
A Retrospective on OOADARE
as an Automated Object-Based Approach
for Requirements Engineering

Amal Khalil, Hajar Lamsellak, Zineb Bougroun, Mohammed Saber,
and Mohammed Ghaouth Belkasmi

Abstract In agile methods, the communication between customer and development
team is ensured by requirements, most often presented in an unstructured textual
format, which frequently involves redundancy or non-precision information. This
leads, in practice, to poor system quality, especially if we use classical approaches
such as scenario-based approach. Yet, OOADARE approach is introduced in this
way, using semi-structured text models in the form of user stories and constraint
story cards (CSC), to automate the object-oriented transformation of requirements
into a class diagram. However, the approach failed to capture all the elements needed
to construct a correct and complete class diagram. This paper, at that point, proposes
templates in natural language, which are part of the same perspectives of CSCs
proposed by OOADARE, namely semi-structured text, to fill these gaps and ensure
the completeness of the class diagrams thus generated.

Keywords Requirements engineering · Object-oriented application · User stories ·
Constraint story card (CSC) · Transforming requirements · Class diagram

A. Khalil (B) · H. Lamsellak · Z. Bougroun · M. Saber · M. G. Belkasmi
SmartICT Laboratory, Mohammed First University Oujda, ENSAO, Oujda, Morocco
e-mail: amal.khalil@ump.ac.ma

H. Lamsellak
e-mail: lamsellak.hajar@ump.ac.ma

Z. Bougroun
e-mail: z.bougroun@ump.ac.ma

M. Saber
e-mail: m.saber@ump.ac.ma

M. G. Belkasmi
e-mail: m.belkasmi@ump.ac.ma

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
H. Bekkay et al. (eds.), Proceedings of the 3rd International Conference on Electronic
Engineering and Renewable Energy Systems, Lecture Notes in Electrical
Engineering 954, https://doi.org/10.1007/978-981-19-6223-3_8

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-6223-3_8&domain=pdf
mailto:amal.khalil@ump.ac.ma
mailto:lamsellak.hajar@ump.ac.ma
mailto:z.bougroun@ump.ac.ma
mailto:m.saber@ump.ac.ma
mailto:m.belkasmi@ump.ac.ma
https://doi.org/10.1007/978-981-19-6223-3_8

66 A. Khalil et al.

1 Introduction

Requirements engineering is the process of eliciting, analyzing, specifying, vali-
dating, andmanaging software requirements [1]. It is not an isolated front-end activity
to a software lifecycle process; rather, it is an integral part of the larger process
connected to other parts through continuous feedback loops [2]. The scenario-based
approach to expressing requirements is the approach most used by developers [3,
4]. After eliciting requirements, they are structured in the form of user stories, use
cases, sequence diagram, etc. Those forms are not automaticallymapped to the object
model [5]. object-oriented analysis and design approach for the requirements engi-
neering (OOADARE) approach, which is part of the design approach trend aimed at
automating the generation of analysis diagrams [6–8], fits to overcome these limits,
so it took user stories and constraint story cards (CSC) to automatically generate the
objects, their actions, and the rest of the software artifacts (MVC, DAO, Test…) [9].

The purpose of this study is to follow the same approach to ensure its completeness
and therefore determine the remaininggaps,which should befilled in order to advance
the current research concretely.

2 OOADARE Approach

2.1 Presentation

A sequence of transformations is performed to build a software system, starting from
requirements and ending with implementation. However, requirements are mostly in
the form of an unstructured text, but not a model that can be easily understood by
computers [10]. OOADARE is an approach based on theOOADapproach evolved by
Booch [11], which requires, among its constraints, the use of a semi-structured text to
extract structured models [12]. OOADARE contributes to the automatic transforma-
tion of requirements into a class diagram and offers technical concepts and practices
that facilitate the development flow and improve the quality of the software product
[5, 9]. It introduced a template that is based on the well-known user story template
for solving the disorganization issue [9].

2.2 Overview of the “User Story” Template

After retrieving the requirements, the OOADARE approach requires preparing them
in user stories to move on to identifying objects and methods [5].

User stories are a popular method for representing requirements using a simple
template [13]. Their adoption is growing [14] and is massive especially in the context
of agile software development [15].

A Retrospective on OOADARE as an Automated Object-Based … 67

Fig. 1 Using “user stories” to generate an “object model” [9]

The OOADARE approach takes “user stories” as an entry point to automate the
identification of objects and actions of the object model, which implies respecting a
very precise syntax [9]:

As a < role > I can < act i on >< ob j ect > so that < business value >

The diagram thus generated specifies the classes of objects and the methods
(Fig. 1).

The “user stories” only allow to generate the classes, and the methods of a class
diagram, the “constraint story card” (CSC), are then used to manage the associations.

2.3 Using CSC to Generate Associations

Constraint story card (CSC) is a story card in which we can write the requirement’s
constraints in a human-like object constraint language (OCL) [16], that represents a
precise text language that provides constraint and object query expressions on any
meta-object facility model or meta model with a formal specification language [17].

The OOADARE approach suggests four templates to report the different associ-
ations within the UML class diagram.

The four templates use a generic formula as shown below [18]:

[Role] < Source Object >< Associ at i on expression t ype >
[
Cardinal i t y

]
[Role]

< Target Object >

The “Association expression type” argument corresponds to four different values
depending on the type of the association [18]:

• [Has or a verb]: in this case, it is a simple association
• [Is a] is the proposed model for inheritance
• [Contains]: to illustrate aggregation between classes
• [Is composed of]: for the composition model.

68 A. Khalil et al.

Fig. 2 Class diagram generated from user stories and CSC using the OOADARE approach. Other
artifacts (DAO, Controller …) generated were omitted for a clarity purpose. [18]

The “Cardinality” can be expressed in letters (from zero to ten in English),
numbers or by the word “many”. When the minimum and the maximum are not
the same, the two sides are separated by the word “or” (Fig. 2) [18].

Nevertheless, the mapping model proposed by OOADARE, in compliance with
the constraints and templates, remains incomplete since it does not take into consid-
eration all the elements that can be found in specifications and which are essential
for software development.

3 Filling the Gap in the OOADARE Approach

As mentioned above, important elements are missing in the class diagram gener-
ated using OOADARE, which take their place in the center of the requirements
and without which we cannot speak of a complete class diagram. It lacks, first,

A Retrospective on OOADARE as an Automated Object-Based … 69

attributes that represent the variables storing state information characterizing the
object. Secondly, we notice the absence of association classes in which “attributes”
are directly dependent on two other classes and could not be placed in either one or
the other. We propose in the following part solutions to fill this gap and ensure the
completeness of the method with indispensable features.

3.1 Generating Attributes in a Class Diagram

In domain modeling class diagrams, an attribute represents a data definition for an
instance of a classifier. An attribute describes a range of values for that data definition.
A classifier can have any number of attributes or none at all. Attributes describe the
structure and value of an instance of a class [19].

As a part of CSC, and taking into account textual expressions often used to present
the different properties related to anobject,we consider the followingmodel to extract
the different attributes of a class:

[Each] < Object > has| is identified by| is represented with| is described by <
Attribute 1 > , < Attribute 2 > , …and < Attribute n >

where

• Object represents the entity for which the properties are identified
• Attribute n: the nth single, named fragment of the persistent state.

3.2 Consider Association Classes in Class Diagram
Generation

In UML diagrams, an association class is a class that is part of an association rela-
tionship between two other classes. It is identical to other classes and can contain
operations, attributes, as well as other associations [20]. We can attach an associa-
tion class to an association relationship to provide additional information about the
relationship [17].

This case occurs in a “many to many” association, so we must take into account
this type of association before looking for the association attribute(s) through the
template that we propose as CSC (Table 1):

70 A. Khalil et al.

Table 1 Formula parts
description

Formula argument Description

Source object The source object of an association

Attribute The single, named fragment of the
persistent state

Target object The target object of an association

[Each] < Source Object > has| have < Attribute > (for| in) each < Target
Object >

3.3 Example of Application to a Case Study

Consider the following set of requirements for a university information system that
is used to keep track of student’s transcripts: “…Each department is described
by a name, a code, an office number, an office phone and a college. Each course
has a course name, description, course number, credit hours, level, and offering
department. Each student is identified by a number, a name, a birthdate, a gender,
a social security number, current address and phone number. To ensure that the
system generates a transcript for students, each student must have a grade for each
course.…”.

To perform the extraction task of UML class diagram concepts, each sentence in
the input text will be matched against the different lists of patterns that have been
defined by the above models.

If we analyze the sentence “Each department is described by a name, a code,
an office number, an office phone and a college.’, we notice that it matches very
well with the attributes pattern (Fig. 3); it begins with a “number of characters” that
mentions the concerned “object,” followed by the key words “is identified by,” then
followed by “a number of characters” that list the specified attributes, which gives
us the resulting class “Department” with its correspondent attributes.

Then, considering the case of the last sentence presented by the example: ‘To
ensure that the system generates a transcript for students, each student must have a
grade for each course.’, we note its correspondence to the second pattern proposed
for the generation of association classes (Fig. 4).

It should be noted that in this case, the association between the two classes (student
and course) has on both sides a maximum multiplicity equal to “many” represented
by the symbol “*”, which means that a “student” studies one or more “courses” and
that a “course” is taught for one or more “students”.

A Retrospective on OOADARE as an Automated Object-Based … 71

Fig. 3 Diagram class illustrating an entity with attributes as mapped from a CSC template

Fig. 4 Class association extraction pattern example

4 Conclusion

More efficient and more flexible technologies are accelerating the growth of fully
automated production facilities. This is the context of our study which aims to
improve the OOADARE, an approach targeting the automatic generation of class
diagrams from requirements presented as semi-structured text templates.

In this paper, we started by presenting the general context of the study, then
explaining the approach used by OOADARE which offers an intermediate repre-
sentation of the requirements in the form of user stories and CSC, thus allowing an
automatic generation of class diagrams. Although we discussed the failures of the
approach to finally propose solutions that follow the same rules and constraints.

72 A. Khalil et al.

With the aim of eliminating ambiguity and redundancy, the templates proposed
by OOADARE in addition to the models proposed in this document are relatively
simple to build and to deduce from the requirements expressed either in textual or
oral form.

References

1. Lucassen G et al (2016) The use and effectiveness of user stories in practice. In: International
working conference on requirements engineering: foundation for software quality. Springer,
Cham

2. Macaulay LA (2012) Requirements engineering. Springer Science & Business Media
3. Sutcliffe A (2003) Scenario-based requirements engineering. In: Proceedings of the 11th IEEE

international requirements engineering conference, 2003. IEEE
4. Kim M et al (2007) Managing requirements conflicts in software product lines: a goal and

scenario based approach. Data Knowl Eng 61(3):417–432
5. Zeaaraoui A, Bougroun Z, Belkasmi MG, Bouchentouf T (2012) Object-oriented analysis and

design approach for the requirements engineering. J Electr Syst 2(4):147–153
6. Elallaoui M, Nafil K, Touahni R (2018) Automatic transformation of user stories into UML

use case diagrams using NLP techniques. Procedia Comput Sci 130:42–49
7. Fischbach J, Frattini J, Vogelsang A (2021) Cira: a tool for the automatic detection of causal

relationships in requirements artifacts. arXiv Preprint. arXiv:2103.06768
8. Yang Y et al (2019) RM2PT: a tool for automated prototype generation from requirements

model. In: 2019 IEEE/ACM41st international conference on software engineering: companion
proceedings (ICSE-Companion). IEEE

9. Zeaaraoui A, Bougroun Z, Belkasmi MG, Bouchentouf T (2013) User stories template for
object-oriented applications. In: Third international conference on innovative computing
technology (INTECH 2013)

10. YueT,BriandLC,LabicheY (2011)A systematic reviewof transformation approaches between
user requirements and analysis models. Requirements Eng 16:75–99

11. BoochG et al (2008)Object-oriented analysis and designwith applications. In:ACMSIGSOFT
software engineering notes, vol 33, no 5, pp 29–29

12. Sanyal R,Ghoshal B (2018)Automatic extraction of structuralmodel from semi structured soft-
ware requirement specification. In: 2018 IEEE/ACIS17th international conference on computer
and information science (ICIS). IEEE

13. Cohn M (2004) User story applied: for agile software development. Addison-Wesley, Boston,
MA

14. Kassab M (2015) The changing landscape of requirements engineering practices over the past
decade. In: Proceedings of EmpiRE. IEEE, pp 1–8

15. Wang X, Zhao L, Wang Y, Sun J (2014) The role of requirements engineering practices in
agile development: an empirical study. In: Zowghi D, Jin Z (eds) APRES 2014, vol 432. CCIS.
Springer, Heidelberg, pp 195–209

16. Warmer J, Kleppe A (2003) The object constraint language—getting your models ready for
MDA, 2nd edn. Addison Wesley

17. OMG (2017) Unified modeling language specification version 2.5.1
18. Dahhane W et al (2014) An automated object-based approach to transforming requirements to

class diagrams. In: 2014 Second world conference on complex systems (WCCS). IEEE
19. IBM Documentation. Rational software architect standard edition (Version 7.5.0)
20. IBM Documentation. Rational software modeler (Version 7.5.0)

http://arxiv.org/abs/2103.06768

	 A Retrospective on OOADARE as an Automated Object-Based Approach for Requirements Engineering
	1 Introduction
	2 OOADARE Approach
	2.1 Presentation
	2.2 Overview of the “User Story” Template
	2.3 Using CSC to Generate Associations

	3 Filling the Gap in the OOADARE Approach
	3.1 Generating Attributes in a Class Diagram
	3.2 Consider Association Classes in Class Diagram Generation
	3.3 Example of Application to a Case Study

	4 Conclusion
	References

