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Abstract. In this paper, an adaptive control method based on radial
basis function(RBF) neural network is proposed for the force control
of 3R manipulator in the workspace. The control goal is to make the
manipulator track the impedance trajectory to realize the flexible contact
between the manipulator and the environment. Firstly, the Lagrangian-
Euler method is used to model the dynamic of 3R manipulator. Accord-
ing to the characteristics of the dynamical model of 3R manipulator, a
RBF neural network is adopted to design the adaptive controller, and
the stability of the controller is analyzed by using Lyapunov criterion.
Through the Simulink module in MATLAB, the effectiveness of the pro-
posed algorithm is verified.
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1 Introduction

With the rapid development of control theory and computer science, the impor-
tance of manipulators is gradually improved. In modern manufacturing sys-
tem [1], industrial manipulator has become an indispensable role, which greatly
improves the production efficiency and quality of manufacturing industry. The
wide use of manipulators in mechanical manufacturing, aviation, electronic prod-
uct manufacturing and other fields has promoted the development of manipu-
lator control theory. But the dynamic equation of multi-joint manipulators is
extremely complex and nonlinear [2], which restricts the further development of
industrial manipulators. The traditional PID control has a good performance on
the linear system [3]. While it maybe impractical to the nonlinear and strong
real-time manipulator system [4]. With the improvement of artificial intelligence
algorithm and control theory, advanced intelligent control methods have been
proposed, which provide an effective solution for the control of complex dynamic
manipulator system [5].
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At present, neural network adaptive control is widely adopted to control the
manipulator systems. Shao et al. used neural network adaptive control to control
the manipulator with unknown disturbance. The results show that it can ensure
the transient response of the system and realizes asymptotic convergence [6].
Bang et al. proposed a robust neural network adaptive control method, which
can effectively compensate the system uncertainty, and can ensure the rapid
stability of the manipulator system [7]. To solve the tracking control problem
of n-joint manipulator with large jump parameters, Li et.developed a weighted
multi-model neural network adaptive control method, and the simulation showd
that it has good performance [8].

Force control of the manipulator is the basis for the manipulator to be applied
to tasks such as assembly, polishing, deburring, etc. [9]. Force control technology
can significantly improve the performance of the manipulator when it is in con-
tact with the environment, and can improve the intelligence of the manipulator
[10]. Most existing paper focus on position control of the manipulator rather
than the force control [11], which motivate our works. The main contribution of
this paper can be summarized as follows:

(i). The Lagrangian-Euler method is used to model the dynamics of 3R manip-
ulator and the RBF network is adopted to fit the dynamics model of 3R
manipulator.

(ii). An adaptive control algorithm based on RBF neural network is proposed
for the force control of 3R manipulator in the workspace. The control goal
is to make the manipulator track the impedance trajectory to realize the
flexible contact between the manipulator and the environment.

The rest of this paper is organized as follows: In Sect. 2, dynamics modelling
of 3R manipulator is given. In Sect. 3, the neural network modelling is given and
an adaptive controller of 3R manipulator is designed, Sect. 4 shows the simulation
results and Sect. 5 gets the conclusions.

2 Dynamics Modeling of 3R Manipulator

2.1 Structure and Standard D-H Parameters of 3R Manipulator

In this paper, the parameter table of 3R manipulator is established by standard
D-H method, the D-H coordinate system can be represented by ai,αi,θi,di.

The mechanical structure of 3R manipulator is shown Fig. 1. The length
of connecting rod 1, connecting rod 2 and connecting rod 3 are l1 = 0.5m,
l2 = 1m, m1 = 0.8m, respectively. The mass is m1 = 0.5 kg, m2 = 1kg, m3 =
0.8 kg, respectively. The rotation angles of the three joints are q1, q2, q3, and the
standard D-H parameters of the manipulator can be obtained in Table 1 [12].
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Table 1. 3R manipulator standard DH parameters

Coordinate system number ai αi di qi

1 0 90o 0 q1

2 l2 0 l1 q2

3 l3 0 0 q3

Fig. 1. Mechanical structure of 3R manipulator

2.2 Lagrange Euler Dynamics Modeling of 3R Manipulator

The Lagrange-Euler dynamic equation is closed-loop, which is convenient for
the design and implementation of the controller. Therefore, the Lagrange-
Euler method is adopted for dynamic modelling. For a 3-joint manipulator, the
Lagrangian dynamic equation of its joint space can be expressed as

D(q)q̈ + C(q, q̇)q̇ + G(q) = τ (1)

In (1), q represents the joint angle, τ represents the joint torque matrix,
which are all three-dimensional vectors, D (q) represents the inertia matrix,
C (q, q̇)represents the centrifugal force and Coriolis force matrix, G (q)represents
the gravity matrix, D(q), C(q) is a 3 × 3 square matrix and G(q) is a 3 × 1
matrix.

However, the force control of 3R manipulator is working in the workspace. So
it is necessary to convert the dynamic equation of joint space into the workspace
by using the Jacobian matrix. Let x be the position coordinates of the end of
the manipulator in the base coordinate system, then we get [13]

ẋ = J(q)q̇ (2)
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ẍ = J (q) q̈ + J̇(q)q̇ (3)

τ = JT (q)Fx (4)

Dx (q) ẍ + Cx (q, q̇) ẋ + Gx (q) = Fx (5)

Dx (q) = J−T (q)D (q) J−1(q) (6)

Cx (q, q̇) = J−T (q)(C (q, q̇) − D (q) J−T (q)J̇(q))J−1(q) (7)

Gx (q) = J−T (q)G (q) (8)

The Jacobian matrix J(q) is defined as J(q) = ∂h(q)/∂q. Fx denotes the force
in the workspace, Dx (q), Cx (q, q̇), Gx (q) denotes the inertia matrix, centrifugal
force and Coriolis force matrix, gravity matrix in the workspace, respectively.

3 3R Manipulator Neural Network Adaptive Force
Control

3.1 3R Manipulator Neural Network Modeling

The dynamic model of the manipulator in the workspace can be expressed as:

Dx (q) ẍ + Cx (q, q̇) ẋ + Gx (q) = Fx (9)

The main aim of neural network modeling is to use a RBF neural network to
fit the inertia matrix Dx (q), centrifugal force and Coriolis force matrix Cx (q, q̇),
gravity matrix Gx (q).

dxkj (q) =
l∑

i=1

Qkjlξkjl (q) + εdkj(q) = QT
kjξkj(q) + εdkj(q) (10)

cxkj (q, q̇) =
l∑

i=1

αkjlξkjl (z) + εckj (z) = αT
kjξkj (q) + εckj (z) (11)

gxk (q) =
l∑

i=1

βklηkl (q) + εgk(q) = βT
k ηk(q) + εgk(q) (12)

In (10), dxkj represents inertia Matrix Dx (q) k-row j-column elements, sim-
ilarly cxkj , gxk in (11), (12). Qkjl and βkl are the weight that fit j-row ele-
ments of Dx (q), k-row elements of Gx (q), respectively. ξkjl(q) and ηkl(q) are
the radial basis functions with input q. εdkj(q) and εgk(q) are the modeling
errors of dxkj(q) and gxk(q), respectively, and assume that they are bounded.
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In (11) where z =
[
qT q̇T

]
, αkjl is the weight, ξkjl is the radial basis function

whose input is the vector z, which is also the Gaussian basis function, εckj (z) is
cxkj (q, q̇) modeling errors and assume it is bounded.

Using the GL matrix [15] and its multiplication operation Dx (q) can be
written as:

Dx (q) =
[
{Q}T . {E(q)}

]
+ ED(q) (13)

where {Q}T and {E(q)} are GL matrices whose elements are Qkj and ξkj , respec-
tively. ED(q) is a matrix whose elements are modeling errors εdkj . Similarly, for
Cx (q, q̇), Gx (q) there are:

Cx (q, q̇) =
[
{A}T . {Z(z)}

]
+ Ec(z) (14)

Gx (q) =
[
{B}T . {H(q)}

]
+ EG(q) (15)

where {A}, {Z(z)}, {B}, {H(q)} is the GL matrix whose elements are αkj , ξkj(z),
βk, ηk(q). Ec(z) and EG(q) are matrices whose elements are modeling errors εckj
and εgk.

3.2 Position-Based Impedance Control

The impedance control of the manipulator is to establish the relationship
between the displacement of the manipulator end and the contact force by
equivalently controlling the force/position of the end of the manipulator as a
“spring-mass-damping” system. [14].

The contact force at the end of the manipulator is Fe, and the kinetics are
described as [16]

Mm (ẍc − ẍ) + Bm (ẋc − ẋ) + Km(xc − x) = Fe (16)

where xc is the reference trajectory of the command position, x is the actual
position, so the position error can be denoted as xc − x, x(0) = xc(0), Mm, Bm,
Km are the mass, damping and stiffness coefficient matrices, respectively. By
solving the differential Eq. (16), one can get the impedance trajectory xd.

In impedance control, the environmental dynamics model needs to be con-
sidered. For simplicity, the environmental dynamics model is assumed to be the
stiffness model.

F = Ke(x − xe) (17)

In 3R manipulator control, Fe is the 3 × 1-dimensional vector, which rep-
resents the contact force between the manipulator end and the environment.
xe represents the location of the environment. Assuming the environment as
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a stiffness model, where Ke is a 3 × 3-dimensional matrix represents the stiff-
ness matrix of the environment, similar to Md, Kd, Bd in impedance control, is
also a positive definite diagonal matrix, which means that the environment is
decoupled in each coordinate direction in the workspace.

3.3 Neural Network Adaptive Force Control Controller Design
and Stability Analysis

Let xd be the impedance trajectory in the workspace, then ẋd and ẍd are the
ideal impedance velocity and impedance acceleration, respectively.

Define

e(t) = xd(t) − x(t) (18)

ẋr(t) = ẋd(t) + Λe(t) (19)

r(t) = ẋr(t) − x(t) = ė(t) + Λe(t) (20)

Using (̂.) to represent the estimated value of (.), define (̃.) = (.) − (̂.), then{
Q̂

}
,

{
Â

}
and

{
B̂

}
represent the estimated values of {Q}, {A} and {B},

respectively.
The controller can be designed as:

Fx =
[{

Q̂
}T

. {E (q)}
]

ẍr +
[{

Â
}T

. {Z (z)}
]

ẋr

+
[{

B̂
}T

. {H(q)}
]

+ Fe + Kr + kssgn(r) (21)

In (21), where K ∈ R > 0, ks > E, E = ED(q)ẍr + EC(z)ẋr + EG(q). The first
three terms of the controller are model-based control, the Kr term is equivalent
to proportional-differential control, Fe is the contact force, and the last term of
is the robust term to inhibit the neural network construction modeling error.
The dynamic model of the manipulator can be modeled as

Dx (q) ẍ + Cx (q, q̇) ẋ + Gx (q) + Fe = Fx (22)

The stability of system (22) is given by the following theorem.

Theorem 1: For the closed-loop system (22), if K ∈ R > 0, ks > ‖E‖, the design
adaptive law is

⎧
⎪⎪⎨

⎪⎪⎩

.

Q̂k = Γk. {ξk(q)} ẍrrk
.

α̂k = Mk. {ξk(z)} ẋrrk
.

β̂k = Nkηkrk

(23)

where Γk
T = Γk > 0, Mk

T = Mk > 0, Nk
T = Nk > 0, And Q̂k, α̂k are

matices whose elements are Q̂kj and α̂kj , respectively. Then Q̂k, β̂k, α̂k,∈L∞,
e ∈ Ln

2 ∩ Ln
∞. e is continuous, and when t → ∞, e → 0, ė → 0.
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Proof. In [15], the author has proved the position controller is stable under the
adaptive law (23), with the similar approach, it is easily to prove that designed
force controller is stable.

4 Simulation

Consider the situation: the manipulator is tracking spiral trajectory (24), but
there is an obstacle at x = 1, therefore, when x ≥ 1, the manipulator will have
contact with the obstacle.

⎧
⎨

⎩

xd = 1 + 0.3 cos(πt)
yd = 1 + 0.3 sin(πt)
zd = 0.05t

(24)

The mechanical model of this obstacle is the stiffness model, that is,

Fe = Ke(x − xe) (25)

Set obstacle stiffness Ke =

⎡

⎣
800 0 0
0 800 0
0 0 800

⎤

⎦, the stiffness matrix of the manip-

ulator is Kd =

⎡

⎣
900 0 0
0 900 0
0 0 900

⎤

⎦, the damping matrix is Bd =

⎡

⎣
40 0 0
0 40 0
0 0 40

⎤

⎦

inertia matrix is Mb =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦, the gain coefficient of the adaptive law is

Γk =

⎡

⎣
0.4 0 0
0 0.4 0
0 0 0.4

⎤

⎦ Mk =

⎡

⎣
0.8 0 0
0 0.8 0
0 0 0.8

⎤

⎦ Nk =

⎡

⎣
0.6 0 0
0 0.6 0
0 0 0.6

⎤

⎦. Figure 2 shows

the impedance trajectory, as long as this impedance trajectory is tracked, the
manipulator can achieve flexible contact with the environment. Figure 3 offers
the tracking performance of the impedance trajectory. Figure 4 shows the track-
ing performance of the ideal trajectory. From Fig. 3 and Fig. 4, we can conclude
that when x > 1, the manipulator track the impedance trajectory rather than
the ideal trajectory. Therefore, the flexible contact between the manipulator and
the environment can be achieved. From Fig. 5, we can conclude that the contact
force does not experience a sudden increase, which means the compliant control
is successful.
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5 Conclusion

The main focus of this paper is the neural network adaptive control of 3R manip-
ulator. By applying the Lagrangian-Euler method to the 3R manipulator to
model the joint space dynamics and use the Jacobian matrix to convert the
joint space dynamics into the workspace. A RBF neural network is adopted to
fit the dynamical model. In force control, our focus is impedance control based
on position control. According to the force measured by the force sensor at the
end of the manipulator, the impedance trajectory is calculated, and the desired
impedance model can be generated by tracking this impedance trajectory. If the
manipulator encounters an obstacle in the middle, the contact force between the
objects changes the trajectory to have a compliant contact with the environment.
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