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Abstract. A new training algorithm based on finite-time stable theory
is presented for neural networks in this paper. A new weight dynamic
law is designed, two hyper parameters c1 and β are given out, and a new
weight update algorithm is established. To verify performance of our new
training algorithm, simulations of the classification problem of images in
set CIFAR-10 by using VGG16 are considered. Some typical training
algorithms such as SGD-M, AdaGrad, Adam and HJB integrated with
them are compared to our algorithm. The simulating results show that
our algorithm needs fewer epoches to converge and has superior training
performance.
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1 Introduction

The most important, difficult and expensive problem in deep learning and machine
learning is neural network training. There are still many challenges such as
ill-conditioning, local minima, cliffs, exploding gradients, and numerical stable
problems [1]. Therefore, how to ensure the neural network training performance
remains a problem and an important goal which should be studied more deeply.

There have been many algorithms proposed to train neural networks already.
Among them, gradient descent (GD) algorithm and stochastic gradient descent
(SGD) algorithm are two basic. GD algorithm is a very traditional method which
is regarded as slow or unreliable [1]. SGD algorithm was firstly proposed in [2]
which is the most used method and allows the neural network to scale to large
data sets for machine learning and deep learning [3]. However, training with
it can sometimes be slow especially in situations of high curvature, small but
consistent gradients and noisy gradients [1,4].

To overcome above problems, many variants of SGD algorithm have been pre-
sented. To guarantee the convergence rate is almost the same fast as SGD algo-
rithm while there is noise in gradients, noise reduction methods such as dynamic
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sample size algorithms [5] by increasing the mini batch size gradually, gradient
aggregation algorithms [6,7] to improve the quality of the searching directions,
and iterate averaging algorithms [8] which employed a more aggressive stepsize
sequence, were developed one after another. These methods have proved to be
effective with noise reduction capabilities in practice while their convergence rates
are all linear or sublinear. To improve the convergence rate, second order meth-
ods [9] such as Hessian-free Newton algorithm and Gauss-Newton algorithm were
proposed. Second order methods have superlinear or quadratic convergence rates.
However, they are locally convergent, which means that their iteration initial
values must be sufficiently close to the optimal solution. Moreover, non-convex
problem of these methods has not been solved totally satisfactory or universally
accepted [4].

SGD algorithm with momentum [10,11] is a more stable and faster learning
method which can escape local minima, however it is an empirical convergence
method. Recently, [12–15] gave some theoretical analysis and improved methods
with faster convergence rates. A quadratic convergence rate was obtained in
[14,15] with a weaker growth condition for both convexity and strong convexity
problems. Unfortunately, the convergence rate is just linear while the convex
condition is not satisfied. Thus, to SGD algorithm and its variants, superlinear
convergence rates for generalized situations special for the non-convex problem
have not been realized universally accepted.

Different from above mentioned methods, adaptive gradient methods such as
AdaGrad [16] and Adam [17] automatically adapt learning rates throughout the
course of training, which are fairly robust and outperform SGD in practice [18].
However, their convergence rates may be even worse than SGD [19]. Overall, how
to improve the convergence rate and training performances in a more general
condition such as not only convex condition but also non-convex condition, is
still an open problem which should be further studied.

In this paper, the finite-time stable problem in the neural network training
process is studied. A new learning rate is designed by using the finite-time con-
trol theory. And the goal achieves theoretically that training errors converge to
zeros or sufficiently small in finite time. Furthermore, the new learning rate is a
function of GD. This new algorithm not only has a faster convergence rate and
better stability but also has the excellent performances of SGD and its variants.

The paper is organized as following: In Sect. 2, the problem and preliminary
results are introduced. In Sect. 3, the finite-time stable weight update law is
given. Training results compared with other algorithms in set CIFAR-10 are
given in Sect. 4. Conclusions are made in Sect. 5.

2 Problem Formulation

To simplify the proof and showing our results, the depth-L feedforward fully-
connected neural networks with l2-regression task is considered which are shown
as following [3]:
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⎧
⎨

⎩

hi,0 = φ(Winxi)
hi,l = φ(Wlhi,l−1)
yi = Wouthi,L

(1)

where l = 1, · · · , L, i = 1, · · · , n, xi ∈ Rmin and yi ∈ Rmob are the ith training
input and output, n and m are the number of training samples and neurons,
and Win ∈ Rm×min ,Wout ∈ Rmob×m and Wl ∈ Rm×m are weight matrices of the
input layer, output layer and lth hidden layer, respectively. Function φ(·) are
activation functions. Let:

W � [vec(Win)T , vec(W1)T , · · · , vec(Wl)T , vec(WT
out)

T ]T

where vec(•) is defined for a matrix A = [a1, · · · , an] by:

vec(A) �

⎡

⎢
⎣

a1

...
an

⎤

⎥
⎦

then FNN (1) can be rewritten as following:

yi = F (W,xi) (2)

where F (W,xi) is a nonlinear function. Consider an over-parameterized neural
networks, to the ith training input, there is a corresponding sampling data y∗

i

and an actual optimal weight matrix W ∗, such that:

y∗
i = F (W ∗, xi) (3)

then the training error is defined as following:

ei � y∗
i − yi (4)

and the l2-regression loss function E can be defined as:

E(W ) � 1
2

n∑

i=1

‖ei‖22. (5)

The l2-regression loss problem is to find a actual weight W such that for any
given ε > 0:

E(W ) ≤ ε. (6)

To Eq. (2), the following ordinary different equation (ODE) is established for
yi: {

ẏi = Ji(t)u
u = Ẇ

(7)

where Ji(t) is the Jacobian matrix calculated as following:

Ji(t) =
∂F (W,xi)

∂W
=

[
∂yi

∂Wq

]

. (8)
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To the training error ei, define:

e �

⎡

⎢
⎣

e1
...

en

⎤

⎥
⎦ , y �

⎡

⎢
⎣

y1
...

yn

⎤

⎥
⎦ , y∗ �

⎡

⎢
⎣

y∗
1
...

y∗
n

⎤

⎥
⎦ , J(t) �

⎡

⎢
⎣

J1(t)
...

Jn(t)

⎤

⎥
⎦ (9)

then from ODE (7), we get e = y∗ − y and:
{

ė = −J(t)u
u = Ẇ .

(10)

In this paper, our goal is to give a new weight update law to make the FNN
convergent to a small enough set with better stability. To achieve this goal,
the dynamics of error system (10) with the finite-time stable performance is
considered.

3 Designing of the Weight Update Law with Finite Time
Stability Performance

3.1 Weight Varying Rate Design

To ensure the closed-loop system is asymptotically stable for error system (10),
following controller form is considered:

u = Q
1
2 (e)R− 1

2 uI (11)

where R > 0, uI is an unit vector under L2 norm, and Q(e) > 0 is an one
dimensional positive real function while e �= 0.

To error system (10) and controller u shown by (11), if take the Lyapunov
function as following:

V (t) =
1
2
eT e (12)

then we can get:

V̇ (t) = eT ė

= −eT J(t)u

= −Q
1
2 (e)eT J(t)R− 1

2 uI .

And Q(e) and uI can be designed further for error system (10) to make the
closed-loop system have a desired performance.

Furthermore, if take uI as following:

uI = (eT J(t)R−1JT (t)e)− 1
2 R− 1

2 JT (t)e (13)
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then we have uT
I uI = 1,

V̇ (t) = −Q
1
2 (e)(eT J(t)R−1JT (t)e)

1
2 (14)

and V̇ (t) < 0, i.e., error system (10) is stable. Moreover, if take Q(e) as following:

Q(e) = c21(e
T e)2β (15)

where c1 > 0 and β ∈ (0, 1
2 ), then we have:

Theorem 1. If V (t) is taken as Eq. (12), uI is taken as Eq. (13), and Q(e) is
taken as Eq. (15), then the closed-loop system of system (10) and controller (11)
is finite-time stable, which means that there is a finite time T such that e(t) ≡ 0
for all t > T .

Proof. Since V (t) is taken as Eq. (12) and uI is taken as Eq. (13), then Eq. (14)
is established for system (10). Furthermore, substitute Q(e) of Eq. (15) into
Eq. (14), we have:

V̇ (t) = −c1(eT e)β(eT J(t)R−1JT (t)e)
1
2

= −c1(eT e)β+ 1
2 (eT J(t)R−1JT (t)e)

1
2 (eT e)− 1

2 .

Define λmin is the lower bound of the smallest modulus eigenvalue of matrix
J(t)R−1JT (t), then:

λ
1
2
min ≤ (eT J(t)R−1JT (t)e)

1
2 (eT e)− 1

2 .

Thus, to V̇ (t), we have:

V̇ (t) ≤ −λ
1
2
minc1(e

T e)β+ 1
2 .

The above inequality is established if and only if:

V̇ (t) + 2β+ 1
2 λ

1
2
minc1(V (e))β+ 1

2 ≤ 0.

Thus, if let c and α:

c � 2β+ 1
2 λ

1
2
minc1, α � β +

1
2

and β ∈ (0, 1
2 ), then e(t) ≡ 0 while t ≥ T (e), where setting time T (e) is calculated

as following:

T (e) ≤ 1
c(1 − α)

V 1−α(e) ≤ 1
c(1 − α)

V 1−α(e0). (16)

The proof of Theorem 1 is finished.
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According to Eq. (16), if let:

T0 � 1
c(1 − α)

V 1−α(e0) (17)

then T0 can taken as a setting time. Substitute Eq. (12) into Eq. (17), we have
the following formula for T0:

T0 = (eT
0 e0)

1
2−βλ

− 1
2

min(1 − 2β)−1c−1
1 . (18)

Theorem 2. For the FNN with the error dynamics (10), if u is taken as fol-
lowing:

u = c1(eT e)β(eT J(t)R−1JT (t)e)− 1
2 R−1JT (t)e (19)

where c1 > 0 and β ∈ (0, 1
2 ), then e(t) is finite time stable and a setting time

upper bound can be taken as T0.

Remark 1. From Theorem 1, Theorem 2 is easily proofed. The closed-loop system
of the error dynamics system (10) and the controller (19) is finite-time stable
and the error vector e converges to zeros or a small enough set in finite time
which can be estimated by Eq. (18).

3.2 Designing of the Weight Update Law

In this section, the numerical stable problem of the weight update law of W is
considered. From error system (10) and Theorem 2, we can easily get that W
should satisfy the following ODE in the training process:

{
Ẇ = u
W (t0) = W0

(20)

where u satisfies Eq. (19) which is a nonlinear function of t and W , and W0 is a
given initial value of W . To update W , BP algorithm and AdaGrad algorithm
are commonly used, which can be formulated as following:

W (t + 1) = W (t) + η(t)u(t) (21)

where η(t) = η0 which is a constant in BP algorithm and η(t) =
η0(Σt

j=0‖u(j)‖)− 1
2 in AdaGrad algorithm.

4 Simulation

In this section, the classify problem of images in the set CIFAR-10 is studied. In
the training process, VGG16 is used as the basic neural network and two dropout
layers are added just before the output layer and the dropout probability are
0.25 and 0.5, respectively.
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Fig. 1. Comparison among SGD algorithm with momentum, HJB algorithm integrated
with SGD, and our algorithm.

Fig. 2. Comparison among Adagrad algorithm, HJB algorithm integrated with Ada-
grad, and our algorithm.

To verify performance of our algorithm, simulations of Figs. 1, 2 and 3 are done.
In Fig. 1, hyper parameters of SGD-M optimizer are taken as learning rate =
0.01, decay = 1e−8, and momentum = 0.9, HJB optimizer are taken as
R = 0.000012I, and our algorithm are taken as γ = 1, R = 0.01I and β =
0.42. In Fig. 2, hyper parameters of AdaGrad are taken as learning rate =
0.0003, initial accumulator value = 0.1 and epsilon = 1e−8, HJB optimizer
are taken as R = 0.000012I, and our algorithm are taken as γ = 1, R = 0.05I.
In Fig. 3, hyper parameters of Adam are taken as learning rate = 3e−6, β1 =
0.9, β2 = 0.999, and ε = 1e−3, HJB optimizer are taken as R = 0.000012I, and
our algorithm are taken as γ = 1, R = 3e−5I and β = 0.45.

Though, compared to these algorithms, the accuracy of our algorithm in
validation is better. In Fig. 1, the highest value of the accuracy is achieved justly
Epoch = 12 in our algorithm while Epoch = 31 in SGD-M and Epoch = 35 in
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Fig. 3. Comparison among Adam algorithm, HJB algorithm integrated with Adam,
and our algorithm.

HJB-SGD. In Fig. 2, the highest value of the accuracy is achieved justly Epoch =
12 in our algorithm while Epoch = 31 in Adagrad and Epoch = 30 in HJB-
Adagrad. In Fig. 3, the highest value of the accuracy is achieved justly Epoch =
11 in our algorithm while Epoch = 31 in Adam and Epoch = 35 in HJB-SGD.
Thus, our algorithm needs fewer epoches to obtained a training result with a
higher validation accuracy and better robustness, i.e., compared to other seven
algorithms, our algorithm has the best performance.

Thus, based on simulating results of Figs. 1, 2 and 3 and above analyses, we
can conclude that our new algorithm has a better stability, higher accuracy and
needs less epochs in training process than these mentioned existing algorithms.

5 Conclusions

In this paper, a new training algorithm is established for neural networks by
using the finite-time convergent theory in the control theory. And the basic
problems that how to improve the training convergence rate is considered. To
achieve this goal, the normalization variable uI is introduced, and a new weight
varying law is designed by using Lyapunov stability analysis method and the
finite-time stable performance is also proved in theory. To verify performances
of our algorithm, simulations of the classify problem of images in set CIFAR-
10 by using VGG16 are considered. Four typical training algorithms which are
SGD-M, AdaGrad, Adam, and HJB integrated with them are all compared to
our algorithm. Simulations show that our algorithm has superior training per-
formance.
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