjee A, Chattopadhyay D (2017) Green
conversion of graphene oxide to graphene nanosheets and its biosafety study. PLoS One 12:
e0171607. https://doi.org/10.1371/journal.pone.0171607

Dicks AL, da Costa JD, Simpson A, McLellan B (2004) Fuel cells, hydrogen and energy supply in
Australia. J Power Sources 131(1–2):1–12

Dolly S, Pandey A, Pandey BK, Gopal R (2015) Process parameter optimization and enhancement
of photo-biohydrogen production by mixed culture of Rhodobacter sphaeroides NMBL-02 and
Escherichia coli NMBL-04 using Fe-nanoparticle. Int J Hydrog Energy 40:16010–16020

https://doi.org/10.3390/su122310148
https://doi.org/10.3390/su122310148
https://doi.org/10.1371/journal.pone.0171607


104 S. Ajmera et al.

do Nascimento Junior JR, Torres LAZ, Medeiros ABP, Woiciechowski AL, Martinez-Burgos WJ,
Soccol CR (2021) Enhancement of biohydrogen production in industrial wastewaters with
vinasse pond consortium using lignin-mediated iron nanoparticles. Int J Hydrog Energy
46:27431–27443. https://doi.org/10.1016/j.ijhydene.2021.06.009

Elreedy A, Ibrahim E, Hassan N, El-Dissouky A, Fujji M, Yoshimura C, Tawfik A (2017) Nickel-
graphene nanocomposite as a novel supplement for enhancement of biohydrogen production
from industrial wastewater containing mono-ethylene glycol. Energy Convers Manag 140:133–
144

Engliman NS, Abdul PM, Wu S-Y, Jahim JM (2010) Influence of iron (II) oxide nanoparticle on
biohydrogen production in thermophilic mixed fermentation. Int J Hydrog Energy

Engliman NS, Abdul PM, Wu S-Y, Jahim JM (2017) Influence of iron (II) oxide nanoparticle on
biohydrogen production in thermophilic mixed fermentation. Int J Hydrog Energy. https://doi.
org/10.1016/j.ijhydene.2017.05.224

Gadhe A, Sonawane SS, Varma MN (2015a) Enhancement effect of hematite and nickel
nanoparticles on biohydrogen production from dairy wastewater. Int J Hydrog Energy 40:
4502–4511

Gadhe A, Sonawane SS, Varma MN (2015b) Influence of nickel and hematite nanoparticle powder
on the production of biohydrogen from complex distillery wastewater in batch fermentation. Int
J Hydrog Energy 40:10734–10743

Giannelli L, Torzillo G (2012) Hydrogen production with the microalga Chlamydomonas
reinhardtii grown in a compact tubular photobioreactor immersed in a scattering light nanopar-
ticle suspension. Int J Hydrog Energy 37:16951–16961

Goyal Y, Kumar M, Gayen K (2013) Metabolic engineering for enhanced hydrogen production: a
review. Can J Microbiol 59:59–78

Grasso G, Zane D, Dragone R (2019) Microbial nanotechnology: challenges and prospects for
green biocatalytic synthesis of nanoscale materials for sensoristic and biomedical applications.
Nanomaterials 10:11. https://doi.org/10.3390/nano10010011

Hallenbeck PC, Lazaro CZ, Sagir E (2018) Photosynthesis and hydrogen from photosynthetic
microorganisms

Han H, Cui M, Wei L, Yang H, Shen J (2011) Enhancement effect of hematite nanoparticles on
fermentative hydrogen production. Bioresour Technol 102:7903–7909

Hsieh PH, Lai YC, Chen KY, Hung CH (2016) Explore the possible effect of TiO2 and magnetic
hematite nanoparticle addition on biohydrogen production by Clostridium pasteurianum based
on gene expression measurements. Int J Hydrog Energy 41:21685–21691

Kadier A, Kalil MS, Abdeshahian P, Chandrasekhar K, Mohamed A, Azman NF, Hamid AA
(2016) Recent advances and emerging challenges in microbial electrolysis cells (MECs) for
microbial production of hydrogen and value-added chemicals. Renew Sustain Energy Rev 61:
501–525

Khabirul Islam AKM, Dunlop PSM, Hewitt NJ, Lenihan R, Brandoni C (2021) Bio-hydrogen
production from wastewater: a comparative study of low energy intensive production processes.
Clean Technol 3(1):156–182

Khan MM, Lee J, Cho MH (2013) Electrochemically active biofilm mediated bio-hydrogen
production catalyzed by positively charged gold nanoparticles. Int J Hydrog Energy 38(13):
5243–5250

Khan I, Anburajan P, Kumar G, Yoon J-J, Bahuguna A, de Moura AGL, Pugazhendhi A, Kim S-H
(2020) Comparative effect of silver nanoparticles (AgNPs) derived from actinomycetes and
henna on biohydrogen production by Clostridium beijerinckii (KTCC1737). https://doi.org/10.
1002/er.6076

Kim TS, Patel SKS, Selvaraj C, Jung W-S, Pan C-H, Kang YC, Lee J-K (2016) A highly efficient
sorbitol dehydrogenase from Gluconobacter oxydans G624 and improvement of its stability
through immobilization. Sci Rep 6:34–38

Koutra E, Tsafrakidou P, Sakarika M, Kornaros M (2020) Microalgal biorefinery. In: Microalgae
cultivation for biofuels production. Academic, pp 163–185

https://doi.org/10.1016/j.ijhydene.2021.06.009
https://doi.org/10.1016/j.ijhydene.2017.05.224
https://doi.org/10.1016/j.ijhydene.2017.05.224
https://doi.org/10.3390/nano10010011
https://doi.org/10.1002/er.6076
https://doi.org/10.1002/er.6076


4 Microbial Assisted Synthesis of Nanophotocatalysts for Dark. . . 105

Kumar G, Mudhoo A, Sivagurunathan P, Nagarajan D, Ghimire A, Lay CH, Chang JS (2016)
Recent insights into the cell immobilization technology applied for dark fermentative hydrogen
production. Bioresour Technol 219:725–737

Lahiri D, Nag M, Sheikh HI, Sarkar T, Edinur HA, Pati S, Ray RR (2021) Microbiologically-
synthesized nanoparticles and their role in silencing the biofilm signaling cascade. Front
Microbiol 12:636588

Li X, Xu H, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and
applications. J Nanomater. https://doi.org/10.1155/2011/270974

Lin R, Cheng J, Ding L, Song W, Liu M, Zhou J, Cen K (2016) Enhanced dark hydrogen
fermentation by addition of ferric oxide nanoparticles using Enterobacter aerogenes. Bioresour
Technol 207:213–219

Liu Z, Lv F, Zheng H, Zhang C, Wei F, Xing X-H (2012) Enhanced hydrogen production in a
UASB reactor by retaining microbial consortium onto carbon nanotubes (CNTs). Int J Hydrog
Energy 37:10619–10626. https://doi.org/10.1016/j.ijhydene.2012.04.057

Mahmood T, Zada B, Malik SA (2013) Effect of Iron Nanoparticles on Hyacinth Fermentation. Int J
Sci 10:106–121

Malik SN, Pugalenthi V, Vaidya AN, Ghosh PC, Mudliar SN (2014) Kinetics of nano-catalysed
dark fermentative hydrogen production from distillery wastewater. Energy Procedia 54:417–
430

Marone A, Massini G, Patriarca C, Signorini A, Varrone C, Izzo G (2012) Hydrogen production
from vegetable waste by bioaugmentation of indigenous fermentative communities. Int J
Hydrog Energy 37(7):5612–5622

Mohanraj S, Anbalagan K, Kodhaiyolii S, Pugalenthi V (2014) Comparative evaluation of fermen-
tative hydrogen production using Enterobacter cloacae and mixed culture: effect of Pd (II) ion
and phytogenic palladium nanoparticles. J Biotechnol 192:87–95

Mohanraj S, Anbalagan K, Rajaguru P, Pugalenthi V (2016) Effects of phytogenic copper
nanoparticles on fermentative hydrogen production by Enterobacter cloacae and Clostridium
acetobutylicum. Int J Hydrog Energy 41:10639–10645. https://doi.org/10.1016/j.ijhydene.
2016.04.197

Mughal B, Zaidi SZJ, Zhang X, Hassan SU (2021) Biogenic nanoparticles: synthesis, characteri-
sation and applications. Appl Sci 11(6):2598

Mullai P, Yogeswari MK, Sridevi K (2013) Optimisation and enhancement of biohydrogen
production using nickel nanoparticles—a novel approach. Bioresour Technol 141:212–219

Nasr M, Tawfik A, Ookawara S, Suzuki M, Kumari S, Bux F (2015) Continuous biohydrogen
production from starch wastewater via sequential dark-photo fermentation with emphasize on
maghemite nanoparticles. J Ind Eng Chem 21:500–506

Nath D, Manhar AK, Gupta K, Saikia D, Das SK, Mandal M (2015) Phytosynthesized iron
nanoparticles: effects on fermentative hydrogen production by Enterobacter cloacae DH-89.
Bull Mater Sci 38:1533–1538

Nizami AS, Rehman M, Anwar MN, Fayyaz A, Sohail NF, Khokhar MF, Baqar M, Khan WD,
Rasool K (2018) CO2 capture and storage: a way forward for sustainable environment. J
Environ Manag 226:131–144. https://doi.org/10.1016/j.jenvman.2018.08.009. Epub 2018
Aug 14

Otari SV, Patel SKS, Jeong JH, Lee JH, Lee J-K (2016) A green chemistry approach for synthe-
sizing thermostable antimicrobial peptide-coated gold nanoparticles immobilized in an alginate
biohydrogel. RSC Adv 6:86808–86816

Pandey A, Gupta K, Pandey A (2015) Effect of nanosized TiO2 on photofermentation by
Rhodobacter sphaeroides NMBL-02. Biomass Bioenergy 72:273–279

Patel SKS, Choi SH, Kang Y-C, Lee JK (2016) Large-scale aerosol-assisted synthesis of biofriendly
Fe2O3 yolk-shell particles: a promising support for enzyme immobilization. Nanoscale 8:6728–
6738

Patel SKS, Lee JK, Kalia VC (2018) Nanoparticles in biological hydrogen production: an overview.
Indian J Microbiol 58(1):8–18

https://doi.org/10.1155/2011/270974
https://doi.org/10.1016/j.ijhydene.2012.04.057
https://doi.org/10.1016/j.ijhydene.2016.04.197
https://doi.org/10.1016/j.ijhydene.2016.04.197
https://doi.org/10.1016/j.jenvman.2018.08.009


106 S. Ajmera et al.

Preethi, Usman TMM, Rajesh Banu J, Gunasekaran M, Kumar G (2019) Biohydrogen production
from industrial wastewater: an overview. Bioresour Technol Rep 7:100287

Rambabu K, Bharath G, Banat F, Hai A, Show PL, Nguyen THP (2021) Ferric oxide/date seed
activated carbon nanocomposites mediated dark fermentation of date fruit wastes for enriched
biohydrogen production. Int J Hydrog Energy 46(31):16631–16643. https://doi.org/10.1016/j.
ijhydene.2020.06.108

Reddy K, Nasr M, Kumari S, Kumar S, Gupta SK, Enitan AM, Bux F (2017) Biohydrogen
production from sugarcane bagasse hydrolysate: effects of pH, S/X, Fe2+, and magnetite
nanoparticles. Environ Sci Pollut Res Int 24:8790–8804

Show KY, Yan YG, Lee DJ (2019) Biohydrogen production from algae: perspectives, challenges,
and prospects. In: Biofuels from algae. Elsevier, pp 325–343

Shrivastava SK (2014) Safety measures in physics laboratory procedures. Anusandhan 14(40):
11–23

Siddiqi KS, Husen A, Rao RAK (2018) A review on biosynthesis of silver nanoparticles and their
biocidal properties. J Nanobiotechnol 16:14. https://doi.org/10.1186/s12951-018-0334-5

Singh V, Das D (2019) Potential of hydrogen production from biomass. In: Science and engineering
of hydrogen-based energy technologies, pp 123–164

Sinha P, Roy S, Das D (2015) Role of formate hydrogen lyase complex in hydrogen production in
facultative anaerobes. Int J Hydrog Energy 40(29):8806–8815

Srirangan K, Pyne ME, Chou CP (2011) Biochemical and genetic engineering strategies to enhance
hydrogen production in photosynthetic algae and cyanobacteria. Bioresour Technol 102(18):
8589–8604

Sun C, Xia A, Qian F, Huang Y, Lin R, Murphy JD (2019a) Energy Convers Manag 185:431–441
Sun Y, He J, Yang G, Sun G, Sage V (2019b) A review of the enhancement of bio-hydrogen

generation by chemicals addition. Catalysts 9(4):353
Sundaresan Mohanraj, Krishnasamy Anbalagan, Palanisamy Rajaguru, Velan Pugalenthi, (2016)

Effects of phytogenic copper nanoparticles on fermentative hydrogen production by
Enterobacter cloacae and Clostridium acetobutylicum. International Journal of Hydrogen
Energy,41:10639-10645. https://doi.org/10.1016/j.ijhydene.2016.04.197

Taherdanak M, Zilouei H, Karimi K (2015) Investigating the effects of iron and nickel nanoparticles
on dark hydrogen fermentation from starch using central composite design. Int J Hydrog Energy
40:12956–12963

Venkata Mohan S, Mohanakrishna G, Reddy SS, Raju BD, Rao RKS, Sarma PN (2008) Self-
immobilization of acidogenic mixed consortia on mesoporous material (SBA-15) and activated
carbon to enhance fermentative hydrogen production. Int J Hydrog Energy 33:6133–6142

Wimonsong P, Nitisoravut R (2014) Biohydrogen enhancement using highly porous activated
carbon. Energy Fuel 28:4554–4559

Wimonsong P, Nitisoravut R (2015) Comparison of different catalyst for fermentative hydrogen
production. J Clean Energy Technol 3:128–131

Zada B, Mahmood T, Malik SA (2013) Effect of iron nanoparticles on hyacinths fermentation. Int J
Sci 2:106–121

Zhang Y, Shen J (2007) Enhancement effect of gold nanoparticles on biohydrogen production from
artificial wastewater. Int J Hydrog Energy 32:17–23

Zhang P, Zhang R, McGarvey JA, Benemann JR (2007) Biohydrogen production from cheese
processing wastewater by anaerobic fermentation using mixed microbial communities. Int J
Hydrog Energy 32(18):4761–4771

Zhang L, Zhang L, Li D (2015) Enhanced dark fermentative hydrogen production by zero-valent
iron activated carbon microelectrolysis. Int J Hydrog Energy 40:12201–12208

https://doi.org/10.1016/j.ijhydene.2020.06.108
https://doi.org/10.1016/j.ijhydene.2020.06.108
https://doi.org/10.1186/s12951-018-0334-5


4 Microbial Assisted Synthesis of Nanophotocatalysts for Dark. . . 107

Zhang Q, Xu S, Li Y, Ding P, Zhang Y, Zhao P (2021) Green-synthesized nickel oxide
nanoparticles enhances biohydrogen production of Klebsiella sp. WL1316 using lignocellulosic
hydrolysate and its regulatory mechanism. Fuel 305:121585. https://doi.org/10.1016/j.fuel.
2021.121585

Zhao W, Zhao J, Chen G, Feng R, Yang J, Zhao Y, Wei Q, Du B, Zhang Y (2011) Anaerobic
biohydrogen production by the mixed culture with mesoporous Fe3O4 nanoparticles activation.
Adv Mater Res 306–307:1528–1531

Zhao W, Zhang Y, Du B, Wei D, Wei Q (2013a) Enhancement effect of silver nanoparticles on
fermentative biohydrogen production using mixed bacteria. Bioresour Technol 142:240–245

Zhao W, Zhang Y, Dua B, Wei D, Wei Q, Zhao Y (2013b) Enhancement effect of silver
nanoparticles on fermentative biohydrogen production using mixed bacteria. Bioresour Technol
142:240–245

https://doi.org/10.1016/j.fuel.2021.121585
https://doi.org/10.1016/j.fuel.2021.121585


109

Chapter 5
Green Route Synthesized Iron
Nanoparticles for Biohydrogen Production

Dharm Pal, Dhruti Sundar Pattanayak, Jyoti Mishra,
and Naresh Kumar Sahoo

Abstract In today’s contemporary culture, detecting and perceiving a sustainable
source of energy is a big issue. Since the previous decade, the majority of academics
have suggested hydrogen as one of the cleanest fuels, and its demand has been
increasing ever since. Hydrogen has the highest energy density and hence outper-
forms all other fuels. As a consequence of using fossil fuels, hydrogen emits carbon
dioxide, which has a detrimental impact on the environment. However, biohydrogen
is credited as the productive and cleanest energy source due to no emission of
harmful greenhouse gases and different feedstocks and biomass can be used to create
biohydrogen. Although dark fermentation and photobiological processes have low
yield and rise as a key barrier to industrial production of biohydrogen. Because of its
precise structural and physiochemical characteristics, nanotechnology stands out as
having a strong promise for improving biohydrogen generation. The usage of iron-
based nanoparticles (NPs) enhances the biohydrogen formation from biomass and
may lower the costs of production due to their use as a catalyst in extremely small
amounts. Furthermore, iron-based NPs synthesized in a green way is promoted for
renewable energy generation from biomass with a low costs via thermochemical and
biochemical pathways, where the primary expense is likely to be related to catalyst
synthesis. Despite the fact that the green synthesis method of iron-based NPs is
sustainable and nontoxic, a lack of precise knowledge about green synthesis and its
process remains an issue. In this study, several known methods to synthesize iron-
based NPs, like utilizing microorganisms and green plants, have been thoroughly
explored, as well as the potential processes involved. Finally, we show and discuss
the uses of catalytic nanomaterials (NMs) based on iron in biochemical as well as
thermochemical energy generation (e.g., biohydrogen).
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This thorough study focused on the green route synthesis of iron-based NPs and
its uses to propel biohydrogen generation methods that exists previously toward
sustainable commercialization through wastes to value-added technologies. Besides,
the possible mechanism of NPs synthesis via green route and future direction in the
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production of sustainable bioenergy has also been critically reviewed.

Keywords Iron nanoparticles · Green synthesis · Biohydrogen · Bioenergy ·
Sustainable biofuels

5.1 Introduction

Owing to the world’s fast-rising population and industrialization, there has been an
increase in global energy consumption. With growing worries about the global
environment, rising oil costs, and the health risks connected with airborne contam-
inations, investigators are working effortful to create durable refineries to get
hygienic sources of energy to substitute existing conventional fossil-based fuels
(Shanmugam et al. 2020). Renewable energy has the ability to solve many of the
problems associated with fossil fuels. Biofuels are regarded as promising and
sustainable renewable energy solutions in this context since they are green and
nontoxic, easy to manufacture, eco-friendly, highly efficient, and cost-effective
(Sekoai et al. 2019). Liquid and gaseous biofuels are bioethanol, biobutanol, bio-
diesel, bio-oil, biogas, biomethane, bioethane, biobutane, and biohydrogen (Ladole
et al. 2017). Biohydrogen has attracted the most attention among the available
biofuels due to many benefits. These include the ability to produce nonpollution
by-products in the form of vaporized water, an energy of 120 kJ/g, the capability to
use a broad range of bacteria and feedstock found in various natural environments,
and at normal ambient pressure and temperature great capability for large-scale
production (Zilouei and Taherdanak 2015). Biohydrogen may be created by several
biological operations such as bio-photolysis (direct and indirect), microbial electrol-
ysis, and fermentation techniques like dark fermentation and photo-fermentation
(Srivastava et al. 2019; Sekoai et al. 2019). The biological routes to generate
biohydrogen employ a variety of organic substrates and microorganisms. Lignocel-
lulosic biomass is regarded as the most flexible substrate in the group of organic
species due to its high cellulose content, renewable nature, and wide availability and
that may be utilized for large-scale biological production of biohydrogen (Wang
et al. 2017a). The technology to produce biohydrogen through biomass is one of
justifiable the most sustainable idea of biofuel production from biomass; there are
certain drawbacks that must be addressed before its industrial-scale implementation
(Nikolaidis and Poullikkas 2017).There are some effective pressing obstacles to the
production of sustainable cellulosic biohydrogen, the technology requires incom-
plete or partial conversion of cellulose to sugar, the presence of lignin in biomass of
cellulose, high cost of cellulolytic enzymes, and low conversion of substrate to
product (Dincer and Acar 2014). The process to convert biomass into biohydrogen
is significantly influenced by the participation of cellulolytic enzymes. Nonetheless,
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there are numerous problems included, such as high costs for enzyme, less enzyme
production and working efficiency, resulting in low sugar yield and therefore a
significant influence on biohydrogen generation yield (Kogo et al. 2017). As a result,
boosting the availability of cellulose for bioconversion reactions and increasing in
enzyme productivity and efficiency are the primary bottlenecks that must be
addressed in order to make cellulosic biohydrogen generation method more viable
and optimal on an actual level. A variety of techniques were developed to enhance
the production of enzyme and its efficiency, and pace of biohydrogen generation;
however, they are still far from sustainable and realistic application in terms of
economics (Cipolatti et al. 2016). The function of nanotechnology in many biolog-
ical areas has been thoroughly covered in this reference. Because of their unique
characteristics, nano-materials (NMs) involvement could be critically significant in
improving the entire biomass to biohydrogen conversion process (Kumar et al. 2019;
Pugazhendhi et al. 2019). Each phase of cellulosic biohydrogen production technol-
ogy can be catalyzed by properties such as strong electro-conductivity, a high
surface-to-volume ratio, and greater surface area (Taherdanak et al. 2015). Some
nanoparticles(NPs), including nickel, iron, copper, silver, gold, and titanium, have
been shown to improve biohydrogen generation by diverse biological routes such as
dark and photo-fermentation and bio-photolysis (Taherdanak et al. 2015; Lin et al.
2016). NMs, particularly iron, play an important character in improving biohydrogen
generation yield by serving as cofactors on the active sites of nitrogenase and
hydrogenase enzymes (Srivastava et al. 2020). As a result, the efficiency of a process
may be dramatically altered on the nanoscale by employing iron-based nano-mate-
rials (Kandel et al. 2014). The iron content of several categories of biofuels prepa-
ration from biomass methods might impact the metabolic and enzymatic activity of
microorganisms by modifying the rate of electron transfer. For example, the cellu-
lolytic enzyme’s stability and synthesis for the formation of sugars capable to get
fermented have been extensively described (Srivastava et al. 2015), where iron
impacts the hydrogenase and nitrogenase enzyme activity of the biological hydrogen
production process. Depending on the reaction circumstances, iron nano-materials
having a wide range of sizes and morphologies may be produced by a variety of
pathways including chemical, physical, biological, and hybrid techniques (Huang
et al. 2014). Physical and chemical pathways have become the most widely used
techniques for synthesizing iron-based nano-materials for utilizing widely, and are
thus referred to as standard methods. These physical techniques of nano-material
preparation are both costly and time-consuming, rendering them unsuitable for
large-scale manufacturing (Stefaniuk et al. 2016). Every stage of the chemical
techniques of NMs production involves the usage of hazardous substances. Solvents
include reducing agents like sodium borohydride (NaBH4), stabilizing agents like
Thiolates, polyethylene glycol (PEG), and other organic-based toxic chemicals were
used frequently (Ahmmad et al. 2013). Furthermore, a chemical approach to NMs
preparation has a number of disadvantages, including the production of toxic
intermediates as well as by-products are highly harmful to the ecosystem and fatal
to living creatures (Stefaniuk et al. 2016). Furthermore, this technique has slow rate
of formation of NMs, and small size of NMs with deformed structures are often
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produced with enhanced reactivity and toxicity (Ahmmad et al. 2013). Furthermore,
it is susceptible to agglomeration because of attractive factors like van der waals
pressures. Agglomeration may be addressed by the use of particular capping agents,
which raises the manufacturing cost and makes it less viable for industrial scale
usage (Narayanan et al. 2012). The disadvantages of traditional techniques, such as
high costs and toxicity concerns, may be solved by a green and sustainable synthesis
pathway, which has gained a lot of interest from people all over the world (Ali et al.
2016). The green method to NMs production is extremely efficient, quick, less
priced, and toxic free, all while being environmentally benign. Under ambient
physicochemical circumstances, NMs may be produced utilizing a variety of living
sources such as bacteria, animal tissues, fungus, plant extracts, biomass, and algae
(Saratale et al. 2018; Srivastava et al. 2021). Given these facts, the aim of this
investigation is to explore the many obtainable green and sustainable methods for
synthesizing iron-based NMs. Different techniques to green NMs production
employing microbes and plants have been thoroughly addressed. Finally, the utili-
zation of iron-based NMs in biohydrogen production, as well as the influence of its
synthesis process, have been investigated, as have current limits and possible
solutions.

5.2 Green Routes Synthesis of Iron Nanoparticles

Metallic NPs are prepared involving a variety of techniques, including physico-
chemical and biological approaches, as shown in Fig. 5.1. The bottom-up and
top-down approaches are including physicochemical procedures and biological
methods (Pattanayak et al. 2020). The term “green route” refers to a safe, minimal
hazardous, and environmentally friendly method of synthesizing NPs that primarily
use renewable energy sources. Therefore, in this synthesis method, microorganisms
and plants are employed as operating bio-components, resulting in minimal energy
usage and eco-friendly solvents, mostly water (Pattanayak et al. 2021). Synthesis
aided by plants is more practicable than microorganism-aided synthesis owing to
several intrinsic benefits. The NPs are fabricated by combining bioactive ingredients
that serve as both capping and reducing agent. Thus, in green production of iron
NPs, bioactive chemicals play an important role in lowering iron ions (Fe+2 and Fe+3)
(Sadhasivam et al. 2020). Green-produced NPs are often maintained in a liquid
solution at a particular pH to ensure consistent size and stability. Certain biocom-
patible agents and surface coatings are utilized to improve stability, converting it into
inert material when it comes into touch with natural ambient fluids. To minimize
moisture contact the maintaining of vacuum for nanopowders is required, which
might induce a cluster of iron NPs produced (utilizing plant extracts). By employing
a green synthesis methodology for NPs production, the hazardous by-product was
minimized (Ali et al. 2020). Greenly synthesized iron NPs can also be used in
biological, catalytic, environmental, and energy applications (Mondal et al. 2020).
Ionic solvent (a more hazardous organic solvent) can be substituted in certain
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Fig. 5.1 Bottom-up and top-down approaches for nanoparticle synthesis

biosynthetic processes utilizing living entities (Bolade et al. 2020). This chapter
examines several green approaches for producing iron-based NPs. The use of green
produced iron NPs to accelerate biohydrogen production is also thoroughly
explored.

5.2.1 Synthesis of Iron NPs from Plant Biomaterials

NPs synthesized by microorganisms are with restricted dispersion and a slow rate
evolution in comparison to plant-aided preparation (Dhillon et al. 2012). Phyto-
synthesized metallic NPs are cost-effective, simpler, and has good reproducibility
and repeatability. It is widely known that plant extracts are best suited for generating
extremely steady metallic NPs at a high rate and in huge amount (Iravani 2011).
Production of NMs aided with plants is favored to environment as strong biomolec-
ular species causing reduction can be derived by using different plants (Mukunthan
and Balaji 2012). In plants and some variety of herbs, antioxidants are the active
phytochemical components in leaves, stems, barks, seeds, and flowers. Plant metab-
olites like protein, enzymes, amino acids, cyclic peptides, polyphenols, flavonoids
and other compounds, and caffeine have the potential to function as green
bioreductants and stabilizers in the synthesis of iron NPs. Summarized as iron ions
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attach to these metabolites and formation of atomic iron by reduction, resulting in the
creation of an iron nucleus. Iron nuclei develop into stable iron NPs. At room
temperature, this reaction generally completes with vigorous stirring. The synthesis
of NMs using phytochemicals of plants considerably minimizes the environmental
pollution, making a current standard in economically viable and ultra-sustainable
clean and green technology (Zambre et al. 2013). Table 5.1 shows how different
plant parts have been used as sources of green reducing and capping agent used in
the synthesis of iron-based NMs by diverse researchers.

The synthesis of iron NPs by using different plant extracts has been reported by
many researchers. The iron NPs were synthesized by reducing Fe+2/+3 by taking leaf
extract of Green, oolong, and black tea (Huang et al. 2014); Green tea (Asghar et al.
2018; Xiao et al. 2020). Plant sources caused reduction of metallic precursors for the
preparation of Zero-valent Iron nano-materials (nZVI), e.g., the Camellia sinensis
(Hoag et al. 2009), Dodonaea viscosa (Kiruba Daniel et al. 2013), Eucalyptus
(Wang et al. 2014a), extract of shoots and leaves of blueberry (Manquián-Cerda
et al. 2017), flower extract of Calotropisgigantean (CG) and Hibiscus sabdariffa
(Sravanthi et al. 2018; Khan and Al-Thabaiti 2018) and leaf extract of
Emblicaofficinalis (Kumar et al. 2015).

Mostly green tea extract has been utilized in the process of green synthesis of iron
NPs, as green tea is a low-cost and readily available resource. Hoag et al. (2009)
synthesized nZVI from a polyphenol-rich green tea (Camellia sinensis) extract. NPs
with good stability were produced at ambient temperature without any polymer or
surfactant addition. Plant polyphenols function as reducing agents as well as a
capping agent, and we have green nZVI of nanoscale of particular properties with
good stability (Hoag et al. 2009). Machado et al. (2013) investigated the possibility
of producing nZVI from various tree leaves. Furthermore, the antioxidant capability
of leaf extracts was calculated. According to the findings, extracts generated by dried
leaves with greater antioxidizing capabilities than extracts from non-dry leaves
(Machado et al. 2013). In second research, Machado et al. (2014) reduced ferric
ions using fruit waste component-based extracts like albedo, peel, pulp of lemon,
orange, mandarin, and lime. Their findings revealed that the fruit fractions-based
extracts generated nZVI of varying shapes and sizes as well as reactivity (Machado
et al. 2014). Wang et al. (2014a) used Eucalyptus leaves in similar work to manu-
facture iron oxide NPs using a relatively simple and efficient approach. During the
experiments, the leaf extract was mixed with 0.10 Molar FeSO4 solution in a 2:1
volume ratio. The transformation of the hue of solution from yellow color to black
color indicated the production of iron oxides (NPs). Circular NPs having a diameter
of 20–80 nm were discovered. Furthermore, the prepared iron NPs were used to
remediate swine wastewater, and get 71.7% removal of whole nitrogen (N) and
chemical oxygen demand was removed up to 84.5% (Wang et al. 2014a).

As a result of its renewable nature, near-zero cost availability, high concentration
of bioactive compounds, and ease of operation in ambient conditions, the green path
for synthesizing the NMs based on iron are economical as well as eco-friendly, that
may cause the lowering of the cost of production as well as the reduction in
operational cost in which these NMs are used. Furthermore, in the comparison
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with microbial-based preparation technique, based on plant approaches are signifi-
cantly low-cost, free of maintenance, practically nontoxic, and feasible as natural
capping agents, and so might be selected over the microbial preparation techniques.

5.2.2 Synthesis by Microorganisms

The manufacturing of microbe-assisted NPs has acquired in crowd owing to its
advantages over the conventional chemical-based processes. The advantages involve
the preparation at normal room temperature, efficient in energy conversion, easily
found in nature and sustainable precursors, simplicity in the similitude and robust-
ness (Park et al. 2016). Manufacturing of NPs through extracellular or intracellular
mechanisms could be done by the microorganisms such as yeast, fungus, and
bacteria. These techniques involve enzymes reducing metallic ions and generating
well-dispersed NPs having reduced distribution of mean particle diameter. Peptides,
natural proteins, capping agents, and tannins get integrated over the surface of NPs.
By minimizing agglomeration, dispersion and stability of NPs are enhanced by such
surface coating (Singh et al. 2016). The internal process involves metallic ions
diffusion inside the cell, where ions to create NPs are decreased by enzymes. On
the other hand, the extracellular operation involves the attraction of metallic ions to
the cell membrane by electrostatic forces and the reduction of metallic ions by
enzymes. Table 5.2 shows the microorganisms used by different research groups,
as well as the synthesis method used to synthesize iron and iron-based NMs as
reducing and capping agents.

An investigation on the extracellular production of maghemite (Fe2O3) with a
mean size of particles 5–7 nm was reported by the action of sulfate and iron
reductase enzymes consisted in Actinobacter sp. after a 48 h of incubation at ambient
temperature (Bharde et al. 2008). The fungus was used to synthesize iron NMs with
particle sizes ranging from 10 to 24.6 nm in the exposure of 10.3 molar Aspergillus
oryzae TFR9 fungal culture to FeCl3 precursor salt for 12 h at a temperature of 28 °C
in a rotatory shaker having rotational speed of 150 rpm (Tarafdar and Raliya 2013).
Subramaniyam et al. (2015) described the production of iron NPs having a spherical
shape with size ranges from 20 to 50 nm using, Chlorococcum sp., soil microalgae,
and chlorides of iron precursor in a separate research. The study shows that the
carbonyl and amine functional groups present on glycoproteins and polysaccharides
consisting of the algal cells were important in the formation of NPs, which was
revealed by FTIR analysis (Subramaniyam et al. 2015). In another work, Das et al.
(2018) stated that by utilizing the native hypersaline sulfate-reducing bacterial strain
(LS4), maghemite NPs are produced via anaerobic method having a mean diameter
of 18 nm. The bacterial strain is obtained and grown using saltpan sediments from
Goa, India (Das et al. 2018). After a 96-h incubation period, iron NMs were
synthesized using bacteria Bacillus pasteurii (PTCC1645), Bacillus subtilis
(PTCC1254), and Bacillus licheniformis (PTCC1350) in concentrations of 1.34 g,
1.62 g, and 1.26 g, respectively, the production of nano-materials based on magnetite
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of size range from 37 nm to 97 nm via the reducing action on the mixture of FeCl2
and FeCl3 precursor salts with the ratio of 1:2.5 and the reduction caused by the
reducing agents ammonia and urease enzyme (Daneshvar and Hosseini 2018).

NMs using microorganisms are synthesized by the following bottom-up
approach. This technique allows the iron-based NMs synthesis at ambient settings,
decreases energy requirements, less production or no hazardous wastes is justifiable,
and may thus be used to synthesize the NMs in an environmentally benign way.
Although abovementioned techniques entail a complex and time-consuming opera-
tion in the perspective of microorganism isolation, preservation, maintenance, and
purification of their cell cultures, necessitate highly germfree circumstances for
microbial culture, exhibit a low rate of formation of NMs, and may pose
bio-hazardous conditions. Aside from that, microorganisms such as bacteria have a
limited life cycle with a brief phase of immobilization thus they generate comparably
fewer secondary metabolites for a small period of time and are thus unsuitable for the
production in terms of long duration. Furthermore, owing to the microorganism’s
brief life cycle, its metabolites are depleted as it completes its life cycle. All of the
aforementioned disadvantages make this technique to synthesize NMs extremely
difficult for wide-ranging production.

5.3 Mechanism of Green Route Synthesized Iron
Nanoparticles

Though the exact process of NPs formation by a living organism is unknown, studies
suggest that enzymes generated by bacteria and fungus, as well as biomolecules,
especially phenolic chemicals found in plants, promote the formation of NPs based
on metallic iron (Saif et al. 2016). The green approach to NPs manufacturing is a
simple and highly efficient technology. To begin, the extracted solution the bio-
molecules are extracted from the biomaterials like animal tissues, plant materials, or
biomass by boiling at a high temperature in the deionized water, and after that by
filtering (Ali et al. 2016). The solution extracted by biomaterials is extremely high in
secondary metabolites, the concentration of which varies depending on the kind of
biomaterial employed. These secondary metabolites, which include nucleoproteins,
proteins, polyphenols, amino acids, flavonoids, and others are excellent capping and
reducing species and cause reduction of the precursor salts of metals which are
mixed to the extracted solution in a specific ratio (volume/volume) at ambient
temperature for the formation of the NPs based on corresponding metals (Wang
et al. 2017b). The production of iron NPs may be simplified into three steps:
activation, growth, followed by termination. The initial phase in the production of
NMs is the activation phase, in which the precursor of metallic salt is ionized and
gets dissociated to free metallic ions with a positive charge. These metallic ions bind
to the bioactive components having negative charge present in the extracted solution
like alkaloids, amino acids, polyphenols, enzymes, flavonoids, vitamins, proteins,
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quinines, and so on and form an intermediate complex (Malik et al. 2014). These
bioactive chemicals cause chelation and decrease the oxidation state of metallic ions,
which nucleates the reduced metallic atoms and the creation of the NMs. Further-
more, the second stage is the growth, in which growth of random sizes, formation of
metallic NMs with diverse morphologies by the combining of the nucleated metallic
atoms of the initial stage, the shape may be spherical, rods, pentagonal, hexagonal,
cubical, and so on, it depends upon the different parameters such as pH, metallic
precursors nature, temperature, incubation time, types and sizes, and so
on. However, because of the prolonged nucleation, particle agglomeration occurs,
resulting in huge clusters with deformed shape (Narayanan et al. 2012). Thus, in
order to generate particles with the required shape, the thermodynamic energy of the
particles must be reduced in order to prevent agglomeration and stabilize the NMs
formed. The termination phase of NMs production follows the growth phase. The
termination phase characterizes the thermodynamically stable produces NMs
(Shamaila et al. 2016). Random development of NMs is slowed by covering the
nucleated particles with a capping agent or surfactant. Energy consisted in the
particle’s surface is lowered by the capping agents, preventing nucleated ligands
from developing further and therefore preventing aggregation (Stefaniuk et al.
2016). In this approach, capping agents enable us to produce NMs with the required
shape, which is dependent on the reaction conditions. Furthermore, plant-based
synthesis is more suitable in the comparison of synthesis enabled by the microbes
due to the formation of a greater amount and varieties of different metabolites that
can aid in the functions of the capping and reducing during NPs formation
(Srivastava et al. 2021). Figure 5.2 depicts a possible process to produce the biogenic
iron-based NPs.

5.4 Applications of Green Iron Nanoparticles
for Biohydrogen Production

In the present anthropocene, energy generation and consumption are unsustainable
in terms of environmental, economic, and social effects. Through climatic change,
loss of ozone layer, and biosphere and devastation of geosphere, fossil fuels, and
other nonrenewable energy source increases environmental harm while also affect-
ing human health. Almost all the required energy (>95%) in the transportation sector
(which contributes 14% to global warming) is satisfied by fossil fuels. Especially,
energy production accounts for more than 80% of worldwide CO2 emissions. Since
burning fossil fuels meet more than 90% of world energy demand, CO2 concentra-
tions in the atmosphere have risen from 280 to 370 ppm during the last 150 years. It
is predicted to reach a dangerously high level of 550 ppm by the late twenty-first
century. As a result, research has attempted to adapt the nano-revolution to the
renewable energy industry in order to alleviate such environmental devastation.
Bioenergy may be regarded as an eco-technological breakthrough in order to achieve
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Fig. 5.2 Mechanism of green route synthesized iron nanoparticles

energy sustainability. The sunlight is an eventual source of energy and it may be
used indirectly as a source of plant-based energy (bioenergy or biofuels). In the
framework of green renewable energy, some nations modified legal elements in
response to the energy crisis caused by the over-exploitation of nonrenewable energy
sources and the consequent environment degradation, giving encouragement to
sustainable energy production techniques. In December 2015, 147 member nations
of the United Nations Framework Convention on Climate Change (UNFCCC), Paris
(COP21), and agreed to keep the limitation of global warming to 1.5 °C. Global
researchers have been on the hunt for green sustainable bioenergy generation to
decarbonize the environment in order to fulfill the COP21 objective. Biomass
presently accounts for a sizable percentage (9–14 wt%) of the world’s primary
energy. The US Department of Energy Biomass Program has proposed a scenario
in which biofuels may provide 30% of motor fuel demand by 2030 (Rai et al. 2018).
Because rising population and industrialization need a large demand for energy,
energy is a key prerequisite for a nation’s development goals globally. Due to the
loss of fossil fuel sources and their negative impact on the ecosystem and living
things, there is an ongoing quest for a renewable, environmentally benign, and
economically viable source of energy (Liu et al. 2019). Biofuel is a possible
replacement for fossil fuels among existing renewable energy alternatives since it
is eco-friendly, clean, emits no pollutants, and is a renewable source of energy
sustained by nature itself. Biohydrogen, biobutenol, biogas, biomethane, biodiesel,
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bio-oil, and bioethanol are among the available biofuels (Ibarra-Gonzalez and Rong
2019). Biofuel can be generated by either thermochemical or biochemical hydrolysis
of lignocellulosic biomass. Pyrolysis, combustion, and gasification are all steps in
the thermochemical production of biofuels. The biochemical production of biofuel
begins with hydrolysis action by the cellulase enzymes to the biomass of lignocel-
lulose or organics to generate sugar, which is then fermented (Srivastava et al. 2017).
However, the huge cost and limited output act as a key impediment to its widespread
commercialization. By incorporating iron NMs (as catalyst) synthesized via a green
route into the biofuel production process, a potential novel approach for lowering the
costs involved in the biochemical as well as thermochemical methods (Sekoai et al.
2019). Furthermore, it is expected that a higher ratio of surface area to volume and
super-paramagnetic nature-based facile segregation influenced by an external mag-
netic field will result in increased loading capacity and decreased diffusion limitation
(Vaghari et al. 2016). Implementing NMs based on iron in the biomass reaction
medium for the production of fermentative biofuels considerably enhances the
efficiency, thermochemical stable hydrolytic enzymes, as well as the sustainable
engagement of fermentative microbes, resulting in an excessive yield of sugars
capable of fermentation and subsequently excessive biofuels production (Sekoai
et al. 2019). NMs based on iron may affect different phases of the reaction medium
in the lignocellulosic biofuels production process like the pretreatment of lignocel-
lulosic biomass to biofuels synthesis, to increase the process productivity. Ligno-
cellulosic biomass pretreatment process employed by the iron-based NMs increases
sugar production, which may assist to minimize the quantity of chemical reagent
needed, lowering the total costs involved in the pretreatment operation (Arora et al.
2020; Srivastava et al. 2021).

There are several environmentally friendly techniques for producing iron-based
NMs that employ various bio-reducing and biochemical agents. Details about energy
generation, namely biohydrogen production utilizing greener iron NPs, are briefly
given here.

5.4.1 Biohydrogen

Anaerobic bacteria are used to provide molecular hydrogen via several metabolic
routes. Time of retention, pH, substrate concentration, and temperature influence the
kinetics behind the process of metabolism. In the procedure to prepare NPs in the
anaerobic biohydrogen, the capability to quick reaction with electron donors and
electron switch is improved (Rittmann and Herwig 2012). Therefore, addition of
NPs stimulates the microorganism’s activities in dark or photo-fermentation
biohydrogen processes. In the current decades, we have three well-advanced
methods which are applied for biohydrogen yielding named as (1) dark fermentation,
(2) photo-fermentation, and (3) photocatalysis (Chandrasekhar et al. 2015; Kumar
et al. 2021). Generally, there are numerous approaches for producing biohydrogen,
such as direct and indirect photolysis, microbial electro-hydrogenesis cells, dark
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fermentation, photo-fermentation, and hybrid systems. One of the benefits of pro-
ducing biohydrogen using the methods described above is the high process effec-
tiveness, and one of the familiar sources is biomass (Osman et al. 2020). Lower
eukaryotes (Protista and Chlorophyceae algae), facultative aerobic and anaerobic
bacteria, archaea, and cyanobacteria have all been utilized in various biological
methods for biohydrogen generation (Chandrasekhar et al. 2015). Using trash
from diverse activities as a substrate not only simplifies waste management but
also results in the cheap generation of hydrogen as a clean and green fuel. Every
technology has its own working conditions and forms, as well as benefits and
downsides, which are mentioned below (Nabgan et al. 2021).

5.4.2 Mechanism for Biohydrogen Production Using Iron
Nanoparticles

Because of their high selectivity, greater catalytic performances, and wide surface
area, NPs improve the performance of dark fermentation process involved in the
biohydrogen production. NPs increase the productivity of hydrogen and production
in anaerobic bacteria aiming directly at the hydrogenase enzymes and improving
electron transfer efficiency (Lin et al. 2016). A prior study described a method for
iron NPs to produce hydrogen in the dark fermentation utilizing microbes
(Bordetella, Bacillus, Proteus, Pseudomonas sp., and Enterobacter) (Porwal et al.
2008). Initially, NPs enter into the cell of bacteria via the cell wall at biohydrogen
generation, and this process and characteristic affect the rate of electron transfer. As
a result of increased surface area and quantum size, ferredoxin oxidoreductase
performance is enhanced. The activity of ferredoxin oxidoreductase increases hydro-
gen generation during dark fermentation (Mohanraj et al. 2014a). Lin et al. also
proposed that the conductivity of FeO NPs which is efficient, may be responsible for
the improvement in the rate of electron transfer, preparing them as beneficial in the
generation of hydrogen (Lin et al. 2016). However there are two strategies for
hydrogen generation metabolically by fermentation of glucose, first strategy is the
formation of formate hydrogen and the second is the decreased nicotinamide adenine
dinucleotide (NADH) dependent hydrogen manufacturing pathway (Cai et al. 2011).
In the formate hydrogen strategy, formate is decomposed by the enzyme formate
hydrogenlyase. Reoxidation of NAD happens in the NADH-established hydrogen
generating strategy with the help of the enzyme hydrogenase. Lin et al. found that
adding FeO NPs to dark fermentation enhanced acetate synthesis while decreasing
ethanol concentration (Lin et al. 2016). The basic mechanism of biohydrogen
production by using green synthesized iron NPs is shown in Fig. 5.3 and discussed
briefly.

The conversion of 1 mole of glucose into ethanol requires 4 moles of NADH, but
acetate production does not. A change in the metabolic strategy speeds the H+ to
hydrogen conversion through NADH, ensuring a higher yield of biohydrogen.
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Fig. 5.3 General mechanism of biohydrogen production using iron nanoparticles (NPs)

According to Jiang et al. NPs help in the effective transmission of electrons among
microbial cells. Previous research found that the ideal dosage of NPs employed was
toxic less or inhibiting to microorganisms and was efficient for creating greater
quantities of hydrogen through dark fermentation (Jiang et al. 2014). Nonetheless, it
is important to remember that greater NP concentrations reduce hydrogen output and
cause cell death. Extracellular appendages may serve as electron transfer routes
between bacteria. Electrical impulses, were transported by bacterial nanowires for
example, in Shewanella oneidensis (El-Naggar et al. 2010). Effectiveness of meth-
ane formation has been increased up to 33% in syntrophic bacteria by NPs like
nanosized magnetic NPs, apart from the hydrogen generation (Kumar et al. 2019).

5.4.3 Green Iron Nanoparticles for Biohydrogen Production

With better-designed catalytic transformations, to produce biohydrogen, continuous
progress has been observed in the development of processes that decompose natu-
rally depending on the numerous forms of biomass. The many approaches to
synthesize catalysts and its applications all have been aimed at increasing the
particular and general characteristics of the catalysts therefore boosting the overall
efficiency of the system of biomass conversion aided by catalysts. Such
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improvements in catalysis activity may be obtained very easily by choosing and
customizing optimal metallic combinations, as well as any other conditions or green
components such as NPs. This section of the review is reviewed by choosing
research papers and focused on significant findings from studies that address the
topic of improving the circumstances of catalytic synthesis of biohydrogen utilizing
green-produced iron NPs (Mudhoo et al. 2018) (Table 5.3).

Mohanraj et al. claimed that pure cultures of E. cloacae 811101 fed with glucose
demonstrated a 21.8% increase in H2 generation yield with Fe2O3 NPs concentration
of 200 mg/L. It has been proposed that the kind of sugar used as feed has a
substantial impact on H2 generation by E. cloacae 811101 with the existence of
Fe2O3 NPs (200 mg/L). Glucose was discovered to be a superior diet, yielding
21.8% more H2 than sucrose (4.8%) (Mohanraj et al. 2014a). This work demon-
strated that Fe(0) NPs may efficiently accelerate hydrogen generation and the
fermentation route of biomass materials. Fe2O3 NPs of concentration 175 mg/L,
C. acetobutylicum NCIM2337 improved its H2 generation yield by 33.9% when fed
glucose. C. acetobutylicum NCIM2337 produced a high yield of approximately
2.33 mol of H2 per mol of glucose (Mohanraj et al. 2014b). On the opposite side,
Nath et al. (2015) demonstrated the effect of green synthesized Fe-NPs utilizing
extracts of Syzygiumcumini leaf and bark and at a higher concentration of Fe+2 ions
up to 200 mg/L on H2 generation by E. cloacae DH-89. In the presence of Fe-NPs
rather than Fe+2 ions, a comparable beneficial effect on H2 yield was found. Fe-NPs
(100 mg/L) outperformed the control (0.95 moles of H2 per mol of glucose) by 100%
(1.9 mol H2/mol hexose). However, with the Fe+2 ions concentration of 25 mg/L, the
H2 is obtained with maximum output and we have 1.45 moles of H2 per mole of
glucose. Interestingly, Fe-NPs increased cell proliferation in E. cloacae DH-89. As a
result of these findings, Fe-NPs appear to improve the metabolic pathway of
E. cloacae DH-89 for H2 production (Nath et al. 2015). On the other hand, Sinharoy
and Pakshirajan (2020) proposed that the iron NPs produced from green tea be
utilized in the generation of biohydrogen. The existence of iron(III) oxide hydroxide
(FeO(OH)) and iron oxide (Fe3O4) in the green tea-produced iron NPs was verified
by X-ray diffraction analysis. The change of biomass in the microbial composition is
because of the presence of iron NPs. Gamma-proteobacter, Bacteroidia, and Clos-
tridia classes grew more with iron NPs than in the original inoculum. Clostridia
sp. class was discovered to dominate among other classes. More than 56.32%
increase in aqueous solubility of CO was reached in the existence of iron NPs at
1000 mg/L, coupled with a maximum H2 generation of 1.58 ± 0.13 mmol/L by
anaerobic biomass, and this generation is 44% higher than the production of H2 in
the absence of any iron NPs. Continuous research on bioreactors employing a gas lift
reactor confirmed iron NPs in increasing biohydrogen generation from CO, and due
to the addition of iron NPs in the system maximum production of H2 quantitatively
30.7 mmol/L (Sinharoy and Pakshirajan 2020). Another study shows that the
improvement of biohydrogen generation in the course of dark fermentation of
industrial effluents (waste) due to lignin-mediated NPs addition to the system.
Green NPs based on iron were also effectively produced utilizing lignin taken
from empty fruit bunches of oil palms, a waste from the industries of palm oil.
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There is more production of biohydrogen by using lignin magnetic NPs than using
lignin nonmagnetic NPs. Similarly, a greater yield of biohydrogen (506 and 410 mL
of H2 per gram of eliminated COD) was obtained if Fe-NPs were used while in the
control test (180 mL of H2 per gram of eliminated COD) by following the gas
generation procedure (do Nascimento Junior et al. 2021).

Thus, iron-based NMs have a significant impact on the production of biofuel by
lowering the required temperature to degrade biomass, decreasing the tar as
by-product, and increasing biofuel output. However, none of the investigations
published so far have used iron-based NPs produced through green methods to
catalyze the reaction, implying that the NPs synthesis is both expensive and envi-
ronmentally unfriendly. Because iron is a key catalyst in the technology of biofuel
manufacturing from biomass, to phyto-synthesize by utilizing biomass and plants
may also assist in the reduction of total costs involved in the existing technology,
making them more sustainable, environmentally manageable, and practical.

5.5 Conclusions

Emerging approaches include the use of microbes and plant extracts in iron-based
NMs synthesis. It has been discovered that distinct bioactive species present in the
extraction solution serve as capping agent as well as reducing agent simultaneously,
decreasing the use of hazardous compounds necessary in chemical synthesis. Each
approach however has advantages and downsides. Synthesis of iron-based NMs via
microorganisms confronts problems like slow production rate, maintenance and
preparation of culture leading to high costs, and the possibility of infection; hence,
we can have the plant-mediated technique as a superior option. Furthermore, being
environmentally benign, nontoxic, having simple and free access to plant materials,
and continuously producing bioactive chemicals in the photosynthesis process can
lower the total costs involved in the synthesis of NMs, making it more useful and
affordable. Organic wastes are created by various industries, on the other hand, it can
serve as raw materials for the production of NMs based on iron. Nonetheless, in
comparison with chemical approaches, shape-controlled synthesis, and finally
impacts the characteristics of iron-based NMs catalysts, is one of the primary
problems generally confronted by biological routes, and therefore further study in
this regard should be carried out. This chapter concentrated on the application of
iron-based NPs in biohydrogen generation. Although in late years, NPs have been
increasingly employed in the manufacture of biofuels, until now, iron-based NMs
have been used to create liquid fuels like biodiesel, biobutanol, bioethanol, etc.
Given the importance of iron-based NPs in the manufacture of liquid fuels, exper-
iments with NPs to generate biohydrogen on a laboratory scale have been done by
researchers. Despite worries about NPs toxicity at higher concentrations, optimum
NPs concentrations might significantly increase hydrogen generation after break-
down of the substrates for conversion of bacterial hydrogen. According to the
available data, a critical role can be played by the NPs in improving the sustainability
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of this process in order to obtain a large biohydrogen yields at a realistic scale.
Because this subject is still in its initial phases, additional investigations are required
to bridge the existing gap in its practical applications and economic viability.

5.6 Future Perspectives

Despite substantial research on the green route synthesized iron-based NPs have
been increasingly employed for the production of biohydrogen, their adaptation and
evolution in biofuel production from waste biomass are still in their early phases,
with several challenges ahead. Further research into the production of biohydrogen
using NPs is required.

The following are some of the key problems and future prospects:

• In the literature, green synthesis of NMs based on iron from different biosynthetic
and green routes like microorganisms, extract of plants have been described.
Plants, and microorganisms as well as their specific kinds, differ substantially in
the content of bioactive chemicals; these features have tremendous potential
during NMs production and should thus be investigated.

• Furthermore, the chemical composition of the plant with same species found in
various geographical locations differs, yielding diverse findings under compara-
ble experimental settings that should be thoroughly studied.

• A significant work is needed to reduce the excess costs involved with the
maintenance and growth of microbe cultures for the production of iron-based
NMs. One more disadvantage is the creation of poly-dispersed NMs and the
parameter optimization associated with the synthesis process.

• Aside from that, compared to traditional physical and chemical approaches for
synthesis, the shape (e.g., nanorods, nanoflower, nanostar, nanosphere)-
controlled NMs based on iron through green paths remains with great difficulties.

• Several investigations have been reported on the laboratory-scale production of
iron-based NMs utilizing plant extracts and waste biomass. Nonetheless, there is
no pilot plant synthesis of NMs based on iron that has been outlined to the best of
our knowledge. The potential of iron NPs and vast variety of uses necessitates
their extensive manufacturing, which lasts a significant problem.

• Iron NPs have been discovered as a vital role player in improving the quality as
well as output of production of biofuels, and they have tremendous possibilities to
solve the energy crisis situation, but they have large manufacturing costs.

• Nonetheless, the use of iron NPs synthesized using a green pathway in biofuel
production is a novel and creative technique that has the potential to lower total
synthesis costs but need more research in this area.
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Chapter 6
Synthesis and Application
of Nanoengineered Cellulosic Biomass
in Biohydrogen Production

Diksha Verma, Tanvi Sahni, Sachin Kumar, and Loveleen Kaur Sarao

Abstract Hydrogen is a ray of hope under drastically increasing energy needs that
are affecting the environmental conditions on earth. Hydrogen is clean, fuel efficient,
and has a higher energy density and here biohydrogen is more environment friendly,
and therefore seems more lucrative yet there are certain limitations in its develop-
ment on large scale. Nano-engineered partials (NPs) can overcome these limitations
to contribute a significant part in biohydrogen production. Production of
biohydrogen entirely depends upon the success rate of pretreatment, enzymatic
hydrolysis, and fermentation and here nano-engineered particles help in increasing
the efficiency of the whole process. In the pretreatment method, the use of NPs
decreases the processing cost by eliminating the utilization of acid/base. Enzymatic
hydrolysis of pretreated material has a slow reaction rate, nonreproducibility of
enzymes, and incomplete conversion of substrates therefore enzyme immobilization
of enzymes using magnetic NPs makes the enzyme reusable with improved temper-
ature stability. Fermentation is the last step and here also the biohydrogen production
can also be increased via the incorporation of NPs. This chapter provides significant
details for the synthesis of NPs and their implementation in H2 production using
different cellulosic biomass materials to enhance the efficiency of biohydrogen
production at each step along with the synthesis of some important nano particles
derived from Iron, Silver, and Palladium.

6.1 Introduction

An increase in energy demands is a continuous process at present time that is
responsible for accelerating fossil-based emissions throughout the world. Prices of
oil and natural gas have increased to a certain level (Gong et al. 2020) and here
various countries are working towards alternative energy sources. Biofuels are
considered as the best alternative fuels and here biohydrogen has given us very
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promising results (Shanmugam et al. 2020). Hydrogen has been a topic of discussion
due to its higher energy density and complete clean combustion (Navlani-Garcia
et al. 2018). Biochemical and microbial processes to generate hydrogen provide an
environment-friendly, resource renewable efficient alternative (Das and Veziroǧlu
2001). Commercial hydrogen production is predominantly done by thermal tech-
nologies such as partial oxidation and auto thermal reforming. Steam reforming of
CH4 (methane) is a widely utilized and economical approach that accounts for more
than 85% of the global generation of hydrogen (Sun et al. 2019). Though more
environmental friendly methods based on bioactivity of the microorganisms for
production of hydrogen are available in the literature, they need to be polished for
an effective and stable supply of hydrogen over a long period (Otto et al. 2008).
Lignocellulosic materials such as plant-based materials, organic wastewater, and
industry waste could be potential resources for biohydrogen production (Kapdan and
Kargi 2006) and nano-engineered particles can bridge the gap between the effec-
tiveness and economic viability of cellulosic biomass in biohydrogen production.
During the production of biohydrogen from cellulosic biomass, several steps are
involved including pretreatment followed by enzyme-aided hydrolysis and fermen-
tation process for production of biohydrogen. The amount of biohydrogen produced
is greatly determined by the success rate of these steps during which a sufficient
amount of substrate will be produced for each successive step. In general, an
important step in biohydrogen production is the hydrolysis of cellulose that occurs
by the acid or enzymatic catalyzes of lignocellulosic biomass. Enzymatic hydrolysis
is proven to be more effective than acid hydrolysis due to (1) more sugar yield and
(2) being eco-friendly as nonuse of hazardous chemicals (Taherzadeh and Karimi
2007), but several factors put a constraint on the success of hydrolysis step, viz.,
crystallinity of lignocellulosic fibers, presence of hemicelluloses and lignin compo-
nents in biomass in addition to cellulosic fibers that reduced the accessibility of
cellulose to substate during the fermentation process (Orts and McMahan 2016).
Therefore, the pretreatment step is considered as one of the crucial and necessary
steps that include the effective removal of hemicellulose and lignin from the
cellulosic component of biomass and conversion of the complex matrix of cellulose
into simple sugars to make the substrate accessible for enzymatic hydrolysis
(Chozhavendhan et al. 2020).

Ligno Cellulosic  
Biomass Pre treatment     Hydrolysis Fermentation Bio-hydrogen 

Production
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6.2 Pretreatment Process

Since the direct consumption of cellulosic component of the lignocellulosic biomass
does not take place for effective biohydrogen production due to its crystalline
structure, pretreatment method is employed whose basic aim is to open the structure
of the cell wall for making access to cellulose and hemicelluloses to carry out
enzymatic hydrolysis to get their monomeric form. Various types of pretreatment
processes are employed either individually or in combination that (1) remove hemi-
celluloses and lignin contents, (2) enhance the porosity of lingo cellulosic material,
and (3) bring down the crystallinity of cellulose which is the major constraint in
biohydrogen production (Chozhavendhan et al. 2020). The pretreatment steps vig-
orously impact the impending costs by adjudging the rate of enzymatic hydrolysis
and its loading, fermentation toxicity, mixing power, and other variables of the
process. All the components of biomass need to be recovered in an effective
pretreatment, to further upgrade them to valuable products, loss of a few but
important components often occurs that somehow affects the process economically
(Rocha et al. 2012).

6.2.1 Types of Pretreatment Process

Types of pretreatment Process

PHYSICAL 
METHODS 

CHEMICAL 
METHODS

BIOLOGICAL 
METHODS

NANOTECHNOLOGICAL 
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Physical methods include various processes like use of the different type of radia-
tions, mechanical process, and physiochemical process (steam explosion, micro-
wave) that not only surges the surface area along with the pore size of cellulosic
material but also decrease its degree of crystallinity that ultimately increase its
accessibility towards the better outcome of following steps and hence to the produc-
tion of biohydrogen. Owing to these benefits, the various physical methods have
certain drawbacks, during the mechanical process, different types of mills including
centrifugal mills, ball mills, knife and pin mills, vibratory mills, colloid mills,
hammer mills, and extruders are used (Cheng and Timilsina 2011) that needs more
energy requirement and therefore is not considered good as one of the pretreatment
economically. In the steam explosion method, though it is economically beneficial, it
leads to the condensation and precipitation of lignin components because of frag-
mentary lysis of the lignin-carbohydrate matrix, making the biomass least digestible
(Amin et al. 2017). In contrast to this, the microwave method is also an economical
method but its use on an industrial scale is limited.

6.2.1.2 Chemical Methods

Chemical Method
Acid Hydrolysis

Alkaline Hydrolysis
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Ionic liquids

Wet oxidation

Gases : H2O2, NH3
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5-HMF, phenolic acids, and aldehydes) and involvement of various steps like
detoxification, neutralization (to remove inhibitors and lignin), and waste disposal
cost, address to environmental issues, chemical treatment is not used in a broader
sense (Rocha et al. 2012).

6.2.1.3 Biological Methods

Biological Methods
Enzymes : Cellulases

Hemicellulases

Peroxidases

Lacasses 

Microbes: Bacteria, Fungi

Since the biological treatment does

not require the application of harmful chemicals and high-temperature employment,
it is most commonly used as an efficient and greener pretreatment method in the
whole process of biohydrogen production. In the biological method, various bacte-
ria, fungi, and especially their metabolite, i.e., enzymes, are utilized for the effective
hydrolysis of various components of LB to yield an adequate amount of sugars.
Depending upon the types of organisms used, different effects were observed, some
increased the hydrolysis yield (Taha et al. 2015), some minimized cellulose loss
during pretreatment (Cianchetta et al. 2014) while others were effective in removing
lignin (Suhara et al. 2012). After the application of various physical and chemical
treatments, enzymatic actions are done on the cellulosic matrix for biohydrogen
production on large scale with lesser by-products. During biological pretreatment,
various enzymes (cellulose, xylanases, and laccases) aid the process of conversion of
lignin, cellulose, and hemicellulose into simple sugars after carrying out the acidic
treatment, resulting in the biomass swelling, distortion of lignin structure, and
ultimately the degradation of its cell wall using cellulolytic enzyme thus releasing
free cellulose which can undergo hydrolysis to transform into simpler sugars (glu-
cose, xylose, arabinose, etc.) by the action of cellulase enzyme (Chozhavendhan
et al. 2020). It was reported in one study that hydrolysis of rice straw by using
cellulose enzyme produces 54.18 g/L sugar and 2.58 LH2/L of hydrogen production.
Owing to various advantages over physical and chemical methods, an extremely
slow process that has no industrial scope to date and very little contribution in the
production of biohydrogen due to inadequate conversion of biomass into the respec-
tive sugars as most of the carbohydrates got consumed by microorganisms is the
biological one (Srivastava et al. 2017).
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6.2.1.4 Nanotechnological Approach

To overcome the drawback of the biological method, a potential, new and
eco-friendly approach has been employed, that has increased the output of
preexisting pretreatment methods. Such an approach includes nanotechnology that
has been incorporated to raise the content of glucose production by introducing
nanoparticle induced enzymes for the successful use of lignocellulosic biomass in
the production of biohydrogen. Smaller size and large surface area of NPs, facilitate
easy penetration to the lignocellulosic biomass cell wall and undergoes interaction
with its forming elements to discharge oligomers and monomeric sugars with better
yield (Rai et al. 2017). It has been reported that though a variety of NPs can be used
for the hydrolysis of biomass, NPs used for carrying out the pretreatment process are
preferable to magnetic as it helps to recover easily from the reaction mixture,
repeated use of nanocatalysts in more than one hydrolysis step and its repetitive
use with immobilized enzymes, make the process cost-effective (Periyasamy et al.
2018; Verma et al. 2019). Moreover, the requirement of acid in each cycle would
also be eliminated which in short will reduce the rigorness of pretreatment due to the
use of acid functionalized magnetic nanoparticles (AFMN); this results in the
formation of an appreciable amount of fermentable sugars from LB. Because of
the high surface-to-volume ratio, low level of enzymes would be required to be
encapsulated or coated on NPs which ultimately enhanced the process of hydrolysis
along with easy recovery of sugar (Pena et al. 2012). In one of the studies, it was
noted that using carbon-based solid catalyst (functionalized with sulfonic acid) as a
biocatalyst helps in increasing the efficacy of pretreatment of corncob with the
release of 78.1% xylose (Qi et al. 2018).

Production of Carbon-Based Solid Catalyst

In an autoclave reactor, the sulfuric acid was added to microcrystalline cellulose, the
mixture was reacted at a temperature ranging from 120 to 200 °C with variation in
the volume of cellulose mass/sulfuric acid (1:1–1:20) followed by 24 h of heating
process taking place in a muffle furnace. The product so obtained undergoes
repeated washing with ethanol and hot water till the time sulfate ions detection
gets nullified using BaCl2. After this, the product was placed in a vacuum oven for
drying at 105 °C. After this, the resulting carbon-based solid acid catalyst was
subjected to grinding to obtain powder form and further sieved using a 120 mesh
screen. Then the reaction was carried out by treating carbon-based solid acid catalyst
(0.5 g) with corncob (0.25 g) in deionized water (25 mL) and stirred on a magnetic
stirrer in an oil bath at 130 °C for complete 4 h. After the completion of the reaction,
the supernatant was collected for further analyses (Fig. 6.1).
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Fig. 6.1 Synthesis of carbon-based solid nanocrystal synthesis

Solid Acid Catalysts

Solid acid catalysts, also known as acid functionalized nanoparticles, have a strong
ability to carry out the hydrolysis process with an advantage that it has replaced the
use of hazardous mineral acids during chemical pretreatment method as they possess
similar catalytic activity as mineral acids. Due to the magnetic nature of these
catalysts, they are easily recoverable from the reaction mixture which ultimately
leads to cost-effective production of fermentable sugars and biohydrogen produc-
tion. The author has used alkylsulfonic (AS) acid functionalized magnetic
nanoparticles and Perfluoroalkylsulfonic (PFS) for the evaluation of degradation of
hemicelluloses into oligosaccharides and it was observed that PFS solubilized higher
more amount of hemicelluloses (24.0% ± 1.1%) in contrast to AS NPs
(9.1% ± 1.7%) at 80 °C while at 160 °C, PFS and AS gave a maximum yield of
oligosaccharides (45.3% ± 0.5% and 46 ± 1.3%, respectively) as compared to
control ((36.0% ± 1.9%) (Pena et al. 2012) (Fig. 6.2).

Synthesis of Acid Functionalized Magnetic Nanoparticles

To synthesize acid functionalized NPs, firstly SiMNPs (silica-coated NPs) were
produced by the technique reported in studies (Gill et al. 2007; Phan and Jones
2006). In Fig. 6.3, the synthesis model of silica-coated cobalt ferrite (CoFe2O4) is
given using microemulsion method. After the formation of SiMNPs, its PFS acid
functionalized NPs were synthesized following the procedure reported in the
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Fig. 6.2 Formation of acid functionalized magnetic NPs (nanoparticles)

literature (Ingle et al. 2017). Complete synthesis is presented in Fig. 6.3 (Ingle et al.
2017).

Synthesis of Alkylsulfonic Acid Functionalized (AS) NPs

Figure 6.4 represented step by step formation of AS NPs similar to the method
reported for PFS NPs synthesis (Ingle et al. 2017). The overall procedure followed
for synthesizing SiMNPs, AS NPs, and PFS NPs can be depicted in Fig. 6.4 in step
1, 2, and 3, respectively.

In another similar study, silica-coated propyl sulfonic and perfluoropropyl sul-
fonic acid functionalized NPs were used and results showed that they gave 90% and
58% glucose yield (Dutta and Saha 2019).

Synthesis of Propyl Sulfonic Acid Functionalized NPs

Firstly, silica-mediated magnetic NPs were produced by applying a similar method
as given in Fig. 6.1 followed by synthesis of acid functionalized MNPs in which dry
SiMNPs (500 mg) were sonicated with (3-mercaptopropyl) trimethoxysilane
(MPTMS) (1 mL) using ethanol as reaction medium for 1 h followed by addition
of 100 mM (100 mL) acetate buffer solution at pH 4.8 and the mixture was heated at
75 °C after stirring. The synthesized mercaptopropyl functionalized NPs were
subjected to the magnetic strength of magnets after 16 h of reaction and washed
with ethanol (three times). After this, NPs were placed in a solution (60 mL) of
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Fig. 6.3 Formation of acid functionalized magnetic NPs (nanoparticles)

Fig. 6.4 Overall mechanism for the synthesis of SiMNPs, AS NPs, and PFS NPs
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hydrogen peroxide, methanol, water, and ethanol in equal proportions to carry out
the oxidation of mercapto groups followed by washing out the oxidized product with
distilled water (three times) and addition of HCl (0.01 N, 100 mL), and kept
overnight for the protonation of respective product. After this, the PS NPs were
separated from the acid solution and washed with distilled water which was then
dried for 3 h at 120 °C.

Three activated enzymes, viz., protease-activated MgN-Pro (magnesium oxide
nanoparticles), MgN-xyl (xylanase-activated magnesium oxide NPs), and
(MgN-cel) cellulose-activated magnesium NPs for pretreatment of sugarcane
bagasse were used and compared with (MgN-Pro) mediated amino acid production
quantity with control (untreated enzyme) and found that at 95 °C, MgN-pro esca-
lated the production of amino acid by roughly 6.18-fold in addition to 18-fold
elimination of lignin from the respective feedstock in contrast to control. It was
also reported that MgN-xyl pretreated sugarcane bagasse bring out 1.91-fold and
1.82-fold increment in glucose and sugar production respectively at 8 °C as com-
pared to control (Dutta and Saha 2019). The authors examined the synergic effect of
alkaline pretreatment and magnetic Fe3O4 particles on rice straw and carried out the
treatment at four different concentrations of Fe3O4 NPs (60, 80, 100, and 120 ppm).
The observations recorded were as the pretreatment efficiency and production of
biogas were increased at 120 ppm in treated LB as compared to untreated one
(Abraham et al. 2014).

Synthesis of Magnetic Oxide (Fe3O4) NPs

Synthesis of magnetic oxide NPs was done by carrying out a reaction between
aqueous solutions of zinc chloride (ZnCl2), iron (II) chloride tetrahydrate
(FeCl2.4H2O), and iron (III) chloride hexahydrate (FeCl3.6H2O) in molar ratio
(Zn2+:Fe2+:Fe3+ = 0.4:0.6:2.0). In order to neutralize the mixture, NaOH (aq) was
added to the mixture followed by the formation of precipitates which were given
hydrothermal treatment for the duration of 12 h at 150 °C. Then washing of the
precipitates was carried out with deionized water followed by the process of drying
in the freezer at -80 °C and 0.014 mbar for 24 h.

6.2.1.5 Nano-Scale Shear Hybrid Alkaline Pretreatment

NSHA pretreatment method for biomass of lignocellulose was devised in which one
step modification was done by Pedersen and Iverseb (2009), with the addition of
another type of chemical reagent acting as pretreatment agents. Lee et al. (2012)
devised a rapid and efficient NSHA pretreatment approach in which synergistic
effect of chemical and thermal effects with high-velocity shearer was examined in a
modified Taylor-Couette reactor that ultimately eliminate the lignin component from
LB leaving only cellulose content in the remaining solid. It is a method of lignocel-
lulosic biomass pretreatment in which corn stover was subjected to Taylor-Couette
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reactor in alkaline medium (NaOH) at room temperature with retention time of 2 min
and observed that upto 82% cellulose content was achieved in the left solid along
with fourfold increase in enzymatic cellulose conversion and fivefold enhancement
in hemicelluloses conversion into respective sugars as compared to untreated corn
stover. Due to the synergistic effect and significant removal of both the lignin and
hemicelluloses components from LB, this approach gave maximum fermentable
sugars that in turn maximize the biohydrogen production by making more access
of sugars in the following steps. Apart from the use of nonvolatile compounds like
NaOH, KOH, and H2SO4 in NSHA pretreatment, different kinds of volatile
chemicals, viz., ozone, ammonia, and organic solvents can also be employed
whose vaporization and depletion can be prevented by using a sealed reactor in
NSHA assembly (Pedersen and Iverseb 2009). Another modification was done in
NSHA pretreatment by Wang et al. (2013) in which PDAC (Poly
(diallkyldimethylammonium chloride)) cationic polyelectrolyte was used as an
additive which has the ability to stabilize lignin and reshape the surface of cellulose.
It was observed that PDAC stabilized lignin underwent a change in its cell wall
morphology in addition to a reduction in the use of chemicals which are requisite for
pretreatment. However, on lignocellulosic biomass pretreatment, little information is
available using nanoparticles, and therefore more efforts should be done to explore
the nanotechnological approach to make the process more viable at an industrial
scale.

6.3 Cellulosic Hydrolysis

After the degradation of hemicellulose and lignin content from lignocellulosic
biomass using various pretreatment methods, the next step is subsequent hydrolysis
of cellulose left in LB to get fermentable sugars which are then used in biohydrogen
production. This step is one of the crucial steps that determine the overall efficiency
of the process and to what amount biohydrogen is going to be produced. Chemical
and enzymatic hydrolysis are the two important methods used to carry out hydrolytic
cleavage of cellulose which is a biopolymer that contains many glucose units linked
together by β-1,4-glycosidic bonds that are required to be broken down to get
separate glucose molecules or oligosaccharides (Lenihan et al. 2010). During chem-
ical degradation, dilute acids like HCl and H2SO4 were used to carry out the
hydrolysis process but the use of dilute acids has certain drawbacks like unwanted
production of furfural and HMF that step down the efficiency of sugar formation
(Mittal et al. 2017), low specificity, poor recyclability, product separation problem,
demand of waste effluents treatment and many more. To overcome this issue
regarding poor recyclability and difficulty in product separation, different heteroge-
neous solid acid catalysts like polymer-based catalysts, magnetic solid catalysts,
sulfonated carbonaceous-based acids, etc., were used that increased the effectiveness
of the hydrolysis process. Takagaki et al. (2008) used layered HNbMoO6 transition-
metal oxide in addition to other solid catalysts and observed that hydrolysis over
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HNbMoO6 gave 21% more glucose production as compared to amberlyst-15 (3.4%)
and the total product yield of glucose and cellobiose was noted to be 8.5%. Much
more work was done using heterogeneous catalysts (Zhang et al. 2011; Hu et al.
2015a, b; Onda et al. 2008; Huang and Fu 2013; Lai et al. 2011) yet there is a need to
improve the reaction efficiency and selectivity. Therefore, enzymatic hydrolysis
came into play which involved the use of enzymes that provide better selectivity;
catalytic activity, and use of green approach provide much acceptance to this method
as it does not require hazardous and toxic chemicals to put into use. Enzymatic
hydrolysis involves the utilization of various enzymes particularly cellulase,
hemicellulase, and laccase to carry out the hydrolytic process (Reynaldo et al.
2018) but reusability of enzymes causes another concern in its usage (Chen and
Liu 2017) along with high production cost. To deal with this, a new approach has
been introduced which involves the use of nanoparticles mediated enzymes/
biocatalysts immobilized using various physical and chemical methods to increase
its efficiency. Though less information is available regarding the actual mechanism
of immobilization, it is evident that due to large surface area of NPs and the use of
magnetic NPs results in much loading of enzymes and easy recovery of NPs,
respectively (Ingle et al. 2017).

6.3.1 Nanoparticles in Enzymatic Hydrolysis

To provide better adaptation of enzymes to environmental conditions like tempera-
ture and pH and to induce the biocatalysts stability, immobilization of enzymes is
carried out on NPs that ultimately access the formation of biofuels in great amount
(Taherdanak et al. 2016; Gadhe et al. 2015) along with reusing of expensive
enzymes at industrial scale at an economical level. In the process of utilization of
NPs as a support for enzyme immobilization, some basic factors need to be consid-
ered like (1) efficacious utilization of catalyst, (2) specific activity, (3) minutest
enzyme deactivation, (4) cost-effectiveness, and (5) recovered activity (Rizwan et al.
2016). There are mainly four techniques to carry out the immobilization technique—
adsorption, cross linking, entrapment, and covalent binding (Cipolatti et al. 2014).

Adsorption: During adsorption method, enzyme is only adsorbed on the surface
of magnetic NPs after mixing with a suitable adsorbent under appropriate conditions
of temperature and pH. In adsorption principle, weak interatomic forces are respon-
sible for imparting the strength for binding with the disadvantage that adsorbed
layers could easily be washed away with mild changes in environmental conditions
like change in temperature, substrates, or ionic concentrations (Rizwan et al. 2016).

Covalent Bonding: In covalent bonding, enzyme and substrate (support matrix
NPs) are connected to each other via covalent linkage between them. It has been
observed that the involvement of different functional groups in enzyme and support
matrix increased the covalent linking between the two (Fu et al. 2011; Hartmann and
Kostrov 2013).
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Entrapment: It is the immobilization of the enzymes over 3D matrix of high
molecular compounds. It is a conventional method of physical caging or covalent
binding or entrapping of specific amount of enzymes in natural polymers like
agarose, agar, or gelatin via thermo reverse polymerization while this encaping in
case of alginate and carrageenan is carried by ionotropic gelation (Datta et al. 2013).

Cross Linking: In this method, enzyme/biocatalyst is linked to bi- or
tri-functional ligands that results in the formation of insoluble aggregates. The
most commonly used bi-functional reagent is glutaraldehyde whose reactive alde-
hydic groups undergo covalent type interaction with amino groups of enzymes
which undergoes a change in the confirmation which results in the activity loss.
Among the three immobilization methods, this method is less acceptable as it does
not use any kind of solid matrix. The most recent advancement in cross linking
process is the use of new biocatalyst, cross linked enzyme aggregates (CLEA’s) that
are developed via precipitation process of enzyme from aqueous solution by adding
nonionic polymers, salts, or water-miscible organic solvents (Sheldon 2007). Due to
non-covalent bonding involved between the aggregates, denaturation of enzymes or
change in its confirmation is restricted that ultimately preserves its catalytic activity.
These kinds of enzymes are very efficacious biocatalysts as they are cost-effective
which is a prerequisite in the whole process of enzyme hydrolysis.

While choosing support for enzyme immobilization, several characteristics need
to be focused on like its mechanical and chemical resistance, potential interaction
with enzyme without remarkably changing its activity, nature of surface (hydrophilic
or hydrophobic), defined porous morphology, and cost-effectiveness (Villeneuve
et al. 2000). Cellulase and hemicellulase, i.e., immobilized enzymes have shown
better catalytic activity with the advantage of being used again and again in several
steps with one disadvantage that their recovery from the whole process is difficult to
carry out. Different kinds of materials having nanometric dimensions have been used
as a support for the immobilization of enzymes like polymeric support which can be
biopolymer or inorganic polymer, synthetic organic polymer among which poly
(acrylamides), poly (urethane), poly (styrene), poly (methyl-methacrylate) and poly
(acrylates) are broadly used for enzyme immobilization (Zhou and Hartmann 2013).
Apart from polymeric support, various other NPs are used as support which includes
silica NPs, nickel NPs, metal oxide NPs, magnetic NPs, carbon nanotubes, and
grapheme-based NPs (Singh et al. 2020). Immobilization of enzymes on NPs
increased its affinity towards LB thus increasing the hydrolysis rate which subse-
quently increased the biohydrogen production. Various NPs were used for immobi-
lization one of which is glutaraldehyde-based (Fe2O3) iron oxide immobilized
cellulase that revealed a wide range of temperature along with pH stability in
comparison with untreated enzymes (Xu et al. 2011).
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6.3.2 Synthesis of Iron (II) Oxide NPs

Magnetite or iron (II) oxide NPs were designed using hydrothermal method by
carrying out coprecipitation of Fe2+ and Fe3+ ions with ammonia solution. Both
the ferrous and ferric salts of sulfates (FeSO4.7H2O and FeCl3.6H2O) respectively
were dissolved in deionized water in stoichiometric ratio (1:2) by keeping the total
iron concentration at 0.3 mol/L. After this, the resulting mixture was subjected to
sonication for 30 min for deoxidation of stoichiometric mixture followed by heating
at 70 °C in the atmosphere of nitrogen. By maintaining the pH of the solution at
9, aqueous ammonia solution (25% w/w) was added dropwise with continuous
stirring and the mixture was put in a water bath at a temperature of 85 °C for 1 h
to evaporate excess ammonia. Finally, the designed magnetite NPs was washed with
anhydrous ethanol and water two and three times, respectively; followed by the
process of drying in a vacuum at 40 °C. The product or the dried powder was stored
at 4 °C in the freezer for more use.

6.3.3 Synthesis of MnO2 NPs

Used MnO2 NPs which involves the use of covalent binding immobilization tech-
nique through modification of surface using glutaraldehyde at 70 °C and pH 5.0,
providing thermal and pH stability. Using the same immobilization method, another
modification in cellulases enzyme using Fe3O4/chitosan NPs can provide pH and
temperature stability at 5.0 and 60 °C. The respective NPs were formed using the
chemical coprecipitation method as reported by (Lineweaver and Burk 1934). A
solution of MnSO4.H2O (1 mol/L) and NaOH (2 mol/L) was made in deionized
water and then stirred for 2 h at 60 °C which resulted in the precipitation of NPs.
After this, the precipitates were washed with deionized water 2–3 times, and further
they were subjected to drying process in a hot air oven for 12 h at 100 °C. Among
various NPs, magnetic NPs are mostly used to (1) overcome the difficulty of
recovery of enzymes from the mixture, (2) stability along with specific activity,
(3) superparamagnetic nature, and (4) well suspension in the reaction mixture (Zang
et al. 2014).

Three functionalized magnetic nanospheres were prepared using three amino
silanes 3-(2-aminoethylamino propyl)-trimethoxysilane (AEAPTMES),
3-(2-aminoethylamino propyl)-triethoxysilane (AEAPTES), and
3-aminopropyltriethoxysilane (APTES) and used for immobilization of cellulase
enzyme. The results showed that AEAPTES displayed the highest (87%) activity
recovery with more temperature stability and wider pH stability than free cellulase
(Zhang et al. 2015).
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6.3.4 Synthesis of Magnetite NPs

Firstly, by using Stober method, nanospheres (silica-coated) were synthesized
(Stober and Fink 1968) followed by the synthesis of Fe3O4 NPs using the conven-
tional chemical coprecipitation method (Zhang et al. 2013). A mixture of magnetite
particles (2 g), alcohol (160 mL), water (40 mL), and NH3.H2O (5 mL) was taken
and subjected to ultrasonication for 1 h followed by the addition of tetraethyl
orthosilicate (TEOS) (5 mL) with continuous stirring for 12 h at room temperature.
This resulted in the formation of silica-coated NPs through the process of hydrolysis
and condensation of TEOS which were then washed out with distilled water, and
underwent drying at 50 °C for 24 h under vacuum conditions. The resulting silica-
coated nanospheres (1 g) were added to ethanol (60 mL) and exposed to ultrasonic
radiations at room temperature for the duration of 30 min. To the above mixture,
NH3.H2O (6 mL) and amino silanes— 3-(2-aminoethylamino propyl)-
triethoxysilane, 3-(2-aminoethylamino propyl)-trimethoxysilane, and
3-aminopropyltriethoxysilane (4 mL) were put in and the temperature was increased
to 50 °C under the atmosphere of nitrogen while stirring the mixture for at least 8 h
(Zhang et al. 2014). The resulting NPs were undergone washing with distilled water
and drying for 24 h at 50 °C under vacuum conditions. It has been reported that the
use of NPs for immobilization of enzymes using different immobilization techniques
has improved the different aspects of the scheme and increased biohydrogen pro-
duction as mentioned in Table 6.1.

For effective bioconversion of LB to biohydrogen production, the former need to
be effectively hydrolyzed using enzymes or biocatalysts as they increased the
hydrolysis rate (Wang et al. 2015). It was observed that to carry out hydrolysis of
various lignocellulosic substances like rice straws, sugarcane bagasse, etc.,
sulfonated magnetic NPs were used that provided much higher conversion efficiency
of respective biomass materials with more percent recovery. Aspergillus niger
cellulase was immobilized on cyclodextrin-based MNPs to carry out rice straw
hydrolysis and it was observed that it yield a much higher concentration of simple
sugars in comparison with nonimmobilized enzymes having 85% enzyme recovery
for further hydrolysis treatment (Huang et al. 2015).

6.3.5 Synthesis of Fe3O4 NPs

The respective magnetic NPs were prepared using coprecipitation method in which a
mixture of FeCl3 (16 mmol, 2.6 g) and FeCl2.4H2O (5 mmol, 1.0 g); after dissolving
the mixture in deionized water (400 mL), the reaction proceeded in an inert gas
environment for 30 min for the prevention of oxidation of magnetite. Then the
resulting solution was heated to 60 °C during which the color of the solution changed
from yellow to orange. To this mixture, ammonia solution (1.5 M, 100 mL) was
added that resulted in the formation of black colored colloidal solution. Then the
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black-colored solution was heated to 80 °C after being reduced by alkali solution
followed by the addition of oleic acid with continuous heating until ammonia got
evaporated completely. Then, the solution was cooled to room temperature followed
by the addition of kerosene (100 mL) to silica-coated suspension, and then the oil
layer was collected and water layer was decanted off. This kerosene oil layer was
dropped on β-CD’s solution to black colloid having 0.02. 0.1, 0.5, and 1.0 (v/v) ratio
of β-CD’s solution. The resulting magnetite MNPs synthesized was stored in a
refrigerator for further use. Su et al. (2015) described the use of cellulase enzyme
which was immobilized on sulfonated magnetic carbonaceous acid NPs to carry out
the hydrolysis of tropical biomass wastes, i.e., Bagasse, Plukenetia hulls, and
Jatropha and the treatment yielded glucose (C6H6O12) in 58.4%, 35.7%, and
35.9%, respectively.

6.3.6 Synthesis of Sulfonated Magnetic Carbonaceous
Acid NPs

For a typical procedure, glucose (12–18 g) and nano-Fe3O4 (2 g) were mixed in
100 mL water using a three-neck flask under active stirring in an oil bath at a
temperature of around 100 °C. After the evaporation of water, the mixture was
shifted to a tubular furnace (SGL-1100, Shanghai Daheng Optics and Fine Mechan-
ics Co., Ltd.), heated to 650–750 °C at a rate of 5–7 °C/min, and pyrolyzed for
0.5–1.5 h under N2 flow (280 mL min-1). The carbonized solid C/Fe3O4 was
sulfonated by 98% H2SO4 with the ratio of 1 g/20 mL in an oil bath at 150 °C for
19–21 h. The sulfonated sample was washed repeatedly with distilled water at 200 °
C for 3 h in a 50 mL high-pressure micro-autoclave (YZPR-50, Shanghai Yanzheng
Experimental Instrument Co., Ltd.) until neutral solution was reached (and no SO4

2-

was detected using CaCl2). The washed catalyst was dried in an oven (WFO-710,
EYELA, Tokyo Rikakikai Co., Ltd.) at 105 °C for 24 h until constant weight, ground
and sieved through 200 mesh for hydrolysis. Verma et al. (2013) used β-glucosidase
enzyme from A. niger immobilized on magnetic Fe2O3 NPs through covalent linking
technique for cellobiose hydrolysis and it revealed that immobilized enzyme retained
50% enzyme activity up to 16 cycles as compared to free enzymes (Fig. 6.5).

6.3.7 Synthesis of Magnetic Iron Oxide NPs

Hydrothermal technique was used to prepare MNPs by carrying out reaction
between equimolar ratio of FeCl3.6H2O (0.125 M) and FeCl2.4H2O (0.125 M)
using deionized water (80 mL) as a reaction medium. The aqueous solution so
formed was then stirred at 200 rpm followed by the addition of NaOH (30 mL)
which resulted in the formation of black precipitates. These precipitates were then
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Fig. 6.5 Synthesis of Sulfonated Magnetic Carbonaceous Acid NPs

subjected to autoclaving for 12 h at 150 °C followed by washing and drying (freeze
drying at -80 °C) for further use. The same enzyme was also immobilized on
magnetic chitosan microspheres for cellulosic corn straw hydrolysis by Zheng
et al. (2013) to produce 60.2 g/L reducing sugar with a 78.2% conversion rate that
showed the operational stability of the immobilized enzyme.

6.3.8 Synthesis of Magnetic Chitosan Microspheres

Chitosan solution with concentrations (v/v) (1.0%, 2.0%, 3.0%, and 4.0%) was
prepared in propionic acid having concentrations (v/v) (1.0%, 1.5%, 2.0%, and
2.5%) (50 mL) to which polyethylene glycol with concentrations (v/v) (0.04%,
0.06%, 0.08%, and 0.1%) (PEG-400) and Fe3O4 were added to the solution and
stirred at room temperature with subsequent addition of NaOH solution (2 M) to
form microspheres. After 10 h of immersion in NaOH solution, the mixture was
washed with deionized water to pH 7 and resulted microspheres were collected,
filtered, and treated with glutaraldehyde having concentrations (v/v) (0.5%, 1.0%,
1.5%, and 2.0%) at 25 °C for 2 h. The synthesized magnetic chitosan MNPs were
recovered after washing with reductant glutaraldehyde. The ratio of chiosan/Fe3O4

obtained were 1:1, 1:2, and 1:3. Various scientists used different types of NPs as
solid matrix support for the immobilization of various enzymes to carry out NPs
mediated enzymatic hydrolysis with better efficiency, reusability, and improvement
in biohydrogen production yield.
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6.3.9 Advantages of Nanoparticles in Enzyme Properties

Apart from the improvement in the yield of oligosaccharides and biohydrogen
production via the introduction of NPs in enzymatic hydrolysis, enzyme immobili-
zation played a vital role in improving temperature and pH stability (Ismail et al.
2011; Zhu et al. 2016) which greatly affects the affinity and the interaction of
enzymes towards lignocellulosic biomass substrates that ultimately improve the
hydrolysis rate to produce more biohydrogen. A mechanism was proposed by
Jariyaboon et al. (2015) and Kirli and Kapdan (2016) to demonstrate the interaction
of enzymes and NPs which showed the formation of structure which caused change
in protein stability due to alteration in surface properties which is further decided by
the type and concentration of NPs utilized for the immobilization of enzyme. Many
studies were done for knowing the efficacy of immobilization under variable param-
eters of temperature and pH and it was observed by Xu et al. (2011) that cellulase
enzymes immobilized on glutaraldehyde-based (Fe3O4) iron oxide NPs displayed a
good range of stability in aspects of both pH and temperature in comparison to free
enzymes. Similar studies were done to show the efficiency of immobilized enzymes
in the improvement of temperature and pH stability (Bohara et al. 2016; Harmoko
et al. 2016; Yang et al. 2016; Lima et al. 2017; Han et al. 2018).

6.4 Microbial Fermentation for Biohydrogen Production

The last step involved in biohydrogen production is the fermentation of microbes of
oligosaccharides or simple sugars being obtained in the step of enzymatic hydroly-
sis. Although a number of researchers carried out the biohydrogen production
process by taking into consideration the economic and technical aspects, the out-
come is not up to the mark as the quantity of biohydrogen production depends on
various factors like the type of feedstock, downstream process configuration, effi-
ciency of pretreatment and enzymatic hydrolysis process, yield of simple sugars
obtained in hydrolytic step of cellulose and many more. As there is a continuous
increase in energy consumption worldwide and will be increased more in coming
future, sustainable biohydrogen production must be carried out. Various types of
microorganisms were used for sustainable production of biohydrogen with new
metabolic pathways along with nanotechnological approach (Yallappa et al. 2013).

6.4.1 Types of Microorganisms Used in Biohydrogen
Production (Dark Fermentation)

Diversity of organisms like facultative aerobic bacteria, anaerobic bacteria, pro-
karyotes (cyanobacteria and bacteria), and eukaryotes (protists and green algae)
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are used to produce biohydrogen which may either work as a single entity or work as
mixed cultures (Hallenbeck 2012). Fermentation process is a type of heterotrophic
metabolism in which carbon-bearing initial substrate is used instead of oxygen as a
terminal electron acceptor, the basic requirement to carry out fermentation process.
Two types of fermentation namely; photo fermentation (cyanobacteria mediated
fermentation) and dark fermentation (bacterial fermentation) were used for
biohydrogen production among which bacterial mediated fermentation has gained
more attraction as it is the most efficient process in aspect of production yield, less
reaction time, choice of using wide range of organic substrates (cellulose-rich
biomass), and ambient operational conditions (Azman et al. 2016; Balat and Balat
2009). Apart from the choice of substrate, dark fermentation also depends upon
another factor, i.e., type of microorganisms used, as its growth pattern is a key factor
for determining the production yield of biohydrogen, micro and macro nutritional
sources, operational temperature range, and pH. Two classes of microorganisms, i.e.,
obligate anaerobic bacterial strain (Clostridium beijerinckii, Ruminococcus albus,
and many more) and facultative bacterial strain (Enterobacter aerogenes,
E. cloacae, Citrobacter intermedius, Escherichia coli, and many more) are used to
carry out dark fermentation step (Chandrasekhar and Venkata Mohan 2014). The
two main enzymes/biocatalysts used are hydrogenases and nitrogenases (O-Thong
et al. 2008). Studies have shown that during the conversion of LB (cellulose-rich
agricultural waste) to biohydrogen production, though thermophilic bacteria showed
much better yield as compared to mesophilic bacteria as they are more stable at high
temperature (Asada et al. 2000), yet not much study has been done on same (Bensah
and Mensah 2013). Both the dark and light fermentation differed in the choice of
terminal electron acceptor source which is carbon source (organic and inorganic
compounds) in case of the former and O2 in the latter. The most accepted and mostly
used fermentative pathway used among acetic acid and butyric acid pathway is
acetate mediated pathway whose general reaction is given as:

C6H12O6 þ 2H2O→ 2CH3COOHþ CO2 þ 4H2

6.5 Nanotechnology in Biological Fermentation

Due to certain drawbacks of microbial dark fermentation like the low yield of
biohydrogen production and its less energy recovery (Ding et al. 2010) less conver-
sion (30–35%) of substrate into biohydrogen in addition to the production of other
metabolites (butanol, butyric acid, acetic acid, ethanol) (Logan 2004), certain
enzyme modifications were done via supplementing them with metal ions as cofactor
like Zn, Cu, Fe, Ni, and many more. This process can also be known as the
implementation of nanotechnological approach for improving biohydrogen produc-
tion efficiency. Due to the introduction of metal ions, bacterial growth ended to be
improved as these metal ions provide micro and macronutrients as studied by various
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researchers (Zheng and Yu 2004; Zhang and Shen 2007; Wang and Wan 2009).
Though a little information is available regarding NPs contribution to biological dark
fermentation, few studies revealed the efficacy of metal ions in the enhancement of
biohydrogen production yield and energy recovery. It has been known the role of
hydrogenase enzyme in biohydrogen production as its two active centers (Fe and Ni)
played a significant role in the biological fermentation of simple sugars; therefore, its
absence or presence revealed the importance of metal cofactors as nutritional
supplements (Lin et al. 2012). The quantity of metal cofactors also played an
important role in the yield production of biohydrogen as it was mentioned that
excess use of metal ions would suppress the activity of enzymes which leads to
nullify their positive effect on the yield (Lin et al. 2012). It was studied that
introduction of NPs improved the ferrodoxin-reductase activity which in turn
improved the electron transfer rate (Bunker and Smith 2005).

To improve the biohydrogen production yield with the help of glucose acting as
substrate after enzymatic hydrolysis, Pd, Ag, Cu, and metallic oxide (FexOy) NPs
were encapsulated on porous SiO2 by Clostridium butyricum bacteria and its
enhancement effect was studied in fermentative biohydrogen process. It was
obtained that yield of H2 production was 38% that was greater than the control at
pH-7.6 and the optimum temperature was 30 °C (Beckers et al. 2013).

6.5.1 Synthesis OF NPs

Four metal ions (Pd, Cu, Fe, and Ag) were used for the synthesis of NPs whose
encapsulation was done inside porous matrix using cogelation method to synthesize
Cu/SiO2, Pd/SiO2, Ag/SiO2, and Fe/SiO2 cogel as reported in the literature by
(Heinrichs et al. 2008). In cogelation method, one-step doping of inorganic matrix
with cations was done at the molecular level. The method included simultaneous
condensation and hydrolysis of two alkyl silanes which are SiO2 network structures
that formed a reagent like tetraethoxysilane (TEOS), and alkoxysilane of type
(RO)3Si-X-L, in which L is a ligand that formed metal complex (LnM) with metal
cation M (M = Ag, Pd, Fe, Cu, etc.) is linked to (RO)3Si alkoxide group via
hydrolytically stable and inert spacer X. After the condensation and hydrolysis of
cogelates, resulted material possessed metal cations anchored to silica matrix.

Fe/SiO2 dissol was synthesized using dissolution method as reported by
Heinrichs et al. 2008, in which iron salt was mixed in silica gel precursor initially
prepared and compared its efficiency with porous SiO2 alone in biohydrogen
production (Lambert et al. 2004). The resulting product was subjected to calcination
in air to remove organic moieties (500 °C for Fe/SiO2 cogel and Fe/SiO2 dissol,
400 °C for other samples) followed by reduction of Ag/SiO2 and Cu/SiO2 using H2

to obtain metallic NPs. A higher yield of hydrogen production (34.38%) for using
α-Fe2O3 NPs and 5.47% for NiO NPs than control was reported using glucose as
substrate and using glucose-fed thermophilic anaerobic mixed bacteria at 60 ° C
(Engliman et al. 2017).
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6.5.2 Synthesis of α-Fe2O3 NPs

In the process, NiO NPs were purchased while α-Fe2O3 NPs were synthesized in the
laboratory according to the method reported by Matijevic and Scheiner (1978) with
few modifications by carrying out hydrolysis of ferric chloride solution. Various
scientists used C. butyricum bacteria as a bacterial fermentative enzyme and used
different types of NPs Cu, Pd, Ag, and Fe2O3 to compare the yield of H2 production.
Of these NPs, AgNPs gave maximum 67.5% increment in H2 yield as compared to
the control (Zhao et al. 2013).

6.5.3 Synthesis of AgNPs

Silver NPs were synthesized by dissolving AgNO3 (0.0158 g) in double distilled
water (40 mL) followed by the addition of sodium citrate (1%, 2 mL) with contin-
uous heating and stirring at 86 ° C. After 30 min of reaction, the color of the solution
changed from colorless to olivine after which the mother liquor obtained was diluted
to 50 mL and the solution was kept at 0–4 °C for further use (Zheng et al. 2008).

Apart from C. butyricum bacteria, various other bacteria (Enterobacter
aerogenes, Enterobacter cloacae, Enterobacter cloacae DH-89, Bacillus anthacis
PUNAJAN 1, Clostridium pasteurianu) were used to carry out biological fermen-
tation using different types of NPs (γ Fe2O3, Pd (II), Fe2O3. Fe3O4/carbon,
NiO/CoO, α-Fe2O3 and TiO2 NPs) respectively via the use of diverse nature of
substrates (mostly glucose), among which Enterobacter cloacae DH-89 encapsu-
lated Fe2O3.Fe3O4/carbon NPs using glucose as substrate yielded a much higher
percentage of H2 yield approx. 230% in comparison with control (Lin et al. 2016;
Mohanraj et al. 2014; Nath et al. 2015).

6.5.4 Green Synthesis of PdNPs Using C. sativum Leaf
Extract

Firstly, C. sativum leaves (20 g) were fine chopped and boiled in double distilled
water (100 mL) for 3 min. The resulting extract was filtered and stored at 4 °C. The
resulting leaf broth (2 mL) was taken in a flask (100 mL) to which palladium chloride
solution (1 mM, 8 mL) was added to yield PdNPs. The contents were incubated in a
shaker at 150 ppm at 37 °C for 24 h. To know the effect of C. sativum and palladium
chloride on the synthesis of palladium NPs, varied concentrations of C. sativum
broth (1 mL, 2 mL, and 3 mL) using palladium chloride (1 Mm) and different
concentrations of palladium chloride (0.25, 0.5, and 1 mM) using C. sativum (2 mL).
The reaction mixture was centrifuged for 15 min at 11000 rpm for separation of
PdNPs.



158 D. Verma et al.

6.5.5 Synthesis of FeNPs Using S. cumini Leaf Extract

Different concentrations of freshly prepared S. cumini leaf extract were treated with
FeSO4 solution to get optimum concentrations to yield FeNPs. After getting the
optimum concentration, plant extract (25 mL) and FeSO4 solution (1 mM, 475 mL)
was subjected to stirring at room temperature and after 10 min of reaction, color of
the reaction was changed from light yellow to dark black color denoting synthesis of
FeNPs. The resulting colloidal solution was centrifuged at 12000 rpm for 10 min at
20 °C. For the further use of synthesized NPs, these are deep freezed after washing
with distilled water.

Different yield of H2 production using different enzymes and NPs merely
depends upon the type of their interaction with each other which ultimately enhanced
the electron transfer rate in ferrodoxin-reductase chain. It was studied that as small
the size of Fe2O3 NPs, more will be an increase in reaction rate and hence much
improvement in hydrogenase activity via the removal of unnecessary oxygen from
fermentation broth. Henceforth, the impact of NPs on the improvement of H2

production was well established and was incorporated in many studies whose data
is compiled in Table 6.2.

6.6 Recent Advancements and Future Perspective

For reducing the dependency on fossil fuels and to provide much cleaner environ-
ment, efforts are made on the production of biofuels which is a sustainable approach
for meeting the energy requirements of the world. Though biohydrogen production
has major advantages, there are certain limitations in its development on large scale.
To overcome this issue, nanotechnological approach came into light which is
considered as an emerging branch of science. Because of the small size and less
surface-to-volume ratio, penetration of nanomaterials into LB becomes very easy
which modifies various processes involved in the biohydrogen production starting
from pretreatment to dark fermentation. Though this field is emerging day by day, it
is required to carry out the process of production of biohydrogen more economically
beneficial using a novel nanotechnological approach in every consecutive step. More
efforts are made on increasing the efficiency of the two most important steps of
biohydrogen production (pretreatment and enzymatic hydrolysis) as the output of
these steps determines the actual output of biohydrogen yield. Acid or alkali
pretreatment is the most expensive step to be carried out at an industrial scale
which ultimately increases the overall cost of biohydrogen production. To deal
with this problem, nanoparticles are being used in each step. In the pretreatment
method, use of NPs lowers the cost of processing by eliminating the use of acid/base
use via the introduction of nano-size particles despite the use of macro-size particles.
Though the synthesis of NPs is also carried out chemically which is also an
expensive step therefore new synthetic approaches are used for their synthesis
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Table 6.2 Types of substrates used for nanoparticles

Nanoparticles
used

Type of
microorganisms

Type of
substrate

1 Nano-titanium
dioxide

Anaerobic sludge Maximum
hydrogen pro-
duction of
101.5 mL/VS
(Volatile solids)
was obtained at
1 g nano TiO2/L
than control

Sugarcane
Baggase

Jafari and
Zilouei
(2014)

2 Nickel
nanoparticles

Anaerobic granular
sludge

22.71% increase
in hydrogen
production

Glucose Mullai et al.
(2013)

3 Zero valent
iron
nanoparticles

Microbial composi-
tion with Fe-400
groups (from
emtero bacter sp. to
clostrodium sp.)

Hydrogen yield
was increased by
73.1% with
respect to control

Grain Bio-
mass
(Lorium
perenne
L.)

Yang and
Wang
(2018)

4 Fe and Ni NPs Anaerobic sludge Ni+2, Fe0, Fe+2

ions increased
hydrogen pro-
duction by 55%,
37%, and 15%,
respectively

Glucose Taherdanak
et al. (2016)

5 Hematite and
Ni Nano
particles

Anaerobic sludge 59% increase in
hydrogen yield,
with coaddition
of hematite and
NiO2 NPs

Dairy
wastewater

Gadhe et al.
(2015)

Fe+2 and mag-
netite
nanoparticles

Enterobacteriaceae,
Clostridium sp., and
hydrogenase-
specific gene

Addition of Fe+2

and magnetite
increase hydro-
gen production
by 62% and
69.6%,
respectively

Sugarcane
baggase

Reddy et al.
(2017)
Yang and
Wang
(2018)

7 Ferric oxide/
Carbons NPs

Anaerobic fermen-
tation (Mixed
bacteria)

33.7% increase
in hydrogen pro-
duction as com-
pared to control

Glucose Zhang et al.
(2018)

8 Mg-Al
hydrotalcite
(HT),
Au/Zn-Mg-Al
HT, and
nanoporous
activated car-
bon (NAC)

Anaerobic mixed
culture

Maximum yield
was obtained for
Au/Zn-Mg-Al
with 2.74
± 0.14 mol H2/
mol sucrose

Sucrose Wimonsong
and
Nitisoravut
(2015)

9 Treated acti-
vated carbon

Anaerobic sludge 73% increase in
hydrogen

Sucrose Wimonsong
and

(continued)
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first cycle
followed by drop
of 32% after
3 cycles
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Table 6.2 (continued)

Nanoparticles
used

Type of
microorganisms

Type of
substrate References

Nitisoravut
(2014)

among which the green methodological approach is the most emerging one which
may improve the cost-effectiveness of the whole process (Kumar et al. 2012).
Various extracts of plants and microorganisms are used for the economical synthesis
of NPs (Yang and Li 2013). Therefore, the introduction of nanomaterials and
carrying out its green synthesis eliminates the use of hazardous chemicals, more
stable product formation with a reduction in the cost of pretreatment process.

In the second step of H2 production, enzymatic hydrolysis of pretreated material
is done using various biocatalysts which provide another hindrance to the efficient
production of H2 as the whole process requires stability of enzymes under high-
temperature conditions, slow reaction rate, nonreproducibility of enzymes, incom-
plete conversion of substrates to desired products and cost intensiveness (Yang et al.
2011). Therefore, enzyme immobilization of enzymes is done on suitable solid
matrix support using magnetic NPs that make the use of enzymes over and over
again with improved temperature stability.

Biohydrogen production efficiency is also depending on the last step which is the
dark fermentation process whose effectiveness can also be increased via the incor-
poration of NPs (Wimonsong and Nitisoravut 2014, 2015; Khan et al. 2013).
Observations have been made on biologically derived NPs that also reduce the
hazardous impact of them on the cells of microbes during biological fermentation.
Though a lot of research has been done on studying the effectiveness of NPs in
biohydrogen production, little information is available to know the mechanism and
type of NPS during the production of cellulosic biohydrogen. It has been observed
that mostly powder form of NPs is used in each step of H2 production, but the
introduction of nanosheets and nanotubes could depict better binding efficiency and
of course, catalytic activity. Thus, the implementation of the nanotechnological
approach can help in achieving efficient, economical, and sustainable production
of biohydrogen at a commercial scale with more advanced future perspectives which
ultimately will help in the preservation of the most valued natural resources (fossil
fuels).
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6.7 Conclusion

This chapter provides a complete route for the synthesis of NPs and biohydrogen
production and implementation of NPs in each and every step of the whole process
of H2 production using different cellulosic biomass materials. Starting from
pretreatment of LB to the dark fermentation step, nanomaterials have shown their
major role to make the process more economical, sustainable, and viable. In each
step, different types of nanomaterials are used depending on the demand of each step
among which mostly magnetic NPs are used as they provide better recovery of
biocatalysts with an improved output of each step. As nanotechnology is an emerg-
ing field of science, more efforts need to be done to explore it more to meet the
greater needs of the world by producing value-added products on large scale with
cost-effective approach to meet the sustained requirements.
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Chapter 7
Microbial-Mediated Synthesis
of Nanoparticles and Their Role
in Bioethanol Production

Sreedevi Sarsan, Shanthipriya Ajmera, Sindhura Podduturi,
and Sai Prashanthi Govumoni

Abstract The rising population and the advent of globalization and industrializa-
tion has trumped the world’s energy production due to the exhaustive utilization of
fossil fuels. This in turn will lead to sustainability problems such as huge fluctuation
in prices, environmental impacts, and declining quantity of fossil fuels. To meet the
intense energy demands of future generations, economical and sustainable alternate
energy sources should be explored. Biofuels, particularly biodiesel and bioethanol,
have gained importance because of their inherent advantages such as renewability,
sustainability, and lower emission of greenhouse gases. Commercially, vegetable
oils, animal fats, carbohydrates, lignocellulosic biomass, and microbial biomass are
being employed in biofuel production using conventional processes like fermenta-
tion and transesterification. However, these processes offer challenges in the form of
the higher cost of production and other technological barriers. Hence, efforts are
required to develop more efficient and low-cost processes employing various strat-
egies of production and optimization. Nanotechnology offers a promising alternative
that contributes efficiently to biofuel production industry using nanoparticles.
Nanoparticles display unique physicochemical and biological characteristics owing
to the larger surface area: volume, high energy absorption, more chemical reactivity
and stability, and greater mechanical strength. These properties led to many appli-
cations and various nanomaterials have been explored potentially for their capabil-
ities in biofuel production. Nanotechnology also aims to offer remarkable solutions
by altering the properties of biomass constituents and biocatalysts employed in the
production of biofuels. Nanomaterials have a significant role in bioenergy sectors
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because of their exclusive structure, high specific area, high energy electrical storage
capacity, and better heating and lighting efficiency. This chapter will review the
phenomenal characteristics of nanoparticles and their methods of synthesis espe-
cially using microbes. An overview of the nanotechnology in biofuel production
with a special emphasis on various approaches in production of bioethanol has been
presented in this chapter. This chapter also intends to discuss the potential applica-
tions of nanoparticle-based biofuels and their future prospects in fulfilling the energy
needs of the world.

Keywords Biofuel production · Bioethanol · Nanoparticles · Microbial synthesis ·
Alternate fuels

7.1 Introduction

The advent of globalization and industrialization along with a rapidly growing
population led to trumping of the production of energy all over the world, by the
excessive consumption of fossil fuels. To encounter the intense energy demands of
future generations, eco-friendly and cost-effective alternative energy sources should
be explored and given considerable attention. Recently, biofuels have gained a lot of
interest and also garnered attention from the government, general public, and
scientific researchers because of the increased fuel costs, need to improve energy
security, and concern over excessive greenhouse gas emissions from fossil fuels
resulting in increased pollution. Biofuels have been in production for the last few
decades and are more advantageous than fossil fuels and hence are considered as
potential alternative fuels for future generations. Recently, the use of biofuels as
transport fuels has been of great importance due to their ability to reduce the
dependence on petroleum and other fossil fuels as well as in creating new jobs and
improving the rural economy and also reducing greenhouse gas emissions and
regulating global warming effect (Ahorsu et al. 2018). Thus, apart from creating
energy security, they have huge positive impacts on the world economy and
environment.

Biofuel is defined as any fuel that is a derivative of renewable biomass and is
broadly categorized into primary and secondary biofuels. Primary biofuels involve
direct biomass combustion, whereas secondary biofuels are derived from biomass.
Several Conversion processes are available for unlocking energy from biomass.
Biofuels are categorized into three types based on the source of biomass (Fig. 7.1).

• I Generation biofuels: First-generation biofuels employ energy rich crops like
wheat, corn, and sugarcane and examples include Bioethanol, biodiesel, and
biogas.

• II Generation biofuels: Second-generation biofuels prefer nonedible, nonfood
resources as the raw materials for production and include agricultural residues,
wood, and energy crops that are known as lignocellulosic biomass and examples
include cellulosic ethanol, biodiesel.
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Fig. 7.1 Types of Biofuels

• III Generation biofuels: Third-generation biofuels use algal biomass as a substrate
for production and examples include biodiesel, biomethane, biobutanol,
biohydrogen, gasoline, and jet fuel.

The new emerging fourth-generation biofuels employ genetically modified algae
and other microbes using noncultivable lands for biofuel production. This category
includes electro fuels and photobiological solar fuels and is characterized by zero
carbon emissions (Aro 2016; Ozdenkci et al. 2017; Parada et al. 2017; Silva et al.
2018).

7.1.1 Nanotechnology in Biofuels

Biofuels are commercially produced from vegetable oils, animal fats, carbohydrates,
lignocellulosic biomass and microbes, and other biomass constituents using pro-
cesses like fermentation, transesterification, pyrolysis, gasification, etc. (Fig. 7.2)
(Bradley et al. 2009; Limayem and Ricke 2012; Eggert and Greaker 2014). How-
ever, these conventional processes offer challenges in the form of higher cost
production and other technological barriers. Hence, to make these processes more
efficient in terms of energy and cost, efforts are required to develop various produc-
tion and optimization strategies. For example, processes employing proper
Pretreatment and enzymes and fermentation could result in high yield and quality
of biofuels (Patumsawad 2011). Nanotechnology offers a promising alternative that
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Fig. 7.2 Conversion of Biomass into Biofuels

contributes efficiently to the biofuel production industry. Nanotechnology is an
efficient way of enhancing the production of renewable biofuels and offers a viable
solution by altering the properties of feedstock and biocatalysts utilized in the
production of biofuels. Nanoparticles display unique physical, chemical, biological,
mechanical, magnetic, electronic, and optical properties which distinguish them
from their large-scaled materials (Biswas et al. 2012). Nanoparticles have received
increasing attention in many areas from enzymatic biocatalysis to biomedical and
environmental applications because of their small size, high surface area: volume,
greater mechanical strength, high energy absorption, chemical reactivity and stabil-
ity, and low toxicity (Ariga et al. 2014; Malgras et al. 2015). Nanoparticles play a
vital role and have been implemented in various processes of renewable energy due
to their exclusive structure, high specific area, high energy electrical storage capac-
ity, and better heating and lighting efficiency (Serrano et al. 2009; Ansari and Husain
2012). Nanobiotechnology offers many probable roles in the production of sustain-
able and alternate fuels and various nanomaterials have been explored potentially for
their capabilities in biofuel production.

7.1.2 Nanoparticles

According to ASTM standard terminology relating to nanotechnology nanoparticle
is defined as a small particle with >1 nm in length and smaller than 100 nm and
rarely exhibits size-related intensive property. Nanoparticles are divided into many
types based on their structural morphology, dimensionality composition, uniformity,
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and agglomeration. Based on dimensionality, nanoparticles are of different types: 0D
(Nano dots), 1D(Graphene), 2D (Carbon nanotubes), and 3D (gold nanoparticles).
Nanoparticles can be flat, cylindrical, spiral, spherical, and crystalline in nature and
exist as single constituent material or arranged as nanocomposites. Based on the
nature of material fabrication, nanoparticles may be either inorganic or organic type.
Inorganic nanoparticles comprise of carbon-based NP, ceramic Np, semiconducting
NP, and metal and metal oxides NP. Organic nanoparticles are categorized as
polymeric NP and Biomolecule derived NP. Organic nanoparticles such as
polymerosomes, liposomes, polymer constructs, and micelles are used for
nanoimaging as well as drug and gene delivery in the target cells or tissues (Qiu
and Bae 2006). Meantime, inorganic nanoparticles have received considerable
significance owing to unique size, material, and physicochemical characteristics
such as optical properties, magnetic properties, inert nature, ease of
functionalization, and stability (Lohse and Murphy 2012). Inorganic nanoparticles
like carbon nanotubes, metal oxide NPs, magnetic nanoparticles, etc., have potential
applications in bioenergy production.

7.1.3 Synthesis of Nanoparticles

Several methods can be employed for the synthesis of nanoparticles (NP) including
physical, chemical, and biological approaches. Top-down approach and bottom-up
approach are the two main strategies employed in the production of nanoparticles.
The methods of NP synthesis using top-down approach are simple and are involved
in breaking down of bulk materials such as silicate and gold into nanoscale-sized
materials. Some of the commonly used methods of this approach include mechanical
milling, laser ablation, anodization, photolithography, ion and plasma etching
nanolithography, sputtering and thermal decomposition. In Bottom-up method or
constructive method, the synthesis of nanoparticles occurs by the buildup of mate-
rials from atoms to clusters to nanoscale components. Examples include electro-
chemical reduction method, microemulsions, sol–gel processing, laser pyrolysis,
hydrothermal approaches, microbial reduction, precipitation, and are the most com-
mon methods employed in nanoparticles synthesis (Chan and Kwok 2011; Ealias
and Saravanakumar 2017).

7.1.3.1 Physical Methods

Physical methods apply mechanical pressure, thermal energy, high energy radia-
tions, or electrical energy resulting in the abrasion, melting, evaporation, or conden-
sation of materials to form nanoparticles. Top-down approach is followed for the
operation of these methods and produces uniform monodisperse nanoparticles and
these methods are beneficial due to the lack of solvent contamination. Physical
methodologies are less economical as they produce abundant waste during synthesis.
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Ball milling, inert gas condensation, laser ablation/pulse laser deposition, melt
mixing, sputtering, laser, and Flash spray pyrolysis are the most frequently
employed methods for the formation of nanoparticles. Ball milling is the widely
used method in which a powdered material is exposed to high-energy collisions with
the balls. This method is simple and cost-effective and is one of the well-known
methods of preparing nanoparticles (De Carvalho et al. 2013; Manawi et al. 2018).

7.1.3.2 Chemical Methods

Chemical methods used in the synthesis of nanoparticles include electrochemical
reduction method, sol–gel method, microemulsions, plasma enhanced chemical
vapor deposition, and hydrothermal synthesis. (1) Sol–gel method is the most
popular bottom-up approach method used in the synthesis of nanoparticles. It is a
wet chemical process that depends on hydrolysis and condensation of metal oxides
or metal alkoxide solution. Hydrolysis step leads to the formation of colloidal
solution known as Sol, which is then changed to a semisolid phase known as
scenarios gel through the process of condensation. In later stages, gel is subjected
to high-temperature drying to obtain desired nanoparticles (Gu et al. 2004; Xu et al.
2007; Pradeep et al. 2008). This is an extremely beneficial method because of
simple, inexpensive, and homogenous technique and purity of the nanoparticles
obtained. (2) Chemical vapor deposition method involves deposition of inorganic
nanoparticles on suitable substrate surface. There are three steps involved in this
method. In the first stage, a volatile precursor through a carrier gas is introduced into
the reaction chamber. A chemical reaction then occurs in which vapors adsorb onto
the surface of the heated substrate and leads to intermediate product development. In
the last stage, solid grains and nanoparticles are formed through the decomposition
of intermediate products (Manawi et al. 2018). (3) Hydrothermal synthesis is another
approach for the preparation of nanomaterials and usually depends on synthesis in
the solution phase. This method offers significant advantages over other methods
such as generation of nanoparticles that are stable at high temperatures and prepa-
ration of nanomaterials with high vapor pressure (Gan et al. 2020).
(4) Coprecipitation method is a simple technique that allows simultaneous nucle-
ation, growth, coarsening and/or agglomeration reactions. It is the most convenient
way used in the synthesis of a large number of magnetic nanoparticles. In
coprecipitation reactions, metals are precipitated in the form of hydroxide from a
solvent mixture containing salt precursor and base. The main advantage of
coprecipitation method lies in obtaining homogenous small size nanomaterials
(Maaz et al. 2009; Petcharoen and Sirivat 2012; Mascolo et al. 2013).
(5) Microemulsions provide a new approach in the process of synthesizing different
nanoparticles since they have large interfacial areas, high thermodynamic stability,
and larger interfacial areas. Microemulsions generally comprise of three components
such as water, a polar phase, oil a nonpolar phase, and a surfactant to stabilize the
droplets of water in oil or oil in water. This method provides control on the size of the
particle and other properties namely geometry, homogeneity, and surface area of
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nanoparticles (López-Quintela et al. 2004). (6) Reduction method of nanoparticle
synthesis involves layer by layer formation of atoms and is suitable for the synthesis
of hybrid nanoparticles (Kalska-Szostko 2012). For example, graphene AuNPS
synthesis can be done by deposition of graphene sheets onto an electrode followed
by suspension of the electrode in metallic precursor electrolytic solution.

7.1.3.3 Biological Methods

Physicochemical methods of nanoparticle synthesis have become obsolete as these
processes employ high temperature and pressures and use toxic and hazardous
chemicals during their synthesis and are also expensive (Narayanan and Sakthivel
2010). Therefore, green nanotechnology has emerged as a promising approach to
design novel nanoparticles using a green chemistry approach. Green methods
promote environmental sustainability and are a safe and effective approach for
nanoparticles synthesis as they are economical and offer easy characterization and
high success rates (Singh et al. 2016; Das et al. 2017; Abdelghany et al. 2018; Aman
and Narendra 2019). It is an alternative approach that provides a new possibility for
nanoparticle synthesis using natural reducing agents and/or stabilizing agents. The
synthesis of nanoparticles by biological means is a bottom-up approach that includes
biological entities like plants and microbes (bacteria, yeast, and molds) or their
metabolic byproducts. The stability of nanoparticles may be improved when capped
with molecule derivatives of the organisms employed (Ballotin et al. 2016). The
nanoparticles produced using biological methods display great biocompatibility and
are simple, nontoxic, and cost-effective (Gholami-Shabani et al. 2014). Biogenic
methods are extremely helpful in the synthesis of sustainable, safer, and
environment-friendly nanoparticles and are also easy to scale up.

Plant-Based Nanoparticles

Green methods of synthesis using vitamins, amino acids, and plant extracts are
significantly attractive and greatly popularized due to their great potential for
reducing the toxicity of nanoparticles (Baruwati et al. 2009). Many plant extracts
are considered as novel resources in green route synthesis of safe and nontoxic Nps.
Owing to the presence of important phytochemicals used as reducing agents in plant
extracts, particularly in leaves, diverse plant species are being employed in the green
route synthesis of metal/metal oxide Nps. In this process of green synthesis, bio-
molecules of plant extracts (aldehydes, phenols, amides, ascorbic acids, flavones,
ketones, and terpenoids) bring about the reduction of metal salts into metal Nps.
Plants are important biological entities that have exemplary potential to reduce
metallic nanoparticles and stabilize them via one-pot synthesis. Reports suggest
that various plants such as aloe vera (Aloe barbadensis), tulasi (Ocimum sativum),
alfalfa (Medicago sativa), oats (Avenasativa), coriander (Coriandrum sativum),
lemon grass (Cymbopogon flexuosus), lemon (Citrus limon), and mustard (Brassica
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juncea) are involved in the production of silver Nps as well as gold Nps (Singh et al.
2018). Plants like pinus species are thought to be the top candidates for nanoparticle
synthesis, as these have large amounts of phenolic compounds containing hydroxyl
and carboxyl groups by which iron ions are inactivated (Iravani 2011).

The production of silver NPs (AgNPs) from plants is widely investigated and is
known to be produced by oxidation of Ag+ to Ag0 by different phytocompounds like
flavonoids, aldehydes, terpenoids, ketones, tannins, polyphenols, phenolic acids,
and protein of plant extracts (Ovais et al. 2018). Noruzi et al. described the
production of AuNps utilizing the bioreduction potential of aqueous extracts of
Thuja orientalis (Cypress) leaves (Noruzi et al. 2012). Biosynthesis of silver and
gold Nps using Szyygiumaromaticum bud extract and Murrayakoenigii leaf extract
that contain natural reducing agent eugenol has been explained (Singh et al. 2010;
Christensen et al. 2011). Silver nanoparticles are synthesized utilizing latex of the
plant Plumeria rubra and were explained by Patil et al. (2012). The use of fruit
extracts of Emblica officinalis in the synthesis of silver and gold nanoparticles was
investigated and were found to be highly stable (Ankamwar et al. 2005). Zinc,
nickel, copper, and cobalt nanoparticles were synthesized intracellularly in alfalfa,
mustard, and sunflower plants. Various plant extracts such as Curcuma longa,
Cinnamomum camphora, Cinnamomum zeylanicum, Gardenia jasminoides,
Anogeisus latifolia, Pinus resinosa, Glycine max, Ocimum sanctum, Musa paradis-
iac, Pulicaria glutinosa, and Doipyros kaki are employed in the green synthesis of Pd
and Pt Nps (Siddiqi and Husen 2016).

Microbe-Based Nanoparticles

There are several benefits of microbial-mediated nanoparticle synthesis such as high
yielding, economical, and environmentally safe (Mandal 2006; Thakkar et al. 2010).
This process of nanoparticle synthesis employs microbial culture filtrates (extracel-
lular and intracellular) as reducing agents. Microbes like bacteria and fungi are
extensively utilized as bioreactors for the production of nanoparticles owing to
their faster growth rate, easy to cultivate, and their potential to grow using optimum
environmental conditions. Microorganisms have inherent ability to synthesize
nanoparticles of inorganic origin by reduction mechanism via intracellular and
extracellular ways (Fig. 7.3). Microorganisms possess the ability to trap and trans-
port metal ions present in the environment and convert into their elemental forms
mediated by enzymatic action which are then either accumulated or secreted (Li et al.
2011b).
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Fig. 7.3 Mechanism of Synthesis of Nanoparticles by Microorganisms

7.2 Microbial-Mediated Synthesis of Nanoparticles

The biological synthesis of metallic nanoparticles employing microbial flora is
considered to be eco-friendly as well as low-cost process. Various prokaryotic and
eukaryotic microbial species could be used in the production of nanoparticles that
are high yielding, economically safe, and eco-friendly (Mandal 2006; Thakkar et al.
2010). Different metal Nps such as gold, silver, copper, lead, iron, cadmium,
platinum as well as metal oxide Nps such as titanium oxide and zinc oxide are
reported to be synthesized by several microbial strains of bacteria, fungi, yeast and
algae (Hulkoti and Taranath 2014). These nanoparticles are highly useful with a lot
of applications in agriculture, medicine, textile industry, electricity industry, cos-
metic industry, drug delivery, and biochemical sensors (Pramila and Sushil 2016).
The microorganisms provide a diverse environment intended for the biological route
of nanoparticle synthesis. Microorganisms trap the metal ions present in the envi-
ronment and then convert them into their elemental forms by catalytic action of
various metabolic enzymes. The cell wall carries a negative charge and it has a very
important role in the process. The positively charged metal ion encounters an
electrostatic reaction with the negatively charged cell wall. The metal ions are
reduced into nanoparticles by the action of the localized cell wall enzymes and
then get secreted out. The Biosynthesis of nanoparticles may be regarded as intra-
cellular or extracellular depending on the site of nanoparticle formation (Li et al.
2011a, b). In the intracellular synthesis method, the metal ions are being transported
mediated by enzymes into the cell of microorganisms resulting in the formation of
nanoparticles. Whereas in the extracellular synthesis method, the metal ions are
trapped onto the cell surface followed by their reduction mediated by enzymes
(Zhang et al. 2015). Due to its easy recovery process, the extracellular method is
the method of choice.
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7.2.1 Bacteria in Nanoparticles Synthesis

Bacteria are considered as the most suitable candidates for the synthesis of
nanoparticles. Diverse species of bacteria are explored for potential applications in
green nanotechnology, particularly in the production of nanoparticles. Bacteria have
gained considerable attention in biosynthesis of metallic nanoparticles. Bacteria has
the potential to synthesize unique nanostructured materials such as biomineralized
nanostructures which include magnetosomes, silicified frustules, calcified
coccoliths, organic nanomaterials nano cellulose, and bacterial nanowires (Kroger
and Poulsen 2008; Nwodo et al. 2012; Gama et al. 2012; Malvankar and Lovley
2012; Yan et al. 2017; Skeffington and Scheffel 2018). Bacteria are regarded as
potential biofactories for the biosynthesis of silver, palladium, gold, titanium, mag-
netite, titanium dioxide, cadmium sulfide, and other nanoparticles. Several studies
reported the biosynthesis of Nps from different microbial species such as
Marinobacter Pelagius producing gold Nps (Sharma et al. 2012), Pseudomonas
stutzeri AG259 producing silver nanoparticles (Slawson et al. 1994), and Lactoba-
cillus strains synthesizing titanium nanoparticles (Prasad et al. 2007).

Some bacterial strains have developed resistance to most toxic heavy metals and
can even survive at high metal ion concentrations. Microbial detoxification can be
made by intracellular bioaccumulation or by extracellular biomineralization or
reduction or precipitation which converts toxic, soluble inorganic metal ions into
nontoxic, insoluble metal nanoclusters. These organisms employ different mecha-
nisms for the production of nanomaterials intracellularly and extracellularly. In the
intracellular mechanism, the metal ions are transported as a result of interaction
between the positive metal ion and negative ions of the bacterial cell wall and then
reduced to nanoparticles catalyzed by cell wall enzymes, and finally diffused out of
the bacterial cell. The extracellular method of synthesis of gold nanoparticles from
Rhodopseudomonas capsulate involves the reduction of gold metal ions by
accepting electrons from NADH by reductase enzyme secreted by R. capsulate
and the resultant nanoparticles size ranged between 1 and 200 nm (Hulkoti and
Taranath 2014).

Pseudomonas stutzeri AG259 has been successfully used in the production of
silver nanocrystals (Menon et al. 2017). AgNPs were synthesized by utilizing cell-
free culture extracts of Ps. proteolytica, Ps. antarctica, Ps. meridian, Bacillus
cecembensis, Arthrobacter gangotriensi, and Arthrobacter kerguelensis (Shivaji
et al. 2011). Iron oxidizing bacteria, for example, Gallionella, Mariprofundus, and
Leptothrix form iron oxide nanoparticles extracellularly (Hashimoto et al. 2007).
Iron oxidizing bacteria such as Geobacter bemidjiensisis play a role in the synthesis
of ferric oxyhydroxide nanoparticle aggregates (Luef et al. 2013). Moreover,
Magnetotactic bacteria such as Aquaspirillum magnetotacticum and
Magnetospirillum magnetotacticum are able to synthesize iron oxide nanoparticles.
Moreover, bacterial species like Shewanellaoneidensis and Desulfosporosinus sps.
are reportedly known to synthesize uranium dioxide nanoparticles (Jeevanandam
et al. 2016). Magnetic nanoparticles offer exceptional applications in the production
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of bioethanol from lignocellulosic components through enzyme immobilization
(Alftren and Hobley 2013). Besides, the synthesis of inorganic nanomaterials, few
organisms belonging to genera such as Gluconacetobacter have shown the ability to
biosynthesize bacterial nano cellulose that shows high purity, mechanical stability,
and crystallinity over nanocrystalline cellulose and nano fibrillated cellulose
(Golmohammadi et al. 2017).

7.2.2 Fungi in Nanoparticles Synthesis

Fungi is one of the significant microbial agents employed in the biosynthesis of
nanoparticles and provide many advantages due to their higher bioaccumulation,
economic viability, easy cultivation, and scale-up processes resulting from simple
techniques of biomass handling and downstream and recovery processes. Fungi has
a vital role in the synthesis of nanoparticles by reducing metal ions into insoluble
complexes such as metal sulfides (Mehra and Winge 1991). Fungi possess good bio
reductant potential and hence can be used for the synthesis of nanoparticles in a
quick and sustainable manner, due to the release of large quantities of proteins,
enzymes (hydrogenases, nitrate reductase), and organic acids. Fungi are commonly
utilized as stabilizing and reducing agents owing to properties such as high tolerance
to heavy metals as well as the capability of internalizing and accumulating metal
ions. Moreover, they are easy to be cultivated on a commercial scale and could be
used to form nanoparticles of desired shapes and sizes (Gade et al. 2008; Ahluwalia
et al. 2014; Azmath et al. 2016; Khan et al. 2017). Fungi are known to synthesize
nanoparticles by intracellular and extracellular modes. In the intracellular mecha-
nism of synthesis, metal precursors are added to the mycelial culture followed by its
internalization. Thereafter the synthesis, nanoparticles are extracted by using
methods such as centrifugation and filtration for the disruption of biomass with a
subsequent release of nanoparticles (Castro-Longoria et al. 2011; Rajput et al. 2016;
Molnar et al. 2018). A distinct method of ion transportation is seen in Verticillium sp.
where the bioreduction takes place in the cell wall. In Actinomycetes, metal ions
undergo reduction on the mycelia surface along with the cytoplasmic membrane. By
intracellular mode of synthesis 1–40 nm sized nanoparticles were developed. Extra-
cellular method is a highly preferable method wherein the metal precursors are added
to the aqueous filtrate containing fungal biomolecules resulting in the formation of
nanoparticles in the dispersion without requiring additional procedures for the
release of Nps from the fungal cells (Azmath et al. 2016; Sabri et al. 2016; Costa
Silva et al. 2017; Gudikandula et al. 2017). However, purification of nanoparticles
dispersion is required for the removal of fungal residues and other impurities by
employing methods like dialysis, filtration, and ultracentrifugation techniques
(Ashrafi et al. 2013; Qidwai et al. 2018; Yahyaei and Pourali 2019).

Different fungi such as Aspergillus fumigatus, Asergillus niger, Cladosporium
cladosporioides, Fusarium semitectum, Fusarium oxysporum, Fusarium solani,
Trichothecium sps., Phoma glomerata, Phaenerochaete chrysosporium, Penicillium
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fellutanum, Penicillium brevicompactum, Trichoderma viridae, Trichoderma
asperellum, and Volvariella volvaceae have been explored for nanoparticle synthesis
both extracellularly and intracellularly. Many authors have described the process of
gold and silver nanoparticles synthesis on the surface of fungal mycelium as well as
on their cell membrane (Pighi et al. 1989; Mukherjee et al. 2001b; Chen et al. 2003;
Ahmad et al. 2005; Gericke and Pinches 2006a, b; Vigneshwaran et al. 2007; Singh
et al. 2017). Penicillium is considered a superior genera among all fungi intended for
the production of silver nanoparticles via extracellular mode (Sadowski et al. 2008).
However, syntheses of Ag nanocrystals are also reported by Aspergillus species
(Binupriya et al. 2010; Gade et al. 2008) and Fusarium solani (Ingle et al. 2009). The
synthesis of nanoparticles by extracellular method is reported in Pleurotussajorcaju
(Nithya and Ragunathan 2009). Fungi such as Verticillium and Fusarium have been
reportedly known to produce gold nanoparticles (Mukherjee et al. 2001a; Mukherjee
2002). Moreover, these were also found to synthesize magnetic nanoparticles extra-
cellularly (Bharde et al. 2006). Fusarium oxysporum is reported to produce Ag Nps
which were very stable and sizes ranging between 5 and 15 nm (Ahmad et al. 2003).
Verticillium was also reported to produce uniform CaCO3 nanocrystallites of
70–100 nm size (Rautaray et al. 2004). The biological method of synthesis of silver
nanoparticles of approximately 8.92 nm size was demonstrated in Aspergillus flavus.
The “sil” gene encoded by plasmids was found responsible for reducing silver ions
in large-scale processes (Vigneshwaran et.al 2007). Trichoderma viride was
reported to synthesize AgNPs extracellularly by using solution of silver nitrate
(Fayaz et al. 2010).

7.2.3 Yeasts in Nanoparticle Synthesis

Yeasts offer several benefits over bacteria in mass production of metal nanoparticles
because of their ability to grow rapidly, easy cultivation, utilization of simple
nutrients, and ease in controlling production. For the same, Saccharomyces pombe
and Candida glabrata have been reportedly known for the production of cadmium
sulfide, selenium, titanium, silver, and gold nanoparticles intracellularly
(BoroumandMoghaddam et al. 2015; Feng et al. 2017; Subashini and Bhuvaneswari
2018; Rana et al. 2020). Kowshik et al. (2003) isolated the yeast strain MKY3,
capable of producing silver nanoparticles in huge quantities when inoculated with
aqueous silver nitrate. Candida glabrata and Schizosaccharomyces pombe are
demonstrated to synthesize cadmium nanoparticles (Dameron et al. 1989). The
intracellular method of synthesis of lead sulfide Nps was explored in the marine
yeast Rhodosporidium diobovatum (Seshadri et al. 2011). Candida versicolor has
the potential to synthesize silver nanoparticles in the absence of surfactants and can
be widely applied as water-soluble catalysts for living cells (Sanghi and Verma
2009). The yeast cells involve the presence of membrane-bound oxidoreductases
and quinones during the synthesis of nanoparticles. These enzymes’ function is
influenced by the fluctuations in pH. For instance, increase in pH of yeast cell
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internal environment leads to the activation of reductases and eventually results in
metal ions reduction and nanoparticles formation (Salunke et al. 2015).

7.2.4 Algae in Nanoparticle Synthesis

Different species of cyanobacteria and eukaryotic green algae like Spirulina, Chlo-
rella, Lyngbya, etc. may be employed for biorecovery of metals and green synthesis
of nanoparticles at an affordable cost (Bakir et al. 2018). In S. platensis, the gold
particles are reduced from Au3+ to Au0 resulting in the synthesis of gold
nanoparticles (Uma Suganya et al. 2015).

7.3 Role of Nanotechnology in Production of Biofuels

There are different kinds of biofuels generated which are differentiated on the basis
of biomass source and the techniques employed in their production.

• Transesterification of lipid fraction yields biodiesel
• Fermentation of the carbohydrate components generates Bioethanol
• Anaerobic digestion yields biogas
• Gasification and anaerobic digestion results in Biomethanol
• Photolysis or photo fermentation yields Biohydrogen
• Direct combustion yields Biosyngas

The biofuel industries are moving ahead with a focus on sustainable energy and
renewable fuel systems thereby overcoming environmental pollution and climate
change issues. Their attention has been on various components involved in biofuel
production such as biomass pretreatment, overall process optimization, and cost.
Nanotechnology is considered as a very potent method in the processing and
manufacture of biofuels in a process efficient and cost-effective manner (Sekhon
2014; Rai and Da Silva 2017). Some of the exceptional characteristics of
nanoparticles that prove to be of great use in biofuel production include high surface
area; high degree of crystallinity; ability to catalyze reactions; durability; their high
recovery rate; reusability; recycling; and many other properties (García-Martínez
2010). Different nanomaterials like nanofiber, nanotubes, nanosheets, and other
metal nanoparticles are reported to possess many applications as nanocatalysts
during biofuel production. These biofuels are considered as best alternative energy
resources because they are renewable as well as environment friendly (Antunes et al.
2017). Nanoparticles have been considered to be significant in the production of
biofuels due to their distinct physical and chemical properties. The chief important
property is their easy recovery from reaction mixture. There are many nanomaterials
possessing exceptional properties which are employed in the production of biofuels,
eg., TiO2, ZnO, Fe3O4, carbon, graphene, and fullerene (Ahmed and Douek 2013).
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Nanotechnology has different applications in the biofuels and bioenergy sector like
in feedstock modification or development of more efficient catalysts, etc. Conven-
tionally, enzymes were employed to hydrolyze biomass to generate bioethanol,
biodiesel, and other biofuels (Michalska et al. 2015; Verma and Barrow 2015;
Terán-Hilares et al. 2016). Nanostructures are considered as a replacement to the
enzymes thus resulting in more efficient catalysis and biofuel production. They may
also be used for immobilizing enzymes so that biocatalysts can be recovered from
the medium and reused for more efficient production. Also, magnetic properties may
be added to immobilized systems thus improving the technology (Verma and
Barrow 2015; Rai et al. 2016). Magnetic nanoparticles are often employed as carrier
molecules to immobilize enzymes and thus find wide applications in biofuel pro-
duction. These magnetic nanoparticles are of small size and have a high surface area:
volume along with quantum as well as immobilizing properties which make them
largely employable in the biofuel sector.

7.3.1 Biodiesel Production

Biodiesel is a mixture of esters, usually resulting from transesterification of vegeta-
ble oils and animal fats. Biodiesel is an alternative fuel and provides many advan-
tages over fossil fuels such as they are safe and biodegradable. They possess superior
lubricant properties, high combustion efficiency, and result in reduced emission of
CO2 and other particulate matter (Hossain et al. 2008; Feyzi and Norouzi 2016).
There are many functionalized nanomaterials which function as nanocatalysts and
are reported to be employed in biofuel production from different feedstocks
(Table 7.1). These nanocatalysts were synthesized using different methods such as
coprecipitation method, sol–gel method, aerogel method, and impregnation method.

7.3.2 Biohydrogen Production

A wide range of anaerobic bacteria and microalgae generates molecular hydrogen
from various organic materials using various metabolic routes such as steam refor-
mation, dark and photo microbial fermentation, and biophotolysis (Kapdan and
Kargi 2006; Ran et al. 2006; Wang et al. 2007a, b; Shaishav et al. 2013; Tiwari
and Kiran 2017). Several operational conditions that include substrate concentration,
hydraulic retention time, pH, temperature, etc., must be optimally maintained to
enhance the performance of microbes involved in biohydrogen production (Das et al.
2008). Nanoparticles increase the rate of transfer of electrons in anaerobic conditions
and its faster reaction with electron donors improve the kinetics of biohydrogen
production and enhances the activity of microorganisms involved (Serrano et al.
2009; Ali et al. 2017). Nanoparticles aid in overcoming certain process barriers like
fermentation inhibitors, maintenance of the acidogenic phase, lower yield, and
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Table 7.1 Different Nanocatalysts and feedstock used for the production of biodiesel

Yield
(%)

1. Sunflower oil Cs/Al/Fe3O4 94.8 Feyzi et al. (2013)

Ca/Fe3O4@SiO2 97.0 Feyzi and Norouzi
(2016)

2. Rapeseed oil K2O/γ-Al2O3 94.0 Han and Guan
(2009)

3. Sunflower oil and
rapeseed oil

MgO 98.0 Verziu et al. (2008)

4. Soybean oil ZrO2 loaded with C4H4O6HK 98.03 Qiu et al. (2011)

MgO nanoparticles on TiO2

support
95.0 Mguni et al. (2012)

Fe/Cd and Fe/Sn oxide
nanoparticles

84.0 Alves et al. (2014)

5. Jatropha oil Hydrotalcite-derived particles with
Mg/Al oxides

95.2 Deng et al. (2011)

CaO 98.54 Reddy et al. (2016)

6. Palm oil TiO2-ZnO 92.2 Madhuvilakku and
Piraman (2013)

KF/γ-Al2O3/honeycomb ceramic
(HC) monolithic catalyst

96.0 Gao et al. (2015)

7. Olive oil ZnO nanorods 94.8 Molina (2013)

8. Glyceryl trioleate Fe/Fe3O4 magnetic nanoparticles 95.0 Wang et al. (2015)

9. Karanja oil and
Jatropha oil

Li-Cao 99.0 Kaur and Ali (2011)

10. Cooking oils CaO and MgO nanoparticles 98.95 Tahvildari et al.
(2015)

11. Chinese tallow
seed oil

KF/CaO 96.8 Wen et al. (2010)

Source: Adapted from Antunes et al. (2017)

substrate conversion thereby increasing the production. However, it should be noted
that nanoparticles also possess antimicrobial characteristics as they inhibit microbial
growth at higher concentrations.

Nanoparticles have proved to effectively enhance the biohydrogen production via
dark fermentative process (Zhang and Shen 2007). In the Dark fermentative process,
biohydrogen is produced from renewable resources such as feedstocks and microbes
via fermentation process. The main biohydrogen-producing pathway is the acetic
reaction. Nanoparticles help the microorganisms involved in biohydrogen produc-
tion by reducing the lag phase of growth and favoring the acetic reaction. The gold
nanoparticles have a large surface area:volume which allows the binding of bacteria
to their active site. Nano-based additives help in improving the activity of proteins
like iron and nickel hydrogenases and ferredoxins which facilitate the electron
transfer in the microbes producing biohydrogen (Ramsurn and Gupta 2013). Metal-
lic nanoparticles are highly stable and can be used in various approaches of dark
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Table 7.2 Explicit properties of nanoparticles leading to higher biohydrogen yield

Properties leading to enhanced
biohydrogen production

1. Gold
nanoparticle

Improved substrate utilization by 56% Zhang and Shen (2007)

2. Silver
nanoparticle

Enhanced glucose conversion Zhao et al. (2013)

3. FeO
nanoparticles

Iron acted as a cofactor in active sites of
the hydrogenase enzyme and enhanced
the activity of hydrogenases

Ali et al. (2017), Yang and
Wang (2018), Beckers
et al. (2013)

4. TiO2

nanoparticles
Remarkable photocatalyst Pandey et al. (2015),

Salgado et al. (2016)

5. Silica
nanoparticles

High thermal stability Harish et al. (2018)

fermentation employed for enhancing biohydrogen production (Huirache et al.
2013). The porous and morphological feature of silica nanoparticles has outstanding
properties like high thermal stability that facilitate biohydrogen production (Harish
et al. 2018). Iron in nanoparticles acted as a cofactor of the hydrogenase enzyme and
eventually enhance the activity of biohydrogen-producing organisms (Ali et al.
2017). Thus, higher biohydrogen yield using nanoparticles is possible because,
nanoparticles possess explicit properties like smaller size, high porosity, and high
ratio of surface area:volume and they also help to maintain pH and stimulate the
activity of hydrogenase enzyme, etc. (Table 7.2).

Microalgae are involved in photosynthetic/photo fermentative biohydrogen pro-
duction. Nanoparticles tend to act by increasing their growth (by favoring the
production of carbohydrates); improving photosynthetic activity, protein level,
nitrogen metabolism, etc., by serving as catalytic agents or boosting the activity of
key enzymes that are crucial for the metabolism of microalgal species (Yang et al.
2006; Ahmad et al. 2018). Silver nanoparticles and Gold nanorods increased the
photosynthetic activity of Chlorella vulgaris. An increase in chlorophyll and carot-
enoid pigments was facilitated by Fe0 nanoparticles, promoting growth (Eroglu et al.
2013). Gold nanoparticles possess a large ratio of surface area:volume that enable
their binding to active sites of biomolecules thereby causing a stimulatory effect on
the process of biohydrogen production. The microbial processes are also enhanced
by enhancing the activity of enzymes involved in biohydrogen production (Sekoai
et al. 2019). TiO2 nanoparticles increased the production by 50% (Pandey et al.
2015). Photocatalytic hydrogen production occurs using a photocatalyst and an
illuminating source to split water molecules to form hydrogen and oxygen.
Nanoparticles serve as a photocatalyst in biohydrogen production. TiO2

nanoparticles are nontoxic and express chemical stability making it a remarkable
photocatalyst (Salgado et al. 2016).
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7.3.3 Biogas Production

Biogas energy is a renewable source whose production can be increased by using
nanotechnology and the phenomenal characteristics of nanoparticles (Hussein’s
2015). Organic wastes rich in carbon and nitrogen sources include plant, animal,
and human wastes that are anaerobically digested in order to form biogas and its
constituents (Romero et al. 2016). Addition of certain metal ions (iron, cobalt, and
nickel) in trace amounts act as catalysts and increase the activity of methanogenic
bacteria thereby increasing energy production. Researchers have confirmed that
nanomaterials are beneficial to be used in biofuel production rather than atomic
and bulky constituents (Feng et al. 2010, 2014). In the anaerobic digestion process,
the nanoparticles offer a symbiotic relationship. The nanoparticle enables the
microbes to act as catalytic agents and in turn the microbes can alter the oxidation
state of nanoparticles. Magnetic nanoparticles are useful in the methanogenesis
process due to their high coercivity and strong paramagnetic property (Yang et al.
2015). Various nanoparticles (Fe, Co, Ni) enhanced the methane gas production
resulting in higher biogas yields (Casals et al. (2014); Abdelsalam et al. (2016). Fe0

nanoparticles enhanced methane concentration in biogas and enhanced the rate of
biogas production by 30.4% using waste-activated sludge. It also acted as a prom-
ising adsorbent by reducing H2S impurity by 98% which otherwise would be
corrosive to the equipments used during biogas production, harmful to humans
and reduces the density and colorific value of methane (Song et al. 2017). ZVI
nanoparticle were also reported to increase the yield of biogas (Su et al. 2013; Karri
et al. 2005; Wang et al. 2016; Yang et al. 2013).

7.4 Nanoparticles in Bioethanol Production

Bioethanol is the most commonly produced and the most extensively used alterna-
tive fuel in the transportation sector due to its low production cost and environment-
friendly technology (Saini et al. 2015). The advantages of bioethanol are high octane
number, low boiling point, higher heat of vaporization, better combustion, and lower
exhaust emissions. It has comparable energy content and can be blended with
gasoline and can be used in vehicles without modification of the existing engines
(Waqas et al. 2016). Bioethanol produced from food crops including sugar and
starch-rich feedstocks like corn, wheat, sugar cane, potato, cassava, etc., is known as
first-generation biofuel (Bertrand et al. 2016). Starch stored in these crops serves as a
high-yield feedstock for the production of bioethanol. First-generation bioethanol is
more effective and widely produced bioethanol for commercial use and produced on
a large scale. Although first-generation ethanol appears to be a promising substitute,
it cannot sufficiently meet the global energy needs and is not adequate enough to
replace fossil fuels, especially in the transportation sector. The main drawback of
first-generation biofuel like bioethanol is an inherent competition between food and
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biofuel feedstocks over the utilization of cultivable lands mainly used for food crops,
subsequently causing an upsurge of food prices and ultimately leading to food
insecurity (Dutta et al. 2014; Manochio et al. 2017; Bastos 2018; Hirani et al.
2018; Branco et al. 2019). Therefore, many other processes like second-generation
processes to produce bioethanol have been explored.

Biofuels which are produced from nonedible crops, non-food crops, and waste
biomass including lignocellulosic biomass residues of food crops (e.g., corn stalks,
sugarcane bagasse, wheat, and rice straw) or trees and grasses grown specifically for
energy are known as second-generation (2G) biofuels (Antunes et al. 2014; Zabed
et al. 2016). The cultivation of these feedstocks neither requires extra land nor is
expensive and thus will not raise concerns over food sustainability. The residual
biomass of forest, agricultural, industrial, or municipal wastes are used in the
processing and production of bioethanol. Among these raw materials, lignocellulosic
substrates are considered as the best resources for bioethanol production and are
hence considered as the best option to lower the usage of conventional fuels and
thereby reduce environmental pollution (Balat and Balat 2009).

7.4.1 Basic Steps in the Process of Bioethanol Production

Bioethanol production using biomass sources is a complicated process. There are
four major steps in the large-scale process of bioethanol production which include
(1) Pretreatment, (2) Hydrolysis/Saccharification, (3) Fermentation, (4) Recovery
and dehydration (Fig. 7.4). The pretreatment step is an energy-consuming and
expensive step which involves cleaning and reduction of the size of particles by
various means such as milling and grinding. The recalcitrant nature of

Fig. 7.4 Basic steps in the production of Bioethanol
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lignocellulosic biomass makes the pretreatment steps essential and is intended to
make the cellulose chains free from lignin and make the cellulose accessible to
enzymatic hydrolysis (Kumari and Singh 2018; Dimos et al. 2019). After
pretreatment, biomass undergoes acid hydrolysis or enzymatic hydrolysis which
causes the breakdown of polysaccharides into monomer sugars such as glucose
and xylose. Later microorganisms, especially yeasts are involved in the fermentation
of these sugars to yield ethanol, CO2, and some organic compounds. Next is the
distillation step, which is an energy-consuming step and helps in the separation of
ethanol from alcohol-water solution. The process consists of two parts—primary
distillation which yields 95% concentrated ethanol and dehydration which results in
99 % concentration of ethanol.

Lignocellulosic biomass is a complicated structure consisting of 35–50% of
cellulose, 20–35% of hemicellulose, 15–20% of lignin, and other minor constituents
(Balan 2014). The lignocellulosic material thus contains cellulose and hemicellu-
loses that has to be broken down by pretreatment methods in order to be used for
bioethanol generation. The pretreatment method selected must lead to a high yield of
fermentable sugars, avoid their degradation, prevent formation of inhibitory or toxic
compounds, economical and also recover lignin and hemicelluloses for production
of valuable by-products(Galbe and Zacchi 2012; Mafe et al. 2015; Seidl and Goulart
2016; Kumar and Sharma 2017). There are various pretreatment methods available:

• Physical methods (milling, microwaves, ultrasonication, pyrolysis)
• Chemical methods (acid hydrolysis, alkaline hydrolysis, organosolv process,

ozonolysis)
• Physicochemical methods (steam explosion, carbondioxide explosion, ammonia

fiber explosion, wet oxidation)
• Biological methods (whole cells or enzymatic treatment).

There are several constraints for utilizing lignocellulosic feedstocks in the process
of bioethanol production and hence it is commercially not a viable process.
Pretreatment is a necessary step in order to convert the lignocellulosic biomass
(LCB) into ethanol, nevertheless difficult because of the recalcitrant nature of
LCB, formation of several inhibitors, and expensive process (Zabed et al. 2016).
Biological pretreatment of LCB using lignin and hemicellulose degrading microor-
ganisms or enzymes such as cellulases is a viable alternative to physical and
chemical treatments owing to less energy consumption, no inhibitors formation
during the process, and an environment-friendly process (Zabed et al. 2016). Pro-
duction of enzymes is one of the most expensive steps during the entire procedure of
biomass conversion. Approximately 18% cost of the overall bioethanol production is
occupied by the cellulases enzymes used in treating (hydrolyzing) lignocellulosic
biomass. The development of technology to use nanoparticles for the recovery of
enzymes as well as their reuse will extensively diminish the production cost and thus
will impact and benefit the overall process. Many metal nanomaterials act as a
catalyst in bioethanol production during fermentation by influencing the enzymatic
activity or gas-liquid mass transfer rate. Surface modification of nanoparticles
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provides a larger surface area for gas-liquid mass transfer and also improves the
properties of active sites thereby increasing the yield of biofuel (Zhao et al. 2000).

7.4.2 Pretreatment of Lignocellulosic Biomass using
Nanoparticles

Recently, research studies have demonstrated the use of nanoparticles to pretreat and
hydrolyze lignocellulosic biomass for better conversion into biofuels. Nanoparticles
and their suspensions exhibit similar hydrolytic action to that achieved by using
chemicals during the processing of lignocellulosic biomass (Wang et al. 2012). The
chief benefit of using nanoparticles in the pretreatment of substrates is that it requires
only minimum amounts as well as they can be reused and recycled for further use.
The cell wall of raw biomass is easily penetrated by the metal nanoparticles due to
their phenomenal physical properties. In addition, they also release carbohydrates to
be used in bioethanol production on interaction with biomolecules (Razack et al.
2016). A research study stated that the yield of carbohydrate increased up to 15.26%
from Chlorella vulgaris biomass on 40 min of incubation using silver nanoparticles.
The incubation time was found to be decreased by an increase in the concentration of
nanoaparticles (Razack et al. 2016; Kushwaha et al. 2018). Ferrite nanoparticles
resulted in generation of higher amounts of carbohydrates from wheat straw when
compared to the control without nanoparticles. Magnetic nanoparticles have also
been employed in the pretreatment process of lignocellulosic substrates as well as in
the recovery of enzymes or nanobiocatalysts thus ensuring a cost-effective process.
The Fe3O4 magnetic nanoparticles when used for pretreatment of lignocellulosic
biomass have shown to significantly improve the biogas production (Khalid et al.
2018). Nanocrystals comprising silica functionalized with sulfonates combined with
ferrous oxide magnetic nanoparticles were developed and used as a catalyst for the
hydrolysis of cellobiose biomass (Verma 2017). The use of alkyl sulfonate treated
nanoparticle catalysts resulted in the hydrolysis of 78% cellobiose and can also be
recovered and further reused in the hydrolysis of biomass. The silica-coated mag-
netic nanoparticles obtained from the reaction mixture showed a substantial
improvement in hemicellulose hydrolysis at 80 °C. Protease-associated magnesium
nanoparticles when used for pretreatment of a biomass sample, resulted in more
amount of aminoalkanoic acid generated at 95 °C along with an enhanced removal of
lignin (18-fold) than when cellulase enzymes were employed for pretreatment. These
products on further hydrolysis with xylanase exhibited much increase in biogas
production when compared to untreated samples (Singhvi and Kim 2020).
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7.4.3 Enzyme Immobilization on Nanoparticles to Improve
Bioethanol Yield

Enzymes are crucial in the pretreatment of Lignocellulosic biomass substrates
(LB) resulting in the generation of simple sugars. Different enzymes like cellulases,
hemicellulases, lignases, xylanases, pectinases, etc., play an important role in hydro-
lyzing lignocellulosic substrates resulting in the production of biofuels. This
pretreatment process is highly expensive and contributes to the higher cost of the
entire process of biofuel production (Fig. 7.5). Nanotechnology proposes to immo-
bilize enzymes on diverse nanomaterials to improve bioethanol production. Hence,
the enzymes are frequently fixed onto nanoparticles or other support materials
thereby causing an improvement in their properties and thus making the pretreatment
of lignocellulosic biomass an economically viable process. Novel immobilization
techniques are being developed to enhance the performance of immobilized
enzymes, which are mainly focused on their reusability, stability, and to make the
separation process easier. Enzymes like cellulases and hemicellulases are
immobilized onto the surface of nanomaterials and have been shown to display
high catalytic activity and are also reusable for many cycles.

The technique of immobilization involves the confinement of enzymes in a fixed
region, so as to retain their activity and reuse the enzymes repeatedly. Various
methods of enzyme immobilization are available. Physical methods include attach-
ment through membranes to retain enzymes whereas chemical methods involve
crosslinking and binding on supports. Different inorganic and organic substrates

Fig. 7.5 Immobilized Enzymes for Lignocellulosic Biomass conversion to Biofuel
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Table 7.3 Nanomaterials used for immobilization of enzymes used in bioethanol production

S. no. Enzyme Nanomaterials References

1. β-glucosidase Polymer magnetic nanofibers Lee et al. (2010)

2. Cellulase Single-walled carbon
nanotubes

Goh et al. (2012)

3. Lipase Magnetic chitosan
microspheres

Xie and Wang (2012)

4. S. cerevisiae cells Silica nanoparticles Beniwal et al. (2018)

5. Cellulase (Aspergillus niger) TiO2 nanoparticles Lupoi and Smith
(2012)

6. Cellulase (Aspergillus
fumigatus)

MnO2 nanoparticles Cherian et al. (2015)

7. β-glucosidase (Aspergillus
niger)

Magnetic nanoparticles Verma et al.
(2013a, b)

are used as support materials for enzyme immobilization. Many enzymes having
different size, morphology, and porosity are frequently immobilized on natural
inorganic support materials like clays, pumice, silica, zeolite, or manmade sub-
stances like glass, metal oxides, ceramics, and magnetic materials. Many natural
organic polymers such as cellulose, starch, dextran, chitosan, agar, and alginate are
also typically used for enzyme immobilization.

Several studies have indicated that immobilization of enzymes can be employed
to address inhibitor difficulties in bioethanol synthesis and thus increases ethanol
yield. Enzyme immobilization on nanoparticles is typically accomplished through
adsorption or binding by means of ionic and covalent bonds. The method of
immobilization of enzymes using covalent binding is considered more appropriate
as covalent bonds are formed between the enzyme and nanoparticles and thus
reduces protein desorption (Abraham et al. 2014; Ahmad and Sardar 2014). To
supply the functional group for enzyme linkage, it is necessary to modify or coat
these compounds with chemically active polymers for their stable immobilization on
nanomaterials. Crosslinking methods employing aldehydes or diiminoesters or
diamines are used for linking support nanomaterials with enzymes through
intermolecular bond formation between them. Numerous research studies have
been conducted in which different nanomaterials were used for enzyme immobili-
zation (Table 7.3).

Among several nanomaterials, magnetic nanoparticles are promising candidates
for immobilization of several enzymes such as cellulases and hemicellulases. The
enzymes immobilized onto magnetic nanoparticles have wide applications because
they result in higher stability and easy recovery of enzymes and their reusability for
numerous cycles (Alftren and Hobley 2013; Rai et al. 2016). The method of enzyme
immobilization onto magnetic nanoparticles helps in later recovery as well as further
reuse of enzymes (Rai et al. 2016). Immobilizing cellulase on magnetic
nanoparticles causes the cell wall of microalgae to hydrolyze upon interaction.
This causes the release of lipid components (lipid extraction). This method yielded
93.56% biodiesel under optimal conditions (Duraiarasan et al. 2016). The
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β-glucosidase enzyme which is being immobilized by entrapment method onto
polymer magnetic nanofibers was successfully used in the production of bioethanol
from lignocellulosic materials (Lee et al. 2010). In one of the research studies, fungal
β-glucosidase enzyme immobilized on magnetic nanoparticles was effectively
employed as a nanocatalyst in bioethanol production (Verma et al. 2013a, b). In
another study, the enzyme immobilized onto magnetic Fe3O4 nanoparticles incor-
porated in single-walled carbon nanotubes was used in bioethanol production (Goh
et al. 2012). The immobilization of lipase enzyme onto magnetic chitosan micro-
spheres was achieved using glutaraldehyde by chemical coprecipitation method (Xie
and Wang 2012).

In addition to magnetic nanoparticles, many other nanomaterials like silica and
titanium oxide, fullerene, graphene, and carbon nanotubes have been preferred for
enzyme immobilization (Huang et al. 2011; Cho et al. 2012; Verma et al. 2013a, b).
Beniwal et al. (2018) used the nano-biocatalytic system along with immobilized
S. cerevisiae, which improved the ethanol production from cheese whey. The use of
cellulase enzyme immobilized onto silica-based nanoparticles in hydrolysis of
cellulose, resulted in production of more glucose than when free enzyme was
used, proving the employability of immobilized enzymes in simultaneous process
of saccharification and fermentation. The method of adsorption was used for enzyme
immobilization on titanium oxide Nps and was effectively used to hydrolyze ligno-
cellulosic biomass for bioethanol production processes (Lupoi and Smith 2012). A
study demonstrated that the cellulase enzyme isolated from fungus Aspergillus
fumigatus was immobilized by covalent binding technique onto MnO2 nanoparticles
and was reported to potentially enhance its thermostability property up to 70 °C
(Cherian et al. 2015).

The technique of immobilization provides enzymes with a high affinity towards
lignocellulosic substrates, resulting in high rates of biomass hydrolysis. Further-
more, the technique also helps improve their pH and temperature stability, benefit-
ting the fermentations involving simultaneous saccharification and fermentation
reactions. The structure formed as a result of nanoparticles and enzymes interaction
depends upon the type of nanoparticles as well as their concentration employed in
the process of immobilization. The structure formed bring about many changes in its
surface properties thereby causing altered protein stability. Many research studies
demonstrated an improvement in the stability of cellulase enzyme when iron oxide
and nickel oxide like nanomaterials are used for immobilization (Srivastava et al.
2015). The immobilization of enzyme cellulases using glutaraldehyde-based iron
oxide nanoparticles exhibited more stability at varied pH and temperature than free
enzymes. Immobilization of cellulases by using NiCo2O4 demonstrated improved
thermal stability at 80 °C over free enzymes. Thus, the immobilization of enzymes
on nanoparticles possesses improved catalytic efficiency towards lignocellulosic
substrates and hydrolyze them to yield simple sugars.

Apart from enzymes, there is a possibility for immobilization of even microbial
cells on nanoparticles and used in the bioethanol fermentation process (Antunes et al.
2017). The synthesis of bioethanol using microbes immobilized on nanoparticles has
been documented in the literature. For example, S. cerevisiae cells immobilized on
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the magnetic nanoparticles produced a high amount of bioethanol approximately
264 g/L.h (Ivanova et al. 2011). Many studies indicate that the approaches
concerning immobilization of either enzymes or whole microbial cells on different
nanomaterials are appropriate for safe and cost-effective production of bioethanol.

7.5 Factors Influencing the Role of Nanoparticles
in Production of Bioethanol

Several factors influence the features of nanoparticles which would in turn affect
their performance during the process of bioethanol and other biofuel production.

7.5.1 Size and Shape

Nanoparticles are of huge interest as they are of smaller size and have a larger ratio of
surface area:volume. Nanoparticles show wide variations in their chemical and
physical properties depending on the differences in their sizes and shapes
(Bogunia-Kubik and Sugisaka 2002; Daniel and Astruc 2004; Zharov et al. 2005).
Therefore, new and innovative applications may be accomplished by regulating the
size and shape to nm scale in order to obtain desired particles. Because of their
extremely small size, nanoparticles provide a larger surface area so that more
enzymes are attached leading to high enzyme loading per unit mass of particles
(Jia et al. 2003). Nanomaterials have large surface area which will provide the matrix
for the immobilized enzymes thus contributing to improved stability. The enzyme
stability may also be enhanced through the multiple attachments of the enzyme on
the nanomaterials surface and thus reducing the unfolding of proteins
(Khoshnevisana et al. 2011; Zhu et al. 2014). Furthermore, the enzymes which are
bound with nanomaterials possess many advantages like easy separation, less
product contamination, continuous processing, and higher yield of product (Zhang
et al. 2015). Different approaches are made to achieve desired nanoparticles of
varied sizes and shapes. For example, novelty could be achieved in the physical
properties of nanocomposites solutions resulting from blending of nanofibers with
nanoparticles (Wang et al. 2007a, b; He et al. 2009; Saquing et al. 2009; Lee et al.
2010).

7.5.2 Temperature

Temperature is the most significant parameter to be considered during the process of
nanoparticle synthesis. Different methods of nanoparticle synthesis employ different
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temperatures, for instance, physicochemical methods generally employ a tempera-
ture above 300 °C whereas biological methods employ moderate temperatures
usually below 100 °C temperature. The pore size, morphology/shape as well as
stability of nanoparticles are usually affected by temperature. The effect of temper-
ature on enzyme stability is explained through several experimental research studies.
Nanomaterials display a crucial role in the improvement of pH and temperature
stability of cellulase and other enzymes involved in bioethanol production. The
improved enzyme stability is attributed to many distinctive physicochemical prop-
erties like large ratio of surface area:volume, strong adsorption capacity, high surface
reactivity, and catalytic efficiency (Willner et al. 2006; Ansari and Husain 2012;
Pandurangan and Kim 2015). Many researchers have proposed that the
immobilizing property of nanoparticles also aids in enhancing the stability of
enzymes. Immobilization of laccase was done onto the cellulose nanofiber produced
by the bacteria Gluconacetobacter xylinus (Saravana Kumar et al. 2016). In this
study, the lignocellulosic inhibitory derivatives like furfural, acetosyringone, and
coniferyl aldehyde were completely degraded at 40 °C after 36 h of incubation by
immobilized laccase. Also, it showed a better pH and temperature stability than free
enzyme. A crude thermostable cellulase (Aspergillus fumigatus AA001) upon
immobilization with ZnO nanoparticles showed thermal stability, even at 65 °C
temperature (Srivastava and Jaiswal 2016). Cherian et al. (2015) reported that when
cellulase enzyme immobilized on MnO2 nanoparticles were used for bioethanol
production, it resulted in a higher concentration of ethanol around 21.96 g/L at
70 °C for 2 h under solid state fermentation. Another study reported 90% conversion
of biodiesel at 30 °C within 24 h using electrospun polyacrylonitrile nanofibrous
membrane produced by Pseudomonas cepacia (Li et al. 2011a).

7.5.3 pH

The performance of metallic nanoparticles is greatly affected by the pH during
synthesis. At >7 pH values, nanoparticles show improved stability as a result of
aggregation among the particles. The alterations in pH during nanoparticle synthesis
controls the variations in the sizes and shapes of nanoparticles. Herrera-Becerra et al.
(2008) utilized alfalfa biomass to synthesize iron oxide nanoparticles. During syn-
thesis at a low level of pH, i.e., pH 5 larger nanoparticles were formed whereas pH
10 yielded smaller nanoparticles. At low pH, there may be an agglomeration of gold
nanoparticles leading to a smaller number of nucleation as shown in research studies
by Ahmed and Ikram (2016). The rod-shaped gold nanoparticles synthesized from
wheat biomass exhibited various geometries like tetrahedral, hexagonal, decahedral,
icosahedral, multi-twinned, and irregular between pH 2 and 6 at room temperature
(Armendariz et al. 2004). Similar studies reported that most of the nanoparticles
synthesized from different substrates like alfalfa, wheat, and oat were of irregular
shape at pH 2 (Gardea-Torresdey 2002; Armendariz et al. 2004). Thus, pH impacts
the nanoparticles to a great extent, especially on their shape and size.
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7.5.4 Concentration of Nanoparticles

The concentration of nanoparticles plays a significant role in the synthesis of desired
products as well as in controlling the reaction rate. Silver Nps have the potential to
lyse the cell wall of microalgae and more silver nanoparticles can rupture the
microalgal cell membrane effectively. A study on various concentrations of
AgNPs employed for saccharification showed that a concentration of 150 mg/g
was needed for maximum Saccharification (Razack et al. 2016). Similar results
were obtained in other studies indicating that the nanoparticles are more effective
at higher concentrations (Hazani et al. 2013; Palomares et al. 2011).

7.5.5 Method of Synthesis of Nanoparticles

Various physical, chemical, and biological methods can be used in the production of
nanoparticles (Chen et al. 2008). Previously, the techniques like evaporation and
condensation led to the formation of different nanoparticles including gold, silver,
lead, fullerene, and other materials (Gurav et al. 1994, Schmidt-Ott (1988);
Magnusson et al. 1999, Kruis et al. 2000). Later many other physical methods like
ball milling, thermal evaporation, pulsed laser desorption, spray pyrolysis, sputter
deposition, lithographic techniques, etc., are being employed for nanoparticles
synthesis. Chemical methods of nanoparticle synthesis include chemical solution/
vapor deposition, soft chemical method, electrodeposition, hydrolysis, sol–gel
method, coprecipitation, and wet chemical methods. These chemical methods may
result in production of enormous amount of nanoparticles in short term but these
processes should provide the capping agents meant to stabilize the size of
nanoparticles. An extensive variety of materials like proteins, polysaccharides,
synthetic polymers, polylactic acid, poly-D-L-glycolide, methacrylic acid, etc., are
used for the preparation of nanoparticles (Sauto et al. 2012). Propyleneimine,
polyetherimide, etc., are used as copying agents whereas ethylene glycol, borohy-
dride, citrate, ascorbate, etc., are used as reducing agents (Abou El-Nour et al. 2010;
Duan et al. 2015). The reagents which are generally used in the process of synthesis
and stabilization of nanoparticles are toxic chemicals and result in harmful deriva-
tives (Vithiya and Sen 2011). Biological methods have been recently developed for
the synthesis of nanoparticles in order to provide simple, environment-friendly, and
less expensive protocols. The biological synthesis of nanoparticles is generally
simple, clean, single step, nontoxic, and environment-friendly approach (Ahmed
and Ikram 2016). A number of microorganisms are found to be competent enough to
synthesize inorganic nanoparticles composite intracellularly and extracellularly. The
biological sources for nanoparticle synthesis are unicellular and multicultural organ-
isms like bacteria, molds, yeasts, and plants. The intracellular and extracellular
synthesis of nanoparticles by these organisms occur at physiological temperature,
pH, and pressure. Moreover, these methods have other advantages such as they
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exhibit controlled toxicity, have control over size characteristics, and are easy, rapid,
less expensive, and eco-friendly (Ingale and Chaudhari 2013).

7.5.6 Immobilization of Nanoparticles

There are several advantages of utilizing nanomaterials in processing and production
of biofuels. Many studies have focused on developing enzyme immobilization
methods to overcome disadvantages of free enzyme including short lifetime, insta-
bility, and separation. In Particular, the immobilized nanomaterial helps in increas-
ing the surface-to-volume ratio, so as to obtain enzymes with high loading capacity
and also maintain enzyme stability (Mathew et al. 2009; Rao 2015). Lately, nano-
sized materials have been developed and introduced which can be employed as
enzyme stabilization carriers (Kim et al. 2006). Novel immobilization techniques are
being developed to enhance the performance of immobilized enzymes, which are
mainly focused on their reusability, stability, and to make the separation process
easier.

Nanofibrous membranes are made by electro-spinning method. These membranes
possess a large area on their surface for enzymatic attachment and high porosity for
diffusion of substrates. Normally Electro spun polyacrylonitrile fibers are used to
immobilize lipases in the biodiesel synthesis whereas in this technique the nanofibers
are used to adsorb lipase on the surface (Sakai et al. 2010; Li et al. 2011a). When
compared to other techniques, the stability of immobilized lipase on nanofibers was
good as it retained 91% of its initial conversion activity even after repeated reaction
cycles (Li et al. 2011a). The immobilized laccase from cellulose nanofiber which
was produced by the bacteria Gluconacetobacter xylinus showed a better pH and
thermal stability when compared to free laccase and also it completely degrades the
major inhibitors like furfural, acetosyringone, and coniferyl aldehyde within 36 h
(Saravana Kumar et al. 2016).

The purpose of using magnetic nanoparticles is easy separation from the reaction
medium during processing and also providing a larger surface area thus aiding the
high loading capacity of target molecules (Pan et al. 2012; Singamaneni et al. 2011).
Magnetic nanoparticles have many advantages such as they are highly dispersible in
aqueous solutions, size-tunable, capable of forming nanocrystals, and have excellent
thermal stability and reusability (Zhu et al. 2013). Aluminum oxide is a potential
nanomaterial that can be employed for the immobilization of different enzymes
utilized in the production of biofuels. It plays an important role in the production of
platinum or silica catalyst via electrostatic adsorption phenomenon and also the
loading capacity of the immobilized enzyme is moderated (Biswas 2019; Siepmann
et al. 2008).
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7.5.7 Stability and Reusability of Nanoparticles

Enzymes are utilized in the production of biofuel mainly in two phases (1) The
pretreatment stage where lignocellulosic substrates are hydrolyzed resulting in the
production of fermented sugars and (2) The transesterification stage where biodiesel
is produced from plants. The half-life of many enzymes is very short (few minutes to
some hours) which need to be increased. Thus, the main difficulty in handling
enzymes is their shelf life which could be overcome by using advanced knowledge
of nanotechnology and modern biotechnology to generate a solution for producing
eco-friendly fuels (Whitcombe et al. 2014). Nanomaterials are extremely desirable
due to factors like high surface areas enabling higher enzyme interactions, enhanced
immobilization efficiency, improved long-term storage as well as reusability and
recycling stability of the enzymes which will reduce the cost of the enzyme. For
industrial applications, the reusability of enzymes is considered to be of high
importance. This can be accomplished by immobilizing the cellulases and other
enzymes with nanostructured materials like multi-walled nanotubes and graphene so
that they can be utilized for repeated cycles of reactions (Gao et al. 2014).

Gold nanoparticles formed from leaf extracts of Coriandrum sativum were stable
at room temperature even up to 1 month (BadriNarayanan and Sakthivel 2008). The
Ag and Au Nps produced from the broth of neem leaves were reported to be stable
for even 4 weeks after their synthesis (Shankar et al. 2004). The activity as well as
the stability of the enzyme cellulase were improved on physical adsorption with the
magnetic Nps (Khoshnevisana et al. 2011). The immobilization of enzymes onto
glass beads and other nanostructures enhanced their stability by almost thousand
times (Wang et al. 2001). The immobilization of laccase enzymes with
nanomaterials not only increases their half-life but also stabilizes the enzyme
(Xu 2015). Research studies were made on the stability of both free and immobilized
cellulase and finally concluded that the enzyme cellulase of Aspergillus fumigatus
JCF on immobilization with MnO2 nanoparticles was more stable than free enzyme
and was found to retain 89% of its initial activity after 2 h of reaction time. He also
observed that even after the fifth cycle, the enzyme maintained around 60% of its
original activity (Cherian et al. 2015). Similarly, β-glucosidase enzyme immobilized
on Fe3O4 nanoparticles retained their activity up to 16 cycles during bioethanol
production (Verma et al. 2013a, b). A crude cellulase enzyme complex when
immobilized onto magnetic Fe3O4 nanoparticles by carbodiimide activation showed
an increase in its thermal stability and was effectively active even after six repeated
cycles (Jordan et al. 2011). A research study confirmed that co-immobilization on
Au-magnetic silica nanoparticles improved the reusability of cellulases and also
suggested that the loss in enzyme activity after many reuses might be due to the
weakening of the bond between the matrix and the enzyme with resulting leaching of
the enzyme from the system (Cho et al. 2012).
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7.6 Future Prospects of Nanoparticles in Bioethanol
Production

Nanomaterials are the most popular catalysts particularly in the field of bioethanol
production because of their potential catalytic efficacy. A variety of nanocatalysts
like carbon nanotubes, magnetic nanoparticles, metal oxide Nps, engineered
nanostructures, etc., are considered to be promising among sustainable fuel
resources owing to their beneficial properties. Particularly, the technique of immo-
bilization of enzymes with nanoparticles is considered as an outstanding approach as
it favors the reusability and recycling of cellulases and other enzymes or whole
microbial cells as biocatalysts in the production of biofuels.

In spite of many advantages of nanotechnology in biofuel production, it also has
several limitations. During the enzyme immobilization processes on nanomaterials,
the size of some enzyme catalysts makes the coating process difficult. Due to bigger
pore size than nanomaterials, catalysts are not embedded properly in the channels
while others still stay on the surface and even obstruct the diffusion process, leading
to lower enzyme activity or their loss during the operation. In addition to the
technical challenges, there are also environmental concerns regarding the excessive
use of heavy metal embedded nanoscale materials that could negatively impact
human health (Singh et al. 2011). Owing to their extremely small size, nanoparticles
may be easily incorporated by the organisms in the food web leading to
biomagnification. They are inhaled or ingested or enter via dermal contact in humans
and cause severe cytotoxic effects upon interaction with DNA, lipids, and proteins
like biomolecules in various tissues of kidneys, lungs, and liver (Fischer and Chan
2007; Stander and Theodore 2011). The studies on ecotoxicity of nanoparticles have
to be made using animal models, in order to properly understand the damage and
actual risk caused by the accumulation of particles. Many research experiments are
designed to study the important safety features and thus limit the exposure to
nanoparticles and thereby preventing their harmful effects on the ecosystem. Such
studies on nanoparticles are crucial in prevention or reduction of toxicity to humans
and environment while upholding a balance between the applications and safety
aspects.

However, biofuels are considered as the future fuel and nanoparticles play a vital
role in the production of next-generation biofuels. The technique of employing nano-
based biocatalysts is significant leading to the economic viability of several produc-
tion methods. Yet, many recommendations need to be proposed for further studies in
order to accelerate their applications in various bioprocesses. The behavior of
various shapes and sizes of nanoparticles to perform bioprocesses should be thor-
oughly understood. The screening of effects of different nanoparticles and the range
of concentrations on microbial activity ought to be made in order to determine the
optimum process conditions. Nanoparticles used should not be toxic to the micro-
organisms and should be less expensive and environment friendly. Moreover, there
is a need to focus on the improvements to be made in computational power and
algorithms so as to aid in the screening and detection of suitable nanoparticles to be
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utilized in the process of biofuel production. Finally, the techno-economic assess-
ments should be appropriately designed in order to conduct up-scaled biofuel
production processes. Thus, nano-based biofuels are promising and are expected
to replace soon the conventional systems at commercial scale in the future.

7.7 Conclusion

Exhaustion of existing fossil fuels and the associated global ecological problems
have demanded the researchers to explore new alternative and renewable energy
sources. Nanotechnology and nanoparticles tend to have a very vital role in the
process of manufacturing and production of future generation biofuels namely,
bioethanol and biodiesel. Among the various processes employed, nanotechnology
employing nanoparticles has gained importance in the production of biofuels, owing
to their beneficial properties. Different approaches can be developed to tackle the
problems associated with bioenergy processes such as employing nanocatalysts or
feedstock modifications will improve the production processes. Different
nanomaterials like carbon nanotubes, metal oxide nanoparticles, and magnetic
nanoparticles, possessing unique properties can be employed in the production of
bioethanol and other biofuels. In addition to their incredible benefits and advantages,
there could be deleterious effects of nanoparticles when used in excess and in
uncontrolled ways thereby negatively impacting human health and ecosystem,
especially when applied in large-scale production processes. Although nanotechnol-
ogy has proved to be highly beneficial for the production of biofuels and may be
recommended for bioethanol production processes, certain safety concerns need to
be addressed meticulously before being commercialized.
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Chapter 8
Green Synthesis of Nanomaterials from
Biomass Waste for Biodiesel Production

Zeenat Arif, Naresh K. Sethy, P. K. Mishra, and P. Kumar

Abstract An exponential increase in energy demand and associated problems with
the use of fossil fuels in the environment provides a pathway to look for substitute
for renewable energy source. In this idea, biodiesel seems to be a promising
approach for being renewable and an alternative to fossil fuel due to its
eco-friendly, nontoxic, biodegradable characteristics. Production of biodiesel pro-
cess involves a chemical reaction that necessitates catalyst utilization. Although both
types of catalyst (homogeneous/heterogeneous) have their own pros and cons,
presently more attention is made to the use of green route synthesized nano-catalyst.
Owing to the importance of fast recoverability and easy reusability of the catalysts
after the reaction according to green chemistry principle, it becomes a significant
factor for sustainable management. In this chapter, the advantages of biofuel over
conventional fossil fuel, reaction mechanism, use of catalyst, green route catalyst
synthesis from waste, and its efficiency in the synthesis of biodiesel are discussed.
This chapter is concluded highlighting the existing challenges and the future pros-
pects of catalysts synthesized using the green route for bioenergy application.

Keywords Biodiesel · Energy · Green · Nano-catalyst · Yield

8.1 Introduction to Biofuel

There is a continuous increase in energy consumption throughout the worldwide
population. Satyanarayana et al. 2011 mentioned that the consumption rate of fossil
fuel is 105 times faster than its creation and in the near future demand will be
doubled and tripled for primary energy sources by 2035 and 2055, respectively.
Other shortcomings of fossil fuel consumption are economic concerns and global
warming resulting from greenhouse gases. Figure 8.1 depicts an era with different
energy forms. Therefore, renewable fuels have attracted the attention of research and

Z. Arif (*) · N. K. Sethy · P. K. Mishra · P. Kumar
Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU),
Varanasi, India

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
M. Srivastava, P. K. Mishra (eds.), NanoBioenergy: Application and Sustainability
Assessment, Clean Energy Production Technologies,
https://doi.org/10.1007/978-981-19-6234-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-6234-9_8&domain=pdf
https://doi.org/10.1007/978-981-19-6234-9_8#DOI


212 Z. Arif et al.

Fig. 8.1 Era showing existence of energy forms in different century

Fig. 8.2 Publication/Year on biodiesel production from 1993 to 2020 (Scifinder Database)

development toward their use in form of biodiesel, biogas, bioethanol, biohydrogen,
etc. They drifted the attention of the researcher toward themselves because of their
sustainability, low Green House Gases emission, and even reduction in carbon
footprint (Hussein 2015). The data represented in Fig. 8.2 shows the research
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increasing trend in the area of biodiesel. The nature of the graph depicts an
exponential rise in the publication from 157 in 1993 to 3725 in the year 2014. The
data was obtained from the Scifinder database.

In the research field for last few decades, significant attention was given to
making use of biofuels; an alternative fuel, e.g., biodiesel, owing to its sustainability
and environment-friendly nature. There are many sources available such as mustard,
sunflower, animal fat, and soybean for biofuel synthesis. Biodiesel is composed of
fatty acid of methyl ester (FAME) or ethyl ester derived from recycled cooking and
plant oils, animal fats, etc. Advantage of using biodiesel in conventionally designed
diesel engines is reduction in the emission of carbon compounds such as monoxide
(CO) and dioxide (CO2), high hydrogen and oxygen content, and good lubricity of
biodiesel enhances the engine life due to improved fuel injection system (Hussein
2015). Other significant properties which makes it prominent for fuel application is
high combustion efficiency, flash point which makes it nonflammable and
nonexplosive, cetane number, and low sulfur content (Changmai et al. 2020).
Microorganism (algae), due to its high lipid content and good growth rate is
considered as potential feedstock for biodiesel (Upadhyay et al. 2016). However,
many challenges exist while using microalgae that need to be overcome particularly
the cost factor and process intensification methods such as improvement in
pretreatment process, process variable optimization to enhance the production rate
and since other approaches like synthetic biology, genetic engineering nevertheless
increases the yield but at the same time they were laborious, time-consuming, and
led to increase in the production cost (Shanmugam et al. 2020) and were facing a
problem of proper infrastructure for the production process (Patumsawad 2011).
Thus, it urges to develop a technique which possess synergistic property of a simple/
easy technique and is cost-effective to achieve the desired goal of a high production
rate. Nanotechnology is a promising approach and can offer meaningful solutions to
the challenges observed by changing the feed material property or using it in
biocatalysts form for biofuel production. The potential applications of nanotechnol-
ogy have encouraged researchers to investigate novel and build robust nano biocat-
alytic systems (Verma et al. 2013).

8.2 Introduction to Nanoparticles

Over the past three decades, nanotechnology has evolved as an independent field
with numerous applications in diverse areas. A dimension less than 1/10th of micro
is called a nano size dimension, for example, 0.1 μm is equal to 100 nm thus particle
size (<100 nm) of materials are commonly defined as nanoparticles. These are
smaller size particles, having a large surface area to volume ratio resulting in
excellent catalytic activity, chemical steadiness, and nonlinear optical performance
(Agarwal et al. 2017). There may be biological, chemical, and physical approaches
to synthesize nanoparticles. The physical methods are costly and extreme processing
conditions (e.g., high temperature and pressure) are needed to obtain particles in the
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Fig. 8.3 Schematic representation of the green synthesis of nanoparticles

nano range. On the other hand, chemical methods need toxic and hazardous
chemicals which are not eco-friendly for the environment and living creatures.
Also, most of the toxic chemicals consumed cannot be recycled, reused, or degraded
to harmless forms (Agarwal et al. 2017). The capping and stabilizing agents may be
needed to prevent agglomeration of nanoparticles prepared through physical and
chemical methods which add additional cost to the synthesis process. Synthesis of
particles using plant extract or microorganism is termed as “Biosynthesis.” It is
cheap and easy to carry out process thereby being a widely used process (Agarwal
et al. 2017). The schematic representation of nanoparticle formation using green
approach is shown in Fig. 8.3.

This approach for particle synthesis is advantageous with respect to cost, bio-
compatibility, safety, and environmental friendliness. Use of different parts of plant
extracts/agro-waste over microorganisms (bacteria and fungi) is preferred for nano-
particle synthesis because of the faster rate of biosynthesis, and the possibility of
large-scale production without maintaining any stringent conditions which are
necessary in case of microorganisms (Sharma et al. 2019). Considering the advan-
tages of plant extract over microorganism, numerous nanoparticles were synthesized
using physical and chemical methods from the extract of different parts of plants/
agro-waste.

As mentioned earlier nanoparticles have found applications in diverse fields
ranging from agriculture, chemical industry, etc., to healthcare and environmental
remediation. Some typical applications also include as nanocarrier for drug delivery,
as catalyst for dye reduction (Srikar et al. 2016), and in solar cell and photocatalytic
systems (Pawar et al. 2019). Table 8.1 enlists different green route synthesized
nanoparticles, properties, and their application.
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Table 8.1 List of green routes synthesized nanoparticles: Shape, size, and application

Plant/Agro-waste NPs Results References

Parthenium
hysterophorus
extract

TiO2 Method: Microwave irradiation
Average size: 20–50 nm
Shape: spherical shape
% Degradation of dye was >85%

Thandapani
et al. (2018)

Azadirachta indica
aqueous leaf extract

Ag Average size: 34 nm
Exhibit antimicrobial activities against gram-
negative (E. coli) positive (S. aureus) bacteria

Ahmed et al.
(2016)

Polygala tenuifolia CdO Shape: Trigonal
Average size: 34 nm

Ghotekar
(2019)

Moringa oleifera ZnO Spherical shaped particle
Average size: 6–20 nm

Agarwal et al.
(2017)

Jatropha curcas TiO2 Average crystalline size: 13 nm
Average size: 10–20 nm
Spherical shape particle
Removal of COD and Cr is 82.26% and 76.48%
respectively in tannery wastewater

Goutam et al.
(2018)

Sesbania grandi
flora

TiO2 Average crystalline size: 42.58 nm
Shape: Triangular, square, and spherical

Srinivasan
et al. (2019)

Fraxinus
rhynchophylla

ZnO2 Average diameter 100–200 nm Wang et al.
(2020a, b)

Vitex agnus-castus SnO2 Average size: 4–13 nm
Shape: spherical shape

Ebrahimian
et al. (2020)

Cassia fistula and
Melia azadarach

ZnO Shape: Spherical
Average size: 3–68 nm

Naseer et al.
(2020)

Citrus Limon Cu Shape: Spherical
Average size: 30 nm

Amer and
Awwad (2021)

Watermelon rind Pd Shape: Spherical
Average size: 96.4 nm

Lakshmipathy
et al. (2015)

Wheat straw SiO2 Shape: NA
Average size: 100 nm

Patel et al.
(2017)

Rice husk Silica Shape: spherical
Average size: 70 nm

Chen et al.
(2012)

8.3 Benefits of Nanomaterials from Agro-Based Materials

The residue wastes in the farm field when burned directly on the open ground,
composed of CH4, CO, N2, SO2, and hydrocarbons with particulate matters of
PM0.1 and PM2.5 which are directly released into atmosphere degrading the
environment. Also, it results in fog formation and dense fine ash cloud due to low
temperature and high humidity and dense fine ash cloud (Janta et al. 2022; Bray et al.
2019). Wheat straw and rice paddy residues comprise of oxides of nitrogen and
nitrous oxides when burned produces dangerous levels of reactive nitrogen.
Phairuang et al. 2019 mentioned in their study that in the month of October–
November 2017, New Delhi possessed a threat of bad air quality and measured
average concentration ranges from 22.43 to 718.95 μgm-3 which was very high
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when compared to average ambient air quality standards of 60 μgm-3. An almost
similar situation was reported for China, in the study of Liu et al. 2019, which
highlights an increase in the concentration of PM10 particles during straw burning
by 2–4 times and was having adverse health issues in 2015. This may also result in
75% in smoke formation which ultimately leads to a reduction in visibility and also
affects the radiation balance. Exposure to fine particles is also health hazardous in
terms of respiratory problem, asthma, chronic bronchitis, etc. It was also investigated
that on the burning of rice straw there is an increase up to 14 times in semi-volatile
organic compounds. Government can prohibit the burning of agro-commodities by
imposing a ban, but there is no other alternative methodology to eradicate this
pollution problem from the traditional method. So, the best way to utilize this
waste is by converting them into a useful product and great demand of nanoparticle
because of its unique characteristics could be one of the positive approaches in this
field.

8.4 Synthesis of Different Nanomaterials from Agro-Wastes

8.4.1 Graphene

Graphene, a 2D substance made out of immaculate carbon is having hexagonal
shape. Graphene is known for its good thermal conductivity, electronic properties
(Schwierz 2010), high surface area (2600 m2/g), modulus (1Tpa), and optical
transparency (Xiao et al. 2014). Being expensive and having difficult production
techniques but owing to its supreme property efforts are being made to search for
inexpensive approaches to synthesize graphene. Graphene oxide (GO) a single
atomic layered compound is one such material. It is formed from graphite oxidation.
Hofmann’s Hummer’s and Staudenmaier’s are well-known generalized synthesis
methods for graphene (Novoselov et al. 2012). In recent years, chemical vapor
deposition (CVD) (Singh and Vidyasagar 2014) and chemical exfoliation was
adopted for graphene and its derivatives (Somanathan et al. 2015). These synthesis
methods form high-quality graphene but high temperature, application of toxic
chemical agents and expensive substrates are their main drawbacks. According to
this study, the cost of accessible GO/gram is around $200. To overcome such issues,
researchers were focusing to develop a new strategy for GO synthesis from agro-
waste, which is eco-friendlier and more cost-effective (Du et al. 2012). Sugarcane
bagasse was oxidized directly under the muffled atmosphere for the synthesis of GO
and this method was termed as SOMA-GO (Somanathan et al. 2015). Group of
researchers Omid et al. (2014) and Rajesh et al. (2016) reported the production of
GO and reduced graphene oxide sheets of excellent quality from wastes of bagasse,
fruit, leaf, and wood. Rice husk (as an agro-waste) was also used to produce
graphene by adopting calcination and chemical activation due to its abundant
existence (Muramatsu et al. 2014).
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8.4.2 Silica Nanoparticles (SiO2 NPs)

Silica (SiO2) which is found in natural state exists in two forms (a) crystalline and
(b) amorphous forms. Demand for amorphous silica is more as it has vast application
in industrial and electronics field because it is a good semiconductor and they are
nontoxic and possess a large surface area. Stober method, sol–gel, and thermal
decomposition are different known methods for the formation of amorphous silica
(Gu et al. 2015; Sun et al. 2016). Studies by Karimi and Mohsenzadeh (2016) show
that SiO2 NPs have the potential to increase crop yield thus can be used effectively in
the agriculture field. The chemical synthesis procedure requires toxic, harmful, and
expensive chemicals (Suriyaprabha et al. 2014). So, a number of methodologies are
designed and developed for using agro-wastes for synthesizing SiO2 NPs. Literature
reports the production of SiO2 NPs using different agro-wastes, e.g., rice husk, corn
hub, and other plant sources (Kamath and Proctor 1998; Hariharan and Sivakumar
2013; Mohanraj et al. 2012). Wheat straw is a good substrate for silica synthesis as it
is composed of silica greater than 70%.

Rice husk (a predominant agro-waste after rice processing) obtained from rice, a
second major crop worldwide earlier was used as an additive for fuel and fertilizer
(Mohammadinejad et al. 2016). SiO2 composition ranges between 90 and 97% in
rice husk hence it is considered as the best available source for the SiO2 NPs
synthesis. Hassan et al. (2014) used sol–gel technique for the synthesis of SiO2

NPs. Similarly, Ghorbani et al. (2015) uses rice husk after pretreatment by
hydrochloric acid for the production of SiO2 NPs and the results show that 97%
pure silicon was obtained.

After rice, corn ranks third worldwide in quantity generation after processing for
silica nanoparticles production; Okoronkwo et al. (2016) study concludes that 47%
of silica was composed in corn cob ash. Qadri et al. (2015) in their study used a
residue of corn for the synthesis of nanoparticles and nanorods and concluded that
the yield of pure silica was 97%.

Bagasse ash, an agro-industrial waste is used widely for power generation;
leftover ash from burning is composed of large proportions of silica. Sana et al.
(2014) for SiO2 NPs formation used bagasse ash of sugar beet using laser ablation-
mediated technique. Manjula-Rani et al. (2014) demonstrated the experiment for
SiO2 NPs formation by hydrolysis and alkali precipitation of cow dung ash and
reported cent percent silica nanoparticles formation.

8.4.3 Carbon Nanomaterials (CNP)

Carbon is the sixth most abundant nonmetallic element of second period and belongs
P block in periodic table. Graphite, diamond, and C-60 are its three elemental forms.
CNPs are known for its applications in batteries and supercapacitors in form of good-
performance electrode substances (Wen et al. 2014). CNPs have wide applications in
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the field of cancer treatment. An engineered CNP also has vast usage in electrical,
mechanical, thermal, and optical sectors (Srivastava et al. 2015). CVD is a well-
known technique to form Carbon nanomaterial at large-scale industrial scale. In
India, nearly 400 tons of agro-waste are generated from bagasse, coconut shell, rice,
etc., that could produce enormous amounts of carbon particles and so it is cost-
effective potential source for the mass production of carbon nanomaterial. Table 8.2
enlists various types of nanoparticles derived from agro-waste.

8.5 Synthesis of Biofuel by Biomass: Renewable
Technologies

Firstly, to convert biomass to biofuel, lignocellulose refined biomass used as a
source is converted to hydrocarbon biofuel. Gasification and Liquefaction are two
ways to bring conversion from biomass to biofuel. Thermochemical processes, an
effective technology was followed to produce synthesis gas by gasification or
bio-oils by pyrolysis, or by the hydrolysis route (Bridgwater 2012).

8.6 Reaction Mechanism for Biodiesel Production

Biodiesel is produced via esterification and transesterification/alcoholysis process. In
transesterification process oils or triglyceride (TG) (edible or nonedible) along with
alcohol undergoes nucleophilic reaction to form FAME and by-product as glycerol.
The process includes three reversible reactions: Step 1: formation of diglyceride
from triglyceride, Step 2: formation of monoglyceride from diglyceride, and Step 3:
conversion of monoglyceride to glycerol. In each conversion step, an ester is formed
thus it can simply say that three ester molecules are produced from one TGmolecule.
The transesterification reaction converts a triglyceride into biodiesel efficiently.
However, in the esterification reaction, for a cent percent conversion of free fatty
acids, it is essential to carry out a reaction using alcohol and carboxylic acids to form
biodiesel. Both these reactions are carried out in two steps. Firstly, via esterification
reaction conversion of high FFA content of vegetable to esters (FAME) takes place
in ambience of acid catalyst, and then transesterification reaction to produce FAME
from triglycerides using a basic catalyst (Changmai et al. 2020). Thus, the impor-
tance of catalysts in the synthesis of biodiesel was highlighted and the selection of
suitable catalysts for this particular application will greatly enhance the reaction rate
thereby increasing the biodiesel yield.
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8.7 Enhancement in Biomass Conversion: Use
of Nano-Catalysts

Waste edible oil, a known biomass source, an effective and useful substitute is used
widely for the synthesis of biofuel. Transesterification is an effective process for
biofuel synthesis by waste vegetable oil using different quantities of catalyst.

Heterogeneous catalysts are widely used over homogeneous catalysts for biodie-
sel production because of its reusability due to easy separation and eco-friendly
nature (Arzamendi et al. 2007). Marciniuk et al. 2014, report CaO, Salinas et al. 2016
report SrO, and MgO was reported by Yahya et al. 2016 as heterogeneous base
catalyst but major drawbacks associated with them is the requirement of high
temperature and pressure, also they have low performance when compared to
homogeneous catalysts. Moreover, catalyst deactivation due to coking, sintering,
and poisoning is one of the main problems (Yatish et al. 2020b). In comparison to
bulk catalysts, the use of nano-catalyst can produce biofuel under moderate operat-
ing conditions. Owing to the large ratio of surface to volume makes nanoparticles an
excellent potential catalyst compared to bulk materials. Research studies report that
to enhance the products’ quality, the development of a new catalyst with excellent
catalytic activity is necessary.

Use of catalysts in biofuel synthesis not only enhances the gasification methods to
increase the production of syngas but at the same time retards the tar formation.
Excellent catalytic activities due to high specific surface of nano-catalyst have
circumvented the limitations faced while using heterogeneous catalysts and also
the use of nano-catalysis reduces corrosion problems. The use of “a green” method
for heterogeneous nano-catalysts leads to a reduction in production costs by increas-
ing the reusability property of the catalyst. Akia et al. (2014) reported the synthesis
of iron nano-catalyst from Pongamia pinnata and produces biodiesel from the same
plant oil and methanol. The synergistic effect of using nano-catalysts includes tar
content reduction and improving the product quality as well as conversion efficiency
(Akia et al. 2014). Nanomaterials of Copper, Gold, Iron, Nickel, Silver, and Tita-
nium had the potential to improve the yield of biohydrogen via different biological
routes such as bio-photolysis, dark- and photo-fermentation (Lin et al. 2016a, b).
Also, nanomaterials during fermentation, play the role of oxygen scavenger thus
decreasing the oxidation-reduction potential thereby developing a suitable anaerobic
environment so that hydrogenase enzyme can improve the biohydrogen yield
(Taherdanak et al. 2015). The other advantageous feature of using a nanomaterial
is that it improves the lignin removal from lignocellulosic biomass when employed
in the pretreatment step and thus speeding up the entire process as well as improving
the sugar yield (Ladole et al. 2017; Wei et al. 2015). Moreover, for efficient
hydrolysis, nanomaterial’s presence affects the pH and thermal stability of enzymes
(Bilai et al. 2018).
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8.8 Green Synthesized Nano-Catalyst for Biofuel
Production: Application

Yadav et al. 2019 in their research adopted green approach for silver doped ZnO
nanoparticles (NPs) preparation using an extract of turmeric root. Characterization of
X-Ray Diffraction reveals 45 nm crystallite size particle and photo images of
Scanning Electron Microscopy depict spherical shaped but agglomerated. X-Ray
Photoelectron Spectroscopy analysis concludes the state of Ag is metallic and ZnO
has a Wurtzite structure. Utilization of synthesized Ag-doped ZnO nanoparticles as
catalyst in the esterification of Terminalia belerica oil for biodiesel synthesis shows
214 mmolg-1 h-1 of hydrogen evolution hence reveals a prominence material
toward biodiesel application. Production and purification of biodiesel was schemat-
ically represented in Fig. 8.4.

The article by Yadav et al. (2018a, b) demonstrated the experiment for doped
ZnO nanoparticles with trivalent dysprosium ions (Dy3+) formation using E. tirucalli
plant (Euphorbiaceous family) latex by green combustion technique as it has the
advantageous characteristics of being economical, more production. The character-
ization analysis results suggest that the particle size ranges bewteen 30 and 38 nm
and were having a wurtzite hexagonal structure. The size may vary depending upon
the concentration of latex taken. The synthesized ZnO: Dy3+ as catalytic agent
resulting in 84.1% of biodiesel production was reported in the transesterification
process.

ZnO nanoparticle without any doping also finds its suitability in biodiesel pro-
duction. Raghavendra and his coauthor published the application of ZnO particle for
biodiesel production in the year 2017. Their study reports the treatment of zinc

Fig. 8.4 Biodiesel pathway: Production and Separation
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nitrate using extract obtained from the seed of Garcinia gummi-gutta, a reducing
agent by combustion technique for the formation of multifunctional ZnO
nanoparticles (NPs). The formed 10–20 nm sized ZnO NPs show
photoluminescence (PL), and antioxidant properties. The reaction results reveal
biodiesel yield was slightly above 80% and other significant properties such as
acid value, carbon residue, density, copper strip corrosion, flash point kinematic
viscosity, and calorific value when compared with the data of ASTM standards
predicts an excellent product quality.

Yatish et al. (2020a) use a catalyst comprised of Copper oxide nanoparticles
(CuO NPs) for biodiesel. The study demonstrated the leaves and seeds (reducing-
cum-fuel agent) of Terminalia chebula plant commonly called as black- or chebulic
myrobalan proves to be economical and cost-effective for CuO NPs formation, a
heterogeneous catalyst via combustion method. The characterization results of CuO
NPs reveal 100 nm sized diameter has a monoclinic structure and rod-like morphol-
ogy. The study also concludes with 97.1% yield of T. chebula methyl ester (TCME)
at molar ratio of (CH3OH to oil) 9:1 and catalyst loading of 3 wt.% for 60 min at 60 °
C. The reusability experiment proves good catalytic stability of CuO NPs when used
four times in a cycle and negligible yield whereas the kinetic study analysis predicts
pseudo-first order reaction. Herein other significant properties when compared with
ASTM standards predicts an excellent product quality.

Yatish et al. 2020b also reported the use of calcium titanate (CaTiO3 NPs), a
synthesized nanoparticles by combustion synthesis (SCS) for biodiesel production
using Ochrocarpus longifolius leaves extract. The synthesized nano-catalyst was
used in biodiesel synthesis from dairy waste scum oil (DWSO). CaTiO3 NPs (15 nm
size) using RSM (Response Surface Methodology) an optimization tool predicts the
highest yield of 97.7% at operating condition of molar ratio of 9:1 (methanol to
DWSO), 1.80 wt% nano-catalyst loading for 45 min at 65 °C and 650 rpm stirring
speed. The reusability test depicts good catalytic stability of CaTiO3 NPs up to five
cycles with a small amount of loss in yield. Herein also pseudo-first order reaction fit
well according to the kinetic study for biodiesel synthesis.

In another investigation carried out by Correia et al. 2017 CaO was derived from
natural quail eggshell and act as an effective catalyst to give biodiesel using
sunflower oil via transesterification. Calcination was done at 900 ° C for 3 to modify
the structural change to enhance the nano-catalyst activity. The experiment carried
out at a molar ratio of 1:10.5 (sunflower oil/methanol), 2 wt. % nano-catalyst loading
for 2 h at 60 °C and at 1000 rpm produces excellent production of 99.00 ± 0.02 wt.
%.

The MnO2 nanoparticles also show a potential application in the field of biofuel
generation. Stegarescu et al. 2020, used MnO2 catalyst to enhance
transesterification’s reaction rate for biodiesel production. The particle was synthe-
sized using the dry leaf of Origanum vulgare (Rosmarinus officinalis, oregano) and
Artemisia dracunculus (tarragon) which act as reducing agent to reduce Mn7+ in
KMnO4 to Mn4+ state to form MnO2 NPs as a final product. The transesterification
reaction rate was enhanced via microwave-assisted using grapes residues and seeds
in the ambience of MnO2 nano-catalyst to obtain biofuel. The results conclude that
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Fig. 8.5 Schematic representation of MnO2 particle formation and biofuel production

the surface area of biochemically synthesized MnO2 nanoparticles was four times
higher when compared with the chemically synthesized particles. Among the three
leaves, MnO2 nanoparticles obtained from Rosmarinus Officinalis, oregano presents
the best catalytic activity in biodiesel production. The results concluded a 3.5 times
improvement in that reaction rate in presence of MnO2-oregano nano-catalyst.
Figure 8.5 represents the particle synthesis for biofuel production.

Salam et al. 2020 had done a comparative study using synthesized calcite (CaCO/
CaCO3) nano-catalysts formed by two different known routes namely, sol–gel and
thermal method from eggshell. Biodiesel yield of 93 and 98% were evaluated using a
catalyst prepared from thermal and sol–gel method, respectively. Reusability test
demonstrated a yield of 88% in presence of catalyst from thermal method while sol–
gel derived catalyst gives a yield of 81% only. Furthermore, efficiency of the
produced biodiesel was evaluated from the Cetane Index (CI) and the results
suggested a range of 45–54, which gives an indication that CaCO/CaCO3 nano-
catalyst is potentially a good candidate to produce biodiesel from cooking oil
efficiently. This report justifies the benefits of using a green catalyst (CaO (thermal
method) derived from the eggshells) for generating alternative green diesel for its
efficient performance in the application of diesel-powered engine.

8.8.1 Magnetic Nano-Sized Materials

To enhance the production efficiency along with a reduction in energy consumption
in the production process, rapid recovery and catalyst reusability after the reaction is
a significant parameter for sustainable process management. The utilization of green
synthesized magnetic nanoparticles is an effective approach for segregation of
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heterogeneous catalysts and reusing. The integrated approach of using a magnetic
catalyst and low-cost biomass feedstocks for the synthesis of biodiesel has received
great attention (Wang et al. 2020a, b). This integrated approach leads to reduction in
production cost and minimization of waste generation thus providing a promising
approach toward biodiesel production using green catalytic processes for large-scale
synthesis.

Commonly known ferromagnetic materials are Fe, Fe3O4, γ-Fe2O3, Co, and Ni
(Wang et al. 2020a, b), after suitable modification and functionalization, retain the
magnetic properties and at the same time allow quick and easy separation ability
without compromising their performance and reusability. Magnetic CaO and ZnO
show excellent catalytic performance giving biodiesel production yield >91%.
According to Baskar and Soumiya (2016) transesterification reaction was carried
out between ferromagnetic ZnO nanocomposites prepared via the coprecipitation
method and castor oil as raw material. Under the optimal conditions, FAME yield
was greater than 90% and at the same time the catalyst remains active under mild
conditions due to the nanostructure of the catalyst. Similarly, Salimi and Hosseini
(2019) using the coprecipitation method produce a cheap composite of ZnO/BiFeO3

nano-catalyst and catalyses rapeseed oil via transesterification process to produce
biodiesel.

Several studies have also reported carbon-based magnetic nanoparticle synthe-
sized via green route in the biofuel application. Zhang et al. (2015) demonstrated the
synthesis of Na2SiO3@Ni/C catalyst using a bamboo powder via precipitation and
thermal decomposition followed by loading of Na2SiO3. The synthesized catalyst
has super magnetic property (15.7 emu/g) due to nickel as this will accelerate
separation rate and good alkalinity (3.18 mmol/g) from Na2SiO3 which will promote
the transesterification reaction rate. Zhang et al. (2017a, b) also use Jatropha curcas
shell to synthesize carbon solid base (Na2SiO3@Ni/JRC), a magnetic catalyst. Their
study reported a biodiesel yield of 96.7%. Also, the recovery rate of catalyst was
>85% and even after rinsing with ethanol and reusing it 10 times, the catalyst
regains its activity.

Magnetic sulfonic acid, a carbon-based catalyst prepared via hydrothermal route
is also receiving attention by the researchers because of its numerous advantages.
Zhang et al. (2015) make use of glucose and ferric chloride to synthesize carbonized
catalyst by hydrothermal precipitation method at a temperature of 180 °C followed
by pyrolysis and then sulfonation at 400–800 °C and 150 °C, respectively. The
obtained results show acid content in catalyst is 2.79 mmol/g and possess magnetism
(14.4 emu/g) which ultimately produces a good yield of biodiesel production from
Jatropha oil without losing its catalytic efficiency even after using it thrice. The work
by Liu et al. (2015) used waste banana peel to synthesize the same catalyst for its
wide application and research value. A comparative study concludes that the catalyst
activity of sulfonated activated carbon was excellent than commercialized
Amberlyst-15. Zhang et al. (2017a, b) prepared a composite of carbon/Fe3O4 of
size less than 20 nm from the Jatropha curcas shell. Synthesized catalyst possesses
acid content and magnetism of 2.69 mmol/g and 40.3 emu/g, respectively. Similarly,
Ibrahim et al. (2019) prepared a bio-based catalyst by sulfonation with a char as a
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precursor composed of an empty fruit bundle. The developed magnetic catalyst
shows the highest acidity (29.52 mmol/g). List of other green synthesized nano-
catalyst for biodiesel application is illustrated in Table 8.3.

8.9 Future Prospects

In our contemporary society, low energy savings is a major problem and therefore it
becomes crucially important to switch to renewable energy to reduce the consump-
tion of conventional fossil fuels. Biomass-based fuel such as “biodiesel” production
is considered as a sustainable and viable substitute but extensive investigation is
required for its commercialization including long-term application. Advances have
been implemented to enhance biodiesel yield through the use of different types of
catalysts as they play an important role in the catalytic reaction of biodiesel because
of their efficient catalytic activity. In the series of different advancement, employing
nano-catalyst in the biodiesel production technology field is an advanced and
effective approach. Numerous literatures have demonstrated that during the reaction,
nano-catalyst application significantly improves biodiesel production. However, the
yield and purity involved in the synthesis of nanomaterials via green route synthesis
seem to be one of the major hurdles to its potential application in biodiesel produc-
tion. Another drawback of this technology is the low recyclability and reusability of
the nanomaterials, utilized at each step as this will have a negative impact on the cost
economy. Nevertheless, it is also reported and anticipated that the use of nano-
catalyst synthesized from biomass waste in biodiesel production overcomes the
limitations persisting in biological routes for production. Further exploration needs
to be done to understand the mechanisms and resolve issues of the synthesis step to
make it more viable and economical.

Low-cost, easily recyclable nano-catalyst is an important direction for future
research. At the same time research on scale-up is still existing in its preliminary
stage and more research is needed on the use of continuous reactors.

8.10 Conclusion

The unstoppable population rise and industrial globalization worldwide has a direct
impact on increases in demand for petroleum fuels. Research and development for
sustainable renewable fuel become the center of attraction taking into account the
limited resources of fossil fuels. In this context, the production of FAME from
different renewable sources shows a promising pathway. Among different methods
proposed for biodiesel production, transesterification is considered as a priority
choice and makes use of catalysts that may be homogeneous or heterogeneous.
Although the use of homogeneous catalysts is effective when considering biodiesel
production rate, certain limitations persist such as wastewater generation due to
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Table 8.3 Nano-catalyst: Green approach for synthesis and its application in production of
biodiesel

Nano-
catalyst Source Oil feedstock Results References

MgO Ziziphus
mauritiana
leaves

Ziziphus
mauritiana seeds
oil

Particle shape and size: spongy,
spherical, and hedgehog and 20
± 10-nm
Biodiesel: Ester content—98.2%,
Kinematic viscosity—3.7 mm2/s
at 40 °C, flashpoint, cloud and
pour points—98 °C, 0 °C, and-
5 °C, Cetane Number-54

Saman
et al.
(2021)

CaO Cockle shells Palm oil Particle Property: Surface Area,
pore volume, and diameter are
13.9113 m2/g, 0.0318 cm3/g,
33.17 nm, respectively
Biodiesel: Yield—94.13%
Utilization of the green nano CaO
catalyst significantly reduced
activation energy to 3786.69 J/
mol and accelerating the reaction
rate to 27.3% fatty acid methyl
ether (FAME) yield/h

Chooi
et al.
(2021)

Nickel
oxide

Ficus elastic
extract

Brachychiton
populneus seed
oil (BPSO)

Particle property: 22–26 nm in
diameter and spherical-cubic in
shape
Biodiesel: Yield 97.5% at an
optimum value of oil to methanol
1:9 ratio, catalyst—2.5 wt%, and
85 °C as reaction temperature

Dawood
et al.
(2021)

CaO/
Au
(III)

Eggshell Soyabean oil Particle property:
Rod-shaped with microchannel;
Au particle size ranges between
2 and 4 nm
Biodiesel: Yield 88.9% obtained
at the optimum condition of oil to
CH3OH 1:12, catalyst weight—
1 wt%, 70 °C as reaction temper-
ature and retains its activity when
recycled and reused 5 times

Liu et al.
(2022)

ZnO Razma seeds Pongamiapinnata
oil

Particle shape and size: Struc-
ture: Hexagonal wurtzite size:
30–35 nm
Biodiesel: Yield 84.5%,
Viscosity—5.1 mm2/s, flashpoint
points—168 °C

Yadav
et al.
(2018a, b)

CuO Centella
Asiatica

Coconut oil Particle crystallite size—40 nm
having small spherical flower
shape
Biodiesel: Maximum FAME
conversion was 78.58%

Varghese
et al.
(2017)
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Table 8.3 (continued)

Nano-
catalyst

CaO-
based/
Au

Eggshell, Mus-
sel shell, Cal-
cite, and
Dolomite

Sunflower oil Biodiesel: Yield 96.055%,
96.026%, 97.586, and 94.311%
using catalyst synthesized from
egg, mussel shell, calcite, dolo-
mite, respectively. Achieved oil
conversion 90–97% optimum
value of oil to CH3OH ratio 1:9,
catalyst weight—3 wt%, 65 °C as
reaction temperature

Bet-
Moushoul
et al.
(2016)

unreacted chemicals along with high energy consumption adding cost to the pro-
duction process. Thus, it becomes essential to develop efficient catalysts, so in this
context nanotechnology, the most emerging branch of science gives new hope for
having promising applications in the catalysis field. It was also reported that syn-
thesized nano-catalyst have the capability to meet the condition as desired for
applications, and can circumvent the issues related to conventional catalysts. Lastly,
it can be concluded that nano-catalysts can be recovered easily and reused without
compromising their efficiency using simple and cheap conventional filtration and
centrifugation techniques.

In recent years, nanomaterials through recycling from waste resources or
biomass-derived has drawn attention since the materials can be generated via easy
and economical ways. In this chapter, we provided insights into the synthesis of
nano-catalyst from various biomass waste but being the smallest size particle,
difficulty in recycling is the major disadvantage associated with it. The introduction
of magnetic nanoparticles can overcome the problem of recycling and promotes easy
recovery by using a magnetic field thereby reducing the overall cost. Literature
studies imply that the rate of biodiesel production enhances when using nano-
catalyst. This property of the new nano-catalysts will be a milestone to produce
biodiesel in an economical and eco-friendly manner. Nevertheless, the developments
of homogeneous, heterogeneous, and nano-catalysts give a promising future but still
more efforts are to be made to develop more effective and cheap catalysts with high
catalytic efficiency.
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