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Abstract. In industrial fault identification tasks, for the problems of
inconvenient fault data collecting and lack of target fault samples, unlike
many existing zero-shot fault identification methods that the manual
fault attribute description requires in-depth knowledge on fault data,
this paper proposes a novel zero-shot fault identification method based on
transfer learning. We introduce PCA algorithm to extract potential fine-
grained feature representation by constructing a discriminant attribute
extractor for source and target domain, as a bridge for knowledge trans-
fer. With source domain fault data, the shared fine-grained groups of all
the fault categories can be obtained, and transferred as knowledge to the
fault representation of target domain. Both the discriminant features can
be formed, from the discriminant matrices in source and target domains
learnt with the shared fine-grained group. Finally, zero-shot fault identi-
fication with discriminant attributes is achieved. Based on 3W datasets,
the proposed method is compared with other zero-shot fault identifica-
tion methods, and the experiment results show the effectiveness of the
proposed method.

Keywords: Transfer learning · Zero shot · Fault identification ·
Fine-grained knowledge

1 Introduction

Fault identification is a technology to evaluate system device running state by
device data already detected, thus it is vital to ensure the safe, steady, reliable
work of industrial devices. Along with the digital and information time, data-
driven technology is widely used in the processes of monitoring and diagnosing in
industry [1]. In particular, fault identification based on data-driven has become
the mainstream method.

Fault identification methods under data-driven directly learn the fault fea-
tures from historical fault data during the system running time, thus can diag-
nose without exact system mathematical models. But most large-scaled indus-
trial devices are not permitted to run until fault happens, and devices change
from normal to breakdown gradually, the actual target fault samples are few.
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Thus it is costing to collect samples, suppressing the applications of the tradi-
tional data-driven methods in fault diagnosis greatly [2–4].

Recently, a large quantities of fault identification methods based on trans-
fer learning are proposed to solve the problem of fault sample lack [5,6]. The
main idea of methods based on transfer learning is, the relative and labeled
data from one or more domains can be used as auxiliary knowledge to improve
the model performance in target domain, and to complete the target tasks in
target domain. Thus the transfer learning methods have a strong ability of rep-
resentation learning and end-to-end training. Lu et al. [7] proposed a deep neural
network model with domain adaptive for fault diagnosis. Yang et al. [8] proposed
a polynomial kernel induced distance measurement method for deep transferring
fault diagnosis. These deep transferring fault diagnosis models essentially deal
with domain transition between source and target domain. Also, researchers
dedicate to solving the problems of unknown fault diagnosis [9] and unlabeled
fault diagnosis [10]. Gupta et al. [9] proposed an early classification method of
multiple time Series (MTS) based on semantic information. Attribute learning
model is used to obtain the semantic information of known fault categories, and
then the semantic information of visible classes is used to predict unknown fault.
Although the above method is similar to zero-shot, it is not zero-shot fault diag-
nosis problem in nature. For zero-shot fault diagnosis, Feng et al. [11] proposed
an attribute transfer method based on fault description. By transferring the arti-
ficially defined fault descriptions to target domain, the source domain training
model can be used for fault diagnosis in target domain. However, this method
requires manual setting of fault attribute description and in-depth understanding
of fault data.

To deal with above problems, this paper proposes a zero-shot fault identi-
fication method based on transfer learning. The proposed method is to obtain
the potential fine-grained feature representation of source domain data samples,
as a knowledge transferring bridge, and to construct a discriminant attribute
extractor for both source and target domains. First, the proposed method uti-
lizes PCA algorithm to extract the main fault attribute [12]. Then the shared
fine-grained groups of all known fault categories are obtained according to fault
date in source domain, and transferred to the representation in target domain.
Both the discriminant features in source and target domain are formed by dis-
criminant matrices learnt from the shared fine-grained groups. Finally, we can
use these discriminant features to zero-shot fault diagnosing.

2 Methodology

In this chapter, the framework of the proposed MK-CSE is introduced. When
new data comes, the framework embeds it into the regenerative kernel Hilbert
space to obtain the optimal mapping kernel, and MK-MMD between data blocks
is maximized to ensure the diversity of retained knowledge, which has better
robustness and accuracy than single kernel measurement.
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2.1 Zero-Shot Fault Identification Definition

Assuming that there is k classes of fault samples, then the corresponding formula
is X ∈ Ra×b, and the labels can be described as Y ∈ Ra×1. Where a and b are
the number and dimensions of samples. Zero-shot fault identification, means that
the fault data to be diagnosed has no available sample to train models (namely
as target domain), while other relative and available fault data (namely source
domain) is required as the auxiliary knowledge to train models instead. Thus,
data from source domain is defined as DO = {XO ∈ RaO×b, YO ∈ RaO×1}, while
xoi and yoi stand for the ith sample and label from source domain, po is the
number of fault categories in yoi = 1, 2, . . . , po.

Similarly, data from target domain is defined as DT = {XT ∈ /RaT ×b, YT ∈
RaT ×1}, while xti and yti stand for the jth sample and label from target domain,
pt is the number of fault categories in yti = 1, 2, . . . , pt. Then the following
formula describes the zero-shot fault identification model:

ŶT = func(XT ,DO(XO, YO)), s.t.ŶT = YT (1)

wherein, func() is the mapping function from source domain to target domain.

2.2 Fault Fine-Grained Representation and Discriminant Feature
Extraction

Fig. 1. Diagram of zero sample fault identification method based on Transfer Learning

The proposed zero-shot fault identification method based on transfer learning is
shown as Fig. 1, divided into training stage and test stage. The blue stands for
the training stage, which is aimed to learn the shared fine-grained representation
of fault by using source domain data, and transfer it to the target domain, thus
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the discriminant feature used to classify can be learnt. The red is the test stage,
which is mainly to extract the discriminant feature according to the fine-grained
representation in training stage, to achieve fault classifying. Because the labels in
source domain and target domain are different, labels in source domain need to
be projected into the corresponding labels under the fine-grained representation.

For the given large-scale fault data in source domain XO, its main attribute
extracted is P (XO) = XP

O = {fp
o1, f

p
o1, . . . , f

p
o1} after PCA analysis. Referring

to the idea of Fig. 1, we use XP
O to learn the shared fine-grained attribute and

discriminant features first. Then XP
O can be divided into a shared fine-grained

base and a discriminant matrix as shown:
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wherein, G ∈ Rao×n stands for the shared fine-grained base matrix, n is the
atom number of the fine-grained base, thus we can describe XP

O with more
fault categories. And CG

O ∈ Rn×b intends to be the discriminant matrix under
the fine-grained base matrix G. We also use tr((CG

O )TY OCG
O ) as restraint to

strengthen the discriminant ability of the discriminant matrix. But the labels in
source and target domains differ a lot after mapping, the restraint is changed
into tr((CG

O )TCG
O ). Thus Formula (2) can be rewritten as:
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Through Formula (4), we obtain the discriminant features of faults XG
O :

XG
O = XP

OCG
O (4)

The procedures above demonstrate how to obtain the shared fine-grained
base matrix and discriminant features from source domain. In a similar way, the
matrix is transferred to target domain to get the discriminant matrix of target
domain, as shown:
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Then the discriminant features are XG
T = XP

T CG
T .

Optimization: For the similarity of our objective function and dictionary
learning objective function, we can use the same solving processes as dictio-
nary learning. For more precise shared fine-grained base matrix, the proposed
method use the same optimization process as KSVD [13] to solve models. Fix
one optimization variable in CG

O and G, and use it to optimize the other, as a
loop.

First, we initialize G, and use orthogonal matching tracking algorithm to
obtain CG

O . Then we upgrade the shared fine-grained base matrix G and the
discriminant matrix CG

O of each row in the way of row by row. gn is the nth
vector of the shared fine-grained base matrix, and cTn is the nth vector of the
discriminant mapping matrix. Formula (2) can be rewritten as:
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wherein, En = XP
O − ∑i�=n

gic
T
i . The optimization of the shared fine-grained

base matrix G is described as:

min
gncTn

∣
∣
∣
∣En − gnc

T
n

∣
∣
∣
∣
2

F (7)

In Formula (7), the optimal gn and cTn obtained by SVD, can be the approx-
imate terms of 1-rank matrix En. But cTn just by putting En into SVD solution
is not sparse, thus we extract the positions that its corresponding cTn not equal
to 0, and restructure a new E

′
n. Then decompose it with SVD, as E

′
n = L

∑
RT .

Take the first column vector of the left singular matrix L as gn, and the product
of the first column vector and the first singular value of the right singular matrix
as cTn . After obtaining the shared fine-grained base matrix G based on source
domain data, CG

T can be obtained by utilizing orthogonal matching tracking
algorithm. The full optimization solution process is shown in Algorithm 1.

Algorithm1:Model optimization solution

Step 1 initialize shared fine-grained base groupG
Step 2 use orthogonal matching tracking algorithm on Formula(2) to obtain discriminant
matrixCG

O in source domain
Step 3 update gn & cn in a loop
Step 4 obtain XG

O based on Formula(4)
Step 5 use orthogonal matching tracking algorithm on Formula(5) to obtain discriminant
matrixCG

T in target domain
Step 6 obtain discriminant features XG

T based on XG
T = XP

T CG
T

3 Experiments

For further evaluate the proposed method in this paper, we go on experiments
with TE (Tennessen-Eastrman) process dataset. The detailed experimental set-
tings are shown as below.

Experiment Dataset: TE process dataset is simulated based on a real indus-
trial process. It consists of five major subsystems, including a reactor, a con-
denser, a vapor-liquid separator, a recycle compressor, and a product stripper.
It contains 21 types of faults, each of which is composed of 41 measurement con-
trol variables and 11 process control variables. TE data is divided into training
set and test set. Each type of fault in the training set contains 480 samples, with
a total of 21× 480 training samples. Each type of fault in the test set contains
960 samples, a total of 21 × 960 test samples.



120 Y. Gui et al.

Experiment Settings: First, the proposed method extracts the relative fea-
tures of the faults by PCA, and obtains the main relative features of the source-
domain faults XP

O and the target-domain faults XP
T . For each attribute of faults,

we extract 20 main relative features from 52 original variables. Second, the fine
grit is set to 35, both the shared fine-grained base and the source domain dis-
criminant matrix are learnt from the source domain data. Third, use the shared
fine-grained base to obtain the target domain discriminant matrix to finally
obtain the discriminant features of the source and target domain. For the prob-
lem of different labels in source and target domain, the proposed method utilizes
linear mapping function to change the source-domain label yO and target-domain
label yT to labels zOk

, zTk
= {l1, l2, . . . , lk} which have the same information.

The linear mapping function is followed:

yO = wzO (8)

Then the mapping representation of label in target domain is yT = wzT . For
zero-shot fault identification defines that there is no available training sample
for the fault category to be diagnosed, the experimental Settings in this paper
are the same as those in [11], and only the training set part is used. As the
last 6 faults of the 21 fault classes of TE data are rarely described in the data
set, 80% fault classes of the first 15 fault classes of all fault classes are used for
training and 20% fault classes are used for testing. The experiment was divided
into 5 groups, each group had 12 fault classes for training and 3 fault classes for
testing. See Table 1 for specific categories.

In addition, this paper adopts four algorithms for fault classification, namely
deep belief network (DBN) [14], support vector machine (SVM) [15], Random
forest (RF) [16] and Naive Bayes (NB) [17]. The DBN is formed by two layers
of 100 dimensions, the number of epochs is 100 and the size of batch is 120,
the learning rate is set to 1. The LSVM parameter is set to (‘-s 0 -t 0 -c 1’),
and the number of decision trees for RF is set to 50. We tested the accuracy
of five experiments. The calculation formula of fault classification accuracy is as
follows:

Acc =
ŴT

WT

(9)

where, ŴT is the number of samples which are correctly classified, and WT is
the total number of samples of target faults in the test stage.

Results and Analysis: The diagnostic results of five groups of experiments
under four algorithms are shown in Table 2. DBN classifier reaches highest at
72.64% on group B, LSVM classifier reaches highest at 84.31%, 56.11%, 44.03%,
on group A, group C and group E, RF classifier reaches highest at 63.68% on
group D. Since the significance characteristics of each fault are different, the
fault identify accuracy varies from 44.03% to 88.47%. Although the highest fault
identification accuracy of the four classifiers varies from 44.03% to 88.47%, there
is still some space to improve.
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Table 1. Experiment groups

Group Train classes Test classes

A 2 3 4 5 7 8 9 10 11 12 13 15 1 6 14

B 1 2 3 5 6 8 9 11 12 13 14 15 4 7 10

C 1 2 3 4 5 6 7 9 10 13 14 15 8 11 12

D 1 4 6 7 8 9 10 11 12 13 14 15 2 3 5

E 1 2 3 4 5 6 7 8 10 11 12 14 9 13 15

Table 2. Experiment results of 4 algorithms on 5 groups

Group DBN LSVM RF NB Highest

A 84.31 88.47 82.92 85.83 88.47

B 72.64 69.38 66.11 69.17 72.64

C 52.29 56.11 54.58 49.79 56.11

D 56.25 55.63 63.68 61.04 63.68

E 42.29 44.03 29.65 28.61 44.03

Table 3. Comparison between our method and other SOTA methods

Group DAE [18] IAP [19] SJE [20] ESZSL [21] Feng [11] Ours

A 54.16 55.48 74.58 57.22 75.78 88.47

B 62.63 60.69 33.12 33.33 55.54 72.64

C 40.13 45.00 33.95 39.51 53.46 56.11

D 55.48 36.25 63.88 39.65 62.50 63.68

E 36.94 48.88 33.81 33.33 51.03 44.03

Mean 49.86 49.26 47.86 40.60 59.66 64.99

The paper also compared with DAP [18], IAP [19], SJE [20], ESZSL [21] and
Feng et al. [11]. The results are shown in Table 3. The proposed method achieved
the best identification results in group A, B, C, D, and the average accuracy
of the five groups of experiments reached highest at 64.99%. Table 3 shows that
the shared fine-grained base transferring proposed in this paper can effectively
solve the problem of zero-shot fault identification.

The proposed method aims at transferring source domain to share fine-
grained base matrices. Therefore, the identification results of representation
matrix migration at different granularity are discussed. In this paper, compari-
son tests under five different fine grits are set as k = [20, 25, 30, 35, 40], and the
results are shown in Fig. 2. It can be seen that the overall trend is that the larger
the fine grit is, the more accurate the identification result will be, which is also
more consistent with the practical theoretical interpretation, that is, within a
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certain range, using more dimensions to describe the fault features can make the
classification effect better.

Fig. 2. Experiment results under different sizes of fine girt

4 Conclusion

In actual applications of large-scaled complex devices, for the problems that fault
samples are usually few and hard to collect, and take a lot of human and mate-
rial resources, we propose a zero-shot fault identification method based on trans-
fer learning. Under the situation of no available sample, the proposed method
transfers the fine-grained representation of fault data in other relative domains
to target domain, thus to diagnose the faults in target domain. Compared with
existing zero-shot identification methods, our method utilizes the discriminant
feature extraction based on shared fine-grained base representation. The fine-
grained base are flexible in dimensions, and the fine-grained base description
matrices can be obtained automatically according to algorithms, without setting
fine-grained description manually. On TE process dataset, the average identify
accuracy is 64.99%, which gains the highest accuracy compared with other meth-
ods, and analysis results on different experiments also demonstrate the effective-
ness of the proposed method.
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