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Abstract. This paper details a new distributed consensus algorithm for
second-order multi-agent systems with position constraints on general
directed graphs. The developed algorithm has the attractive property
of adapting to nonuniform communication delays and relies on minimal
information from neighboring agents, namely their positions. We demon-
strate that all agents reach consensus with the developed distributed
algorithm without violating constraints while ensuring the boundedness
of all closed-loop signals. Simulations are performed to illustrate and
validate the algorithms.
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1 Introduction

Distributed consensus in dynamical multi-agent systems involves driving certain
variables of all agents to a common value [1,2]. While great progress has been
made in consensus methods for first-order integrators, there is still a lack of
designing consensus algorithms for uncertain nonlinear dynamics that can endow
real-life robotic teams with the expected autonomy.

For heterogeneous multi-agent systems with unknown inertias, a class of
distributed consensus algorithms is presented through establishing connections
between directed and undirected graphs in [3]. Moreover, for linear agents
with matching uncertainties and second-order agents with mismatched uncer-
tainties, a model reference adaptive consensus scheme is provided on general
directed graphs in [4]. Subsequently, considering the unknown control direc-
tions, Nussbaum-based and nonlinear proportional-integral-based consensus con-
trol approaches are designed for first- and second-order agents in [5,6]. However,
these works focus on the canonical consensus control issue and ignore the actual
constraints of the agent.
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There are many robotics systems whose operating environment or safety
specifications inherently limit their position to a certain range. By employ-
ing logarithmic barrier functions and projection-based operators, consensus in
a continuous-time system with a state constraint is achieved in [7,8]. Never-
theless, only linear multi-agent systems are considered in these aforementioned
works. For nonlinear multi-agent systems, distributed controllers are developed
to achieve asymptotic consensus and ensure that output constraints are satis-
fied in [9–11]. For uncertain multi-agent systems, all the above consensus results
impose the assumption of zero communication delay, even though in most prac-
tical situations this assumption is violated. Recently, the communication delay
in nonlinear systems has also been considered in solving the formation control
problem of unmanned aerial vehicles [12], attitude synchronization of spacecraft
formation [13], and the synchronization of Euler-Lagrange systems [14–16]. In
[17], a proportional and delayed integral consensus error variable is proposed
to recast the original consensus control problem into a regulation control prob-
lem and thereafter employed the standard backstepping technique to handle the
consensus problem of higher-order nonlinear agents with communication delays.

This work investigates the consensus problem of second-order nonlinear
multi-agent systems subject to communication delays and position constraints.
The communication topology is assumed to contain a directed spanning tree
and that all agents can only receive the delayed information of their neighbors.
A new adaptive controller is proposed by designing continuously differentiable
reference output and auxiliary error variables. We show that with the proposed
distributed algorithm, the asymptotic consensus is achieved in the presence of
nonuniform communication delays and the position constraints are satisfied at
all times.

2 Preliminaries and Problem Statement

2.1 Interconnection Graph

A weighted directed graph G = (V, E ,A) is used to describe the interconnection
topology between the n agents, where the node set is V = {1, . . . , n}, the edge
set is E ⊆ V×V, and the weighted adjacency matrix A = [aij ] ∈ R

n×n associated
with G is defined by aij > 0 if (j, i) ∈ E ; in addition, aij = 0 if (j, i) /∈ E . Here, an
edge (i, j) ∈ E indicates that node j has access to the information of node i but
not vice versa, and node i is called a neighbor of node j. We say that a directed
graph has a directed spanning tree if there exists at least one node such that the
node has directed paths to all other nodes in G. We define the Laplacian matrix
L ∈ R

n×n corresponding to G as L = D − A, where D = diag{d1, . . . , dn} is the
in-degree matrix with di =

∑n
j=1 aij .

3 Problem Formulation

A multi-agent system with n agents is considered. The ith agent has the form

ẋi = vi + θ�
i ϕi,1(xi), i = 1, . . . , n

v̇i = ui + θ�
i ϕi,2(xi, vi)

(1)
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xi ∈ R, vi ∈ R, and ui ∈ R denote position, velocity-like state, and control
input of agent i, respectively. θi ∈ R

pi are uncertain dynamic parameters, and
ϕi,1, ϕi,2 ∈ R

pi represent known vectors of smooth nonlinearities. The position
xi is required to satisfy k < xi(t) < k̄ for all t ≥ 0, where k and k̄ represent the
predefined position constraints.

The control objective is to present a new control algorithm for agents (1) that
depends solely upon their states, position constraints, and the delayed neighbor-
ing agents’ positions such that (i) consensus among the n agents can be reached
asymptotically, i.e., limt→∞(xi(t) − xj(t)) = 0, and (ii) the position constraint
for each agent is not transgressed, i.e.,

k < xi(t) < k̄,∀t ≥ 0 (2)

for all i, j = 1, . . . , n.

4 Consensus Control with Communication Delays

4.1 Controller Design

The controller design and convergence analysis for the uncertain nonlinear multi-
agent system (1) with nonuniform communication delays and position con-
straints is given in this section. Define γi = ln(xi −k)− ln(k̄ −xi). We construct
a dynamic system for agent i to yield a reference output using the delayed infor-
mation of the neighboring agents as:

żi,1 = −λi,1(zi,1 − zi,2) (3)

żi,2 = −λi,2

n∑

j=1

aij(zi,2 − γj(t − τij)) (4)

where τij ≥ 0 denotes the communication delay from agent j to agent i for
(j, i) ∈ E , λi,p > 0 for p = 1, . . . , m, and γj(t−τij) is set to zero for all 0 ≤ t ≤ τij .

Next, we consider the following auxiliary error for agent i:

ei,1 = (γi − zi,1) +
∫ t

0

(γi(σ) − zi,1(σ))dσ (5)

which, in view of (1) and (3), satisfies

ėi,1 =
(k̄ − k)

(xi − k)(k̄ − xi)
(vi + θ�

i ϕi,1) + (γi − zi,1) + λi,1(zi,1 − zi,2)

=
(k̄ − k)

(xi − k)(k̄ − xi)
(ei,2 + vi,d + θ�

i ϕi,1) + (γi − zi,1) + λi,1(zi,1 − zi,2)(6)

where vi,d represents the desired velocity and ei,2 = vi − vi,d. We select the
desired velocity vi as

vi,d = −mi,1ei,1 − θ̂�
i ϕi,1 − (xi − k)(k̄ − xi)

(k̄ − k)
((γi − zi,1) + λi,1(zi,1 − zi,2)) (7)
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where mi,1 > 0 and θ̂i is an estimator of the unknown parameter θi. We define
a Lyapunov function candidate at this step as Vi,1 = 1

2e2i,1 + 1
2 θ̃�

i Υ−1
i θ̃i with

θ̃i = θi − θ̂i being the parameter estimation error and Υi ∈ R
ri×ri a positive

definite matrix. Clearly, we can verify from (6) and (7) that

V̇i,1 = ei,1ėi,1 + θ̃�
i Υ−1

i (− ˙̂
θi)

=
−mi,1(k̄ − k)e2i,1
(xi − k)(k̄ − xi)

+ θ̃�
i Υ−1

i (Υi
(k̄ − k)ei,1ϕi,1

(xi − k)(k̄ − xi)
− ˙̂

θi)

+
(k̄ − k)

(xi − k)(k̄ − xi)
ei,1ei,2. (8)

By virtue of (3) and (7), the dynamics of ei,2 satisfy

ėi,2 = ui + θ�
i ϕi,2 − v̇i,d

= ui + θ�
i ϕ̄i,2 − βi (9)

with ϕ̄i,2 = ϕi,2 − ∂vi,d

∂xi
ϕi,1 and βi = ∂vi,d

∂xi
vi + ∂vi,d

∂θ̂i

˙̂
θi + ∂vi,d

∂zi,1
żi,1 + ∂vi,d

∂zi,2
żi,2

involving only known variables. Choose the Lyapunov function as

Vi,2 = Vi,1 +
1
2
e2i,2.

Differentiating it with respect to (9) and noting (8) lead to

V̇i,2 = −mi,1

(k̄ − k)e2i,1
(xi − k)(k̄ − xi)

+ θ̃�
i Υ−1

i (Υi
(k̄ − k)ϕi,1ei,1

(xi − k)(k̄ − xi)
− ˙̂

θi)

+
(k̄ − k)

(xi − k)(k̄ − xi)
ei,1ei,2 + ei,2(ui + θ�

i ϕ̄i,2 − βi). (10)

The control input is thus defined as

ui = −mi,2ei,2 − θ̂�
i ϕ̄i,2 − (k̄ − k)ei,1

(xi − k)(k̄ − xi)
+ βi (11)

with mi,2 > 0. One can show that

V̇i,2 = −mi,1

(k̄ − k)e2i,1
(xi − k)(k̄ − xi)

− mi,2e
2
i,2

+θ̃�
i Υ−1

i (Υi
(k̄ − k)ϕi,1ei,1

(xi − k)(k̄ − xi)
+ Υiϕ̄i,2ei,2 − ˙̂

θi). (12)

Selecting the adaptive law for θ̂i as

˙̂
θi = Υi(

(k̄ − k)ϕi,1ei,1

(xi − k)(k̄ − xi)
+ ϕ̄i,2ei,2) (13)

we have the following results.
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Theorem 1. Consider the nonlinear multi-agent system (1) with communica-
tion delays and position constraints, and suppose that G contains a spanning tree
and that the delays are time-invariant and finite. The distributed controller (11)
with the dynamic system (3) and the parameter estimate (13) guarantees that all
agents can reach consensus, i.e., limt→∞(xi(t)−xj(t)) = 0 for all i, j = 1, . . . , n
and that the position constraint is not transgressed, i.e., −k < xi(t) < k̄ for all
t ≥ 0.

Proof. Substituting the adaptive control law (13) into (12) results in V̇i,2 =

−mi,1
(k̄−k)e2

i,1

(xi−k)(k̄−xi)
− mi,2e

2
i,2. This, together with the definition of Vi,2, leads to

ei,1, ei,2 ∈ L2 ∩ L∞ and θ̃i ∈ L∞. Noting that θi is a constant vector, one can
further conclude that θ̂i ∈ L∞. Since ei,1 is a linear stable differential operator
acting on

∫ t

0
(γi(σ) − zi,1(σ))dσ, we have (γi − zi,1),

∫ t

0
(γi(σ) − zi,1(σ))dσ ∈ L∞.

Using (3), it can be deduced that

żi,2 = −λi,2

n∑

j=1

aij(zi,2 − zj,1(t − τij))

+λi,2

n∑

j=1

aij(γj(t − τij) − zj,1(t − τij)). (14)

Applying the Laplace transformation to (3) and (14) results in

sZi,1(s) = −λi,1(Zi,1(s) − Zi,2(s)) + zi,1(0)

sZi,2(s) = −λi,2

n∑

j=1

aij(Zi,2(s) − e−τijsZj,1(s))

+zi,2(0) + λi,2

n∑

j=1

aijZ
∗
ij(s) (15)

Zi,1(s) = L[zi,1(t)], Zi,2(s) = L[zi,2(t)], and Z∗
ij,0(s) = L[γj(t − τij) − zj,1(t −

τij)] denote the Laplace transform of zi,1(t), zi,2(t), and (γj(t − τij) − zj,1(t −
τij)), respectively, and s is the Laplace variable. Define the column vector z =
[z�

1 , z�
2 ]� with z1 = [z1,1, . . . , zn,1]� and z2 = [z1,2, . . . , zn,2]�, Z(s) = L[z(t)],

and the matrix

Q =
[

Λ1 −Λ1

−Λ2A Λ2D

]

(16)

with Λ1 = diag{λ1,1, . . . , λn,1}, Λ2 = diag{λ1,2, . . . , λn,2}, D and A being,
respectively, the in-degree and adjacency matrices of G. Consequently, (15) can
be reformulated with the following compact form:

sZ(s) = z(0) − (M − T )Z(s) + B(s) (17)
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where M = diag{q1, . . . , q2n} with qi being the ith diagonal element of matrix Q,

B(s) = [0�
2(n−1), 1

�
n ((Λ2A)�Z∗

0 (s))�]�, T = (M−Q)�
[

1n×n 1n×n

W 1n×n

]

∈ R
2n×2n,

τij = 0 for each (j, i) /∈ E , and

Z∗
0 (s) =

⎡

⎢
⎢
⎢
⎣

0 Z∗
12,0(s) . . . Z∗

1n,0(s)
Z∗
21,0(s) 0 . . . Z∗

2n,0(s)
...

...
. . .

...
Z∗

n1,0(s) Z∗
n2,0(s) . . . 0

⎤

⎥
⎥
⎥
⎦

∈ R
n×n

W =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 e−τ12s · · · e−τ1ns

e−τ21s 0 · · · e−τ2ns

...
...

. . .
...

e−τ(n−1)1s e−τ(n−1)2s · · · e−τ(n−1)ns

e−τn1s e−τn2s · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
n×n.

Defining the transfer function matrix G(s) = (sI2n + M − T )−1, one can
deduce from (17) that

Z(s) = G(s)(z(0) + B(s)). (18)

Performing elementary row operations, we have rank(Q) = 2n−1. Hence, we can
conclude from [2] that these 2n agents must interact on an interconnection graph
containing a spanning tree, which, together with [15], yields that all the poles
of G(s) excluding the simple zero pole are in the open left half plane. Recalling
∫ t

0
(yi(γ) − zi,1(γ))dγ ∈ L∞ and applying [14, Prop. 1] to (18) lead to z ∈ L∞.

Keeping in mind the dynamics of z given in (3), we know that γi, żi,1, żi,2 ∈ L∞.
Thus, there exists a constant γ∗

i > 0 such that |γi(t)| ≤ γ∗
i , ∀t ∈ [0, tf ). Applying

the antilog of γi, we obtain that

k < ki ≤ xi(t) ≤ k̄i < k̄,∀t ∈ [0, tf ) (19)

where ki = k̄e−γ∗
i +k

e−γ∗
i +1

and k̄i = k̄eγ∗
i +k

eγ∗
i +1

. It then follows from (7) and θ̂i ∈ L∞ that
vi,d ∈ L∞, which together with the boundedness of ei,2 ensures vi ∈ L∞. One
can finally come to a conclusion that ui ∈ L∞.

In the following, the asymptotic consensus between agents is demonstrated.
From (6) and (9), one has ėi,1, ėi,2 ∈ L∞ for i = 1, . . . , n. Combining this with
ei,1, ei,2 ∈ L∞ ∩L2, Barbalat’s lemma can be used to show that limt→∞ ei,1(t) =
0 and limt→∞ ei,2(t) = 0. By (5), we further have limt→∞

∫ t

0
(γi(σ)−zi,1(σ))dσ =

0 and limt→∞(γi(t)− zi,1(t)) = 0. Performing the final value theorem of Laplace
transform to Z∗

ij,0(s) in (15) yields lims→0 Z∗
ij,0(s) = 0. Notably, [18] shows that

there exists a constant vector ρ ∈ R
2n such that lims→0 sG(s) = 12nρ�. For

system (18), we have
lim

t→∞ z(t) = 12nρ�z(0)

which indicates that limt→∞(zi,1(t)− zj,1(t)) = 0 and limt→∞(xi(t)−xj(t)) = 0
for all i, j = 1, . . . , n.
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5 Simulation Study

3

1

4 5

2

Fig. 1. Directed interaction topology.

To validate the proposed theoretical result, we consider a group of five nonlinear
agents

ẋi = vi + θ�
i ϕi,1(xi)

v̇i = ui + θ�
i ϕi,2(xi, vi)

where ϕi,1 = sin(xi,1), ϕi,2 = xi cos(vi) for i = 1, . . . , 5. The position constraints
for each agent are set as −2 < xi,1(t) < 2 for all t ≥ 0, i.e., k̄ = 2 and k = −2. The
initial positions chosen for our simulation scenario are x1(0) = 1.8, x2(0) = 0.8,
x3(0) = 0.4, x4(0) = 0, and x5(0) = −1.2, and the initial velocity-like states
are set to vi(0) = 0. The objective is to ensure the stability of the closed-loop
system and asymptotic consensus with the position constraint.

The communication topology for these five agents is described Fig. 1 with
communication delays τij = 0.1 s. The performance of the proposed algorithm is
illustrated in Figs. 2, 3, and 4. The profiles of the agent positions together with
the constraints are shown in Fig. 2, in which it can be observed that all agents
achieve constrained consensus under the switching topology. Figure 3 shows the
evolution of states vi. The boundedness of the parameter estimation can be seen
in Fig. 4. Clearly, xi converge to the same value, as shown by the theoretical
analysis.

0 5 10 15 20
-2

-1

0

1

2

Fig. 2. Profiles of the agent position xi together with its constraints.
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-2
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Fig. 3. Profiles of the agent velocity-like state vi.

0 5 10 15 20
0

1

2

3

4

Fig. 4. Profiles of the parameter estimation θ̂i.

6 Conclusion

A distributed consensus framework was presented to deal with the consensus
problem of multi-agent systems with position constraints. Only a delayed output
measurement of the neighbors is required for second-order agents without having
to consider the uncertain dynamics of neighbors such that a consensus can be
reached through a structurally simple solution. Simulation results clarified and
verified our theoretical findings.
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