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Preface

The carbon (C) problem and its impact on climate have been attracting attention for
many decades. The last few decades have seen tremendous changes in agriculture
and the world’s food chain. New and modern agriculture techniques result in more
depletion of C from the soil and cause a remarkable increase in C concentration in
the atmosphere. Increased demand for food and energy is the two main anthropo-
genic factors affecting soil organic carbon (SOC) status in a climate change era.
While global trade in agricultural commodities has increased interconnectivity
among food resources in developed and developing countries, it has also contributed
to and exacerbated the challenges related to malnutrition, food security, environ-
mental degradation, and large-scale soil sustainability, making it harder to achieve
the targets of Sustainable Development Goals (SDGs) of eliminating poverty and
hunger. Different technologies, programs, and policies should be adopted for
enhancing SOC in the soil of various agroecosystems. Soil C levels have reduced
over decades of conversion of pristine ecosystems into agricultural landscapes,
which now offers the opportunity to store C from the air into the soil. C stabilization
into agricultural soils is a novel research approach and offers a promising reduction
in atmospheric carbon dioxide (CO2) levels. This book brings together all aspects of
plans and policies for SOC management in agriculture, with a special focus on the
diversity of management practices of soil in agricultural systems. The book offers
broad ideas of new plans and policies for improving SOC in the agricultural
production system. It will be suitable for teachers, researchers, policymakers, and
undergraduate and graduate students of soil science, microbiology, agronomy,
ecology, and environmental sciences.
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1

Reforming the Soil Organic Carbon
Management Plans and Policies in India

Ram Swaroop Meena, Sandeep Kumar, Cherukumalli Srinivasa Rao,
Arvind Kumar, and Rattan Lal

Abstract

The importance of soil health and balanced fertilizer application based on soil test
results must be taken into account in various agricultural community programmes
and initiatives. In India, a programme on soil health management, integrated
nutrient management and organic farming has been launched to improve soil
carbon (C) management by incorporating and integrating multiple strategies,
techniques and resources. In this respect, organic carbon (OC) stored in agricul-
ture is one of the imperative strategies that enhance soil C content, maintain soil
health and quality, mitigate climate change, conserve biodiversity and ultimately
sustain the entire food system, although, to implement these technologies,
policies, economic analysis and scientific as well as financial support are required
especially for resource-constraint smallholders of developing countries. The SOC
content in the upper layer of Indian cultivated soils is estimated to be 0.2% or less,
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which is well below the critical threshold level of 1.5% needed for healthy soil.
The goal of this chapter is to provide understanding on sufficient food supply
while also coping with changing climates, improving SOC, reducing losses and
developing techniques to improve the soil C pool in rural soil. These policies for
C management and restoration need to be tailored to the local situations, because
the livelihood of millions of people across the country directly depends on how
SOC pools are maintained using sustainable land management practices and
policies. Hence, effective policy implementation relies on several factors that
are well coordinated with socio-economic and natural characteristics and may be
supported by good governance and stakeholder engagement.

2 R. S. Meena et al.

Keywords

Agriculture · Plans · Policies · Soil organic carbon

Abbreviations

AMF Arbuscular mycorrhizal fungi
ARDF Agricultural Research and Development Fund
BMPs Best management practices
C Carbon
CA Conservation agriculture
CBD Convention on Biological Diversity
CBO Community-based organizations
CDP Crop Diversification Programme
CoP Conference of Parties
FAO Food and Agriculture Organization
GEF Global Environment Facility
GEFSOC Global Environment Facility Soil Organic Carbon
GoI Government of India
GSP Global Soil Partnership
ICAR Indian Council of Agricultural Research
IFAD International Fund for Agricultural Development
IGP Indo-Gangetic Plains
IPBES Intergovernmental Science-Policy Platform on Biodiversity and

Ecosystem Services
IPCC Intergovernmental Panel on Climate Change
KJWA Koronivia Joint Work on Agriculture
LDNW Land-degradation neutral world
NAMA Nationally appropriate mitigation action
NAP National action plans
NARS National Agricultural Research Systems
NEHR North-Eastern Himalayan Region
NFSM National Food Security Mission
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NGOs Non-governmental organizations
NHM National Horticulture Mission
NICRA National Innovations in Climate Resilient Agriculture
NMSA National Mission for Sustainable Agriculture
NSC National Seed Corporation
NT No-till
OC Organic carbon
PES Payment of ecosystem services
R & D Research and development
REDD Reducing emissions from deforestation and forest degradation
RKVY Rashtriya Krishi Vikas Yojana
RWSs Rice-wheat systems
SCOs Civil society organizations
SLM Sustainable land management
SMN Soil monitoring network
SOC Soil organic carbon
SSC State Seed Corporations
TMC Technology Mission on Cotton
TMIDHNER Technology Mission for the Integrated Development of Horticulture

in the North-Eastern Region
UN United Nations
UNCCD United Nations Convention to Combat Desertification
UNCED United Nations Conference on Environment and Development
UNFCCC United Nations Framework Convention on Climate Change
WOCAT World Overview of Conservation Approaches and Technologies

1 Introduction

Despite India being the leading country in agricultural production, no specific
strategy planning has been done so far regarding soil carbon (C) sequestration at
ground level. A large section of farmers is unaware about the importance of soil
organic carbon (SOC) sequestration and its role in improvement in food, nutrition,
environmental and economic conditions of the country IUCN (2018). Arable soils
generally have low SOC concentrations in the root zone, ranging from 1 to 10 g kg-1

(Manna et al. 2003), and often considerably lower. The croplands of Indo-Gangetic
Plains (IGP) have a SOC pool of 8.5–15.2 Mg C ha-1 at 40 cm deep and
12.4–22.6 Mg C ha-1 at 1 m depth (Singh et al. 2011). Low SOC concentrations
and pools in the root zone are partly responsible for low crop productivity and wide
yield differences (Lal 2015). Crop diversity, maintaining consistent vegetative
ground cover, introducing carbonaceous substances, lowering insecticides/
pesticides/herbicides and minimizing tillage, among other strategies, should be
used to restore soil health. Soil conservation and restoration may directly contribute



to climate change resistance, making them crucial for humanity’s food, water and
energy. Over the previous three decades, the Government of India (GoI) has made a
significant investment in preventing soil health degradation and regulating soil
fertility.

4 R. S. Meena et al.

There is no separate organization dealing with the research on soil C sequestra-
tion, further intensifying the challenges to politicians, researchers, policymakers and
extension workers. Hence, there is a need to establish plans for soil C restoration
along with designing financial policies to promote C management practices across
different agroecological regions, landscapes and cultural contexts to the farmers
(Meena et al. 2021). The objective of this chapter is to ensure enough food supply
and cope with changing climate and improved SOC, decrease losses and develop
strategies to enhance the soil C pool in country soil.

Government should take initiatives by reducing subsidies on C-exhaustive inputs
such as chemical fertilizers and heavy tillage machinery to minimize their use.
Incentives should be given to promote activities which enrich soil C such as planting
trees/shrubs in the agroforestry system or transforming tillage practices from con-
ventional to no-till (NT) that ensure a positive impact on soil C build-up (Meena
et al. ). A successful policy should restore C-exhausted lands including the
direct benefit of farmers and ensure their active participation in training and demon-
stration, and make easy availability of tools for C sequestration. For soil C enrich-
ment, a Californian scheme, i.e. the ‘Healthy Soils Initiative’, is a good example to
encourage farmers’ participation in the C management system. Similarly, the gov-
ernment should also promote farmers’ education, motivation, knowledge-sharing
among farmers, rewards and monetary support to the farmers and land managers to
promote efficient soil C sequestration activities. For example, in order to restore
SOC in agroecosystems, three important priorities need to be addressed:

2021

1. An overview of the case and a plan of action, for instance, including countries like
Australia, Canada, Ethiopia, Bhutan, Uruguay and others who have already
included soil in their national agenda.

2. A detailed business plan that brings together public and private investors to
increase finance levels and improve soil C management.

3. A strategy to provide financial support for producers and managers of the land to
restore soil C through the adoption of best management practices (BMPs).

To generate a holistic approach for developing an action plan in India, there needs
to establish a better linkage among scientists, policymakers, farmers and land
managers for designing efficient policies by utilizing the available technical and
scientific resources to restore the SOC pool in national soil and terrestrial
ecosystems. Six crucial steps to be followed in this series (Meena et al. 2022)
include:

1. Determining regional and national trends of SOC loss.
2. Assessing how the adoption of BMPs can prevent SOC loss in major soils of key

ecological regions.
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3. Evaluating economics of SOC from a productivity and environmental
perspective.

4. Designating and implementing policies that promote soil C sequestration.
5. Developing standards and indices for promoting C sequestration practices.
6. Formulating policies for the practical execution of recognized strategies.

Government policy and legislation support are needed to strengthen the local
natural resources (i.e. soil) through different types of sustainable land management
(SLM) practices (e.g. agroforestry, conservation agriculture, range management,
etc.) and to maintain or increase SOC stock and soil biodiversity. From the perspec-
tive of policies for raising soil C stock, there are still huge gaps in policy creation and
execution in the domain of land use and management in India which may include the
lack of national action plans or their implementation.

2 Fertilizer Policy and Nutrient Management

Nutrient management is a prime concern for agricultural productivity and soil health.
The supply of required nutrients, according to crop and soil status, is essential to
make the balance of the soil system as well as to enhance agricultural production.
The availability of fertilizer for agricultural use requires the production of the needed
amount of fertilizer, regulated markets and distribution of inputs and fertilizer
policies in the country. In this perspective, GoI has implemented some programmes
and policies which encourage the balanced and judicious application of
agrochemicals based on soil test attributes. This is also supported by financial grants
and assistance through collaborative approaches among different states by
facilitating subsidy, training, capacity building and demonstration practices to
aware the farming communities towards balance fertilizer use UN (2012). In
1991–1992, GoI initiated the balanced and integrated use of fertilizers in the farmer’s
field from a sustainability point of view. This includes the nutrient management that
comprises various key components in planning as follows:

1. Enhance the soil testing facilities across the country.
2. Promote the use of compost using biodegradable soil waste products of the city.
3. Increase farmers’ training for upscaling the knowledge and skills.

The importance of soil health and balanced fertilizer application according to the
soil test must be given due consideration in the various programmes and initiatives
among the farming community. GoI has implemented several outreach activities to
sensitize farming communities about the issues of fertilizer use and management. In
this perspective, various soil health programmes are broadcasted on national TV
platforms regarding demonstration of various success stories among farmers,
farmers’ clubs, celebrations of national soil health day, national soil health mission,
etc. to enhance awareness about the need for sustainable management of soil
resources UN (2012).
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The balanced and integrated use of fertilizers programmes was continued till
2000 and was later amalgamated into the Macro Management of Agriculture
Schemes. Further, under the National Mission for Sustainable Agriculture
(NMSA), the programme on soil health management and integrated nutrient man-
agement and organic farming are initiated for effective soil nutrient management by
adopting various conservation practices and techniques and incorporation and inte-
gration of various resources in India (Chaudhari 2018).

3 Conservation Agriculture

Conservation agriculture (CA) is a well-known approach based on the interrelated
principles of minimal mechanical soil disturbance, permanent soil cover with living
or dead plant material and crop diversification through intercropping or rotation. It
helps to enhance and boost yield potential in addition to decreasing risks of land
degradation, protecting the environment and withholding challenges associated with
climate change. With the extensive agricultural practices, it is the need of the hour to
adopt this practice to a larger extent, especially in a rice-wheat-based cropping
system. Hence, planners and institutional leaders should come up with different
policies and plans to transform the existing tillage, cropping system and agricultural
practices into system-based CA by providing incentives and encouraging farmers to
adopt such a system that will increase the soil C pool. It can be achieved by
providing a regulatory standard framework, strengthening research and develop-
ment, developing training programmes, implementing legislation and providing
incentives and payback programmes. With the adoption of CA, there is a direct
enhancement in SOC concentration which in turn improves soil fertility and C stock.
Thus, GoI must standardize and promote the adoption of CA through organizing
various programmes and creating awareness among farmers. As in some cases of
Africa and Europe, it has been observed that farmers plough the soil after taking their
crops as they are well aware of the fact that the decomposition of organic matter
upon ploughing will enrich the soil with nutrients and reduce the cost of fertilizer
input. Henceforth, a policy framework is required for farmers/landowners to ensure
the continuous addition of biomass-C into the soil. Policies should encourage and
enable the unification and validation of CA protocol in a practical form so that
farmers can get monetary assistance for providing certain ecosystem services.
Likewise, the farmers should also get financial and technical aid from GoI for
implementing the CA system to reduce the risks of soil erosion and SOC loss.
Such plans/policies inspire the producers to transform their existing crop manage-
ment systems into CA-based systems.

CA adoption at a broader level is primarily driven by an increase in crop yield,
reduction in unit cost, decrease in dependence on livestock, reduction in labour
requirements, increased availability of CA machineries, access to credit, donor
funding and government support on incentives, taxes and interest rates. This
indicates the role of all public sector, private sector and civil society organizations
(SCOs) as all sectors have their own strengths and they should try their best



collective efforts to fill the gap in CA adoption on a larger scale. In this regard, the
public sector needs to invest more in research and capacity building, infrastructure
improvement, reforming and consolidating land tenure systems through
strengthening institutional support and formulation and implementation of policies
for subsidies, tax relief, credit and insurance. Likewise, the private sector can ensure
their active involvement in research and development (R & D) and their cost sharing,
machinery development, the formulation of farmer’s friendly business model, cus-
tom hiring services and establishment of viable value chain like contract farming,
whereas SCOs should organize smallholder’s collective actions and the establish-
ment of linkage of R & D programmes and link farmers with the delivery of seeds,
machineries, fertilizers, credit, market and other inputs. So, there is an urgent need
for movement for advancing CA-based technologies at regional and national levels
by involving all parties in the agri-value chain. CA policies should be integrated into
a coherent national policy for the sustainability of the agricultural ecosystem. In
order to accelerate mainstreaming of CA-based technologies, it is necessary to
develop national and regional networks of different stakeholders. Different target
groups such as professionals, policy advisors and financial institutions ought to be
sensitized to CA for improving policy advocacy and capacity building. The training
modules should be targeted at specific audiences, such as farmers, extension
specialists or service providers. The specific researchable, developmental and policy
issues are described by NAAS (2018).

3.1 Development-Related Issues for Implementing Conservation
Agriculture

The principal actions that need to be undertaken for the implementation of CA
technologies in rice-wheat systems (RWSs) are as follows:
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1. Providing funds for laser-assisted land levelling to cover a significant area by
promoting custom services and as possible as many cultivated areas could be
brought under CA-based crop management practices.

2. Promoting direct seeding of basmati rice and other rice-based systems.
3. Supporting single-window services for NT planting of wheat and sugarcane,

with residue retention and minimizing residue burning using double-disk
planters and turbo happy seeders.

4. Delineating the problematic areas by surveying the water quality of tube wells.
Accordingly, fertilizer application in the cropping system should be advocated
based on the groundwater quality, residue retention, tillage and crop establish-
ment methods, crops and cultivar selection.

5. Advancing technologies including remote sensing and GIS tools must be used to
map problematic soils.

6. Adopting dual-purpose wheat in connection with programmes intended to
improve livestock productivity, and such wheat must be grown in areas where
diaries are located such as peri-urban areas.
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7. Enhancing crop diversification to decrease area under rice cultivation to reduce
pressure on the declining water table by growing alternate crops such as maize,
pigeon pea, soybean, etc.

8. Providing quality prototypes of tillage machinery (i.e. multipurpose turbo happy
seeder, multi-crop planter, multi-crop double disk planter) for promoting CA.

9. Establishing system-based technical advisories for farmers and help in use of
modern information and technology communication.

10. Creating facilities for government officials to link the existing database to the
Unique Farmer Identity for soil testing and other government schemes and
programmes.

11. Encouraging farmers to purchase improved CA machineries and other equip-
ment by facilitating and subsidizing.

12. Strengthening human resources by capacity building and improving communi-
cation with extension agents and farmers across agroecological regions and
promoting farmer interactions through farmer schools, exposure visits,
travelling seminars, etc.

13. Facilitating strong public-private partnership for knowledge sharing on inputs,
markets, weather, etc.

14. Creating long-term research platform trials and farmer participation trials.
15. Farmer participatory seed systems and seed cooperatives for quality seed.

3.2 Researchable Issues

Priority researchable issues include the following:

1. Establishing long-term basic and strategic research platform in diverse ecologies
and production systems to track C sequestration, GHG emissions and resource
use efficiencies and link them to adaptive research modules for out-scaling of
potential technologies.

2. Developing, refining and adapting components technologies specifically tai-
lored to the CA requirements under various production environments and
conditions.

3. Describing prevailing location-specific CA-based crop management
technologies matched to diverse agroecologies, production systems and socio-
economics of smallholder farmers.

4. Assessing farmer’s efforts for practising CA and the corresponding ecosystem
benefits should be strengthened to ensure enticements to farmers for ecosystem
services.

5. Analysing and documenting the potential contribution of CA in improvement in
factor productivity in the production system.

6. Conducting long-term studies to determine potential environmental and eco-
nomic benefits of CA on crop residue incorporation in soil.

7. Refocusing crop breeding programmes to tailor cultivars that meet the needs of
different systems and enhance the adaptability of CA at a larger scale.
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8. Designing and developing CA machinery with special emphasis on small and
marginal farmers.

9. Expanding R & D to include more crops and agroecologies with a special focus
on smallholder farming.

10. Identifying and documenting limitations for upscaling CA technologies.
11. Identifying potential areas for adoption of CA practices.
12. Integrating CA with salinity-alkalinity research.

3.3 Policy Issues

Pertinent policy issues to be addressed are as follows:

1. Reviving the rice-wheat consortium so that it can provide a neutral forum for
policymakers, researchers, private sector representatives, R & D managers,
non-governmental organizations, Consortium of International Agricultural
Research (CGIAR) institutions and farmers to assess local and national needs,
exchange information and define priorities for the deployment of CA with
special emphasis on resource-constraint farmers.

2. Prioritizing and ensuring efficient use of allocated resources. National systems
have made significant investments, for instance in India, National Innovations in
Climate Resilient Agriculture (NICRA), Rashtriya Krishi Vikas Yojana
(RKVY), National Food Security Mission (NFSM), National Agricultural
Innovation Project (NAIP), a national initiative on CA and Indian Council of
Agricultural Research (ICAR) institutions are working in this line. It is vital for
such schemes to be integrated and complementary, as well as monitored and
evaluated (M & E) for mid-course corrections and greater impacts at the field
level.

3. Ensuring widespread dissemination and adoption of CA technologies by
farmers, the R & D of an active feedback-based farming system, including
specialized crop insurance, appropriate incentives and institutional and policy
support, is essential.

4. Integrating CA technologies with existing government programmes and
mapping government initiatives to technology traits.

5. Designing new CA-based programmes in synergy with government mega
programmes.

6. Strengthening institutions to build a strong linkage between CA technologies
with international treaties and programmes, for example, C credit to benefit
smallholder farmers.

7. Creating an environment favourable for the private sector for investment in CA.
8. Developing a mechanism to enhance capacity building for different groups on

CA such as the inclusion of CA in the course curriculum at the graduate level
and masters and PhD degrees on CA in SAUs.

9. Developing efficient and reliable mechanisms of documenting CA databases in
the region to enable researchers and policymakers to pursue further actions.
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10. Establishing mechanism for providing financial assistance to CA farmers,
including remuneration for C credits.

11. Providing CA machinery with all the necessary spare parts of standard quality,
after-sale services and operating manuals, which are currently lacking.

12. Creating agro service centres for resource-poor small landholders to provide
CA-based machineries and services.

4 Policies for Promotion of Crop Diversification

Crop diversification is the production of different variety of crops from the same area
to diversify agricultural commodities and bring down the climate-changing adverse
effects of multiple biotic and abiotic stresses, intensified due to practicing of
monoculture. To promote crop diversification, various government policies and
programmes have been initiated. Considering the significance of crop diversification
in resource conservation and economic development, the major government initia-
tive was the launching of the ‘Technology Mission for the Integrated Development
of Horticulture in the North-Eastern Region’ (TMIDHNER) to strengthen research,
production, extension, post-harvest management, processing, marketing and
exports-related activities in North-Eastern Himalayan Region (NEHR) (FAO
2001). Another scheme in this direction was the National Agriculture Insurance
Scheme (NAIS) which promoted the cultivation of food crops, oilseeds and other
commercial and horticulture crops. In addition to these, other government
programmes such as the National Horticulture Mission (NHM), Technology Mission
on Cotton (TMC), provision of capital subsidy for construction/modernization/
expansion of cold storages and storages for horticultural produce, creation of
watershed development fund for the development of rainfed areas, infrastructure
support for horticultural development with emphasis on post-harvest management,
strengthening agricultural marketing, Seed Bank Scheme, Cooperative Sector
Reforms, etc. greatly help to promote crop diversification with enhancing the
production and productivity of the crops (FAO 2001; Alur and Maheswar 2021).

After analysing the negative impacts of rice-wheat cultivation on soil health and
ecological conditions, the government is now seeking new horizons through crop
diversification that is remunerative and soil health in a sustainable manner. For
instance, in Punjab, Haryana and Western Uttar Pradesh provenience of India,
maize, oilseeds, pulses, millets, fruits and vegetables are being encouraged as a
substitute for the continued rice-wheat system. Punjab government launched a
‘multi-year contract farming’ scheme in 2002 to promote crop diversification to
protect natural resources including soil health. Taking forward this, in 2005–2006,
the Punjab government established Agricultural Diversification Fund (ADF) to
improve the soil ecosystem under the existing RWS. Under this fund, a sum of
Rs. 50.56 crores (~US$6.85 million) was released in 2006–2007 by the state
government to strengthen the agricultural infrastructure and diversification of
RWS. Further, to support it, the Punjab government also established Agricultural
Research and Development Fund (ARDF) through the release of additional



Rs. 10 crores (~US$1.35 million) in 2005–2006 for the screening of alternative
crops and their improved management practices (Meena et al. 2021). After that, from
2013 to 2014, a sub-scheme, i.e. the Crop Diversification Programme (CDP), has
been being implemented under (RKVY) in green-revolution states, i.e. Punjab,
Haryana and Western Uttar Pradesh, to diversify exhaustive RWS to other alternate
crops such as maize, pulses (in particular, pigeon pea), oilseeds (soybean and
mustard, in particular) and agroforestry to revive the soil fertility and water table
level (Mukherjee 2015). In 2020, under this programme, Punjab Agriculture Depart-
ment has successfully achieved 0.5 M ha areas under alternate crops through Crop
Diversification Pilot Scheme. Still, it needs to extend similar in other states to
enhance crop and soil productivity.

But the efforts made so far in this direction are not enough as most small and
marginal farmers practise crop diversification under resource deficiency conditions,
but to a greater extent, it needs good infrastructure, and financial support with better
market linkages. Hence, direct policy intervention is needed for refining rural
infrastructure, supporting price, farmer training for alternate crop cultivation, tech-
nological interventions, increasing access to institutional credit and endorsing
research and innovation for the development of inexpensive plant nutrients, rainwa-
ter conservation, surface irrigation development, etc. (Mukherjee 2015; Meena et al.
2021). To implement an alternative cropping system, some policies should be
followed such as those (Rakshit et al. 2021):
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1. Adoption of district/block approach: based on the soil and water-related problem
facing selected districts should opt for suitable alternate crop-based
diversification.

2. Creation of infrastructure: to promote crop diversification, quality seed should be
provided through establishing seed hubs in addition to the farm machinery banks
or custom-hire centres and storage facilities also to avail crop-wise requisite
machinery at a subsidized rate. As in the rice-wheat prominent belt of Punjab
and Haryana states of India, to encourage the cultivation of maize, pigeon pea,
soybean and mustard, special attention should be given to producing and supply-
ing quality seeds timely for that the National Seed Corporation (NSC) and State
Seed Corporations (SSC) need to engage more actively in their quality seed
production.

3. Establishment of processing industries and facilitation of new value chain: to sell
farmer’s produce at good prices, there is a need for identification of seed
production sites and to create a proper market through adopting viable value
chain addition of their produce. Hence, establishing processing industries for
diversified crops will create a market in addition to substantial job opportunities
and earnings for the farmers. Government-Industry Summits need to focus on the
possibilities to encourage private/corporate investment in the establishment of
such industries across the country. Other initiatives under Skill India with support
from Mudra Bank will also enable the establishment of rural entrepreneurship in
different areas.
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4. Cross-subsidization of alternate cropping system in lieu of ecological benefits: to
switch the existing cropping system, the government should avail additional
subsidies or incentives to encourage farmers to adopt more environmental and
soil-friendly cropping systems such as cereals + pulses. Such steps will save
water, energy, ecology and health in addition to broadening crop distribution and
hence will cause a lesser dent in government’s overall spending. Besides, by
transferring price differentials directly to farmers through the DBT scheme,
farmers will have a good effect on promoting alternate crops at the field level.

5. Crop insurance for alternate crops: the crop insurance policy should be revised for
crops like maize, pigeon pea, soybean and mustard based on the existing potential
of their cultivars, not based on the yield alone.

6. Funding for research and out-scaling projects of diversification: though crop
diversification efforts have been made for a long time, it has gained limited
success. This indicates there is a need to intensify the diversification efforts
through policy-driven measures. Government funding in research on potential
crops needs to be amplified to meet the changed scenario. Conducting the large-
scale demonstration of different cropping systems will also play an integral role in
this regard.

Besides, all these policy recommendations, the following measures should also
be adopted for diversification and sustainability:

1. Developing a viable cold chain system specifically for corn and perishable
vegetables.

2. Facilitating contract farming through the advancement of industries for seed,
feed, poultry, oil, dal, etc.

3. Facilitating export by establishing export zone for soybean, pigeon pea, mustard,
maize, etc.

4. Funding to industries that grow alternative crops for the protection of natural
resources.

5. Imposition of safeguard duty on soybean imports, similar to that applied to oil
palm in India.

6. Rebates on transport for diversifying crops from the production area to the
industrial site.

7. Reducing or banning subsidies on groundwater pumping.
8. Tax rebates for industries buying diversified crops.

5 Interventions for the Soil C Stabilization

5.1 Biochar: Role in C Stabilization

Biochar, as opposed to other organic substances that usually mineralize less than
30 years, is less liable to weathering process and microbial decomposition and thus
helps to stabilize soil cover decades while preventing soil degradation, and
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enhancing production sustainability (Datta and Meena 2021). Biochar is known to
be the most desirable CO2 because of its modulative porosity, texture and low cost,
which makes it a great choice as a C-stabilizing material. It is obvious that soil C is
categorized as labile (half-life 1–20 years) and stable (half-life 20–100 years). Of
these, stable C stock is more resistant to the mineralization process and thus
contributes to maintaining the C stock in soil for a long time, as biochar is made
of paralysed organic materials 20–80% of stable C, which is not released into the
atmosphere in the form of CO2 and is retained in soil longer (Meena and Kumar
2022). Biochar contains the majority of fused aromatic C and hydrocarbons
consisting of polycyclic aromatic compounds, compared to other organic matter
resistant to rapid mineralization and having aromatic C compounds (e.g. lignin). In
soils, biochar application increases a fluorescent substance similar to humic acid and
reduces co-localization of aromatic C and polysaccharides C. At the same time,
during carbonization, hydroxyl and hydrogen atoms are broken down simulta-
neously, which stabilizes biochar C, making it more resistant to decomposition.
These changes, along with the reduction of C metabolism (a lesser rate of respira-
tion), are apparent to be crucial to soil C stabilization amended with biochar.

Although despite all these, the C-stabilizing properties of biochar in terms of the
content of stable polycyclic aromatic C fraction depend on several factors including
feedstock type, paralysing temperature and soil conditions to which biochar is
applied. The stable polycyclic aromatic C friction determines the resistance to
mineralization and duration of C stability in soil. Biochar formed stable
polyaromatic C at 600–700 °C at 80% of total organic C. That’s why biochar
production at higher temperatures (525–650 °C) was reported to have very less C
mineralization at the advanced stage of incubation (8–16 months). After biochar
application, the reduced mineralization rate coupled with increased cation exchange
capacity and soil pH shows a positive relationship between high cation exchange
capacity and C stabilization. Along with these, biochar application in weathered soil
containing higher native SOM concentration leads to more stabilization of applied C
and resultant decreased soil loss from erosion and transport, compared to clayey soil
with low SOM content.

5.2 Soil Microbial Consortia for the C Stabilization

The soil ecosystem is a highly complex system with a multitude of interactions
among soil resources (Meena et al. 2020), and there is an urgent need to develop
plans and policies for C stabilization (Fig. 1). The activities of soil microbes increase
soil porosity, soil aggregation, water retention and infiltration leading to the devel-
opment of suitable soil conditions for other organisms like mosses, lichens and
herbaceous and perennial plants, which in turn increases the soil C storage and
sequestration potential. Microalgae are photosynthetic organisms which play a
significant role in C sequestration as there is potential to sequester around 50% of
C in the cell dry mass of microalgae. Through quantitative stable isotope probing
(qSIP), C persistence traits of microbial strain genomes can be analysed to establish
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Fig. 1 Roadmap for achieving greater carbon stabilization in soil

robust mechanistic linkages between C cycling and soil microbial community
(Meena and Lal 2018). The utilization of ‘omics’ techniques also will help to
decipher the biological activities undertaken in the soil micro-niche for C
sequestration.

Among the fungi, arbuscular mycorrhizal fungi (AMF) in symbiotic association
with crop roots play a key role in C stabilization. It has been reported that the AMF
of the division Glomeromycota transfers essential nutrients to plants which in turn
dispense about 20% of the fixed C in soil. Glomalin belongs to this division and is a
recalcitrant, insoluble and hydrophobic glycoprotein which is resistant to degrada-
tion. It creates a ‘lattice-like waxy layer’ that makes soil particles, sand, organic
matter, clay and silt sticky allowing complicated aggregation processes in the soil to
begin. As we all know, soil aggregation and aggregate stability are inextricably tied
to C stabilization. As a result, soil aggregate stabilization increases the importance of
glomalin since it shields the interior part of carbonaceous compounds from degrada-
tion. The decomposition of organic materials contained in soil aggregates is slowed.
Glomalin creates a hydrophobic coating on hyphae that holds soil aggregates
together, resulting in physical C stability. Alternatively, glomalin is believed to
slow down the natural dissolution of soil aggregates. Furthermore, the fact that
when C is sequestered into glomalin, it becomes a part of the refractory and hardly
decomposable fraction of the soil C pool enhances the stability of soil C stock. It is
essential to mention that C in glomalin is stable because its turnover can take several
years depending on the environment. Glomalin-like proteins have a stubby structure
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that facilitates SOM sequestration. According to Wang et al. (2019), glomalin-
related soil protein contributes to SOC build-up by holding and extending C soil
stock turnover through recalcitrant composition.

Glomalin can store more than 5% of soil C and nitrogen, protecting Caseous
components from breakdown and offering resistance to wind and water erosion
(Meena and Lal 2018). It was established that glomalin, which makes up the
majority of organic matter, stores 27% of soil C. Glomalin accounts for almost
one-third of the global C pool, and is the main source of soil N and an important store
of other elements in SOM that can be extracted. Hence, glomalin is effective in
preserving soil C pools, forming aggregates and expanding organic content. In
today’s world, when degraded and nutrient-depleted soil could become a sink for
an excessive quantity of CO2, this increased soil C storage could help to prevent
global climate change. In this way, AMF populations in the soil must be stimulated
to invest C in the production of glomalin, resulting in increased glomalin stock, and
subsequently C stabilization. It’s also crucial to understand the role of soil microbes
in CO2 capturing and C locking-up within soil aggregates, as well as how to keep it
stable for a long period. In addition, it is vital to place a focus on developing research
proposals, programmes and policies to better understand the role of in situ microbes
in soil C sequestration and stabilization.

5.3 Possibilities and Action Plans for C Stabilization

To meet the emission reduction target of the government and C budget, preventing
measures for emissions and exploring new ways of enhancing/maintaining existing
soil C stock are needed to follow. For this, a strong evidence base must be
established to develop effective policies and measures to protect soil C flux. To
protect and increase soil C, a better understanding of trends of soil C levels and cost-
effective techniques has to be made. In addition, we must explore the potential
benefits of new technologies, for example, biochar. In this way, we need to do
everything we can to protect existing soil C stock. Also, our future actions need to be
centred on the need to protect our existing C stores and ensure that all future policy
development about soils is guided by this understanding. To support this, we must
develop a comprehensive strategy for protecting our soil (DEFRA 2009).

6 Policy Recommendations for Enhancing SOC Stock

The 23rd Conference of the Parties (COP 23) to the United Nations Framework
Convention on Climate Change (UNFCCC) established the Koronivia Joint Work
on Agriculture (KJWA) including the soil as an important component in agriculture
under the UNFCCC framework through the project ‘Improved soil C, soil health and
soil fertility under grassland and cropland as well as integrated systems, including
water management’. KJWA develops a framework to implement different actions for
C sequestration in soil by considering the inherent capacity of soils to store C and the
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existent gap in the majorly of soil for SOC capacity (FAO and ITPS 2015). As per
the IPCC report, the enhanced SOC content is one of the cost-effective approaches to
combat land degradation, desertification and food security in changing climate
scenarios (IPCC 2019). Through supporting the implementation of RECSOIL
(Re-carbonization of Global Soils) programme started under the Global Soil Part-
nership (GSP) which promotes SOC-centred sustainable soil management.
RECSOIL aims to prevent the activities that make the further loss of SOC from
C-rich soils and promote the practices that increase SOC stocks with enhanced
farmer’s income and soil productivity to contribute to improved food security and
nutrition by mitigating climate change.

Appropriate policies for natural resource conservation and land tenure should
focus on national land planning, market-oriented instruments and legal frameworks
(i.e. control, access and ownership). The problem of poor land productivity has been
aggravated by the local market distortions and the adoption of an inappropriate
constitutional and regulatory environment in prospective locations for good land
management. There is a lack of coordination and communication in the execution of
the best management action plan at the field level due to a lack of coherence between
land-use policies, market drives and formal institutional frameworks.

The institutions that are meant to deal with land concerns are weak in constitu-
tional frameworks, particularly regarding SOC. In most national administrations, the
value of SOC is mostly veiled inside other related subjects, and it is not given the
priority it deserves. Traditional institutions and land rights are also not mentioned
explicitly. In some places of the world, investment in land rehabilitation programmes
is limited. International organizations should be able to channel funding to national
governments so that the SOC conservation agenda can be implemented at the federal
level. To enforce compliance with soil and SOC conservation at the national scale,
suitable policies should focus particularly on land planning, legal structures and
regulatory mechanisms coupled with efficient incentive structures.

Better coordination is required between policymakers and scientific society at
regional, national and international levels through clear and simple messages.
Environmental problems need to be addressed by formulating effective policies
and their implementation (action) at the end level for getting desirable results
(Table 1).

In this line, policy imperative (SOC accrual and maintenance), policy profile and
discourse (increasing public awareness), policy rationale (societal and economic
advantages) and policy support (programmes and services) are imperative to reform
at the local, national and international levels for raising SOC and soil health. Policy
imperative must include the formulation of SOC restoration programmes taking into
account farmers’ socio-economic conditions, resource availability and production
potential of the field at a local level, whereas at the national level, land planning,
constitutional framework, regulatory systems and monitory inducements should all
be focused to encourage soil protection and health improvement. Soil C enhance-
ment must be included in the policy arena by correlating its role in current issues of
food security, climate change and sustainable livelihood. In policy profile and
discourse, at the local level, a suitable discourse must be adopted that focuses on
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Table 1 Components of a policy process to improve soil organic carbon status (Wesemael et al.
2015)

Section Regional level National level International level

Policy
agenda

Policy
imperative

Agroecological
alternative

Integrate SOC into
coherent national
soil protection laws,
NAPs and NAMAs

Conservation +
sustainable use of
biodiversity (CBD)

Sustainable soil
and land
management

Climate adaptation +
mitigation (UNFCCC,
LDNW, UNCCD)

Boosting
productivity

Prevent soil
degradation

Policy
profile and
discourse

Adapt to local
sociocultural
context

Value of SOC Include SOC in
mainstreaming of
sustainable development
plans

Education Regional patterns Hyperbole

Policy
rationale

Devise a plan
for long-term
livelihoods

Several advantages Maintaining SOC for
future generations

Reduced risk Minimized expenses
on erosion control

Reduce fragility of
populations

Policy
support

Field-scale
SOC models
(cool farm,
comet VR)

National incentives
and PES

Coordination SMNs

Demonstrate
BMPs at the
local level
(WOCAT)

Simulation
modelling tools
GEFSOC

Develop soil evaluation
research

Smartphones Soil monitoring
networks

Climate adaptation and
environmental funds

Google maps

Action Advocates
and
institutions

NGOs, CBOs
and other
farmers’
organizations

Cross-compliance
ministries, focal
points, NARS

Global conventions and
partnerships, international
NGOs, IFAD, UN, World
Bank, GEF, FAO

Governance Agricultural
extension

C footprint CoP, GSP, IPBES, IPCC

Conservation
districts

Soil certification

Local
producers/

Markets and
labelling
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watershed
committees
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Table 1 (continued)

Section Regional level National level International leve

Agricultural plan and
sectors

NAMAs

BMPs Best management practices, GSP Global Soil Partnership, SMN soil monitoring network,
GEFSOC Global Environment Facility Soil Organic Carbon, CoP Conference of Parties, GEF
Global Environment Facility, CBO community-based organizations, CBD Convention on
Biological Diversity, FAO Food and Agriculture Organization, IFAD International Fund for
Agricultural Development, IPCC Intergovernmental Panel on Climate Change, NAPs national
action plans, NARS National Agricultural Research Systems, NGOs non-governmental
organizations, IPBES Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem
Services, LDNW land-degradation neutral world,UNFCCCUnited Nations Framework Convention
on Climate Change, PES payment of ecosystem services, UN United Nations, NAMA nationally
appropriate mitigation action, WOCAT World Overview of Conservation Approaches and
Technologies, UNCCD United Nations Convention to Combat Desertification

farmers’ holistic perceptions of soil fertility and their economical access to
resources. At the national level, public training programmes and events should be
implemented by conveying a clear message of soil as a heritage and the role of SOM
in improved soil health. Internationally, the focus should be on proper coordination
and communication among various agencies, for example, all of the harmed efforts
to promote awareness by various hotspots should be grouped with a unified group
(i.e. GSP), and media should be addressed and expanded with a novel solution, and
the establishment of international agenda to encourage and accelerate the implemen-
tation of all preceding ideas. To maintain a healthy environment for coming
generations, an economic valuation of soil C should be based on a methodology to
enumerate soil capital, and especially the significance of SOC under policy ratio-
nale. Policy support should be given for the development of programmes that bring
together information on cropping systems and practices in developing countries and
increase local capacity to employ tools and methodologies. Also there is a need to
harmonize SMNs at the national level so that they can be compared and include the
elements required to produce SOC estimates, besides facilitating easy data
interexchange where national or regional restrictions exist. In this way, along with
the right policy support, proper advisories and institutional support are crucial. In
this series, in spite of the use of SOC indicators for several benefits, we need to move
beyond by linking SOC indicators with food security, climate change, biodiversity
and sustainable livelihood. Good governance must integrate the relevancy and
values of SOC in all stages of decision-making and action through strong interna-
tional organizations such as UNCCD, United Nations Conference on Environment
and Development (UNCED), NAPs, NAMAs and institutions at all levels (NARS,
NGOs). Initiatives to emphasize SOC must be backed up by mechanisms that give
precisely targeted incentives/subsidies as well as punishments for non-compliance.

In order to capture climatically considerable amounts of C in soils, financial
shortfalls exist, particularly in underdeveloped nations, though, if resources are
available, they must still be supported by the establishment of institutions and



mechanisms that will enable such investments to be made. This is especially
important in nations with unstable governments and weak legislative and fiscal
systems, including those in tropical and subtropical regions, where the need for
increased yield and associated soil C build-up is highest. Such organizations abound
in North America, Europe and Australia, but these territories have not yet trapped
climatically substantial amounts of C (Amelung et al. 2020).

SOC has yet to be substantially incorporated into market-based policy for two
major reasons (Amelung et al. 2020):
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1. PES such as sequestering C in soil is typically explicit because the benefits are
hard to quantify and standardize, necessitating arbitration between global
recipients and regional and local service providers.

2. Individual farmers are more concerned with crop productivity gain than with C
sequestration. As a result, additional incentives for land managers to encapsulate
extra SOC are required, such as finding productivity improvements, improved
market access or investment rewards on C holdings (Vermeulen et al. 2019).

Changes in management systems to improve SOC are estimated to cost from $3
to $130 per tonne of CO2 (Tang et al. 2016). They are determined by soil-specific
management changes and the potential to enhance SOC in a particular region,
i.e. these values differ significantly at regional dimensions. Financial support to
adopt management improvements that withhold more C, however, has a track record
of success, whether imposed by the private or public sectors (or both), as in Australia
(Vermeulen et al. 2019). Market-based payments, taxes and subsidies for C or cap-
and-trade systems are all possible rewards, with the best option relying on local or
national governance, societal values and operational cost (Mooney et al. 2007). All
of these possibilities should be examined further to see if they can result in massive
SOC sequestration.

For the wider acceptance of soil C-promoting measures, normative beliefs, along
with behavioural and psychological aspects, must be emphasized (Kurkalova et al.
2006). Because of these ambiguities and complexities, a regional, and especially a
national, soil management approach for C sequestration is a ‘wicked policy issue’,
with several viable paths (Levin et al. 2012). Being a wicked problem, this can be
addressed only with a coherent policy measure. In this scenario, it’s critical to
develop solutions that link soil C confiscation and GHG emission reductions to
environmental eminence, food security, climate change and biological diversity.
This linkage of C sequestration in soil with food security and poverty alleviation
programmes, soil health and REDD (reducing emissions from deforestation and
forest degradation) and biodiversity will further accelerate the policy’s development
and implementation. The strategies that can be found will most likely be varied and
gradual. There won’t be a single global ‘silver bullet’, but instead a wide array of
small, disparate and ideally interconnected ‘silver buckshot’ initiatives.

Various scientific studies support that maintaining or increasing the SOC stocks
in potential regions significantly contributes to improvement in soil health. In
support of local and nation-specific schemes and plans for SOC sequestration, we



suggest focusing on seven key points of R &Dwith additional six new study areas to
assist forward the objective of global soil C improvement plans (Table 2).
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Table 2 R & D is crucial to support the global implementation of C sequestration agendas and to
further advance the plans and policies

Area of focus for R & D New study areas

1. A broad set of policies and bottom-up
initiatives to increase the adoption of C
sequestering practices, including farmer
incentives, societal standards and actions
2. C sequestering farming systems: Full life-
cycle GHG accounting
3. Comprehensive soil information systems
for various parts of the world, including yield
gap analyses and status of soil degradation
4. Detailed maps of soil C sequestration
potential at the regional and national levels
5. Realistic forecasts of regional and local
yield growth per tonne of sequestered C
6. Sustaining the sequestration of C with
additional fertilizers in degraded land
7. Taking into account organic material
transfers that may result in the release of C
stored elsewhere

1. Assessing C sequestration of different
agroecosystems on a priori
2. Closing gaps in terrestrial soil C models,
such as by adding erosion or inorganic C fate,
as well as peatland C dynamics in natural and
drained states
3. Documentation of C sequestration success
stories for various soils and climate zones,
including ecological services and societal
benefits monitoring
4. Estimates of soil C sequestration in different
regions based on quantitative data
5. Harmonized, easy analytical techniques for
assessing legacy-driven C losses and C
sequestration potentials before their occurrence
6. Identifying optional methods for storing
additional C in the subsoil

7 Need for Laws/Acts (E.G. Land
Degradation/Conservation Law)

A clear delineation of land intended for agriculture and protection against urbaniza-
tion and other non-agricultural uses is a must. Hence, it is a must to have ‘Rights-of-
Soil’ or ‘Rights-of-Nature’. Also, there should be a national soil protection policy
and provision of payment for ecosystem services for farmers in India. For the last
three decades, the need for policies and laws for soil conservation and land degrada-
tion has been felt at the global level to manage and control soil and land degradation.
Such laws and policies contribute to sustainable land management and protection of
agricultural land use. The laws must encompass the provisions of ecological, land
use and constitutional planning, which control land degradation by regulating the
type and extent of land use Land and Soil Policy (2019). Currently, the governmental
policies and legislation are focused on land utilization instead of soil conservation;
hence, they are absorbed in price support schemes, land settlement and developmen-
tal schemes in place of ecological services, though a variety of schemes,
programmes, policies and legislations are required at regional, national and interna-
tional levels for the management of land degradation and to safeguard the future
sustainable use of land.

The laws of soil reforms regulate the different environmental protection laws in
addition to other laws related to land, water, forest, wildlife and natural flora-fauna



resource with a guarantee to provide healthy soil to the people. Such laws aim to
develop an ecologically balanced social and economic system by protecting soil
through managed and proper utilization of natural resources to safeguard it from any
adverse ecological effects The Economic Times (2020). Under such laws, there are
provisions to regulate state and local rights including citizens’ obligations on soil
protection specifying the optimum level of using natural resources. These laws also
enable ecological training and education in public and stipulate state environmental
guidelines and principles providing environmental assessment through developing
databases and conducting research and financing.
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Although, in a few countries, some laws and policies exist focusing on different
environmental reforms through imparting national, social, cultural and economic
plans and policies. For instance, in the USA, under the Soil Conservation Act (1935)
and the Standard Soil Conservation District Law (1937), most of the state and local
resource conservation laws evolved. These laws target various areas such as preven-
tion and control of land degradation, groundwater protection, water quality manage-
ment, rangeland management, protection of wetlands, prime farmland, wildlife
habitat and regulating farm input products. The state resource conservation laws
implement different conservation policies and soil conservation programmes and
allocate funds, providing technical and educational assistance. Later in the 1980s, a
major new environmental reform programme was undertaken in New Zealand,
which leads to the development of the Resource Management Act in 1991 (RMA).
Under RMA several provisions were included integrating environmental protection
and conservation with a proper resource management regime of effectively defining
land uses and preventing practices which potentially accelerate soil or land degrada-
tion. One of the major goals of RMA was to develop the Sustainable Land Manage-
ment Strategies for New Zealand. UNCCD (2016) focusing on control of soil
erosion, land degradation, sedimentation of river systems, soil compaction and
urban run-off. It establishes a national land care trust and prepares guidelines for
best management practices including advisory services, research and other
regulations. Later in 1990, the Government of Mongolia commenced a major
environmental law reform together with the law of the land, wildlife, protected
areas, water, forest and native flora resources. Shortly after, in 1994, the Chinese
Legislative Yuan first initiated the Soil and Water Conservation Law to preserve soil
and water resources to prevent soil erosion and landslides, rehabilitate land and
endorse the coherent and suitable usage of land with the application of agronomic
and engineering technologies. Under this law, the zones for soil and water conser-
vation have been designated over major river basins, reservoirs, watersheds and
coastal areas to preserve the natural ecosystem.

UNCED in 1992 shows interest to prepare a global soil instrument under which
all countries possess common principal policies, essential guidelines and rules for
the sustainable management of soil facilitating institutional linkages between
treaties UNCCD (2016). The key role of this global instrument was to design specific
objectives, fundamental principles and common rights for development, consump-
tion patterns and general obligations of all the states related to the conservation of
soil. Through this instrument, the legal framework would be imparted to support soil



and land degradation control, by creating fundamental principles to guide all states,
organizations and individuals. It will set a common foundation at a global level upon
which future laws targeting soil and land conservation might be developed.
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8 Plans for Measurement, Mapping, Monitoring
and Reporting on C Stock: Current Progress and Future
Perspectives

The huge global land area is degrading continuously due to various biotic
perturbations and mismanagement besides the natural process and hazards. These
disturbances lead to the removal of a significant amount of SOC (25–50%) from the
soil environment. The degradation of soil and associated services are more pro-
nounced in the tropical region of the world, especially in developing nations. The
source and sink of soil C and its assessment followed by monitoring and mapping are
key building blocks for the management of soil resources judiciously. The scientific
orientation regarding the SOC reserves and changes due to abiotic and abiotic forces
within the ecosystems needs to be properly designed. Further, technological
implications can be a good solution for balancing the C through C capture practices
(Fig. 2). The SOC and stock varied as per the climatic and edaphic features of the
locality and inflow and outflow of the soil C. Soil is an important ecosystem holding
an enormous terrestrial C pool and opportunities to C-capture in the long fixed pool.
The C balance in the soil depends upon the input and output of C in the soil
ecosystem (Policy Brief 2019).

The awareness and facts regarding the land and soil resource are the building
blocks for sustainable soil management. Farmers are directly engaged in soil

Local, national &
international

policies

Data base generation,
awareness, capacity
building regarding
soil and land-use

Research and
Development

Environmental
accounting and

assessment of soil
-ecosystem services

Rethinking,
designing,

appropriate modeling,
techniques under
changing global

scenario Sustainable
Management of
Soil Resources 

Fig. 2 Sustainable soil and environmental management



management; therefore, proper knowledge, information and training must be
dissimilated among these communities to manage the soil sustainably and profitably.
Further, common government intervention is implemented within the national plan
of action and management of particular resources with effective regulations. The
effective regulations of soil and land management needed a sufficient scientific
database for evaluating and designing the critical limit and compliance of soil
monitoring. The soil management practice regulation includes intricate institutional,
organizational, technical and policy challenges. The effective and strict policies
needed well-organized soil monitoring systems and their link between land manage-
ment and soils. The desired output from the existing and future policies cannot be
obtained without basic information on different aspects of soil systems. Therefore,
regular assessment, monitoring and reporting of variation in soil systems at local,
regional and national scales are essential. These all are essential for moving towards
an operationalized system of land and soil resource management.
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9 Conclusion

As an outcome, given the importance of soil C, this chapter focuses largely on
efficient soil management and C restoration techniques and policies in agricultural
soils, which will aid the country’s resilience to climate change and soil degradation.
To make the country and the globe a better place, it will also promote the ‘Sustain-
able Development Goals. The government or an organization may invest to stabilize
the SOC stock with the following conditions, viz. (i) higher resource use efficiency,
(ii) promotion of the C farming, (iii) enhancement in C stability, (iv) financial
assistance to C offsets and (v) government subsidies and financial incentives for C
management.
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Abstract

The majority of the Indian farming community depended on rainfed agriculture;
most of them are small and marginal farmers. Thus, to sustain food production
and meet the requirements of an ever-growing population, there is a great
necessity of concentrating rainfed regions for enhanced productivity without
jeopardizing soil and water resources. Sixty-three percent of the area is prone to
some degree of desertification in dryland ecosystems. About 67% of the Indian
soils are deficient in soil organic carbon (SOC); specifically, soils of arid hot
ecosystems are low in SOC stock as compared to those of semiarid, subhumid,
and coastal environments. Increasing SOC stocks in dryland helps in mitigating
the increasing atmospheric carbon dioxide (CO2) concentration, besides improv-
ing the soil quality attributes such as stability of aggregates, soil fertility, nutrient
cycling, etc. By changing the land-use pattern following sustainable ways such as
through introducing higher biomass-producing crops, shrubs, and tree species
coupled with soil management technologies in the existing system, the annual
carbon (C) sequestration rate could be increased by 20–75 g C m-2, and SOC
may reach a new equilibrium in the interior several years. Therefore, this chapter
aims on the productivity constraints and soil health issues of drylands, present
status of SOC, and key reasons for its depletion in Indian soils and a technological
approach to achieve the improved profile SOC stocks in dryland areas. This
chapter also provides the way forward to have policy and implementation
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pathways to enhance the C sequestration programs at local, regional, and national
scale in Indian rainfed dryland ecosystems.
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Abbreviations

AMF Arbuscular mycorrhizal fungi
C Carbon
CA Conservation agriculture
CASI Conservation Agriculture-based Sustainable Intensification
CC Cover crops
CH4 Methane
CO2 Carbon dioxide
CT Conventional tillage
DAP Diammonium phosphate
FAO Food and Agriculture Organization
FCO Foreign and Commonwealth Office
FYM Farmyard manure
g Cm-2 Grams per square centimeter
g Kg-1 Gram per kilogram
GHGs Greenhouse gases
GHI Global Hunger Index
GOI Government of India
ICAR Indian Council of Agricultural Research
IFFCO Indian Farmers Fertiliser Cooperative Limited
INM Integrated nutrient management
IPNI International Plant Nutrition Institute
IUCN International Union for the Conservation of Nature
kg ha-1 Kilogram per hectare
LDN Land degradation neutrality
Mg C ha-1 Mega gram of carbon per hectare
Mg ha-1 Mega gram per hectare
MGNREGA Mahatma Gandhi National Rural Employment Guarantee Act
Mha Million hectare
MNRE Ministry of New and Renewable Energy
MOP Muriate of potash
MT Metric ton
Mt Million tons
N2 Atmospheric nitrogen
N2O Nitrous oxide
NAPCC National Action Plan on Climate Change
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NBMMP National Biogas and Manure Management Programme
NCU Neem-coated urea
NMSA National Mission for Sustainable Agriculture
NPMCR National Policy for Management of Crop Residue
NT No-till
NUE Nutrient use efficiency
OC Organic carbon
Pg C y-1 Pentagrams of carbon per year
Pg Pentagrams
POM Particulate organic matter
RDF Recommended dose of fertilizer
RMPs Recommended management practices
SAT Semiarid tropics
SCD Surface charge density
SDGs Sustainable Development Goals
SHC Soil Health Card
SIC Soil inorganic carbon
SOC Soil organic carbon
SOM Soil organic matter
Sq. km Square kilometer
SSNM Site-specific nutrient management
t ha-1 Ton per hectare
TC Total carbon
Tg C y-1 Teragrams of carbon per year
TOC Total organic carbon
UN United Nations
UNFCCC United Nations Framework Convention on Climate Change
WHC Water-holding capacity
WHO World Health Organization
ZT Zero tillage

1 Introduction

India is a subtropical country comprising of 15 agroclimatic zones, which are
majorly depending on the southwest monsoon. Out of 140 Mha net-sown area,
nearly 70 Mha are under rainfed condition. Most of the rainfed/dryland farmers
are resource-poor small and marginal; but their share for the food production is
almost 60% of the total food grain (Agriculture Census 2015–16). Rainfed areas in
the country support nearly 40% of the country’s population and 60% of livestock
with the production of 90% of millets, 80% of pulses and oilseeds, 60% of cotton,
etc. (Srinivasarao et al. 2015). Among all the existing issues, food crisis remains the
most unsolvable problem around the globe until date as the human population



growth is at an alarming rate. In developing countries, estimates show that 780 mil-
lion people were undernourished (https://www.actionagainsthunger.org/global-
poverty-hunger-facts). As per the FAO, every year roughly 1/3rd (around 1.3 billion
tons) of the produced food gets wasted. Globally, food losses per year are 30% for
cereals; 40–50% for root crops, fruits, and vegetables; and 35% for seafoods (Boliko
2019) which represents the waste of resources such as land, water, seeds, fertilizers,
etc. used for the food production purpose in an unsustainable manner. According to
the UN India, there are nearly 195 million undernourished people in India, which is a
quarter of the world’s hunger burden. In addition, roughly 43% of children in India
are chronically undernourished. India ranks 71 out of 113 major countries in Food
Security Index 2020. The frequency of household food insecurity is relatively high
in some developed countries, ranging from 8 to 20% of the population (Pollard and
Booth 2019). As per the GHI (Global Hunger Index) 2021, India ranks 101 out of
116 countries, which is a serious threat to nation’s food security. Burgeoning
population and food demand pressurize the lands for excess food production that
are ultimately exploiting the existing natural resources (soil and water). Conse-
quently, the rainfed arable lands in arid, semiarid, and subhumid areas are
being extensively degraded.
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To overcome the present food insecurity crisis, all the World Health Organization
(WHO) members have adopted the United Nations’ 17 Sustainable Development
Goals (SDGs) in 2015, which include achieving zero hunger or zero undernourished
population by 2030. Various agriculture and allied sectors such as field crops,
horticulture, livestock, fishery, and poultry are strongly associated with several
United Nations SDGs and more importantly zero hunger, nutrition, and climate
action, and others. SDG 6 focuses on water and sanitation; SDG 11 on sustainable
cities; SDG 12 on reducing the pressure on natural resources; and SDG 13 on climate
change, and SDG 15 is linked to SDG 2 on food security. It is utmost challenge to
ensure the food and nutritional security in spite of managing the existing resources
without harming its regular functions. Agriculture in resource-scarce regions is the
crucial component for achieving the SDGs, established to provide the framework to
shape the policies and actions to ensure the prosperity for all human beings on the
planet.

However, several critical challenges for the nation’s food security such as climate
change-induced droughts, cyclones, heat waves, irregular rainfall patters, etc.
coincided with non-judicious management of natural resources which are degrading
the soil productivity and affecting the overall crop yields and environmental quality
specifically in drylands, consequently impacting the income of small and marginal
farmers. To meet all the nutritional needs of the growing population, the country will
have to produce additional food grains annually and increase the production of
livestock, fish, and horticultural products. As per the estimations, by 2030, India
needs to produce 304 million tons (Mt) of food grains; 96 Mt of fruits; 175 Mt of
vegetables; 21 Mt of meat, eggs, and fish; and 170 Mt of milk (Srinivasarao et al.
2015), and by 2050, the production must be enhanced by 65% to meet the require-
ment of ever-growing population. This has to be achieved in the face of shrinking
arable land and farm size, low productivity, growing regional disparities in

https://www.actionagainsthunger.org/global-poverty-hunger-facts
https://www.actionagainsthunger.org/global-poverty-hunger-facts


productivity, and depletion of the natural resource base. Soil organic carbon (SOC)
helps in maintaining the physicochemical and biological properties of the soil that
ultimately helps in producing more biomass and food besides minimizing climate
change to attain SDG goals (Rakesh et al. 2022). Sustainable management of SOC
specifically in rainfed areas is critical to sustain the food security and soil fertility
without impairing the environmental quality. However, large-scale programs and
policies play a critical role in enhancing SOC in the dryland areas of India.
Therefore, it is a need of the hour for the humankind to realize the mistakes done
since decades and transform the current agriculture system to sustainable production
system using present innovative technologies in order to ensure the global food
security and environmental safety.
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2 Productivity Constraints

In India, around 51% of the total cultivated area is under dryland/rainfed farming,
which contributes about 44% of the total food production (80% of cereals, 50% of
maize, 88% of soybean, and 65% of pigeon peas and chickpea, among other crops)
and is playing a crucial role in safeguarding country’s food security. These lands
encounter several constraints that are limiting the crop productivity at a greater
extent. Agriculture is facing constant challenges with a growing population (Rakesh
et al. 2019); changing of climate is further affecting the key ecosystem functions
which in turn results in stagnating agricultural productions. Rainfed areas are
naturally fragile and vulnerable to climate change and largely inhabited by the
poor farmers. However, at the same time, rainfed areas can bolster the nutrition
security through millets, pulses, and oilseeds. Frequent droughts, soil degradation,
low investment capacity, poor market linkages, etc. are the crucial challenges, which
are leading to low productivity, which accentuates hunger, unemployment, and
poverty in rainfed agriculture. Among all those, rainfall is a key factor that
determines the crop productivity in dryland farming and becomes a serious challenge
for attaining sustainability of rainfed ecosystems in India due to increased frequency
of droughts (Srinivasarao et al. 2020a). Drought affects the overall food security of
the nation (Srinivasarao et al. 2017a). This leads to other environmental issues such
as land degradation and depletion of resources such as water, energy, food, and
biodiversity which are the major sources of conflict, security issues, and migration.
Intermittent and prolonged droughts are among the major causes of yield reduction
in most of the dryland crops. Rainfed areas in India experience 3–4 drought years in
every 10-year period (AICRPAM 2009–2010). Moisture stress is an important factor
in determining the crop yields of drylands. Major soil types of rainfed agroecological
regions of India are comprised of alfisols, vertisols and vertic subgroups, oxisols,
inceptisols, entisols, aridisols, etc. and exhibit variations in moisture holding capac-
ity (Srinivasarao et al. 2017a). Most of the crops in rainfed regions receive least
attention of farmers toward application of manures and fertilizers. The fertilizer
consumption in different rainfed states of India is presented in Fig. 1.
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Fig. 1 Fertilizer
consumption
(N + P2O5 + K2O) (tons) in
major rainfed states of India
(2020–21) (Data from
Fertilizer Statistics 2020–21)
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Consequently, nutrient deficiencies are emerging as the most important
constraints in achieving the required yield targets. Thus, productivity of rainfed
crops has remained low. Although it has been amply demonstrated that soils in
rainfed regions are multi-nutrient deficient, balanced use of these inputs in rainfed
crops is rarely achieved. Most of the dryland soils are deficient in nitrogen and
phosphorus (other elements such as N, P, K, S, Mg, Zn, and B), but some regions
have extremely low soil organic carbon status as low as 0.15%. Therefore, the
untapped potential of Indian rainfed agriculture was massive (Chaturvedi and Ali
2002). Harnessing the full potential of rainfed drylands will contribute significantly
to meeting India’s rising food and nutrition necessities. In the context of increasing
resource limitations (energy, water, land, and finances among others) and higher
carbon footprint, these gains are realized in a sustainable, ecological, economic, and
socially equitable manner. Severe incidence of pests and diseases is also a reason for
the yield losses in rainfed crops. Due to uncertainties, there is lag in technology
adaption in the dryland farming systems. Further, poor crop management due to
untimely sowing and lack of intercultural operations like weeding, irrigation, and
optimum plant density result in poor crop yields. Judicious crop management can
substantially enhance productivity and improve agronomic and economic returns
(Srinivasarao et al. 2013).

3 Soil Health Issues in Rainfed Dryland Ecosystem

Maintenance of soil health is the key to sustainable high productivity, good water
and air quality, and healthy human and animal population. In dryland areas soil
organic carbon depletion and loss of plant available nutrients are the major threats to
the soil productivity and land degradation (Srinivasarao et al. 2009a, b,
2012a, b, c, d, 2021a). According to the FAO (2000), drylands are classified
climatically as arid, semiarid, and dry subhumid regions. The dryland soils generally
have low level of organic matter, alkaline to slightly acidic soil reaction in surface,
accumulation of salts or lime or gypsum, coarse to medium texture, and low



biological activity (Arnon 1992). Dryland soils are highly susceptible to wind and
water erosion due to soil moisture deficit. It is estimated that wind erosion alone
causes annual soil loss ranging from 10 to 50 t ha-1. High evaporation and limited or
no leaching causes salinity in dryland regions. In drylands, land use for cropping is
problematic due to scarcity of irrigation water source and uneven rainfall during
cropping season. In tropical regions, low-input farming system has adverse influence
on soil organic carbon (SOC) through depletion of nutrient status, no turning of crop
residues, and low productivity. In the semiarid and arid regions, low quantity of crop
residue is rapidly oxidized due to high temperature and allowing humification. The
soil organic matter content decreases with increase in temperature and decrease in
rainfall owing to the sensitivity of organic matter breakdown to climate. Usually the
soils of tropical environment contain less than 1% organic carbon, whereas temper-
ate environments contain 2–4% (Virmani et al. 1991). Further, erosion of topsoil also
contributes to low organic matter content of soils in dry areas. Characterization of
21 soil profiles under 8 rainfed production systems of India showed that soil was low
in organic carbon (<0.5%) and lesser organic carbon stocks (Srinivasarao et al.
2009c). Most of the soils have extremely low SOC, ranging from 8 to 10 g kg-1.
Low additions of chemical fertilizers and organic amendments cause depletion of
SOC (Lal 2004a, b). Besides the dryland soils are highly degraded, low in soil
organic, and multi-nutrient deficient. Emergence of K, S, Mg, Zn, and B deficiency
is one of the major constraints of crop production in arid and semiarid regions of the
country (Srinivasarao 2011; Srinivasarao et al. 2006; 2008a; 2009a, b; 2011a;
2012a). Non-precise application of faulty methods in agriculture causes nutrient
leaching, volatilization, and gaseous emissions leading to poor soil fertility and
deterioration of soil quality. Poor soil fertility and quality are the key reasons for
low nutrient use efficiency of P (15–20%), N (30–50%), Zn (2–5%), Fe, and Cu
(1–2%). Micronutrient use efficiency is extremely low, i.e., about 1–5%. Falling
nutrient use efficiency is one of the serious consents in rainfed agriculture. Syn-
chrony of water and nutrient availability is critical for higher nutrient use efficiency
in dry crops. However, depletion of SOC is often associated with declining use
efficiency of added nutrients.
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4 SOC Status of India and Rainfed Drylands

The soil organic carbon is the biggest carbon pool in the terrestrial biosphere. It is
estimated that 3.667 tons of CO2 is emitted from 1 ton of soil organic matter (Meena
et al. 2016). The average concentration of soil organic carbon ranged from 0.30% to
1.05% in top 30 cm profile soil and accounts around 10% of the SOC stocks
(140–170 Pg) in agriculture ecosystem and active fragments of terrestrial farmlands
(Datta et al. 2017a). India is having 329 Mha of total geographical area, out of which
162 Mha is arable land, 69 Mha of forest and woodland, 11 Mha of permanent
pasture, 8 Mha of permanent crops, and 58 Mha of other land use. The SOC pool in
soil profile is estimated to be 21 Pg at 30 cm depth and 63 Pg at 150 cm depth. In
most of cultivated soils, the SOC is less than 5 g kg-1 in comparison with



uncultivated soils, i.e., 15–20 g kg-1 (Lal 2015a). About 67% of the Indian soils are
deficient in SOC; specifically, soils of arid hot ecosystems are low in SOC stock as
compared to those of semiarid, subhumid, and coastal environments. The carbon
sequestration potential in Indian soils is estimated at 7–10, 5–7, 6–7, and 22–26 Tg C
y-1 for restoration of degraded soils and ecosystems, erosion control, adoption of
recommended management practices (RMPs) on agricultural soils, and secondary
carbonates, respectively. Thus, in India the total C sequestration potential is 39–49
(44 ± 5) Tg C y-1 (Lal 2015b).
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In general, SOC content in soil is directly proportional to clay content of soil and
rainfall, whereas it is inversely proportional to the annual temperature. In most of the
soils, SOC content is low because of intensive cultivation over the centuries, low
farm input, crop residue burning, or removal and use of dung for fuel or other
purposes. Because of the low clay contents, there is low SOC in the coarse-textured
soils of southern India, alluvial soils of Indo-Gangetic plains, and arid zones of
northwestern India (Dhir et al. 1991).

In India the southwest monsoon is blocked by very tall Western Ghats mountain
range to reach Deccan Plateau, so the region receives very little rainfall (World
Wildlife Fund 2001). This region consists states like Karnataka, Tamil Nadu, and
Andhra Pradesh, which covers about 12% area of the country. The dominant soils in
these states contribute 10% of soil organic carbon, 18% of soil inorganic carbon
(SIC), and 13% of total carbon (TC) (Srinivasarao et al. 2020a). In India nearly 45%
area is occupied by deccan plateau and covers the semiarid tropics (SAT) of the
Indian subcontinent. The semiarid tropics of India are dominated with black soils
(vertisols and some entisols) along with red soils (entisols and alfisols). The carbon
storage capacity of soils depends on the quality of soil substrate and its surface
charge density (SCD). Soil organic carbon has a direct effect on surface charge
density and the ratio of external or internal exchange sites. The smectite and kaolinite
clay minerals reserve large amount of carbon, which might be due to high surface
charge density, large areal coverage, as well as greater carbon sequestration potential
of these soils (38% SOC, 43% SIC, and 39% TC) (Srinivasarao et al. 2020a). The
SOC content in most of South Asian soils ranged from 0.1% to 0.5%. In different
regions of India, the SOC concentration significantly decreased after the intensive
cultivation (1960s) as compared to the uncultivated soils prior to the 1960s in top
20 cm soil horizon (Lal 2013).

The soils in dryland areas have a great carbon sequestration potential, if appro-
priate management and land-use policies are followed (Marks et al. 2009). The
increase of SOC stocks in dryland not only has the mitigating potential of increase in
atmospheric CO2 concentration but can also improve soil quality attributes such as
stability of aggregates, soil fertility, nutrient cycling, etc. (Rakesh et al. 2020a). The
decline in SOC needs to be counteracted by retention of crop residues on soil. Crop
residue burning or removal from soil surface results in decrease in soil organic
matter, reduced soil biological activities, incapacitate soil structure, disrupted water
infiltration, and retention and release for plant growth (Karlen and Rice 2015). In the
regions of semiarid and arid, soils are highly weathered, and some fertilization is
needed to avoid the depletion of soil nutrients (Bationo and Ntare 2000). In the



dryland areas, lack of sufficient moisture during crop growth influences crop pro-
ductivity, SOC dynamics, soil microbial activity, and crop diversity (Skopp et al.
1990).
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SOC stocks reduce due to intensive cultivation, climatic and edaphic
characteristics, and farming practices without caring for the sustainability of the
system. The soils of India in upper 40 cm soil horizons depleted SOC pool from
<1.0 g kg-1 to 10–15 Mg C ha-1 (Lal 2015a). The soil C stock decreased at the rate
of 0.1–1.0% per year due to prolonged intensive cultivation (Lal 2013). In global
soils, intensive cultivation experienced a loss of 40 Pg carbon with an average rate of
about 1.6 Pg C y-1 (Verma et al. 2015). High amount of C loss occurs mainly in soils
prone to erosion, salinization, and nutrient diminution than the un-degraded soils
with a range varying from 10 to 30 Mg C ha-1 (Lal 2013). The carbon loss from soil
around the globe is estimated to be 78 ± 12 Pg (Lal 2004a; Buragohain et al. 2017).

The carbon depletion is associated with several factors such as disruption in soil
aggregation, decomposition of SOM, accelerated aeration, alteration in plant pro-
ductivity, biomass production, and soil biological properties (Datta et al. 2017b).
Intensive cultivation results in deterioration of soil aggregates which leads to
increased C loss and consecutive decrement in retention of new C addition (Six
et al. 2000) and less addition of C materials to the soil (Solomon et al. 2007). The
amount of C added by the crop plants to soils is highly susceptible to microbial
decomposition than the woody plant C biomass, which remains in field (Meena et al.
2017).

Low SOC pool in India is adversely affected by decline in soil quality and soil
degradation causing reduction in biomass productivity and low crop residue and root
retention to the soil. There is a severe problem of desertification in dryland areas
where 63% of area is prone to some degree of desertification (Lal 2015a). There is a
severe and rapid depletion of SOC due to accelerated soil erosion. The fractions of
soil organic carbon are preferentially removed by surface runoff and wind erosion.
The eroded fractions are concentrated in the proximity of surface soil and have low
density. Consequently, eroded sediments are enriched with SOC pool compared with
the field soil with an enrichment ratio of 1.5–5.0 (Lal 1999). The fate of eroded
sediments is governed by a series of complex and interacting processes, and a
considerable SOC part is mineralized leading to the release of CO2 under aerobic
conditions and CH4 under anaerobic environments. It is assumed that about 20% of
eroded soil organic carbon is mineralized (Lal 1995).

In view of all the discussed facts, current intensive agriculture is greatly in need of
sustainable intensification to protect the SOC loss. The annual C sequestration rate
could be increased by 20–75 g Cm-2 by changing the land-use pattern through the
adoption of SOC-enhancing technologies such as introducing higher biomass-
producing crops, shrubs, and tree species in the existing system, so that the SOC
may reach a new equilibrium in the interior several years (Kakraliya et al. 2018).
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5 SOC-Enhancing Technologies

5.1 Crop Residue Recycling

Quality soil with greater amounts of SOC boosts the crop productivity (Rakesh et al.
2020b; Juttu et al. 2021). Crop residues act as a primary contributor to elemental
carbon in soil, and it incorporates a large number of soil nutrients that helps for
higher crop production. Soil organic matter (SOM) can be efficiently improved by
the incorporation of crop residues such as stubbles, stem, leaves, husks, etc. which
also play a decisive role in improving soil quality (controlling various soil physical,
chemical, and biological functions) and sequestering soil carbon (Kumar and Goh
1999) as well as addressing several environmental issues. Various benefits of crop
residue incorporation in soil fertility maintenance are illustrated in Fig. 2.

Residue incorporation changes the labile pool of SOC (Wang et al. 2004).
Retention of sun hemp residues on soil surface significantly enhanced the SOC by
0.92% compared to control plots (no residue incorporation) (Wang et al. 2004). Plots
which received legume stubbles contained 60%more SOC compared to control plots
where no stubbles were incorporated. Legume-based residue incorporation ensures
the production of huge biomass that confirms the net gains of carbon stocks in

Fig. 2 Benefits of crop residue recycling in soil fertility maintenance



comparison with cereals, which produce less biomass (Tiemann et al. 2015). Alter-
natively, crop residues can also be used to make a biochar (by-product of the
pyrolysis: biowaste is heated at 400–600 °C temperature in the absence of oxygen)
(Sinha et al. 2021). Agricultural wastes such as poultry litter, waste wood, manure,
plant material, bagasse, etc. are used in making biochar, which then becomes a great
source of carbon. There are numerous benefits of application of biochar in soil,
which improves soil water retention, provides better soil structure, enhances crop
productivity and also reduces the greenhouse gas emissions. Recently, biochar is
gaining importance, as it has a great potential for long-term C storage (Zhang et al.
2012).
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In India, about 500 Mt of crop residues is produced every year as per the report of
the Ministry of New and Renewable Energy (NPMCR 2020). It is always considered
as a waste material in terms of their economic importance. Domestic sector
consumes a big share and also an industrial sector. Apart from those, a huge portion
of residues is left in the field. In some places, it is also burnt in the field itself. On-site
burning of crop residues produces a huge amount of greenhouse gases (GHGs), i.e.,
majorly methane (CH4) and nitrous oxide (N2O) gases that harm the soil quality by
depleting SOC (Sinha et al. 2021) and environment. Utilization of these residues as a
nutrient source in the field brings a remarkable change in agricultural productivity
and soil fertility.

5.2 Conservation Agriculture-Based System Intensification

Intensive tillage operations and non-judicious management of plant nutrients deplete
the C pools and interrupt their dynamics (Bhattacharyya et al. 2012; Rakesh et al.
2020c). Continuous cultivation of agricultural lands using similar tillage implemen-
tation adversely affects the crop productivity specifically in semiarid regions (Sahoo
et al. 2020a). Conservation agriculture-based sustainable intensification (CASI) or
zero-tillage (ZT) technology involved with three basic principles, i.e., minimum soil
disturbance, diversified cropping systems, and crop residue retention, may hold the
key to address the C losses (Wright and Hons 2005). Also, ZT has been widely
identified as an effective practice to increase soil aggregation and C sequestration
compared to conventional tillage (CT) (Sahoo et al. 2020b). A successful manage-
ment of crop residues as an in situ management is an integral part in a conservation
agriculture (CA)-based system intensification (Jat et al. 2019). ZT or CA system has
significantly enhanced the overall concentration of total organic carbon (TOC) at the
upper two soil depths (0–5 and 5–10 cm) among all the sites (Fig. 3) studied in two
different districts of West Bengal (Rakesh et al. 2020d). He also observed that TOC
in rice-maize cropping system where residue biomass left on soil surface was
maximum compared to rice-wheat under ZT management. Excessive addition of
carbon substrate naturally improves the TOC in soil. An incubation study/C miner-
alization study conducted to compare the effect of ZT and CT also revealed that a %
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C lost was minimum in the treatments where rice and maize residues were applied on
soil surface compared to incorporation (Fig. 4).
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Leaving the crop residue on the soil surface significantly minimizes the carbon
footprints that helps in attaining sustainability from an environmental perspective
(Rakesh et al. 2021). Potential benefits of ZT on SOC in farmers’ fields of Eastern-
Gangetic plains of India are shown by Sinha et al. (2019).
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5.3 Cover Crops

Cover crops (CC) are well known for atmospheric-nitrogen (N2) fixation that
improves N recycling in the soil-plant system (Garcia-Gonzalez et al. 2018). It
replaces bare fallows in crop rotations and is terminated before the subsequent
main crop. Integrating CC into crop rotations highly benefits the soil by enhancing
the soil C sequestration and organic matter (Poeplau and Don 2015). Incorporation
of the roots and stubbles of leguminous cover crops grown for short periods helps in
maintaining the high levels of SOM in some soils (Meena et al. 2020). Incorporation
of short duration legume cover crops at the stage of flowering would enhance the soil
organic matter that ultimately improves the nutrient cycling besides protecting the
soil from erosion (Srinivasarao et al. 2017b). Inclusion of cover crops like pulses and
legumes in the cropping systems under conservation agriculture, i.e., zero-tillage
management, maintains the soil biophysical property and protects the soils from
water and wind erosion (Ravisankar et al. 2020). Presence of plant cover and roots in
soil profile aids in provision of improving SOC and soil aggregation and reducing
bulk density (Abu-Hamdeh et al. 2006). Because of soil aggregation improvement,
SOC slowly builds up through the improvement of particulate organic matter (POM)
(Six et al. 2004). POM is a fresh organic material which comes from the larger C
input, which is combined, contributed by crop residues and belowground root
biomass (root decomposition, exudation, or deposition) in case of CC (Leung et al.
2015). Additionally, soil biological factors such as arbuscular mycorrhizal fungi
(AMF) and microbial population and its activity would be efficiently promoted by
CC, which have a large effect on soil aggregation (Kabir and Koide 2002). Adoption
of CC substantially improved the SOC at the topmost soil layer (0–5 cm) during the
experimental period as compared to the fallow plots after 2010 (Garcia-Gonzalez
et al. 2018).

5.4 Integrated Nutrient Management

Integrated nutrient management (INM), whereby both organic manures/amendments
and inorganic chemical fertilizers are combined, is an efficient technique for
attaining sustainability in crop production (Ghosh et al. 2021). The SOC pool is
significantly affected by land-use management practices including tillage (Dalal
et al. 2011), crop residue management, fertilizer application, manure addition
(Ding et al. 2014), etc. INM is one of the best strategies that would help in restoring
the depleted SOC while improving the degraded soils and crop yields.

Percent increase in SOC stock over inorganic or recommended dose of fertilizer
(RDF) treatment under various INM treatment combinations in different cropping
systems has been illustrated in Table 1. From this study, it was noticed that INM
practice in pearl-millet cropping significantly improved the profile SOC stock by
110–112% over the 100% inorganic treatment. Also, the INM in pearl millet-cluster
bean-castor, groundnut, finger millet, and post monsoon sorghum crops enhanced
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the profile SOC stock by 32%, 43–47%, 16–22%, and 16–22%, respectively, against
the inorganic treatment.

5.5 Tank Silt

“Tank silt” is a topsoil eroded with high intensive rains which contains fine soil
particles (silt + clay) and organic materials that accumulated in farm or village tanks.
It is a rich source of nutrients and SOC. The tank silt collected from some tanks of
eight districts of Andhra Pradesh (Srinivasarao et al. 2011d) showed the nutrient
content (range) as organic carbon (%) from 0.4 to 2.0; mineral nitrogen (mg kg-1)
from 200 to 1400; available P (mg kg-1) from 8.0 to 35.2; available K (mg kg-1)
from 400 to 600; available S (mg kg-1) from 12 to 50; available Zn (mg kg-1) from
0.7 to 2.2; and available B (mg kg-1) from 0.3 to 1.0. Being rich in soil organic
carbon (SOC) and other nutrients, its application in rainfed agriculture can enhance
water-holding capacity (WHC).

Several studies have demonstrated that application of tank silt in farmlands
improves soil fertility (Obi Reddy et al. 2017) that helps in achieving higher crop
productivity (Indoria et al. 2018) by increasing soil water-holding capacity
(Deshmukh et al. 2019), organic carbon, and available nutrient status (Patil et al.
2017). Tank silt application improved the organic carbon from 0.30 to 0.38%
(Bhanavase et al. 2011).

5.6 Balanced Nutrition

Fertilization of agricultural soils is the mandatory practice for achieving desirable
crop yields. But the inappropriate practice always results in destruction of soil
quality (Srinivasarao et al. 2020c) that ultimately causes soil degradation and loss
of soil organic matter. Balanced fertilization/nutrition is the supplement of plant
nutrients in the right proportion, in the right method, and at the right time for a
specific crop and agroclimatic situation, which improve soil health and nutrient use
efficiency (Srinivasarao et al. 2008b). Government of India launched Soil Health
Card (SHC) in 2015 to ensure the farmland’s nutrient status and decide the
recommended dose of fertilizers to reduce the burden on agriculture soils. The
International Plant Nutrition Institute (IPNI) has also developed a software called
“Nutrient Expert” for determining the existing soil fertility status and estimate the
remained nutrition supplement on a crop-specific basis. Implementation of site-
specific nutrient management (SSNM) package (tested the individual fields for
nutrient deficiencies and recommended the particular nutrient requirement of the
crop) in eight clusters of Telangana and Andhra Pradesh resulted that it increased the
yield by 25% in major rainfed crops in comparison with farmers’ practices
(Srinivasarao et al. 2011d). These methodologies help in minimizing the usage of
chemicals in farming that ultimately results in reducing the cost of inputs, increasing
productivity, improving nutrient use efficiency, and protecting the soil fertility.
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Combining these techniques with carbon biomass addition in the form of manures
and crop residues or with any other organic amendments would be effective in
enhancing the SOC status of the soils. Long-term combined application of manure
and inorganic fertilizers significantly increased the C sequestration rates and crop
yield sustainability as compared to the inorganic fertilization (Srinivasarao et al.
2020b). Sequestration of carbon could be enhanced by the application of different
nutrient fertilizers that yields high C biomass, manure application, or incorporation
of crop residue (Cai et al. 2015). It has a greater and positive impact on crop yields.
Long-term organic fertilization shows that each Mg of OC in the soil layer (0 -
15 cm) increased wheat productivity by 15 - 33 kg ha-1 (Benbi and Chand 2007).

42 C. S. Rao et al.

5.7 Use of Novel Materials

Nano-fertilizers which are nano-sized particles contain macro- and micronutrients
that deliver nutrients to the plant in control mode. It is a great alternate for high crop
production and soil restoration. Nano-fertilizers increase the nutrient use efficiency
(NUE) and decrease the nutrient leaching to groundwater that helps in protecting the
soil quality and environment by avoiding the chemical interference to soil microbial
growth (Bose 2020). Customized fertilizers are the plant-specific nutrient package
formulated scientifically based on the research findings. It is an effective nutrient
formulation to supply multi-nutrients to the crop growth that helps in drastic
reduction of external inputs. Due to its site and crop-specific formulations, the
overall soil health can be effectively maintained. Slow-release fertilizers such as
urea formaldehyde, neem-coated urea, sulfur-coated urea, etc. can release plant
nutrients in small, steady amount over a period of time. These are generally
eco-friendly fertilizers because of their nature of releasing nutrients slowly that
avoids the loss of nutrients to the soil/environment. Calcium bentonite helps in
improving nutrient holding capacity of the soil and also provides a better home for
soil microorganisms. Zeolite is a crystalline made up of aluminum, silicon, and
oxygen that acts as an amendment, attracts water molecules, protects soil from
surface runoff, improves nutrient uptake, and reduces N losses through nitrification,
leaching, and volatilization. In addition to this, hydrogels (hydrophilic polymers) can
hold a large amount of water specifically suitable for the dryland soils. Both of these
are called as a commercial absorbent.

5.8 Soil Restoration by Degradation Minimization

Soil is a nonrenewable resource, and extremely vulnerable to degradation that
depends on complex interactions and factors and causes. Loss of SOC pool is driven
by erosion, acidification, salinization, elemental imbalance, etc. through physico-
chemical, biological, and ecological degradation leading to decline in soil quality
(Fig. 5).
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Fig. 5 Various soil
degradation types and their
impact on soil quality

Table 2 Management options to correct the different soil degradation types

Degradation type Management

Salinity/alkalinity/
sodicity

Gypsum application for high alkali soils; leaching process for reducing
salinity; tolerant tree species cultivation; green manuring; tolerant crop
species

Soil acidity Lime application, organic matter addition, plantation cropping, fruit
cropping, agroforestry, etc.

Water erosion Conservation agriculture, agroforestry, mulch-cum manuring, contour
farming, contour bunding, bench terracing, contour trenches, half-moon
terracing, strip cropping, mulching, cover crops, rainwater conservation,
and farm ponds, silt traps in farm ponds, relay cropping, intercrops, tank
silt recycling, etc.

Wind erosion Afforestation, high density planting, agroforestry, planting of trees in
borders of agricultural lands to act as shelterbelts; mulching, strip
cropping, grassing, etc.

Soil fertility
depletion

Introduction of legumes in mono-cropping, mulching, green manuring,
conservation agriculture, crop residue recycling, judicious use of chemical
fertilizers, combined application of fertilizers with organic amendments-
INM, animal manures, SSNM, biochar and biofertilizers and legume cover
crops

This can only be minimized through the adoption of recommended management
practices. The major degradation types and their management practices are
illustrated in Table 2. Increasing SOC pool in soil system through different
techniques helps in improving soil structure, enhancing soil fertility, and enhancing
microbial activity and species diversity of soil biota. This improvement in soil health
ultimately helps in reducing the risks of soil degradation (physical, chemical,
biological, and ecological) while improving the environment. Enhancing the SOC



pool to above the critical level (10–15 g kg-1) is highly required to set in motion the
restorative trends (Lal 2015a). India joined the global commitment “Bonn Chal-
lenge” and pledged a total of 21 Mha to be restored by 2030 (13 Mha by 2020 and an
additional 8 Mha by 2030). At COP14, Hon’ble Prime Minister, Shri Narendra Modi
announced, “India would raise its ambition of the total area that would be restored
from its land degradation status, from 21 million hectares to 26 million hectares
between now and 2030.” This mainly focuses on restoring land productivity and
ecosystem services of 26 million hectares of most degraded and vulnerable land by
adopting a landscape restoration approach.

44 C. S. Rao et al.

5.9 Mulch-Cum Manuring

Mulching has been considered as an effective practice for conserving soil health
specifically under rainfed condition. In rainfed regions, soil moisture protection and
reducing the C losses are great challenges. The in situ moisture conservation
measures, such as mulch farming and crop residue management (Chakraborty
et al. 2010) techniques, substantially increase the soil moisture availability and
improve the overall crop yields (Kahlon and Lal 2014). Crop residues of rainfed
crops such as cotton, castor, pigeon pea, maize, etc., left on the surface and a legume
residue can be utilized as a mulch-cum manure that contributes to improved crop
productivity and soil fertility. Decomposition of mulches leads to addition of
nutrients and organic carbon to the soil. Recycling the residues of soybean as a
mulch or incorporating into the soil along with an appropriate rate of chemical
fertilizer can increase the SOC stock (Srinivasarao et al. 2012e). Mulching of
maize stubble improved the SOC content by 1.9% (Choudhary 2015). Residue
mulch application under no-till (NT) management enhanced the soil carbon
concentrations by 1.26–1.50% (Kahlon et al. 2013). Apart from enhancing SOC,
mulch increases reduce evaporation losses, insulate soil against extreme heat and
cold by moderating soil temperature, reduce soil compaction, and control the wind
and water erosion (Kahlon and Lal 2014).

5.10 Green Manuring

Incorporation of green manure biomass into the soil helps in the accumulation of
organic matter and recycling of plant available nutrients (Ansari et al. 2022).
Especially leguminous green manure is recognized to be a promising nutrient source
that improves soil nutrient accumulation (Ansari et al. 2021). Because of its
lowest C:N ratio than cereal crops, it promotes a faster mineralization of nitrogen
(Ansari et al. 2022) which significantly increases enzymatic activities (urease and
dehydrogenase) in the soil (Surucu et al. 2014). Green manuring/green leaf manuring
improves soil biological health and enhances soil moisture storage, which helps in
coping with intermittent droughts (Srinivasarao et al. 2020c). There are two types of
green manuring: (1) in situ green manuring, growing green manure crops inside the



farmland and incorporating it in the same land, and (2) ex situ green manuring,
addition of green leaves brought from other places and incorporating it into the soil
for manuring.
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Table 3 Effect of different green manuring on depth-wise TOC stocks (Data from Ansari et al.
2022)

Treatments

TOC stocks (Mg ha-1)

0–15 cm 15–30 cm 30–45 cm

No green manuring 19.0 15.4 13.1

Green gram green manuring 21.4 17.2 14.1

Cowpea green manuring 23.4 18.5 15.1

Sesbania green manuring 24.6 19.2 15.1

LSD ( p < 0.05) 1.06 0.88 0.69

Growing short duration legume crops such as horse gram, green gram, cowpea,
etc. and incorporating into the soil at flowering stage would add a huge amount of
organic matter to the soil that helps in increasing crop yields. Horse gram
incorporation in rainfed sorghum-sunflower and sunflower-sorghum rotations during
rainy season demonstrated the restoration of degraded soils and improved crop
yields in semiarid regions (Venkateswarlu et al. 2007). Green manure crops such
as green gram, cowpea, and sesbania used for in situ manuring for five consecutive
years helped in enhancing TOC stocks significantly (p < 0.05) compared to non-
green manured soils (Table 3) (Ansari et al. 2022). Forest tree crops such as
Gliricidia spp., Pongamia glabra, Cassia fistula, Calotropis gigantea, Delonix
regia, Azadirachta indica, etc. can be utilized for green leaf manuring. Gliricidia
used as a green leaf manure aided in supplementing both macro- and micronutrients
(Srinivasarao et al. 2011c, d).

5.11 Coastal Soil Restoration

An anthropogenic activity in coastal zones has a significant effect on SOC. Recla-
mation/restoration of coastal soils aids in provision of balancing global carbon cycle.
Earlier researches shown that SOC in coastal wetlands may be mineralized quickly
due to reclamation, thus influencing the global carbon budget and balance (Cui et al.
2012) with positive feedback to global climate change (Gnanamoorthy et al. 2019).
Rapid desalination and dealkalization of coastal wetlands aided in converting to
farmlands that greatly increased the soil C and N sequestration (Yang et al. 2019).
SOC can thus increase significantly over a long time period after coastal reclamation.
Natural and restored mangrove forests in southeast coast of India have a great
potential for carbon sequestration (Gnanamoorthy et al. 2019). High SOC stock
and higher burial rates were found in mangrove areas than in restored areas. He also
concluded that the conservation of intact mangroves is highly essential than either
natural or restored mangroves. High rates of sedimentation in mangroves promote
the accumulation of organic compounds in soils through an aerial and underground



biomass production (Donato et al. 2011). However, the mangrove cover in India has
come down from 6000 km2 during the 1960s to 4740 km2 during 2015; thus,
restoration work is still needed to improve the ecosystem services and mitigate the
impact of climate change. Depletion of SOC in salt-affected soils has created a C
sink capacity that can be realized through restoration by adopting efficient manage-
ment practices. Thus, manuring, crop residue management, agroforestry, pasture
crops, crop rotations, and growing tree plantations in coastal lands potentially
increase the C sequestration.
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5.12 Composting

Composts are bulky in nature, for example, farmyard manure, vermicompost,
kitchen waste composts, sheep manure, poultry litter, bio-enriched composts, market
waste compost, and night soils (urban composts). Such bulky manures are rich in
carbon, and application of these composts to cultivating lands helps in restoring the
SOC. Srinivasarao et al. (2013) observed that cultivation of crops without input of
farmyard manure (FYM) results in decrement of biomass production (especially the
root biomass) and its return into the soil; this is responsible for decline in soil organic
matter. Organic manures substantially increase the SOC content that proliferates the
soil microbial activity which ultimately results in retaining soil moisture and
nutrients besides imparting drought tolerance during dry spells (Srinivasarao et al.
2020b). An action plan of 4 per milli/4 per thousand concept initiated in COP21,
Paris, to increasing organic C stock in top 30 cm by 0.4%/year also suggested to
support the farmers to locally generate organic manures for regular field use as the
SOC buildup is also an important measure of reaching goal of LDN.

6 Programs and Policies

Government of India has initiated several policies and programs for promoting the
buildup of soil organic carbon, which facilitated the farmers to improve their land
fertility status through some innovative technologies.

6.1 National Mission for Sustainable Agriculture

National Mission for Sustainable Agriculture (NMSA) is one of the eight Missions
outlined under National Action Plan on Climate Change (NAPCC) which has been
formulated for increasing agricultural production specifically in dry regions focusing
on synergizing resource conservation, integrated farming, soil health management,
and water use efficiency. So far, the land area covered under the integrated farming
system approach (agroforestry, livestock, horticulture, water harvesting, and
vermicompost unit creation) in the rainfed area development, NMSA has achieved



9501 hectares of land in India over the target of 89,793 (NMSA official site,
2021–2022 data: https://nmsa.dac.gov.in/RptActivityAchievement.aspx).

6.2 Mahatma Gandhi National Rural Employment Guarantee Act

Mahatma Gandhi National Rural Employment Guarantee Act (MGNREGA) scheme
was launched by Govt. of India during 2005 for improving the livelihood of rural
community in India. This act focused on improving the soil fertility and biodiversity,
soil erosion control, reclamation of degraded soils, carbon sequestration, ground
water recharge, and rain water harvesting. Recently, with the water conservation
under MGNREGA, about 210 farm ponds were executed, and 54 check dams were
developed, due to which about 580 dried bore wells got recharged in the drylands of
Andhra Pradesh. In Gujarat, around 55 dryland farmers (who have about 2 acres
land) take advantage of irrigation after the renovation of ponds.

6.3 Soil Health Mission

Soil Health Card (SHC) scheme was launched by Govt. of India in February 2015
(80) which displays soil health indicators and associated with vivid terms to a SHC
to analyze the soil sample in authentic soil laboratory and determines the crops that
can be cultivated in the particular soil. Based on the soil test results, the SHC will
give information on practices needed to improve the soil fertility. SHC scheme in
India issued 34 lakhs in 2015 until July. This scheme is the leading program for the
agricultural sector in India by distributing 10.48 crores of Soil Health Cards by
December 2018. Among the states, AP has taken lead in distribution of the Soil
Health Cards to farmers. Other states like Punjab, Uttar Pradesh, Telangana,
Chhattisgarh, and Odisha also distribute SHC. Two states, Punjab and Tamil
Nadu, have collected the maximum amount of soil samples for testing during the
kharif seasons, but Tamil Nadu has not distributed the cards yet. Kerala, Haryana,
Arunachal Pradesh, Sikkim, Mizoram, Goa, Gujarat, Tamil Nadu, West Bengal, and
Uttarakhand are the states in which farmers have not been issued a single card as
against the target set for 2015–16. SHC scheme is a revolutionary scheme, which
was initiated for farmers. GOI with agriculture department has also launched a soil
health card agriculture portal (www.soilhealth.dac.gov.in) in which farmers need to
register, along with details of soil sample and test lab reports.

6.4 Crop Residue Management Program

In order to prevent crop residue burning, in 2014, the Ministry of Agriculture
developed a National Policy for Management of Crop Residue (NPMCR). This
scheme helped to promote technologies for utilizing crop residues, provide
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machineries for farming practices and satellite-based technologies to monitor crop
residue management, etc.

6.5 Customized Fertilizers

Government Policy Interventions Considering the recommendation of Task Force,
Government of India (GOI) has created separate category of fertilizers named as
“customized fertilizers.” It was included in the Gazette in 2006 under clause 20 B of
FCO 1985. Later customized fertilizer policy guidelines were issued in 2008 by the
GOI. In India, there are about 36 customized formulations approved by the FCO
(Majumdar and Prakash 2018).

6.6 National Biogas and Manure Management Program

National Biogas and Manure Management Program (NBMMP) promoted the
setting up of family-type biogas plants in rural and semi-urban/households. It uses
organic substances like cattle dung; biomass from farms, gardens, kitchen wastes,
and night soil wastes; etc. The final by-product, i.e., slurry produced from biogas
plants, can be utilized as organic bio-manure for enhancing crop yield and
maintaining soil health. The Ministry of New and Renewable Energy (MNRE) has
set up about 65,180 biogas plants during the year 2017–18 that fixed an annual target
of setting under the NBMMP. In India, so far, about 49.6 lakh household size biogas
plants have been installed under the scheme NBMMP.

6.7 Paris Agreement and GHGs

India is committed to the UNFCCC and the Paris Climate Change Agreement as our
Hon’ble Prime Minister Shri Narendra Modi received the Champions of the Earth
award in 2018 that recognizes contribution to the field of environment protection
(MoEFCC 2018). This agreement aimed to deal with climate change with a low
GHG emission and climate-resilient pathway. Alongside, this will create an addi-
tional “carbon sink” of 2.5–3 billion tons of CO2 equivalent through additional forest
and tree cover by 2030. Several ICAR institutes and state universities besides NRSA
in India are also involved in monitoring and estimation of SOC stocks in different
land categories.

6.8 Neem-Coated Urea Scheme

Neem-coated urea (NCU) is a slow-release fertilizer – nitrogen – for optimum plant
growth. This helps in judicious use N fertilizers/reduced its application and increases
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the crop yield besides improving the soil health. Indian government shifted to 100%
neem-coated urea (by implementing NCU scheme in 2015) and reducing the weight
of urea bag (from 50 kg to 45 kg) to improve nitrogen use efficiency (NUE) and
reduce urea consumption. The Minister stated that the cost of MOP, DAP, and NPK
reduced by Rs 5000/MT, Rs 2500/MT, and Rs 1000/MT, respectively, by the P & K
fertilizer companies; it will encourage the farmers to use more P & K fertilizers
which helps in balanced use of fertilizers.
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6.9 Rehabilitation of Degraded Land Targets and Land
Degradation Neutrality

The International Union for the Conservation of Nature (IUCN) and the Government
of Germany had launched the Bonn Challenge in 2011 for a global effort to restore
150 Mha of deforested and degraded land by 2020 and 350 Mha by 2030. India has
joined this global commitment and pledged 21 Mha to be restored by 2030 for
achieving land degradation neutrality (LDN). At COP14, the Hon’ble Prime Minis-
ter, Shri Narendra Modi announced, “India would raise its ambition of the total area
that would be restored from its land degradation status, from 21 million hectares to
26 million hectares between now and 2030.” India has, therefore, committed to
restore 26 million hectares of degraded lands and achieving land degradation
neutrality (LDN) by 2030.

6.10 Nano-Fertilizers

Union Minister for Chemicals and Fertilizers Shri D.V. Sadananda Gowda said that
by 2023 India will be self-reliant in the production of fertilizers under “Atma Nirbhar
Bharat” program. He also said that nano-fertilizers are a game changer, are 25–30%
cheaper, and result in 18–36% higher agricultural produce and maintains the soil
health. The IFFCO has distributed the nano-fertilizers freely to 12,000 farmers and
agriculture universities across the country.

6.11 Net Zero Emissions

Realizing the effects of climate change on environment and food production and
governance aspect to become more resilient, Hon’ble Prime Minister Shri Narendra
Modi announced in COP-26 that India will achieve net zero emissions by 2070.
Union Environment Minister Bhupender Yadav also said that India is taking a
serious note of environmental, social, and governance aspects to become more
resilient.
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7 Conclusion

In Indian soils, the soil C stock in the upper 40 cm soil horizon is depleted at the rate
of 0.1–1.0% per year due to prolonged intensive cultivation. Additionally, climate
change and other key factors are further worsening the status of cultivating lands
specifically in dry regions of India. Rainfed farming areas in tropical and subtropical
regions are generally poor in soil fertility status because of several constraints and
limitations such as low/irregular rainfall patterns, high temperature and oxidation,
poor land management practices, etc. In rainfed agriculture, among all extreme
events, temperature is being one of the key factors for destroying soil organic matter
that declines the crop yields and productivity of lands at a greater extent. Usually the
soils of tropical environment contain less than 1% organic carbon, whereas temper-
ate environments contain 2–4%. Almost about 63% of area is prone to some degree
of desertification in dryland areas. Thus, managing SOC in dryland has become a
biggest challenge for the agriculture community as the profile SOC stocks are always
considered as a potent weapon to combat against soil degradation and ensuring
sustainability in agriculture system. Soil management practices that aid in provision
of adding high C biomass inputs (green manuring, cover crops, crop residue
recycling) or balanced plant nutrient input/output for sustaining the SOC levels
(INM, balanced nutrition, tank silt, composting) or for protecting/improving the
residual profile SOC stocks (conservation agriculture, soil restoration by degradation
minimization, coastal soil restoration, mulch-cum manuring) specifically in dryland
situations help in achieving the land degradation neutrality (LDN) and Sustainable
Development Goals (SDGs) in India. Yet, the collaboration of stakeholders such as
government, nongovernment organizations, researchers, and local farmer’s societies
is pivotal for framing the site-specific programs and coordinating policies of
integrating soil carbon with national climate commitments in order to promote/
implement the SOC management technologies at both local and national scales.

8 Way Forward

• Creating awareness among farmers regarding the soil fertility depletion, its
correction, and the importance of SOC in crop production is critical.

• Identification of key performance indicators such as increase in SOC, soil cover
buildup, productivity gains, etc. to confirm the land restoration level is needed.

• Remapping for the assessment of the actual SOC-depleted areas for the year
2021–22 is crucial for planning and decision-making.

• Development of rehabilitation policy programs at microlevel to promote soil
management practices that are a net sink for atmospheric C.

• Convergence of interdepartmental collaborations and inter-ministries with a
group of secretaries for monitoring the various government schemes.

• Encourage the community participation in taking care of their own land under the
supervision/guidance of scientific community, development agencies, and appro-
priate policies to achieve land restoration at national scale.
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• Encouragement of integrated and holistic land management practices with public
support helps to sustain SOC sequestration rates.

• Establishing national mission on SOC sequestration at macro level and creating
farmer’s innovation and cross learning platform for SOC sequestration at
microlevel.
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Abstract

Carbon’s regulatory role in life dynamics has been acknowledged over the past
20 years all over the world. Humans, on the other hand, have known for
thousands of years, albeit not conceptually, the impact of carbon in life on the
quality of the soil necessary for the production of food, clothing, and shelter
materials, and have attempted to maintain their land fertile, whether via beneficial
or harmful management. While some societies burned trees to create more fertile
agricultural fields, others built stone terraces to keep the soil from being washed
away by erosion. Civilizations have collapsed as well, such as Mesopotamia, due
to poor irrigation practices accelerated by climatic changes. Countries had to take
action against accelerated land degradation, loss of biodiversity, and
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desertification, as well as climate change, in the past five decades, with a deeper
context, after the 1970s, due to excessive natural resource exploitation in the
nineteenth century. As a result, they have developed international and national
policies to seek to prevent and eliminate these threats. Countries prioritized
adaptation and mitigation activities since prevention efforts on these problems
did not generate sufficient benefits. Unfortunately, the traditional wisdom of
society and today’s socioeconomic reality cannot be claimed to be taken into
consideration when adopting these procedures. While many national activity
plans involve the transition to agro-ecological agriculture in a region, the budget
and training that will be provided for this are not well defined. These programs are
frequently ineffectual, as demonstrated by the fact that almost 1 billion people are
starving and 25% of the world’s land has been degraded. It is widely acknowl-
edged that organic carbon must be managed effectively in attempt to face the
global threats of climate change, land degradation, and biodiversity loss, and in
this study, traditional knowledge and current policies were reviewed on a global
scale as much as possible, with compatibilities and contradictions tried to be
revealed. The intention is that traditional knowledge, which has accumulated and
proven itself over thousands of years by overcoming challenges, will take an
active role in national and international policies.
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1 Introduction

This study does not claim to address the impact of traditional land uses on all
continents, as well as the land use policy of each country, on soil organic carbon.
However, if such a study had been conducted, it would have filled a significant
information gap. However, the remarkable traditional land use and present policy on
each continent have been reviewed to the greatest extent possible, and the compati-
bility, conflicts, and gaps between tradition and laws have been attempted to be
exposed to the best of its ability.

All living organisms of the planet Earth are made from carbon. So, it would not be
inappropriate to argue that carbon management is the foundation of survival.
Humans modify carbon dynamics through transforming the form of carbon directly
or indirectly, albeit this is not on the same scale as natural processes. While the first
agricultural techniques in history to increase biomass and animal husbandry were
human systems that produced healthy carbon, energy consumption can be thought of
as human systems that convert carbon into harmful forms for the environment.
Humans did not face global carbon-related threats until the eighteenth century
because the production of useful carbon was much greater than the production of
harmful carbon. However, it’s worth noting that civilizations have fallen apart in the
past as a result of excessive irrigation, which resulted in salinization in
Mesopotamia, and the sacrifice of trees for grain in Central America, which depleted
soil nutrition. No human-caused environmental event in history, however, has been
as catastrophic as the eighteenth century and beyond. The increased use of fossil
fuels after the eighteenth century, the acceleration of global population growth in the
nineteenth century, the intensive use of agricultural chemicals to meet growing
population demand in the twentieth century, and the resulting overconsumption of
natural resources have resulted in the fact that the predominant carbon today is
harmful carbon. People have been forced to take precautions as the carbon balance
has shifted in favor of harmful carbon.

Air, soil, water, and biodiversity, which are components of the environment and
affect the carbon cycle, are assets that cross borders. For this reason, sustainable
carbon management requires cooperation between regions and countries. The
actions against environmental issues began with the Stockholm Declaration in
1972 and continued with the Rio Summit’s 21st Agenda in 1992, the Rio + 20
Sustainable Development Goals, and the 2030 Sustainable Development Goals
(SDGs) adopted in 2015 as threats to life increased. The ultimate goal of all of
these processes is to eliminate environmental and socioeconomic threats to the
Earth’s future through international cooperation.

Countries have begun to establish their own environmental policies within the
framework of UN-led environmental policies. Unfortunately, regional and especially
local realities were often not taken into account when creating these policies.
National policies are shaped in the form of a kind of translation of the UN’s policies
on a global scale. As a result, although these policies are aimed at protecting the
environment, they have often not achieved the desired goal or even attracted a
negative reaction from the local population.
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Mitchell (1989) discovered that until the 1990s, environmental protection policies
were carried out by nominated civil workers in the state and that these policies
remained far away from public realities. According to DeLeon (1994), in environ-
mental policies, politicians frequently take environmental elements as the main goal
and keep them away from the public, which is the true goal, as an impediment to
success. Barr (2012), who considered it difficult to attain the objectives of environ-
mental policies, underlined society’s unwillingness to generate behavioral changes.
After the protection/prevention project conducted in Central Anatolia under a semi-
arid continental climate, which was threatened with desertification as a result of
overgrazing and land processing in the 1960s, Akça et al. (2016b) observed that the
annual number of plant species in natural pasture increased from 7 to 130. This
success, however, had only been achieved because the local people were completely
relocated from the protected area and the area was barbed-wired (Akça et al. 2016a;
b). Due to a desertification conservation scheme, farmers have moved to cities and
away from farmland. Farmers were allowed to resume farming in Karapınar when
the threat of desertification was removed, and the use of irrigation water from
deepwater sources in the early 2000s resulted in the formation of more than
330 sinkholes in the region (Akça et al. 2012; Orhan et al. 2021).

The failure of environmental policies cannot be attributed to a few factors. Laitos
and Okulski (2017) have excellently described a multitude of reasons in their book
entitled Why Environmental Policies Fail. Although Laitos and Okulski (2017)
claimed that a variety of variables contribute to the failure of environmental policies,
they identified the primary issue as policies that do not thoroughly account how
people interact with nature.

People genuinely managed the environment in a mutually sustainable fashion
until the eighteenth century. They’ve also established some sort of sustainable land
use in all of the world’s geographies and climates. The 1950s, on the other hand,
mark the breaking point in the balance. The demand to improve people’s quality of
life is the critical component for the pressure on natural resources after the 1950s
throughout the world (Novotny 1999; Ehrlich et al. 2001; Dearing et al. 2012; Salvia
et al. 2019). With the rise in local environmental awareness in the 2000s,
governments have been pushed to formulate their environmental policies on a
regional rather than global scale. Kostka (2014) stated that Chinese politicians
have recently prioritized shifting away from polluting growth to sustainable and
efficient resource use. Local ecological knowledge gives guidance information for
environmental policies, according to Iniesta-Arandia et al. (2015) in their interesting
article. Drought-resistant plant selection was identified by Kapur et al. (2019) as an
environmentally benign production technique in ancient Mediterranean land use
heritage, and authors suggested a new production town system based on specific
crop-soil ecosystems for policymakers. Zucca et al. (2010) manifested locals’
participation in sustainable land management in a harsh environment of Morocco
with limited water and soil resources.

Sato et al. (2018) highlighted several examples of sustainable land management
based on local ecological or technical knowledge. But, the current environmental
policies for soil organic carbon management in agriculture are still mainly based on



global initiatives rather than local knowledge. With good and failed samples from
each continent, this chapter intends to provide information on how much local
knowledge is involved in carbon policies in agriculture, and set a source of informa-
tion for policymakers to review their policies, because environmental projects that
are not governed/supported by local residents inevitably fail and have the potential to
produce conflict not only within the carbon framework but also between decision
makers and the community at large.
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2 Local Knowledge on Carbon Management

Carbon is a prevalent intersecting element as both a solution and a source of today’s
worldwide environmental issues. Carbon is an element that, when retained in organic
or inorganic form as bicarbonate (HCO3) and calcite (CaCO3) in terrestrial and
marine life, does not create challenges, even contributes to the production of
biomass, and also sustains life by preventing a reduction in pH in the seas (Mook
and Koene 1975; Akça et al. 2010; Raymond and Hamilton 2018; Büyük et al.
2020). International and national institutions have developed a variety of approaches
and concepts for mitigating, adapting, protecting, or combating global challenges of
climate change, desertification, and land degradation. The following are the
definitions of circular and bioeconomy, which are now being advocated to alleviate
environmental problems. The European Union defines a circular economy as a
production and consumption paradigm that encourages people to share, lease,
reuse, repair, refurbish, and recycle existing materials and products for as long as
feasible, suggesting that the product’s life cycle can be extended in this way
(European Parliament 2021). The definition of circular economy was initially
provided in Boulding’s study in 1966 (Boulding 1966); it was only when it was
recognized as a policy by the European Union that it achieved global prominence.
Many people interpret the European Parliament’s circular economy term as an
industrial definition; one of the simplest definitions was provided by Geisendorf
and Pietrulla (2018) as the restoration of resources, which leads to the carbon cycle
being a component of the circular economy. For thousands of years, harvest leftovers
have been recycled as organic fertilizer in agriculture (Gotass 1956). The usage of
animal manure in archaeological sites extends back to 5000 years ago, according to
Wilkinson (1982). These ancient uses are the indicator of the circular economy
which recycles carbon in an environmentally friendly manner.

The following definition is the most widely accepted one for bioeconomy
introduced by the European Union (European Council 2015), who has approved it
as a policy: the sustainable production of renewable resources from various
ecosystems and their conversion into food, feed, fiber bio-based products, and
bioenergy, as well as related goods for public use. According to Aguilar et al.
(2019), the bioeconomic approach should be adopted or embedded by society in
order to be successful. Even if we merely look at historical agricultural land uses, we
can see that bioeconomy has already positioned itself as a public approach.
According to Gajula and Reddy (2021), bioeconomy is the primary economic



activity of the ancient world because practically all of the past cultures’ economies
were based on agriculture.
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Before the widespread use of chemical fertilizers in the mid-1950s, societies had
just two agricultural production alternatives: The first was to provide organic
additions such as barnyard manure, pruning, and harvesting leftovers to the soil to
keep it the land fertile, or the second was to abandon the soil with reduced production
and relocate more fertile forest or grazing regions for agriculture. This type of land
use has various names such as shifting cultivation, bush-fallow agriculture, swidden
cultivation, or slash-and-burn cultivation (Raman 2001). We in this section primarily
focus on practices that lead to land degradation before evaluating good/successful
ones. The reason for this is to show what kind of regulations these misconducts
imposed in the past which were a kind of carbon policy action plans of today.

The second practice, i.e., slash-and-burn, was quite common in several parts of
the world particularly with sloping topography or mountainous regions alike
Bolivian Amazons, Laos, Guatemala, and India (Stab and Arce 2000; Raman
2001; Rumpel et al. 2006; Williams et al. 2007; Vashum and Jayakumar 2016;
Dussol et al. 2021). In modern Estonia, the term buschland, originated from the local
Baltic German dialect, was used to describe the land that had been used for regular
combustion approximately every 20 years burning (Tomson et al. 2016). In India the
word jhum is used for defining this practice, while ladang is the word in Indonesia
and in the Philippines, it was kaingin (Myllyntaus et al. 2002). According to recent
studies, swidden agriculture is not a poor practice in and of itself (Saito et al. 2006).
However, most of the time, this practice did not take into account the land’s
resilience, climate, or vegetation capacity. Hereby, it has been recognized that this
method frequently results in conflicts, wars, and even the extinction of civilizations,
as was the case with the Mayans. Anselmetti et al. (2007) calculated an annual soil
loss of 1000 t km2 year-1 during initial land clearance of forest by ancient Mayans at
700 BCE. Although it is unlikely to evaluate the impact of ancient cultures’ slash-
and-burn technique on organic matter, research undertaken now can provide some
insight to the magnitude of loss as it can be seen Kotto-Same et al.’s (1997) study
which manifested a soil carbon loss from 308 t C ha-1 to 88 t C ha-1 during
converting forestland to cultivated land in Cameroon.

It can be stated that problems such as migration and turmoil arise in societies that
apply management aimed at obtaining new agriculture rather than improving the
soil, whereas communities that understand agriculture and manage soil health by
incorporating what the soil produces increase their well-being. Singh et al. (2018)
stated that ancient agricultural practice of straw burning causes several health and
environment problems due to emission of various harmful gasses during burning in
India and is prohibited by the government. While agricultural activities that harm the
environment are intended to be prohibited by legislation, like in India (Singh et al.
2018), Europe (Nikolov 2011), and other parts of the world, environmentally
beneficial traditional agricultural activities are not adequately supported. Due to
insufficient support, farmers producing within the framework of ecological agricul-
ture are shifting to today’s intensive agriculture, which is supposed to yield high
incomes. Marini et al. (2011) observed that traditional agriculture in the Italian



Alpine mountains has given way to modern agriculture, which is said to be more
profitable. They propose preserving this heritage by compensating farmers for the
production of organic fertilizers and the careful management of steep meadows.
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In the following part, agricultural cases from around the world in favor of soil
organic carbon are described, and the impact of traditional agricultural producers on
soil carbon dynamics is assessed by examining how many of these techniques are
included in national agricultural policies.

2.1 Traditional Land Use and Carbon Policy in North and Central
America

Agriculture in North and Central America does not date back as old as to the
settlement/s on the Tigris, Euphrates, Nile, Indus, and Yellow Rivers, but North
and Central natives have a heritage of impressive agricultural production systems
(Hurt 2002). Traditional techniques of agriculture and land use in Central and North
America, although considered primitive as Wilken (1990) said, have supplied
society’s food, clothing, and housing needs for thousands of years as early as
4000 years BCE (Fig. 1).

One of the interesting facts of North and Central American agriculture, according
to some, is that women, in particular, are active in agriculture and have the potential
to generate varieties (Hurt 2002) that adapt to the natural conditions in where they

Fig. 1 The ancient
agricultural locations of North
America



reside. However, because North American societies were primarily hunters and
gatherers, agricultural activities were not as prevalent as in Central America.
Immigrants from Europe initiated the transition to intensive agriculture in North
America in the sixteenth century (Wessel 1976). In this case, it can be said that in the
sixteenth century, traditional methods of natives in North America began to be
abandoned by cultivating fields with European culture (Duerden and Kuhn 1998).
When deciding how to utilize resources based on local traditional technical knowl-
edge, not only economic interests but also social reality are taken into account
(Freeman 1992). For example, when values such as who, how, and when the
resource will be used in the community are also evaluated, it can be concluded
that local technical knowledge enables more sustainable use of natural resources
than today’s money-oriented perspective. However, there are some who question if
local socially collective decisions have a positive impact on the environment against
the research of Fertig (1970). Archaeological studies in North America, according to
Peacock (1998), reveal that indigenous peoples are having a negative impact on the
environment.
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Fig. 2 The Dust Bowl in
1932 (From Wikimedia
Commons, the free media
repository)

The land use in North and Central America was significantly changed in the
sixteenth century. With the arrival of European immigration in the sixteenth century,
the expansion of agricultural areas in North and Central America began to endanger
natural areas, resulting in increased erosion and a decline in biodiversity (Turner and
Butzer 1992). Improper land use, which began in the sixteenth century, peaked in the
capitalist era of the nineteenth century, as symbolized by the well-known Dust Bowl
(Worster 2004) (Fig. 2). The cause of the Dust Bowl was the drought that prevailed
in the 1930s (Cook et al. 2009); however, intensive cultivation led to loss of soil
structure and organic carbon which both decreased soils’ resistance to erosion. Cook
et al. (2009) manifested that throughout the 1920s, cultivation spread into the central



Great Plains which resulted in shifting to drought-sensitive wheat at the expense of
drought-resistant species of grazelands.
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The Soil Conservation Service, the Agricultural Stabilization and Conservation
Service, and the Cooperative Extension Service were founded in the United States
after the 1930s to assist improve soil management (Hess and Holechek 1995).
Despite these institutions, however, some ineffective policies that neglected local
realities and social structure in favor of a centralist approach failed to mitigate land
degradation. Hess and Holechek (1995) identified improper policies as providing
support for lands that exceed their carrying capacity economically and ecologically,
as well as insufficient techniques and training. But the reality might be that the
primarily profit-oriented demands of local producers in the management of these
lands may have been a factor for the programs’ failure at the time.

Today, no one can say that land degradation has been eliminated because it is well
known that pollution in Mexico and United States, erosion in the United States and
Central America, and deforestation induced by agriculture in Central America still
continue (Kanter 2018; Bebbington et al. 2018; Taghizadeh-Mehrjardi et al. 2019;
Olivares et al. 2020). All these are the drivers of low organic soil development
(Olson and Gennadiev 2020) and a great economic burden; as calculated by Thaler
et al. (2021) only in the corn belt of the United States annual loss attributed to
A-horizon erosion is $2.8 billion. Most people are skeptical when it is stated that
Canada’s annual soil loss ranges between 60 and 117 million tons per year, identical
to the steppes of Asia, but this is a truth; even 2.2 million hectares of the country
have a salinity problem (Çilek et al. 2020). Indigenous peoples’ land use rights in
Canada were enhanced after 1973, and approximately three million ha land is
controlled by indigenous people Rodon (2018). However, land degradation is an
issue for Canada because indigenous people have significant vulnerabilities such as
place dislocation due to land expropriation, relocation, and landscape fragmentation
(Ford et al. 2020). So, owning land is not the solution for sustainable land manage-
ment for communities. Furthermore, these constraints presented a threat to the
survival of indigenous knowledge systems.

Surprisingly, despite all of the concerns with land degradation, the United States,
Canada, and Mexico do not have national action plans against degradation or Land
Degradation Neutrality targets submitted to the UNCCD. As a result, when the
sources were examined to see how much local technical knowledge influences the
country’s policies, it was determined that the outcome was not as pleasant as
Mcgregor (2021) stated. Eckert et al. (2020) cited failures to implement best
practices, inadequate funding, knowledge incompatibilities, and colonial effects as
grounds for indigenous knowledge’s poor impact on environmental policies in North
America.

Consequently, in North and Central America, the desire for maximum profit from
resources, whether native or later, people of foreign origin, causes soils to degrade,
and as a result, soil organic carbon dynamics cannot reach the target level despite
various policies, even going backwards.
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2.2 Traditional Land Use and Carbon Policy in South America

According to de Moraes et al. (2017), South America nests 10% of global soil
organic carbon. Although the organic carbon content of soils in South America’s
natural vegetation is high, it is hard to deny the same for soils used in modern
agriculture. Except for natural fires and local groups clearing small areas for their
own survival, South America’s forests and grasslands were not endangered by
humans until the eighteenth century. The first notable forest loss occurred between
the eighteenth and nineteenth centuries. It has been documented that lumbering for
mining operations had a significant impact in those times (Armesto et al. 2010).
Matricardi et al. (2020) calculated that the Brazilian Amazon lost 337,427 km2 of
forest between 1992 and 2014, which is more than Italy’s 301,000 km2 territory.
Therefore, forest massacre is the shift from traditional land management to money-
oriented land management, which is accused of being centered solely on land
exploitation until the early twentieth century (Fig. 3).

The decline in organic carbon in agricultural soils can be attributed to the recent
introduction of cash crops and the state subsidies offered for their cultivation. And,
for the last three decades, in South America, recent subsidies for ethanol crops like
wheat, corn, potatoes, beet, sugarcane, and cassava, as well as biodiesel commodities
like palm oil, soybean, rapeseed (canola), and sunflower (Gerasimchuk et al. 2012),
impose a lot of pressure on soils because these plants require lots of fertilizer,
irrigation, and pest management. In their excellent review, Bennett et al. (2018)
suggested that during the mid-twentieth century development history rural agricul-
tural policies and government support for fashionable crops dramatically changed
local people’s land use strategies in tropical forests.

Soil organic carbon is negatively affected by aggregate breakup and evaporation
of soil moisture caused by intensive agriculture, along with removing all of the
biomass from the land (Zinn et al. 2005).

The pampas are South America’s second carbon pool after forests (Fig. 4).
Pampas have had a very limited history of cultivation. The majority of Argentina’s
pampa was native grassland until the early twentieth century, when land use changed
to livestock husbandry and farming. The shift in land use at the period prompted
economic progress and well-being in Argentina (Bedano et al. 2016). However, the
ostensible improvement in people’s well-being has come at the expense of soil
carbon losses. It is calculated that the organic carbon content of the soil in the
Pampas region reaches 100 t C ha-1 which is quite higher than cultivated soils’
86 t C ha-1 of pampas (Berhongaray and Alvarez 2013). Bedano et al. (2016)
reviewed that the recent government initiative for no-till agriculture of soybean
cultivation in pampas, said to be better for the environment and called a “no-tillage
package,” caused high soil bulk density and above 82% soil carbon losses.

In the Pampas, high-profit soybean farming has reduced not only the natural plant
diversity of the pampas but also the diversity of agricultural crops (Manuel-
Navarrete et al. 2009). Similar to pampas, cerrados (woodland savanna) in Brazil
which has the richest plant biodiversity among all savannas of the world (Klink and
Machado 2005) are threatened by policies that support cultivated crop production.



Brazil has turned the cerrado into a soy-producing zone at the expense of protecting
the Amazon forests with the Soy Moratorium Plan (Heilmayr et al. 2020) which has
resulted in a substantial percentage of organic matter decrease in cerrado soils.
Before the soy moratorium, Bustamante et al. (2006) determined the average soil
organic carbon level of cerrado soils to be 100–174 t C ha-1 per 1 m, while the
yearly organic carbon level loss of soy-farmed cerrado soils was 0.1 t C ha-1 year-1

(Batlle-Bayer et al. 2010). Furthermore, Bonini et al. (2018) argued that soy farming
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Fig. 3 The land cover change in Escondido (Brazil) from 1984 to 2020



has depleted nearly all of the organic carbon in the topsoil of cerrado with a total loss
of 130.5 t C ha-1.
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Fig. 4 The Argentinean Pampas (Royalty free, Pixabay)

The Andes Mountains (Fig. 5), with their abundant and high-quality natural
resources, hold a tremendous diversity of ecosystem, implying that even a modest
degradation in this richness will have a severe impact on South America, and
subsequently the rest of the globe, in a chain reaction. Unfortunately, the same
misconceptions that prevail in the Amazon forests and pampas also exist in the
Andes. The primary reason for this is that indigenous peoples who have struggled to
survive in the harsh conditions of the Andes highlands for millennia have recently
turned to agricultural production in order to increase revenue, which has had a severe
impact on soil quality (Blackmore et al. 2021). However, only 40 years ago, Godoy
(1984) claimed that the Andes Mountains had essentially little ecological damage.
The reasons, according to the researcher, are that the people who process the land in
the region engage in agriculture in harmony with nature and the village council has
been proven to avoid overexploitation of natural resources. Interestingly, the same
researcher brought up the fact that rising agricultural activity is beginning to
jeopardize Bolivia’s ecology, which was tragically justified when looking at current
findings. According to Balthazar et al. (2015), agricultural activities and the conver-
sion of natural grasslands to pine forests resulted in a 16% decline in ecosystem
service in the Andes during a 50-year period.

The response to current land use and pressures on forests, pampas, cerrados, and
mountainous regions in South America is soil organic carbon losses. These land use
changes are the result of policy outcomes until recently in South America that have
emphasized economic concerns over environmental issues, either directly (as in the
instance of the Soy Moratorium) or indirectly (as in the case of cash crop subsidies
for ethanol production). However, it has been seen that development plans that
overlook ecosystem realities and local people’s traditional land use culture in order
to stimulate the economy in South America sometimes led to losses in soil organic
carbon. Increased wealth from oil plantations, soybean fields, and extensive animal



husbandry have masked the public’s response to environmental deterioration in the
short term, leading to a deepening of the social and environmental problems. In most
locations, migrations of individuals who could leave their villages to migrate to these
intense agricultural areas, the loss of natural systems, and pollution caused by
excessive agriculture coupled with climate change are now almost irreversible.
However, in recent years, the ambition to build an environmental policy that reflects
the demands of the public has grown in popularity, with Chile being the most notable
example which was shown by Berasaluce et al. (2021) that 79% of Chilean citizens
support an ecological constitution in a survey conducted in May 2021. Of course, a
policy that is based on public demands and prioritizes environmental concerns over
monetary worries has a strong chance of succeeding. There are national action plans
in South America to address desertification, which will have a positive, if not direct,
impact on soil organic carbon because these activities intend for sustainable land use
(UNCCD 2022). When these plans are reviewed, however, it is commonly noted that
a specific area will be reforested, a particular region will be conserved, or natural
vegetation will be cultivated, and there are very few activities that highlight tradi-
tional land use that have been verified to be sustainable.
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Fig. 5 The Andes
Mountain belt
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2.3 Traditional Land Use and Carbon Policy in Africa

As the continent Africa encompasses various contrasts in terms of environment,
social structure, and economy, it provides an opportunity to see and evaluate
successes and failures in these aspects concurrently. Natural processes indeed are
extremely effective in shaping resources on the African continent; for example, it is
known that 3000 years ago, the rainforests of central Africa turned into savannas due
to climate change (Bayon et al. 2012); however, it is a painful fact when human
influence particularly agricultural activities causes problems that extend to desertifi-
cation, which is far more severe than natural processes (Vågen et al. 2016).

Agriculture has far deeper socioeconomic linkages with Africa than with other
continents, as it employs 43.8% of the continent’s workforce. Considering agricul-
tural activities have long been Africa’s primary source of income, the African people
have developed traditional land use traditions that safeguard the long-term
sustainability of natural resources. For example, the Maasai people have been
using small fires on a field scale in savannas for a long time to prevent massive,
catastrophic late-season fires by allowing these fires throughout the dry season (Butz
2009).

When most people think of Africa, they think of feminine and tough living
conditions, and what’s more this picture is frequently joined by a savanna without
plants. But archaeological studies revealed quite rich food production in several parts
of the continent (van der Veen 1999). Actually, land use history of Africa which
directly affects soil organic carbon can be classified into three stages. Stage 1 can be
called the wise land use phase, also known as the first land use period, began around
9000 years ago and lasted until the mid-1950s, despite a significant collapse in the
nineteenth century. Agricultural activities discovered in archaeological findings
during these periods have shown that Africans do not totally disapprove of food,
even in the most challenging of conditions 7000 years before present (van der Veen
1999) (Fig. 6). Marshall et al. (2018) even claimed that since roaming herders
repeatedly hosted the animals of livestock-farming groups in the same place
3000 years ago, the hosting sites have become agriculturally productive spots fed
by feces containing rich savanna grass.

The claim of enrichment of grasslands of Marshall et al. (2018) was initially
suggested by the discovery of 120 taxa of plants during an 8000-year-old early
Neolithic survey at Nabya Playa, Egypt (Wasylikowa and Dahlberg 1999).

Africa’s smart land management, which extends back 9000 years ago, was almost
abandoned after the 1950s, as it was in many other regions of the world, and replaced
with a capitalist strategy to fully exploit the land. This period from the 1950s to the
early 2000s can be named epoch of degradation which is Stage 2 (Eswaran et al.
2001; Dimobe et al. 2015; Mani et al. 2021). During this time, the growing popula-
tion and unplanned encroachment of woody plants, overgrazing, land rights, and the
expansion of agricultural regions to increase income threatened the organic carbon in
the soils (Tamene et al. 2019).

Increasing awareness for food safety, security, and ecosystem sustainability has
led to the formation of many initiatives and actions in Africa throughout the current



third stage, which encompasses the last two decades. Countries developed national
action plans to avoid land degradation using LDN and SLM approaches, both of
which aim to increase soil organic carbon while also focusing on socioeconomic
development for societal well-being (Gnacadja and Wiese 2016; Mataga 2021).
When the countries’ SLM policies are examined, it is stated that substantial progress
would be implemented. South Africa, for example, has planned rehabilitation and
sustainable management in a total area of 17,193,874 hectares in natural and
agricultural fields through 2030, but has not specified traditional land management
in these plans (Environmental Affairs 2018) (Fig. 7). Benin can also be used as an
example. It was expected to invest US$5.8 billion by 2030 on development,
improvement, and adaptation strategies as a result of land degradation totaling US
$490 million, or 8% of the country’s GNP. Traditional land usage, on the other hand,
was not considered in the country’s action plan (Global Mechanism 2018). Farmers
in Benin, on the other hand, choose termite dirt mounds as a farming region based on
thousands of years of experience (Fairhead and Scoones 2005). These dirt mounds,
according to farmers, indicate the presence of the goddess of fertility. In reality, the
farmers’ choice of this aerated, high-organic-matter environment is a strong sign of
their foresight.
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Fig. 6 Africa’s first agricultural production communities’ location
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Fig. 7 The Land Degradation Neutrality plans of South Africa targeting 2030

Thus, a common language that especially politicians can grasp and appreciate the
local’s traditional management systems is vital for Africa’s traditional land use
systems to survive and succeed.

2.4 Traditional Land Use and Carbon Policy in Asia

It is difficult to debate carbon policy, local technological knowledge, and people’s
demands for the entire Asia continent in this subsection, but it has endeavored to
provide a general view by sharing experiences from some unique points. It’s
impossible to define Asia in a few pages with its 44,390,958 km2 of land and a
population of more than 4 billion people.

Rice is a major staple crop in south and southeastern Asia. Rice is cultivated
during rainy seasons with use of rainwater alone or with supplementary irrigation.
Inundation in the early stages of growth is important because it gives an advantage in
competing with weeds. Cultivation fields should be leveled and flooded by
surrounding the perimeter of the farmland. It is important to reduce permeability
of the core soil under the cultivated soil. Securing water sources for supplementary
irrigation was another important point in the history of agricultural land reclamation
in Asia. In lowland river floodplains, it is easy to secure water because the height
difference between the water source and paddy field is small, and there are many
clay-rich soils suitable for water retention in the fields. It was also possible to reclaim
paddy fields in the upper reaches of rivers where water was easily accessible from
small streams. In the mountains, there are cases where rice fields were reclaimed
along the ridges by creating waterways along the contour lines to supply water taken
from mountain streams.

Satoyama is a Japanese term for landscapes that comprise a mosaic of different
ecosystem types including secondary forests, agricultural lands, irrigation ponds,
and grasslands, along with human settlements (Kumar 2012). It is estimated that



Satoyama comprises more than 40% of Japanese land area (Ministry of the Environ-
ment, Japan 2001). Similar landscapes are also seen in the Korean Peninsula and in
the southern parts of China.
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Fig. 8 Typical Satoyama landscape in Japan (Agriculture Reclamation Information Center 2005)

In Japanese agricultural villages, areas which had long sunshine hours were
turned to paddy fields. Houses were situated at the foot of mountains where access
to small streams or shallow groundwater was secure. Kitchen gardens were created
close to the houses. Grasslands and secondary forests were fertilizer sources around
these cultivated lands. Forests far from villages were used for hunting and logging.
When the mountains were deep, slash-and-burn fields were distributed in an excur-
sion near the outer edge. Lands with different usage patterns were interconnected
components that were indispensable for the continuation of life and production for
basically self-sufficient rural villages. Figure 8 illustrates a typical Satoyama
landscape.

Fertilizer was already used in China in the second century BCE. The uses were
mentioned in literature such as Lüshi Chunqiu and Shī Jīng. The use of green manure
is mentioned in Qí mín yào shù (532–549). In nóng shū (1154), mixing rice bran,
straw, and tree leaves with enteruia for fermentation (composting) is mentioned. In
mountainous parts of Asia, slash-and-burn agriculture was widely practiced. The
effect of ash must have been recognized. In Japan, slash-and-burn was practiced
until the use of compost was introduced from China in the ninth century (Nakano
2009).
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Traditional fertilizer for rice cultivation in Japan was young leaves and shoots cut
from coppice forest (Satoyama) before transplantation of rice. They were called
Karishiki, Katsuchiki, Kororo, Yamamekari, and Kokusa, which were tilled in soil
fresh. Large amount of summer hay was also harvested and put in stables to
ultimately make compost. Hay was also dried to form stocks for forage. For these
purposes secondary forests considerably larger than agricultural fields were
necessary.

Toward the end of the twelfth century, the use of enteruia was widespread in
Japan. Agricultural fields increased rapidly in the fifteenth to seventeenth century,
and the access to organic matter from Satoyama became increasingly difficult,
enhancing the use of enteruia. In the Edo period, enteruia in cities were purchased
by farmers in the surroundings. This practice continued until the arrival of chemical
fertilizers in the twentieth century.

In Asia, home gardens exist alongside rice paddies as an important land use.
Home gardens are called Yashikirin in Japan, VAC in Vietnam, and Pekarangan in
Indonesia and are biological production systems with a sustainable material cycle
function, built on traditional knowledge. Yashikirin is also an important system that
forms ecovillages, such as Satoyama in Japan. Home gardens are historically
important landscape components in Asia, but in a few cases, they are directly linked
to carbon policy per se. However, home gardens have a variety of functions,
including carbon fixation. As they also have high potential to be incorporated into
carbon policy in the future, here we would like to share knowledge about home
gardens as a traditional form of land use, focusing on the aspects of material cycles
such as carbon and nitrogen.

The carbon storage capacity of home gardens is said to be high. The amount of
carbon dioxide stored in old trees in fukugi (Garcinia subelliptica) home gardens in
Okinawa, which was established about 300 years ago during the Ryukyu Kingdom
period, was investigated. The results showed that the total amount of carbon stored
in 23,518 fukugi trees in the home gardens of 10 villages was 6089 tons. This is
equivalent to the carbon storage of about 20.9 ha of cedar (Cryptomeria japonica)
plantation forests of 40 years old (Chen and Kusajima 2021).

In the Sendai Plain coastal area of Miyagi Prefecture, Japan, home gardens called
Igune form a landscape unique to this region, where “I” means residence and gune
means partition. Igune was originally home gardens built around a house to protect it
from the seasonal winds blowing down from the Ou Mountains (Ujiie et al. 2013).
Some articles from newspapers reported Igune has mitigated the damage caused by
the tsunami that followed the Great East Japan Earthquake which occurred 11th
March 2011 (Si et al. 2013). Igune is an important component of the landscape, not
only for its function as a carbon fixation and biological production system but also
for its ability to protect houses from the harsh natural environment and earthquakes.

Home gardens in Vietnam are a traditional complex agricultural system based on
organic resource recycling, known as VAC. Here, V stands for Vuon (garden), A for
Ao (pond), and C for Chuong (livestock pen). VAC system combines rice cultiva-
tion, fruit tree cultivation, aquaculture, and animal husbandry, and uses rice straw
and rice waste for raising livestock and fish, and livestock manure for fertilizing rice



paddies and fruit trees. Material circulation takes place in the form of reusing
agricultural by-products. VAC system farmers, who are mainly rice farmers, are
specifically referred to as RVAC farmers. VAC systems are found throughout
Vietnam, but the largest number of studies has been conducted in the Mekong
Delta. In the VAC system in the Mekong Delta, rice cultivation is positioned as a
stable, land-dependent source of income, livestock farming and fruit trees are the
productive sectors with high returns, and aquaculture is a cost- and labor-saving
means of securing protein for private consumption (Ohira et al. 2005).

Traditional Land Use Systems’ Potential as the Framework for Soil. . . 77

According to the IPCC’s Fourth Assessment Report (IPCC 2007), agriculture and
forestry account for about 31% of global greenhouse gas (GHG) emissions. In
Southeast Asian countries, the share has improved, with 98% in Laos, 93% in
Cambodia, 69% in Myanmar, and 53% in Vietnam. Sources of GHG emissions
from agriculture include rice cultivation, agricultural soil, and gastrointestinal fer-
mentation and manure management of ruminant livestock. In addition, deforestation
and peatland development in forestry are sources of GHGs. Therefore, proper
management of agricultural lands and forests is needed to fix GHGs in soil and
biomass.

Therefore, Japan International Research Center for Agricultural Sciences
(JIRCAS), Can Tho University (CTU), and Can Tho City jointly form a Clean
Development Mechanism (CDM) project in the Mekong Delta to install household-
scale biogas generators in approximately 1000 farm households, including those
with VAC systems, to reduce GHG emissions by 1200 tons annually, and then
registered the project with the UN CDM Executive Board in August 2012. In the
VAC system, pig farming is the main livestock production to support household
income. Therefore, biogas generated by anaerobic fermentation of pig manure was
used to reduce GHG emissions by replacing cooking fuels (LPG and firewood).
They also estimated the emission reductions if biogas was also used as fuel for
preparing pig feed. The study results showed that up to 1.8 t CO2 year-1 per
household could be reduced (Izumi et al. 2014). Furthermore, JIRCAS and CTU
introduced a water-saving irrigation technology called alternate wetting and drying
(AWD) for paddy rice cultivation. They reported that the results suggested the
possibility of reducing methane emissions per cropping season by about 30%
(more than 1 t CO2 ha

-1) compared to constantly waterlogged conditions.
Home gardens called Pekarangan are widely distributed in rural Indonesia.

Pekarangan is the core of the agricultural production system in Indonesia, together
with rice cultivation in rice paddies, as well as VAC. There, a wide variety of plant
mixtures are cultivated, including fruit trees such as banana, coconut palm, pineap-
ple, and papaya, as well as herbaceous crops such as sugarcane, taro, yams, and corn,
and appreciation crops. According to Kubota et al. (1992), Pekarangan states that
although various styles exist, structurally they can be divided into the following four
categories: (1) those in which the entire garden is dominated by a variety of useful
plants, including fruit trees, (2) those in which only a portion of the garden is limited
to a few plant species and the rest is a mixture of various plants, (3) those in which
the entire garden is limited mainly to a few types of fruit trees or vegetables, and



Table 1 Total GHG emis-
sion from farmland in
Japan, 2019 (MAFF )2021

(4) those in which monoculture type where only specific crops are planted through-
out the garden.

Pekarangan varies in style, ranging from those with a significant subsistence
function to those with a significant economic function. Pekarangan is a space that
has been artificially created and transformed to replace forests that are disappearing,
and has been shaped by the historical evolution of the relationship between humans
and plant use. It has also been shown to have the function of maintaining biodiversity
(Kubota et al. 1992).

The home gardens in Asia are very valuable from both historical and cultural
perspectives. They also have high potential to be utilized in close relation with
carbon policy in terms of material circulation and carbon fixation. However, they are
not economically superior to large-scale agricultural operations, and it is also true
that some home gardens are becoming difficult to maintain due to the time and effort
required for upkeep and management. In the future, a framework will be needed to
find new value in the home gardens and to maintain and form ecovillages as a
historical and cultural product of the region.

In 2019, Japan emitted 1.21 Gt CO2 Eq. of GHG. Agriculture, forestry, and
fisheries account for about 4% of the total emission. Japanese agriculture emits 47.4
Mt CO2 Eq. of GHG as of 2019 (MAFF 2021). Table 1 summarizes origins of the
emission.

CH4 emission and N2O emission from farmland were 12.0 and 5.6 Mt CO2 Eq.,
respectively, and in these two in total amount to 37.0% of total emission. Sequestra-
tion at farm and grasslands was 1.8 Mt CO2 Eq., very small compared to emission.
The Japanese government aims to increase sequestration to 8.5 Mt CO2 Eq., by
increasing the rate of organic agriculture. In Japan, no-till is not common because
paddy accounts for 54% of total farmland (4.34 Mha, 2022) and because cultivation
of GM crops is prohibited; thus, use of herbicide is relatively low. The Ministry of
Agriculture Forestry and Fisheries has been monitoring soil carbon stock in 3028
points in farmland and 375 points in grasslands. Another monitoring is carried out in
310 points in farmland and 30 points in grassland with continuous compost input
(15 t/ha). Based on agricultural soil study since the 1950s, it has been revealed that
sole use of chemical fertilizer would decrease soil carbon stock, whereas application
of compost or green manure at a rate of 15 t/ha can sequester 1.4–6.3 t CO2 /ha
depending on soil type as shown in Table 2 (MAFF 2012).

India has a significant potential for terrestrial/soil carbon sequestration due to its
enormous geographical area and diversified ecoregions. On the other side, for
contemporary land uses in India, Lal (2019) cited excessive tillage, the removal of
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N2O Farmland 558 19.7%

Waste management of livestock 369

CH4 Rice 1195 46.2%

Waste management of livestock 233

Ruminant emission 756

CO2 Combustion 1570 34.1%



plant residues, and the inability to replenish nutrients removed from the soil as
causes for the estimated 21-billion-ton organic carbon in Indian soil for the entire
country being low. Srinivasarao et al. (2014) showed that the organic carbon of
Indian soils, particularly in dry and semiarid regions, is low and that each unit of
organic carbon applied to the field increases yield significantly in peanut, millet,
sorghum, soybean, and rice. The lowest organic matter input range required to
prevent organic matter loss in Indian soils was determined to be 1.1–3.5 t C ha-1

by the same researchers. The cause for the variation in values, according to experts,
is proportional to soil type and production pattern.
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Table 2 Carbon sequestration rate at fields with continued compost input (15 t year ha) (MAFF
2012)

Soil type Sequestration (kg C/year/ha) Sequestration (kg CO2/year/ha)

Andosols 400 1400

Brown forest soil 600 2400

Yellow soil 700 2600

Gray lowland soil 1700 6300

Fig. 9 The regions of Oceania

2.5 Traditional Land Use and Carbon Policy in Oceania

Oceania, unlike other continents, is home to a diverse range of geographies, as it is a
region made up of thousands of islands surrounded by seas and oceans, including
Australasia, Melanesia, Micronesia, and Polynesia (Fig. 9). The fact that the sea,
rather than the land, is the primary source of livelihood in this region has, in some



ways, prevented overuse of the soils as mentioned for Papua New Guinea where it is
among the 15 countries in the world with the highest SOC (Beillouin et al. 2022).
Biodiversity has increased as a result of the abandonment of most of the islands, as
well as livelihood from the sea, both of which have contributed to the region’s soil
carbon content improving (Weiser and Lapofsky 2009). Although Mauerhofer et al.
(2018) claim that abandoning lands results in a decline in biodiversity rather than an
increase, studies in Oceania demonstrate that abandonment boosts biodiversity
(Beilin et al. 2014). The abandonment of European agricultural methods, in particu-
lar, has resulted in a positive improvement in soil SOC content. According to
Queiroz et al. (2014), the initiation of European farming methods in Oceania in
the eighteenth century frequently resulted in habitat loss and degradation.
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Sutton (1996) manifested that prior to the colonization of Australia, aboriginal
land use was quite robust and resistant to climatic conditions. Sutton (1996)
supported this viewpoint with Evans’ (1992) description of birrjilka in aboriginal
oral laws of land use with the concepts of time-occasion way-manner-pace,
law-way-custom, and morals-way of living, and event is a sign of wisdom. Oceania’s
natural resources were wisely managed by native peoples without being under
pressure until the eighteenth century, due to the continent’s absence of a dense
population at any point in its history.

The difficulties that we are seeing today, which are contributing to a decline in
soil organic matter, are mostly due to the land use strategies of the eighteenth century
immigrants. Khanna et al. (2019) stated that Australia’s woodlands contain a large
amount of aboveground carbon, which boosts soil organic carbon. Clearing native
vegetation for agricultural purposes, on the other hand, increases carbon dioxide
emissions and restricts soil carbon enrichment.

The Native Title Act of Australia, passed in 1993, granted aboriginals the right to
use their land in accordance with their customs. On the other hand, there is currently
limited information about the effect of native land use methods on parameters that
signifies the health of the soil ecosystem, such as soil organic carbon. According to
Craig (2000), although natives are given the legal right to use the land, they face
difficulties in administering it due to the incompatibility of non-native legislation
and policy with traditional methods. Craig (2000) demonstrated the inconsistency
between historical use and current rules in the Tumut-Brungle Area Agreement,
which authorizes mining near Adelong (NSW).

In Micronesia, annual and perennial agroforestry in traditional gardens enables
local people to ensure food security by producing in marginal areas (Manner 1993).
Moreover, Kauffman et al. (2011) revealed that ecosystem carbon increased from
479 t C ha-1 at sea level to 1.068 t C ha-1 inland in natural mangrove forests in
Micronesia. To give an example, although not in Oceania, policies allowing defor-
estation in Cambodia have been shown to result in total ecosystem carbon reductions
of up to 60% (480 t C ha-1) (Sharma et al. 2020). As a result, policymakers in
Oceania should be especially sensitive to policies aimed at protecting traditional
methods, rather than profit-driven development policies constituted by public pres-
sure on politicians. However, because the environmental threats in Oceania are
caused by climate change rather than people, as stated in Tuvalu’s National Action



Plan to Combat Land Degradation and Drought (NAP of Tuvalu 2006), directing
policies toward climate adaptation will contribute to the development of more
effective solutions.
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2.6 Traditional Land Use and Carbon Policy in Europe

The European continent is a geographical area inhabited by people of many
ethnicities, with an almost arctic environment on one side (North) and a dry
Mediterranean climate on the other (South). Although Europe is one of the world’s
leading regions in terms of scientific consciousness of the public on environmental
issues, it cannot be claimed that there are no challenges threatening soils and thus
soil organic carbon in Europe (Lugato et al. 2018). The following targets in the
Green Deal program (EC 2019), which aims to alleviate Europe’s soil and agricul-
tural issues until 2030, highlight the seriousness of the continent’s environmental
problems. Montanarella and Panagos (2021) describe Green Deal agriculture and
soil targets as a 50% reduction in pesticides, a 50% decrease in excess nutrient
content, and a 20% in fertilizer use while increasing organic farming by 25% and
land protected areas by 30%, as well as restoring wetlands and halting land degrada-
tion. It is discussed from a socioeconomic and technological perspective that the land
degradation problems in Europe continue to worsen despite the financial assistance
provided for many years. While some experts ascribe the causes of this problem to
improper land use and abandonment of lands (Bajocco et al. 2012), others point to
the difficulty to effectively plan cultivation due to a lack of data on how much land
has been entirely degraded (Briassoulis 2019).

The history of land use in Europe is marked by dramatic shifts. In the Neolithic
(ca. 8000 years BP) due to low population density and pristine natural resources,
shifting agriculture with slash-and-burn was established as an unbiased approach to
nourish soils and prepare land for cultivation (Rösch and Wick 2019). In the Late
Neolithic, the slash-and-burn mode of food production caused natural forests in Lake
Constance (Germany) to change almost entirely to shrubs and coppiced woodland,
according to Rösch (2013). However, deforestation has continued in Europe
throughout history, not just during the Neolithic, as Kaplan et al. (2017) has proven
through his pollen study.

Before the imperial culture, city-states used the land without excessive pressure
for their own purposes in pre-Roman times, whereas empires began to use what the
land produced more intensely not just where it produced but also to keep the imperial
economy alive. The basis for this conclusion is that Gilgen et al. (2019) discovered in
his research that the growth in agricultural waste and wood burning, as well as the
change in aerosols, corresponded with the Roman period. Aside from Gilgen’s work,
Ascoli and Bovio’s (2013) finding that numerous fires were used to fertilize fields,
develop or renew pastures, manage pests, or hunt in Greco-Roman times confirmed
our theory that the imperial land use concept triggered soil degradation.

The incorporation of natural trees into the environment by scientists and
researchers in Medieval Europe is evidence of awareness, according to Nijnik



et al. (2009). It may be claimed that the age of the industrial revolution in the
eighteenth century and the two world wars that followed was when the degradation
of the soil and biomass, the earth’s organic carbon source, was truly endangered in
Europe (Møller 1986; Blaikie and Brookfield 2016).
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Fig. 10 The terraced olive field on the Mediterranean coast of Turkey (Authors archive)

Although deforestation, excessive exploitation of natural resources, and cata-
strophic wars have all had a negative impact on the carbon cycle throughout
Europe’s history, European people have created methods that ensure the quality of
the soil while carrying out very successful production. Despite its sloping, shallow
soils, and arid climatic conditions, Europe’s Mediterranean coastline, for example,
have been environments where olive, carob, fig, and viticulture have been success-
fully carried out for thousands of years (Akça et al. 2020) (Fig. 10).

Mercuri et al. (2019) found that people have been living in silvo-pastoral and
mixed plant pattern agriculture for thousands of years without harming nature within
the context of multifunctional land use in their research of ancient land uses in six
archaeological sites in Italy, Greece, Turkey, and Spain. However, the European
population is no longer the low-density population of the past, and their individual
resource consumption is higher than that of most other continents. Low-intensity
production amid ancient terraced gardens, extensive pastures, and picturesque coun-
tryside, as a result, falls far short of matching demand. Aside from that, it has been
witnessed on various occasions as farmers insist on land use methods that they
believe are traditional, resulting in soil deterioration. For example, Faulkner et al.
(2003) and Sastre et al. (2017) determined that the farmers’ persistence for tilling
olives for weed combatting in Spain caused significant erosion.

Europe has some of the highest agricultural subsidies in the world, and many
farmers rely on them to supplement their income, putting pressure on politicians.
Although there are laws in place to preserve traditional land use methods and
supporting ecosystem services, issues with implementation and monitoring the
consequences of application have deemed the policies ineffective (Simoncini et al.
2019).
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Prior to the Ukraine-Russia conflict in February 2022, the European Union set
targets for 2050 that would positively affect soil organic carbon within the scope of
the Green Deal, but the vulnerability of food security as a result of the conflict, as
well as the resurgence of fossil fuels such as coal for energy, made meeting these
targets unlikely. This has been an unpleasant example that highlights the high
vulnerability of policies, regardless of how precisely they are addressed.

3 Global Land Use Policy and Organic Carbon

After the 1992 Rio Summit, the world clearly realized that land degradation and
desertification, as well as climate change, would be life-threatening by another
definition, which would result in the extinction of biodiversity. Climate, soil,
water, and biodiversity, all components of the environment, are cross-border assets.
As a sense, collaboration across regions and countries is required for sustainable
environmental management. Since the 1970s, when population pressure began to
threaten practically all components of the environment, the UN has mobilized
international diplomacy to take steps and make recommendations under this topic.
The process began with the Stockholm Declaration in 1972 and continued with the
Rio Summit’s 21st Agenda in 1992, the Rio + 20 Sustainable Development Goals,
and the 2030 Sustainable Development Goals (SDGs) adopted in 2015 as risks
escalated. The ultimate goal of all of these procedures is to eradicate environmental
and socioeconomic threats to the world’s future through international cooperation.

Carbon, the focus of this chapter, is one of the environmental quality indicators. It
is not possible to cover the complete process of global carbon policies here as it is
beyond the scope of this chapter. However, because the UN Sustainable Develop-
ment Goals are the policies of most countries, it is vital to call attention to Target
15.3, which directly affects carbon, among the 17 targets of the UN. The United
Nations Convention to Combat Desertification (UNCCD) is the body in charge of
preventing desertification and restoring degraded land, which is Goal 15 of the UN
2030 Sustainable Development Goals. Data on this indicator are generated by
UNCCD through its national reporting and evaluation procedure, which began in
2018 and is repeated every 4 years thereafter. 15.3.1 “The ratio of degraded land to
total land area” is the purpose indicator. Countries establish policies based on
country facts in order to achieve this. Therefore, the primary goal is to achieve
sustainable agriculture. Sustainable agriculture can be roughly classified into four
categories. Countries develop policies under the following headings in order to
achieve this:

A. Creating and preserving healthy soil.
B. Managing water wisely.
C. Minimizing air, water, soil, and environmental pollution.
D. Preventing and mitigating climate change.
E. Preserving biodiversity.
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Fig. 11 Stone terraces for water harvesting in an almond farm in Turkey

There is no law or support in most countries that directly supports soil carbon
increase. Researchers suggest that if the aforementioned objectives are met, soil
carbon stores will often improve. Although establishment costs for soil conservation
techniques are not very expensive, farmers are not willing to allocate budget for
these. For example, a farmer agreed to stone terrace construction if the construction
expense is met by governmental funding (30 cm × 30 cm × 400 cm) in an almond
farm in Turkey. The stone terrace cost US$1300 ha which was¼ of the farmers’ total
income (Fig. 11).

The “4 per 1000” initiative was announced at the COP21 summit in Paris to slow
rising CO2 levels in the atmosphere (http://4p1000.org). The goal of this program is
to boost worldwide agricultural soil organic carbon (SOC) stocks by 0.4% every
year. In fact, because there is no single recipe for increasing soil organic carbon, the
cost of doing so is unclear. New investments will not enhance soil carbon in a humid
and rainy environment if there is no excessive demand on the soil, such as expanding
up agricultural fields, because the soils are already saturated with organic carbon.
Arid zones, on the other hand, are the contrary. The increase of soil organic carbon in
these areas is reliant on fertilizer and water, putting carbon increase an incredibly
expensive goal. Van Groenigen et al. (2017) calculated that 100 Tg/year nitrogen is
required to achieve 4 per 1000 globally, and for that today’s global nitrogen
production should be raised by around 75%. In a nutshell, achieving this goal is
impossible.

4 Conclusion

There are thousands of studies focused on achieving global sustainable agriculture
goals which directly or indirectly affect soil organic carbon. Despite slight
variations, sustainable agriculture is being tried under a variety of names, including
ecological agriculture, good agriculture, carbon farming, organic agriculture,

http://4p1000.org


permaculture, climate-friendly agriculture, and smart agriculture (close to 50,000
resources are listed on the Scopus search page). All of these systems are based on
working with nature rather than against it, and production is handled according to
ecological principles. On the other side, there are many who criticize (Avery 2007)
sustainable agriculture and traditional land use (such as olive cultivation on terraces),
which are intended to increase soil organic carbon. Critics of sustainable agriculture
contend that, in addition to greater labor expenses, its proposed methods result in
lower crop yields and wider agricultural expansion to meet farmers’ higher revenue
demands. Sustainable farming methods, it is claimed, will not be able to feed the
world’s population, which is predicted to exceed 8 billion by 2030. For this reason, it
is very difficult to fulfill the demands of the people, even if they are environmentally
friendly, in today’s volatile world, which we experienced during the Covid-19
process. So far, failure to consult local technical knowledge or local people in the
policies developed to achieve the sustainable land use techniques outlined above
precludes policies from succeeding in reality. As a result, unproven agricultural
practices in every geographical location of the world, as well as items to be used in
policies to raise soil organic carbon, should not be advised, even if they are
advertised as “sustainable agriculture,” because poor outcomes may divert the
producer’s attention away from sustainable agriculture techniques.
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5 Future Prospective

It is not enough to have the approval of the local population for policies to function,
especially when it comes to environmental regulations, because the facts envisioned
by environmental policies will be used and realized by the local population. How-
ever, many environmental regulations, particularly those relating to sustainable land
management, are unable to succeed, not only in developing countries but also in
developed countries. According to studies, 70% of Europe’s lands have lost their
ability to fulfill their ecological roles (Veerman et al. 2020). The issue of soil organic
carbon, on the other hand, necessitates a great deal of effort because policies and
investments in organic carbon may not show up right once, and it might be difficult
to explain what it is for to the common citizen. It is critical to design and distribute
regulations that take into consideration local people’s proven and mainly carbon-
friendly land uses, with the exception of the time in the last 70 years when the natural
resource has been used solely for profit by landowners. In truth, the solution is right
in front of us. Sustainable land management and carbon-friendly policies can be
found in gardens with olives and vineyards, terraces that harvest water and hold the
soil, front-of-house gardens with dozens of plants, free livestock farming that moves
around according to plant density in the pasture, and farms managed by women and
men. If politicians pay close attention to these gains that have been occurring for
thousands of years, listen to local knowledge, and implement policies with local
input, environmental policies will become concepts that are not only accepted, but
embraced by the public.
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Abstract

Soil organic carbon (SOC) is a vital factor that positively affects soil fertility,
agricultural production, and food security. However, current farming practices,
intensive tillage, increasing global warming, and climate change have created a
risk of losses of SOC, affecting food supply. Therefore, various management
strategies to build soil carbon accumulation and sequestration have been continu-
ously adopted. Net soil carbon sequestration on agricultural lands has the poten-
tial to offset 4% of yearly worldwide human-induced greenhouse gas emissions
for the remainder of the century, making a significant contribution to reaching the
Paris Agreement’s emissions reduction objectives. It is also pledged to adopt
various plans and policies for building SOC in agriculture. By 2030, a carbon sink
of 2.5–3 billion tons of CO2 equivalent must be created. A package like this
would contain restrictions to limit soil carbon loss and encourage sustainable
development and “win-win” solutions to current issues and many other climate
change risks.
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SOM Soil organic matter
UNCCD United Nations Convention to Combat Desertification
ZBNF Zero-budget natural farming

1 Introduction

Soil organic carbon (SOC) is one of the essential factors which plays a significant
role in the functions of soil and ecological services. SOC improves physicochemical
properties of soil, particularly infiltration, water-holding capacity, and nutrient
mineralization, and boosts microbial and enzymatic activity (Panda and Biswal
2018). Though the soil is primarying for carbon as it sequesters the carbon in the
soil biomass, its evolution due to microbial decomposition contributes a



considerable amount of carbon dioxide to the atmosphere (Frey et al. 2014). Thus, it
has a dynamic role in the biogeochemical cycling of carbon and gains importance in
climate change (Mehra et al. 2018). Furthermore, soil health mainly depends on the
soil’s organic matter content and biological activity, whereas both factors mostly
rely on the soil’s organic carbon (Turmel et al. 2015). Hence, it is essential to
consider soil organic carbon in all the plans and policies related to soil health
management.
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A lot of research is continuously focused on the elucidation of soil organic carbon
pool and its dynamics in soil. However, the role of soil in the mitigation of GHG
emissions and climate change is still in the dark, and hence this aspect is lacking in
the framework of soil health (Paustian et al. 2019). However, global countries have
taken several initiatives toward soil health improvement via national or international
frameworks, policy-making, and providing incentives/subsidies. Still, it is a long
way to go to achieve progress in soil health, the evaluation of soil organic matter/
organic carbon, the assessment of the adoption of technologies for soil health
improvement, and the outcome at the field level. Hence, we need to integrate soil
health with climate-smart agricultural practices (Roper et al. 2017; Bünemann et al.
2018; Stewart et al. 2018). Moreover, soil health assessment and the climate change
perspective may increase its monetary value and gather political attention.

In India, many initiatives such as the National Mission on Sustainable Agriculture
(NMSA), Paramparagat Krishi Vikas Yojana (PKVY), Soil Health Card Scheme,
National Project on Organic Farming (NPOF), Soil Health Management (SHM)
Scheme, etc. have been taken to manage soil health. Furthermore, raising interest
toward climate-resilient agriculture and contribution of soil organic carbon for
mitigation of climate change attracts the global countries toward soil health manage-
ment through different initiatives such as the “4p1000” initiative, Recarbonization of
Soil (RECSOIL), Global Assessment of SOC sequestration potential (GSOCseq)
program, Save Organics in Soil (SOS), etc. These initiatives will ensure sustainable
development through productive, climate-resilient, and more economical agricul-
ture. This chapter aims to highlight the potential role of SOC, enhancing SOC
sequestration in agriculture; gaps in research and practical policy and various
plans and policies for SOC management in agriculture and allied sectors are also
comprehensively discussed.

2 Potential Role of Soil Organic Carbon

SOC is one of the vital factors in the global carbon cycle (Nieder et al. 2018). Hence,
the status of SOC should be maintained in equilibrium and to be enhanced in the low
carbon-containing soil. Soil organic carbon plays a significant role in various
ecosystem services, such as maintaining soil fertility, biodiversity, and food security
(Bengtsson et al. 2019). SOC can play an influential role in climate change adapta-
tion and mitigation and combat desertification, land degradation, and food
insecurity.
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2.1 Soil Organic Carbon in Climate Change Adaptation
and Mitigation

Even though the changes in temperature and precipitation due to climate change are
small, their impact on soil fertility is more pronounced. It affects soil processes and
soil properties by changing soil macro- and microclimate. There are agricultural
practices to adapt to climate change impacts. Several options such as zero-tillage,
crop residue incorporation, fallow lands, diversified crop production, changing the
pattern of irrigation and fertilization, and various agronomic practices are available
to minimize the adverse impacts of climate change (Jat et al. 2016). In addition, there
are different farming practices such as conservative agriculture, restoration of soil
nutrients, and soil conservation strategies to enhance soil carbon stocks and encour-
age soil functional stability (Abbas et al. 2020).

Improving the SOC content is essential to maintain soil quality and mitigate the
impacts of climate change. Therefore, monitoring SOC content is crucial for policy-
making, and it ensures the improvement of SOC at the farm level to enable
incentives (Minasny et al. 2017). Additionally, the adaptations had beneficial
impacts on grain and biomass production soil functions. It also enhanced the soil’s
carbon sequestration potential, filtration, transformation, and recycling capacity.
However, the impact of climate change on the biological activity and properties of
the soil is not still appropriately elaborated. Therefore, the adaptation decisions in
agriculture that could mitigate climate change would be impassible if farmers
instigated properly (Aryal et al. 2020). Various physicochemical factors affecting
the SOC are mentioned in Table 1.

2.2 Soil Organic Carbon in Combating Land Degradation
and Desertification

Due to intensive agriculture and urbanization, more than 70% of forest area in the
world has been degraded in terms of SOC depletion. Tropical forests are critical
since the area decreased at a 5.5 million ha yearly rate. Globally, one-fourth of land
has been degraded, and it is predicted that by 2050, only below 10% of the earth’s

Table 1 Biophysicochemical factors affecting SOC and influencing yield

Important factors Effects of SOC

Biophysical, chemical

Physical Clay/carbonate

Parent material Alkalinity, soil structures, precipitation

Climate Temperature

Vegetation Natural vegetation, peat/bogs

Anthropogenic

Land management Tillage system, irrigation, cropping system, fertilization

Land exploitation pollution Sealing, mining, waste disposal, pollutant emission



land will be conserved without any impacts due to human activities (Arneth et al.
2021). The extensive land degradation will severely impact the soil organic carbon,
which is mainly formed due to the decomposition of biomaterials. Soil organic
carbon is essential and provides the biosphere of the Earth via food production,
employment generation, poverty reduction, biodiversity maintenance, and, more
importantly, one of the giant sinks for carbon after oceans (Laban et al. 2018).
Thus, a slight change in soil organic carbon will affect sustainability, either quanti-
tatively or qualitatively.
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A global target is fixed in the Bonn Challenge launched by Germany and IUCN to
restore 150 Mha of degraded land by 2020 and 350 Mha of land by 2030. The
committee on science and technology formed by the UNCCD has issued a report on
realizing the carbon benefits of sustainable land management practices. This report
provides guidelines for estimating soil organic carbon in the context of “land
degradation neutrality planning and monitoring” in COP 14 of UNCCD held in
New Delhi. The report highlights the crucial role of SOC in the prevention of land
degradation and desertification. Land Degradation Neutrality (LDN) is the optimum
quantity and quality of land resources required for the ecosystem’s practical
functions and services and improved food security (Cowie et al. 2018). It should
be remained unchanged or increased both temporally and spatially. It epitomizes the
pattern of that change in the policies and practices of land management. It is an
exceptional strategy to offer the expected land degradation and the restoration of
degraded lands. It deliberately deals with land-use planning in conservation, sustain-
able management, and restoration of lands. Soil organic carbon was taken as one of
the indicators of LDN. Generally, the LDN has been indicated by land cover changes
and land productivity dynamics (net primary productivity). SOC is the basic indica-
tor of soil health, and it also has multiple roles in land management. It is also related
to missions of Rio conventions which mainly played a critical factor in selecting
appropriate management options for land in a sustainable way to achieve LDN
(Akhtar et al. 2017). Management of SOC is essential for enhancing the quality of
soil and yield of crops and decreasing soil loss. Sequestering carbon improvements
improve soil health and crop productivity, steadily maintain carbon cycling, and
positively affect agriculture production (Ramesh et al. 2019). Due to the variety of
roles and functions of SOC and its essentiality in land management, SOC has been
considering one of the three indicators of Land Degradation Neutrality (LDN).
Hence, predicting and monitoring the chain that occurs in SOC are crucial for
achieving LDN targets.

2.3 Soil Organic Carbon and Global Food Security

SOC plays a significant role in enhancing food security for the global population.
More than 3/4 of the world’s population faces insufficient nutrient supply, which
leads to malnutrition or hidden hunger. However, problems associated with soil,
such as erosion, salinity, acidity, depletion of SOC, etc., are the major threats to food
security. Among all the factors, soil organic carbon has special attention regarding



food security. Improving the SOC content in soils of temperate and tropical regions
is challenging. External application of carbon-containing inputs such as compost,
manure, biochar, etc. is also considered the management strategy for SOC enhance-
ment (Tiefenbacher et al. 2021). On-farm management methods such as
incorporating crop residues, stubble retention, less or zero-tillage, and rotation of
crops are the possible options for enhancing short-term SOC. Protecting, stabilizing,
and building up the existing C stocks in soils through a balanced nutrient application,
conservative agriculture, etc. improves nutrient use efficiency and increases
productivity.
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The National Policy on Crop Residue Management effectively converts biomass
into SOC, improving agriculture and food systems inputs. The improved SOC will
contribute to enhancing the food security of different crops. However, it is estimated
that 116 Gt of soil organic carbon has been lost from the time when agriculture
began. There are a few crucial problems associated with soil properties and ecosys-
tem services due to the depletion of SOC. Generally, low SOC soil is described by its
low content of nutrients, high rate of soil erosion and compaction, etc.

Furthermore, it contains common soil microbes, low water infiltration, retention
capacities, etc. These soils can be restored through recarbonization practices such as
adding organic inputs, reducing SOC loss by no-tillage, etc. These management
practices will enhance food security through more fertile soils and climate-resilient
agricultural practices (Rao et al. 2016). Many research proved that the enhancement
of SOC would increase yield and agricultural productivity. Improvement in food
products due to an increase in SOC stocks would be a prime advantage for small
farmers. In addition, it may serve as a tool to overcome the hesitancy of farmers to
change their regular farming practices.

3 Enhancing Soil Organic Carbon Sequestration
in Agriculture

SOC-oriented farming system, adaptation of zero-tillage practices, organic farming,
appropriate manure management, zero-budget natural farming, agroforestry, and soil
erosion control practices are good options for SOC sequestration and promote soil
fertility by promoting soil fertility, increasing the amount of soil organic matter in
the soil. Many options for enhancing SOC sequestration in agriculture are shown in
Fig. 1.

3.1 Carbon Farming

Carbon farming aims to increase carbon sequestration in soil and plants and create a
net carbon loss from the atmosphere. Some practices, such as reduced tillage, longer-
rooted crops, and organic matter, encourage the captured carbon to remain in the soil
and become carbon neutral (Marks 2019). In addition, improving yield and soil
management can reverse net CO2 emissions into the atmosphere. Indeed, increasing



the soil’s capacity to absorb and store significant quantities of atmospheric carbon in
a stable form provides a realistic and immediate answer to some of humanity’s most
severe issues, i.e., global warming and climate change. Many options for enhancing
SOC sequestration in agriculture are shown in Fig. 2.
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Fig. 1 SOC sequestration potential of various technological options (tons C/ha/year) (Data source:
Lal et al. 2018; NAAS 2021)

Fig. 2 Options for enhancing SOC sequestration in agriculture

Natural ecosystems are depleted in conversion to agroecosystems due to reduced
biomass C return, increased losses of SOC due to erosion and leaching, and signifi-
cant variations in temperature and moisture regime. Carbon accumulated in the soil
is 2–4 times that of the atmosphere and 4 times that of plants (Hussain et al. 2021).
The organic carbon stock of various physiographic regions of India is mentioned in
Table 2.
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Table 2 Soil OC stock – physiographic region of India

Pollutant MediumPhysiographic
regions

Organic
carbon 0–30 cm 0–150 cm

1. Northern
Mountains

0.40–2.75 7.89 18.31 Dry temperature,
coniferous forest, moist
temperature

2. The Great Plains 0.40–2.8 3.28 10.53 Tropical mixed deciduous
forest

3. Peninsular plateau 0.3–3.40 3.62 10.11 Tropical dry deciduous
thorn forest

4. Peninsular India 0.04–2.31 3.64 13.34 Mixed deciduous thorn
forest

5. Plains of the
islands and coastal
plains

0.28–1.70 2.24 10.90 Littoral and swamps

Source: Modified from Bhattacharyya et al. (2000), Mandal and Sharda (2011)

Table 3 Land and soil management practices and their effect on SOC

Positive
environmental
effects

Carbon stock
(Mg C ha-
1 year-1)

Effect of
SOC

No-tillage Reduced
carbon
level

Erosion control
reduced fuel
consumption

0.07–0.33 Robertson et al.
(2000), Arrouays
et al. (2002)

Addition of organic
amendment
(compost, manure)

Increase
carbon
input

Increase soil
respiration

0.05–0.15 Arrouays et al.
(2002)

Use of cover crops Reduced/
increased
carbon loss

Increase soil
respiration

0.15–0.25 Arrouays et al.
(2002)

Crop rotation Increase on
inputs

Increased soil
respiration

0.05–0.25 Lal (2004)

Source: Modified from Komatsuzaki and Ohta (2007)

The technical potential of C sequestration in cropland soil is 0.4–1.2 Pg C (Lal
2015). However, land-use changes such as agricultural output have resulted in
considerable soil carbon (C) losses. Therefore, constantly increasing the C stock of
farming soils is suggested to counterbalance or decrease the warming impact of C
emissions (Luo et al. 2010). Various soil and land management practices that impact
SOC are mentioned in Table 3.

Techniques include zero-tillage farming, organic farming, natural farming,
manure management, cover crops, mulching, soil erosion, high biomass farming,
and agroforestry systems (Mattila et al. 2022). Ecosystem-based options for carbon
sequestration in India are mentioned in Table 4.
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3.2 Organic Farming

Organic farming is thought to promote soil fertility by increasing the amount of soil
organic matter (SOM) in the soil. As a result, the sequestration of carbon dioxide
from the atmosphere would significantly benefit agriculture and the allied system.
According to the study’s findings, soil carbon content (SOC) grew by 2.2% each
year after practicing organic farming systems (Leifeld et al. 2013). The organic
farming system enhances soil C growth compared to traditional agriculture
(Gattinger et al. 2012). Soils under this system had higher C stocks than soils
under conventional farming. In addition, they found that organic farming got more
external (manure, slurry, compost) C inputs (1.20 Mg C ha-1 per year) than CF
(0.29 Mg C ha-1 per year). High and frequent external organic inputs have been
linked to higher soil C concentrations in the organic farming system (Leifeld et al.
2013).

Many studies have examined the environmental benefits of organic farming,
including improved soil quality, decreased nutrient production, and lower energy
consumption (Pimentel and Burgess 2014). However, the findings vary by farm
activities (Sharma et al. 2021). For example, organic farming emits more ammonia,
nitrogen, and N2O per unit product than conventional farming (Clark and Tilman
2017). In addition, organic farming conducted using dairy and pig farm manure had
typically higher GHG per unit area than traditional farming (Cederberg et al. 2013).
However, it improves the soil carbon from the external organic outputs and has a
lower carbon footprint than conventional farming (Adewale et al. 2018).

3.3 Natural Farming

Natural farming has been advocated as a more eco-friendly and zero-budget system
in India, since it has four major components, i.e., jeevamrutham, beejamrutham,
acchadana (mulching), and whapasa (soil aeration), which has been claimed to
boost microbial activity, increase soil carbon, provide nitrogen through green
mulching, and increase the availability of existing topsoil nitrogen (Smith et al.
2020). Comparative life cycle analysis (LCA) indicated that zero-budget natural
farming ZBNF systems consume 50–60% less water and 45–70% less energy and
produce 55–85% fewer greenhouse gases (Rose et al. 2021). However, it should be
highlighted that the LCA sample size was small and did not consider soil carbon
sequestration. Hence, ZBNF had a research gap on carbon sequestration; more
scientific studies need to be done for policy options.

Permaculture is a natural farming technique, a modified Masanobu Fukuoka
natural farming (Fukuoka 1985; Krebs and Bach 2018). Organic manuring is an
essential principle in permaculture, but unfortunately, farm cattle and animals are
believed to emit more GHG than tractors. Contrasting the above view, some findings
show that cattle plowing uses less energy than tractors (Spugnoli and Dainelli 2013;
Krebs and Bach 2018). The excessive use of animal manure causes environmental
issues such as eutrophication of groundwater and freshwater, heavy metal deposition



in soil, ammonia emissions, and greenhouse gas emissions (Jongbloed and Lenis
1998; Bolan et al. 2010). Recent research shows that soil organic matter and carbon
storage are improved by organic manure (Bolan et al. 2010; Maillard and Angers
2014). Hence, permaculture with less organic inputs is a good option for soil carbon
sequestration.
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3.4 Manure Management

Appropriate manure management is an important option to improve the carbon
sequestration in the soil. Several long-term European trials have proven that organic
manures sequester more SOC than chemical fertilizers (Smith et al. 1997; Powlson
et al. 2013). Long-term usage of manure increased the SOC pool at the 0–30 cm
depth by 10% in Denmark, 22% in Germany (90 years), 100% in Rothamsted, UK
(over 144 years) (Jenkinson 1990), and 44% in Sweden (more than 31 decades)
(Powlson et al. 2013). The yearly growth in manure nitrogen production leaped from
21.4 Tg N year in 1860 to 131.0 Tg N year in 2014 (Zhang et al. 2017). Cattle
produced 44% of total manure nitrogen output in 2014, followed by goats, sheep,
swine, and chickens. Application of manure nitrogen to farmland amounts to less
than one-fifth of total production (Gross and Glaser 2021).

Organic manure degrades quickly as it is rich in nitrogen content and has a low C:
N ratio. Hence, manure may also enhance soil carbon levels due to its high carbon
concentration. Many research examined the influence of manure application on SOC
stocks; few studies reported increases in carbon, while others found relatively minor
or negative impacts on SOC stocks (Gross and Glaser 2021). Due to manure
application, studies are needed to understand parameters that govern the degree of
change in SOC stocks. According to the recent findings by Gross and Glaser (2021),
the increasing impact of manure on carbon is complex and variable. Soil texture,
SOC content, and tillage intensity should also be considered to increase carbon
content. More long-term SOC field data must be studied to understand carbon
dynamics better, and new comprehensive approaches in carbon dynamics assess-
ment methodologies are also needed.

3.5 Cover Crops and Mulching

Growing cover crops and mulching practices have advantages over other manage-
ment methods that enhance soil organic carbon (SOC) and crop yields. Around the
world, farmers, scientists, and policymakers are interested in the potential contribu-
tion of cover crops to soil carbon sequestration (Lal 2015). Though research on the
regional, national, and international impacts of cover crops on carbon sequestration
is widely made (Franzluebbers 2010; Poeplau and Don 2015; Ruis and Blanco-
Canqui 2017), the policy-making and implementation for cover crops and mulching
is lacking (Tellin and Myers 2018). The influence of cover crop green manuring on
SOC stocks, on the other hand, is often underestimated. SOC stock changes occur



due to an imbalance between carbon inputs, mainly in dead plant material or manure,
and outputs, primarily due to decomposition, leaching, and erosion (Poeplau and
Don 2015). In addition, global food consumption increases due to the growing
worldwide population and rising affluence in emerging nations, limiting the amount
of farmland converted to natural vegetation or grassland (Tilman et al. 2011). As a
result, effective strategies such as cover crops and mulching for raising SOC stocks
while maintaining high agricultural output are essential.
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3.6 Avoiding Soil Erosion

Agricultural soils are prone to erosion due to removing most vegetation by conven-
tional tillage. Erosion is a selective process that preferentially removes the light
organic fraction (1.8 Mg/m3) (Malhi et al. 1994). As a result, the SOC pool is
impacted (Lal 2019). Total C moved by erosion is estimated to be 4.0–6.0 Pg/year,
assuming a 10% delivery ratio and a 2–3% SOC content (Du et al. 2019). Traditional
tillage methods, such as deep plowing, harm agricultural soils and contribute to
global land degradation (Bai et al. 2008). According to the World Resources
Institute, 60–90 Pg of soil organic carbon (SOC) was lost worldwide in the preceding
decades due to excessive and continuous tillage methods.

Furthermore, since 1750, misusing agricultural technology has led to a 66–90 Pg
C loss in soil carbon stores, while deforestation has contributed to a 22% loss (Lal
1999). As a result, conserving natural resources and ensuring food security while
reducing environmental impact are critical to alleviating the issues associated with
land degradation. In addition, the degradation of biomass and soil C stock has been a
significant source of CO2 emissions (Hussain et al. 2021). Hence, ecologically
appropriate strategies may reduce C emissions and sequester them in soil and biota.

3.7 High Biomass Farming

The idea of carbon sinks, credits, and trading boomed the interest in herbaceous
bunch-type grasses and woody perennials which can be used as energy crops and
feedstock for biofuels. Biomass and biofuel crops generate vast quantities of bio-
mass, have great energy potential, and grow on all types of soils. C sequestration
rates range from 0.6 to 3.0 Mg C ha-1 year-1 for bioenergy crops grown in
deteriorated soils and 1631 Tg per year globally from 757 M ha of land. It has a
vast carbon offsetting potential, 1 kg through biomass and 0.6 kg through fossil fuel
reduction. Plants like Panicum virgatum L., Pennisetum purpureum Schum.,
Populus Salix, and Prosopis are among the most crucial short-rotation woody
perennials used for biomass farming (Lemus and Lal 2005). Carbon sinks alone
cannot reduce GHG emissions; a significant decrease in fossil fuel usage is required.
This is an essential part of a prospective society’s reaction to a GHG emission
reduction strategy.
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3.8 Agroforestry

Agroforestry includes many carbon-trapping practices like agrisilviculture systems
that can help mitigate climate change. However, soil type determines the efficacy of
soil C sequestration in the agroforestry system. Crop leftovers and tree litter restore
vast amounts of organic C to the soil in sustainable agroforestry systems. Those
inputs may help stabilize soil organic matter (SOM), slow biomass degradation, and
improve SOC stocks (Oelbermann et al. 2004; De Stefano and Jacobson 2018). The
meta-analysis notably shows that agroforestry systems and shelterbelts are effective
strategies to raise SOC stocks in top- and subsoils, especially in subtropical climates
(Hübner et al. 2021). From another meta-analysis study, SOC stocks decreased by
26% and 24% when land use changed from forest to agroforestry at 0–15 and
0–30 cm, respectively. Changing from agriculture to agroforestry increased SOC
stock by 26, 40, and 34% at 0–15, 15–30, and 100 cm. Agroforestry boosted SOC by
25% at 0–30 cm but decreased 23% at 0–60 cm (De Stefano and Jacobson 2018). If
the land use evolved from simpler systems like agriculture to agroforestry, SOC
stocks would rise. Hence, agroforestry is an effective technique to sequester the
soil’s organic carbon.

4 Gaps in Research for an Effective Policy

According to Pathak et al. ( ), many research gaps need to address and promote:2014

1. Agricultural residue management practices and business models that minimize
residue burning and improve SOC.

2. Local organic resources for SOC enhancement identification and inventorying.
3. Determination of long-term trials with crop-fodder-grassland-agroforestry

systems in various agroclimatic regions.
4. Creating a national SOC monitoring network with multi-ministerial R & D

institutes.
5. Quick, cost-effective, and practical monitoring of GHG emissions and SOC

changes in various ecosystems.
6. Developing regional GHG emission-mitigation and SOC simulation models

using remote sensing and GIS tools.
7. Developing low C and N technologies and evaluating their GHG reduction

potential.
8. Developing methods for reducing cattle GHG emissions via improved feeding

and waste management (Pathak et al. 2014; NAAS 2021).

Pathak et al. (2014) also indicated important points in policy-making that need to
address:

1. Linking fertilizer, water, and other agri-input subsidies to GHG reduction and
establishing the notion of “green budgeting” at the state-federal levels.
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2. Adopting adaptation technology with mitigation advantages in national and state
climate action programs.

3. Encourage farmer and community-based holistic land management.
4. Developing novel payment for ecosystem services and mitigation assistance for

smallholder farmers.
5. Ensuring soil quality, regulating climate, and conserving biodiversity are

SOC-based policies and initiatives.
6. Focus on combining multi-ministerial projects like NAPCC and SAPCC.
7. Subsidize the development of excellent organic fertilizer (low-volume, high

nutritional products) with chemical fertilizers.
8. Motivate private (corporate/industry) farmers to engage in regenerative farming

methods for SOC improvement and awareness and capacity development on
management practices in GHG reduction and carbon sequestration.

5 Policy Options in Soil Carbon Management

Policies can help to define the goals and provide guidance about how to achieve the
objectives of soil carbon management through various options. For example,
according to the World Bank, 2012 farmers need to be encouraged to increase
carbon sequestration. Policies and measures that promote sequestration of carbon
include, as shown in Fig. 3, (i) boosting the adoption and investment more in
climate-smart agriculture, (ii) multinational global cooperation agreements, (iii)
incentives and payment of ecosystem services, (iv) motivating public-private partic-
ipation in carbon management, (v) long-term policy building based on scientific
evidence, and (vi) emission reduction, mitigation, and adaptation planning.

Boosting the adoption and investing more in climate-smart agriculture is very
important in the current scenario. Climate-smart agriculture (CSA) is climate-
friendly agriculture that includes practices that enhance SOC sequestration, reduce
GHG emissions, improve crop yields and nutrient use efficiencies, and promote
climate resilience. It helps to strengthen capacities to implement a climate-friendly
agricultural policy (Magaudda et al. 2020). National policies, strategies, and invest-
ment plans should be changed to recent developments and trends in carbon policy
and management. It is possible that better guidance and training for farmers on land
management may result in more carbon sequestration and more environmentally
friendly agricultural policy-making (Kløve et al. 2017).

A multinational global cooperation agreement is crucial for policies and measures
that promote carbon sequestration. The IPCC encourages carbon sequestration
through international global cooperation agreements, where food security and cli-
mate change adaptation and mitigation are significant concerns. Agricultural adap-
tation and mitigation must be adequate for long-term policy-making about carbon
sequestration. This will lead to a greater understanding of the role of agriculture in
ongoing global climate talks.

Incentives and payment of ecosystem services must be part of policies that
promote carbon sequestration. The worldwide government and institutions need to
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Fig. 3 Policies and measures that promote sequestration of carbon

increase funds and develop the financing mechanism for farmers who act early to
mitigate carbon and adopt carbon management practices (Stringer et al. 2012). Better
agricultural practices will require public, private, and corpus funds. Combining
climate finance with food security is one of the most promising ways to fund
climate-smart agriculture. Payments for ecosystem services (PES) might help
farmers embrace conservation agriculture, natural farming, and chemical-free
organic farming, requiring specialized equipment and significant upfront
investments (Devi et al. 2017; Kumar et al. 2019). In addition, PES for early-stage
agroforestry producers may profit from carbon financing (Idol et al. 2011).

Motivating public-private participation in carbon management is very important
given changing climate scenarios. Its adaptation can help to avoid many climate
change-related future problems (IPCC 2014). This platform can include developing
social and ecological infrastructure, policies, process technology, and resource
management in planning carbon management through agriculture (Lebel et al.
2007). Currently, government commitment and financial investment are the only
carbon management source. So, the private sector’s commitment to climate-friendly
agriculture is critical to sound policy-making. A public subsidy may entice private
investment in R & D, tree planting, and seed and seedling production. Incentives
from commercial and financial service providers should encourage farmers to
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employ sustainable land management to overcome the constraints above. Public
policy and public-private partnerships may stimulate private investments such as
agriculture finance and insurance bundling and alternative risk management like
index-based weather insurance or weather derivatives.

Long-term strong policy building based on scientific evidence can play a
significant role in carbon management and climate change mitigation plan from a
long-term perspective (Moss et al. 2010). Greenhouse gas emission reduction and
adaptation of mitigation strategies must be effectively supported by institutions,
governance, innovation, and investments in environmentally friendly technology,
infrastructure, and sustainable livelihoods. Innovative infrastructure and
technologies and assets in low-carbon and carbon-neutral energy technology,
which are environmentally friendly, may help decrease greenhouse gas (GHG)
emissions and increase climate change resilience (IPCC 2014).

6 International Plans and Policies Frameworks for Soil
Organic Carbon Management

The United Nations Framework Convention on Climate Change (UNFCCC) came
into effect on 21 March 1994. The convention aims to prevent harmful human
meddling in the climate system (Gao et al. 2017). The Convention on Biological
Diversity (CBD) also plays a vital role in biodiversity conservation, particularly
active soil biodiversity that drives the dynamic equilibrium of SOC under unchanged
land use. Midgley et al. (2010) demonstrated that high C levels corresponded to a
high biodiversity system in tropical latitudes. Organic matter decomposition, nutri-
ent cycling, soil structure development, and climate regulation are essential activities
and services performed by the soil biota (Dominati et al. 2010; Pulleman et al. 2012).

The United Nations Convention to Combat Desertification (UNCCD) plays a
vital role in sustainable land management (Kutter 2015). Globally, arid, semiarid,
and dryland areas are prone to loss of organic C due to severe erosion. Consequently,
SOC content in drylands (usually smaller than 1%) is recognized as a parameter
reflecting degradation and desertification trends. However, despite the importance of
SOC in monitoring and assessing desertification, current policy analyses have paid
little attention to this measure. Incorporating SOC as a meaningful indicator into the
UNCCD’s regular reporting system will undoubtedly increase soils’ prominence in
the convention’s negotiation process and synergize with the CBD and UNFCCC
(Lorenz et al. 2019). The potential for such synergies has already been well
recognized within the Millennium Ecosystem Assessment (2005). In addition, the
UNCCD is working on preventing desertification/land degradation and mitigating
the effects of such losses toward achieving environmental sustainability and tackling
land degradation (Ma and Zhao

The FAO’s Global Soil Partnership (GSP) was created in 2012 to promote
sustainable soil management (SSM) and improve soil governance to ensure healthy
and productive soils. Besides these supporting and provisioning ecosystem services
for food security and improved nutrition, climate change adaptation and mitigation

1994; Prăvălie 2021).



and long-term development must be addressed (Rodríguez Eugenio 2021). GSP has
five pillars which are directly or indirectly associated with SOC management and
combat climate and sustainability:
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1. Promote protection, conservation, and management of long-term soil
productivity.

2. Promote soil education, extension, and policy.
3. Promote soil research and identify gaps, priorities, and synergies with environ-

mental and social initiatives.
4. Furthermore increase the availability of information and data quality on the soil

by collecting, validating, monitoring, and integrating with other disciplines.
5. Harmonization of methods, measurements, and indicators for the sustainable

management and protection of soil resources.

SOC is a cross-cutting issue entering many different EU policy frameworks. The
EU promotes practices that favor maintaining or even increasing SOM levels (Sočo
and Kalembkiewicz 2009). However, in many regions of the EU, the soil is irrevers-
ibly eroded or has a low organic matter content. The EU’s agriculture, energy,
transportation, and cohesion policy changes provide the opportunity to build the
framework and the necessary incentives to achieve this goal. In addition, EU policies
consider their direct and indirect effects on land use targeted to reach no net land
taken by 2050. That would help reduce soil erosion and enhance soil organic matter
buildup (Montanarella and Panagos 2021).

The IPCC provides scientific assessments on climate change, its implications, and
potential future risks and adopts adaptation and mitigation options (Junk et al. 2013).
According to the IPCC, markets will effectively stimulate carbon sequestration only
if the monetary worth of carbon stocks and sinks is recognized and paid. Some
developing countries see the need for carbon offsets to facilitate cash inflows to
finance conservation and other efforts (McAfee 2016). The tradable emissions
permit is a new instrument that has the potential to have a significant impact on
carbon sequestration (Kauppi and Sedjo 2018).

Companies with surplus emissions permits can sell them to companies that need
more. As a result, total emissions are no longer accessible but come at a cost to the
company. Therefore, firms with surplus permits can either sell them or sacrifice the
potential to get paid – this is known as an opportunity cost. As a result of this
method, the market can reallocate emission permits, hence emissions, to the users
who get the best return on the licenses, allocating carbon emissions permits to the
most efficient users (Bayer and Aklin 2020).

Under the Kyoto Protocol, the CDM is a project-based GHG offset method. The
scheme intends to help Annex-I nations (those with binding emission reduction
objectives) lower global GHG emissions more cost-effectively by letting them invest
in offset projects in non-Annex I countries (low- and middle-income countries
without binding targets). The CDM, as the world’s most important regulatory
project-based mechanism, allows high-income countries’ public and private sectors
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to buy carbon credits from low- and middle-income countries’ offset projects
(Ba et al. 2018).

The CDM enables nations to satisfy a portion of their Kyoto obligations by
funding carbon emission reduction projects in low- and middle-income countries.
Because lower-income countries have lower energy efficiencies, cheaper labor costs,
weaker regulatory requirements, and less advanced technologies, such projects are
arguably more cost-effective than projects executed in higher-income countries
(Steel and Harris 2020). The CDM is also intended to benefit the host country’s
long-term development. CDM projects provide emissions credits known as certified
emission reductions (CERs), which can be purchased and exchanged (Boyd et al.
2009). Visit the Paris Agreement website for more international carbon trading under
the current climate policy system.

The Clean Development Mechanism (CDM), as specified in Article 12 of the
Protocol, allows a nation with a Kyoto Protocol (Annex B Party) emission-reduction
or emission-limitation commitment to implement an emission-reduction project in
developing countries. These projects can yield saleable certified emission reduction
(CER) credits, one ton of CO2 equivalent. Many consider the mechanism to be a
game-changer. It is the world’s first worldwide environmental investment and credit
system, offering CERs, a standardized emissions offset mechanism. A CDM project
activity could include, for example, a solar panel-powered rural electrification
project or the construction of more energy-efficient boilers. The method promotes
sustainable development and emissions reductions while allowing industrialized
countries considerable flexibility in meeting their emission reduction or limitation
commitments.

7 India Plans and Policies Frameworks for Soil Organic
Carbon Management in Agriculture

In India, various plans and policy frameworks have been initiated to manage SOC in
agriculture and climate change-related issues (Liu et al. 2016). The National Mission
for Sustainable Agriculture (NAPCC) India intends to help agriculture adapt to
climate change by developing climate-resilient crops, expanding weather insurance
mechanisms, changing agricultural practices, and emphasizing waste management
and recycling to use it as an organic carbon source. Many policies and legal
framework plans for soil organic carbon conservation, land planning, and other
regulatory measures that efficiently comply with soil and organic carbon improve-
ment at the national level have been initiated.

In order to meet India’s commitments under the UNFCCC and Paris Climate
Change Agreement in 2015, various ICAR institutes and universities are involved in
estimating and monitoring the soil organic carbon stocks in widespread diverse
landscapes. India is also involved in bringing different plans and policies, including
the National Mission on Sustainable Agriculture (NMSA), National Project on
Organic Farming (NPOF), National Adaptation Fund for Climate Change
(NAFCC), National Action Plan on Climate Change (NAPCC), etc., for the concern



toward carbon sequestration through soil management practices. In addition, many
multi-ministerial policies encourage the farmers to implement SOC-based sustain-
able procedures and enhance the farm managing ability toward climate regulation
(Smith et al. 2008; Fulton and Benjamin 2011).

The Government of India emphasizes the thrust on adopting climate-smart
agriculture, especially on conservation agriculture principles. Nowadays, this is
popularizing among the farmers as an act to coincide with extreme weather events.
Adaptation, mitigation, and productivity are the pillars of climate-smart agriculture.
Crop diversification, residue retention, water management, nutrient management,
zero-tillage, and information and communication tools (ICTS) are considered man-
agement practices under climate-smart agriculture to achieve greater sustainability.
Climate-smart agriculture-based practices are all done because the soil will be the
potential sequester and sink of atmospheric carbon dioxide in the form of soil
organic carbon (Pathak et al. 2014). Studies found that this conservation agriculture
sequester nearly 24–40MT of carbon per year. Therefore, the total soil quality would
also improve. Some techniques like zero-tillage direct-seeded rice (DSR) and alter-
nate cropping increased SOC stocks. The negative impacts could be decreased by
improving these agricultural practices, especially the soil’s biological activities and
soil properties (Bhattacharyya et al. 2015). Soil quality can be studied by the
disobedience and liability indices which provide information about the stable carbon
in the soil. Climate-smart agriculture practices were found to elevate the overall
sustainability of the earth.

According to the National Bureau of Soil Survey and Land Use Planning (NBSS
and LUP), soil in India has 20–25 Gt of organic carbon. The primary cause of soil
organic carbon declining pool is accelerated soil erosion (Gama-Rodrigues 2011).
The recurrent droughts also result in a decline in biomass production and a decrease
in the organic carbon content in the soil, leading to land degradation, especially in
the northwestern region of India. It was also found that the carbon sink capacity has
been reduced (Jat et al. 2019). The practice of conservation tillage, majorly in
western Indian regions, enhances the development of soil organic carbon. However,
various features in the Indian conditions may not apply these strategies in all areas.
In order to elevate the sequestration of carbon, submission on agroforestry systems
under the National Mission on Sustainable Agriculture (NMSA) emphasized enlarg-
ing the tree cover area, thus enriching the soil organic carbon. This enhances the
proper risk management toward climate resilience (van Wesemael et al. 2011).
Presently, this mission is being implemented in 20 states and 2 union territories.

The National Policy on crop Residue Management is working to elevate SOC by
making crop residues available and converting biomass into a source of SOC to
enhance crop growth, ultimately resulting in enhanced carbon sequestration
(Monfreda et al. 2008). Other management under in situ strategies like zero-tillage,
nitrogen-fixing legumes, and crop rotation helps increase existing carbon stocks in
the soil. The national program of sequestering carbon was recently initiated,
including:
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1. National Mission for Green India: As forests sequester billion tons of carbon as
soil organic carbon stock and biomass and thus act as effective carbon sinks,
thereby enhancing the ecosystem services.

2. National Mission for Sustainable Agriculture: The Indian Ministry of Agriculture
has channelized the need-based knowledge to boost productivity in farm
practices. This paved the way for land-use planning and regional soil and water
databases. It also allowed the biotechnological approaches of sequestering car-
bon, drought resilience, and increased crop productivity.

The application of farmyard manure and organic manure usage potentially
enhances the SOC (Lal 2019). Significant policies and technological options such
as agriculture intensification, mulch farming, and composting lead to increased
organic carbon stocks in soil (van Wesemael et al. 2011). According to COP
21–22 report, agroecology, agroforestry, conservation agriculture practices, and
landscape management can play an essential role in achieving India’s SOC manage-
ment and carbon sequestration goal. The Soil Health Card program provides infor-
mation to farmers about soil nutrient status and recommends dosages of nutrients.
The Paramparagat Krishi Vikas Yojana is a centrally sponsored scheme in the NEH
region to facilitate organic farming produce, which enhances SOC and increases soil
sustainability (Aayog 2020). Agriculture-related policies are directed toward reduc-
ing net GHG emissions. Carbon sequestration strategies need multidimensional
research and policies to inspire carbon sequestration (Soussana et al. 2019). Area-
specific priorities need to be comprised of various state and central government
programs, and the technology implementation is vital to public contribution. A
country like India with a tropical agroecosystem should make scientific efforts to
understand the dynamics of SOC both spatially and temporally (Deffner et al. 2020).

For the quick, inexpensive, and authentic monitoring of the changes in the status
of SOC in diverse ecosystems, we may require scientific interventions:

1. Monitoring SOC at the national level.
2. Measuring the interaction of SOC and productivity of agriculture.
3. Identification of resources, which can be effectively utilized for SOC

improvement.
4. Promotion of crop residue management, with zero burning of residues.
5. Through long-term experiments on SOC in various agroecosystems, crop diver-

sification, and cropping systems.
6. Development of SOC-based programs and policies for sustainable soil quality

and regulation of climate change.
7. Linking of multi-department programs toward sustainable SOC enhancement.
8. Promotion of holistic land management approaches with farmer/community

participation.
9. Providing incentives to farmers for the ecosystem services, particularly SOC

management practices.
10. Encouraging the production of quality organic manure with appropriate subsidy

support instead of chemical fertilizers.
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11. Promoting corporate-farmer partnership with particular attention to SOC
improvement with incentives.

12. Conducting SOC management awareness programs on a large scale against
burning crop residues.

13. Strengthening existing programs at the state and national level by incorporating
SOC improvement interventions

14. Establishing the national mission on carbon sequestration at the farmer’s level
and scientists’ levels

15. Promoting legume-based cover crops to improve land cover, soil carbon,
nitrogen, etc.

8 Future Scope and Perspectives

Soil is a dynamic system that provides several ecosystem services like water quality,
crop productivity, biogeochemical cycles, and climate change impacts. Soil health is
connected with sustainable agricultural practices since soil biota and its activity are
the crucial components of soil health. Soil organic carbon (SOC) administers the
inherent productivity of soils. It controls climate change and ecosystem services that
are significant for a sustainable enhancement of crop productivity and supply of
food. India has enormous potential for carbon sequestration in sustainable agricul-
ture and productivity. However, inappropriate practices or management leads to the
acceleration of greenhouse gas emissions into the atmosphere, affecting climate
change. Intensive agriculture and improper management of natural resources affect
soil health and food quality and worsen other environmental issues. In several states
(e.g., Punjab Haryana, Uttar Pradesh, Madhya Pradesh, West Bengal, Tamil Nadu),
SOC has declined ~0.2–0.4%. So, it is time to focus on restoring the SOC pool
through appropriate land-use and farming practices, soil conservation, sustainable
food production, and environmental security. The government has taken a few
initiatives to enhance C sequestration by launching different schemes in agriculture
and various other allied sectors. But on practical aspects, much more attention and
motivation from the farmers are still required to successfully implement these plans
and policies to fulfill the required target of soil C restoration.

9 Conclusion

Soil organic carbon management primarily focused on meeting India’s particular
food grain production objectives in the agricultural research and development
paradigm. Policy options in soil organic management provide a new paradigm for
food security, agricultural research, and development. The need for a paradigm
change has become imperative in light of the pervasive issues of resource degrada-
tion that have followed earlier attempts to increase output while paying little
attention to the integrity of natural resources. In order to achieve continuous produc-
tivity increase, it is necessary to integrate concerns about productivity, resource



conservation, soil quality, and environmental considerations. Scientists will need a
much-increased ability to approach challenges to formulate long-term plans and
policies, collaborate closely with farmers and other stakeholders, and significantly
improve knowledge and information-sharing processes. Considering the importance
of SOC, focused practical plans and policies in agriculture will eventually make the
country more secure against climate change and soil sickness. It will also support the
aims of Sustainable Development Goals for a better country and the planet in
general.
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Abstract

Soil carbon is vital for long-term ecosystem sustainability. Capturing of carbon in
soil is cost- and time-effective strategies for reverting the process of soil degra-
dation. Increasing carbon content in the soil, through good agricultural practices,
results in enhancement of soil microbial biodiversity, soil quality, and soil water
retention. Indian soils are universally deficient in soil organic carbon however has
got good potential for soil carbon sequestration. Important strategies of soil C
sequestration includes restoration of degraded soils and adoption of
recommended management practices of agricultural and forestry soils. India
should develop time-bound strategy for improving carbon storage in agricultural
soils taking into account of antecedent/existing soil carbon content, soil texture,
and climate (rainfall and temperature) of the region. Management interventions
like balanced fertilization, INM, conservation agriculture, residue incorporation,
crop rotations, and biochar application should be formulated to attain the desired
goal under the given time frame. It is also imperative to formulate policy and
procedure that should be auditable and verifiable with respect to baseline
conditions and the additional benefits from adopting best management practices.
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Abbreviation

CA Conservation agriculture
CO2 Carbon dioxide
FYM Farmyard manure
GHGs Greenhouse gases
INM Integrated nutrient management
N2O Nitrous oxide
SOC Soil organic carbon

1 Introduction

Long-term ecosystem sustainability depends on healthy and productive soils (Blum
2005), which is essential for supporting ecological, economic, and social manage-
ment goals (MEA 2005; Comerford et al. 2013; Adhikari and Hartemink 2016; Baer
and Birgé 2018; Grilli et al. 2021). Soil organic carbon (SOC) is recognized as one of
the most important indicators to evaluate land degradation (Lorenz et al. 2019) and
soil quality (Bünemann et al. 2018). Soil carbon sequestration is the process of
capturing CO2 from atmosphere via photosynthesis and ultimately storing into the
soil. SOC is directly linked with nutrient storage, soil structure, water retention,
aeration, plant health and productivity, and microbial biomass and activity (Wander
2004; Comerford et al. 2013; Murphy 2015; Adhikari and Hartemink 2016). Soil
loss coupled with SOC loss is one of the most important environmental issues,
which, along with climate change, threatens globally ecosystem sustainability and
food security (Cherlet et al. 2018). Lal (2015a, b) opined that the maintenance of
SOC concentration in the range of 1.1–1.5% is important to reduce soil and
environmental degradation risks.

Increasing carbon content in the soil, through good agricultural practices, pro-
duced numerous ancillary benefits such as enhancement of soil microbial biodiver-
sity, soil quality, and soil water retention and ultimately productivity. Restoration of
soil organic matter through good agricultural practice that can further seize the
process of land degradation and can improve soil quality through improved soil
organisms and related ecological processes. Also through better nutrient cycling and
soil water retention, practices that stabilize carbon will also help in enhancement in
food production and optimizing the use of synthetic chemical fertilizers, thereby
minimizing emissions of greenhouse gases from agricultural land. Capturing of
carbon in soil is thus very cost- and time-effective strategy (FAO 2008). It also
creates a valuable win-win approach through mitigation (CO2 removal) and adapta-
tion, both enhanced resilience to climate variability in agroecosystem. Under climate
change scenarios in colder regions of the world, increased temperature may increase
soil organic matter mineralization and CO2 emission from soils (FAO 2008).



Adoption of good agricultural practices will lessen the effects of global warming by
permanent soil cover.
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Intensive tillage operations in conventional agriculture coupled with burning of
residues and imbalanced fertilizer application resulted in declining crop productivity
and soil health. Soil could be a source or sink for atmospheric carbon dioxide (CO2),
depending on how it is managed. Due to rapid increase in CO2 concentration in air,
now more focus is given on soil to act as a possible sink for atmospheric CO2. Now it
is well documented that increased carbon content of soil is the most effective
strategy for climate change adaptation and mitigation and to land degradation and
food insecurity (IPCC 2019). Soils encompass the largest pool of actively cycling
carbon in terrestrial ecosystems and store 1500–2400 Gt C (to a depth of 1 m)
(Jobbagy and Jackson 2000; Ciais et al. 2013; Stockmann et al. 2013), in various
organic forms ranging from fresh plant litters to well-decomposed humified material
and inorganic carbon or carbonate carbon. Worldwide about 1500 Pg carbon is
stored in first 30 cm of soil (Batjes 1996); for India it is only 9 Pg (Bhattacharyya
et al. 2000). Indian soils are deficit of SOC, and, ranging from 0.1 to 1% and majorly
less than 0.5%, its impact on soil physical, chemical, and biological properties is of
great significance. Bhattacharyya et al. (2009) computed order wise soil total carbon
stock to the depth of 1.5 m. According to them, Indian soils classified under
Inceptisols and Entisols contribute about 20% and 8.5% of the total carbon stock,
respectively. Vertisols are extensive in the central and southern part of India and
contribute about 23% of the total carbon stock, whereas arid soils belonging to arid
ecosystem contribute 24% of the total carbon stock mainly because of large area
occupied by them. Most of Alfisols occur in subhumid to humid regions of the
country and contribute about 22% of the total carbon stocks (Bhattacharyya et al.
2009). The low SOC concentration in Indian soil is attributed to extractive practices
of nutrient mining because of low or imbalanced fertilizer use, removal of crop
residue for fodder or household fuel, and soil degradation. In general, SOC may
reach a near steady state after several centuries (500–1000 years). However, deple-
tion of soil organic carbon to the tune of 23–59% of original value was found under
cultivated fields (Jenny and Raychaudhuri 1960). The agricultural soils of northwest
India exclusive of the Himalayas have lost about 50–66% of their original organic
carbon content.

Soil organic matter fractions with functional significance in the turnover of soil
organic carbon have been identified in the last few decades. Among all, soil
microbial biomass C and water-soluble C fractions are the most dynamic in nature,
which have very short turnover times. Slow pool or particulate organic carbon is
generally used as an indicator of soil quality. Organo-mineral fractions of specific
particle size (<0.053 mm) can lead to development of stable microaggregates, which
is having a slower turnover time. Crop diversification coupled with good agronomic
practices substantially improved C storage in semiarid regions of India. The experi-
ence gained from long-term fertilizer experiment established that NPK and
NPK + FYM maintained or improved SOC pools over initial value. Application of
balanced fertilization or integrated approach significantly improved labile portion of
soil organic carbon such as particulate organic carbon, water-soluble carbon and



hydrolysable carbohydrates, and soil microbial biomass C and N. Agroforestry,
agro-horticulture, and agro-silviculture are alternate land-use systems, which is
more remunerative for SOC restoration as compared to sole cropping system. It
was observed that northeast hill states of India, where all the above three land-use
systems are existed, reduced considerably soil erosion and SOC loss. Also, change in
land use from agriculture to agro-horticulture resulted in a significant increase in
SOC, soil biological activities, and fertility status. One way to increase the amount of
crop residue carbon added to soils is through the use of cover crop which besides
adding carbon to the soil helps to decrease erosion and suppress of diseases and
nematode population. Multiple cropping with two or more crops in a year can result
in increased SOC contents due to the addition of large amount of aboveground as
well as belowground biomass in soil. This is further enhanced the by inclusion of
green manuring crops. Also, minimum tillage coupled with good soil cover (at least
30% crop residue cover) and crop diversification not only helps to check runoff and
soil erosion but also improves soil aggregation and infiltration and enhances carbon
sequestration in the long run. Conservation agriculture can improve and make more
efficient use of natural resources through integrated management of available soil,
water, and biological resources combined with external inputs. It contributes to
environmental conservation as well as to enhanced and sustained agricultural pro-
duction. SOC-centered sustainable soil management practices not only mitigate
GHGs emissions but also provide multiple benefits such as enhancing food security
and farm income, reducing poverty and malnutrition, and providing essential eco-
system services. Recarbonization of our soils could be a feasible solution to decar-
bonize our atmosphere.
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2 Carbon Sequestration Potential of Indian Soil

The terrestrial ecosystems contain nearly 3170 GT of carbon. Out of this, about 2500
GT is found in soil (Lal 2008). Hypothetically, carbon in soil is divided in three
distinct pools: active, slow, and recalcitrant. Each pool is having different mean
residence time in soil and typically varies from few days to 1000 of years. The
allocation of carbon in each pool dictates capacity of soil to supply nutrients. Pristine
soil carbon stock under natural vegetation may be used as a reference site for
determining carbon sequestration potential of adjacent land use. Also it gives an
idea about the influence of land use on soil carbon loss. Lal (2004) estimated carbon
sequestration potential of Indian soils to the tune of 39–49 (44 ± 5) Tg C/year with
the assumption of conversion of degraded land to restorative land use. Majority of
agricultural soils contain soil carbon less than 5 g/kg compared to 15–20 g/kg in
uncultivated soils. Low SOC content is attributed to intensive tillage operation,
burning and removal of crop residue and other biosolids, and mining of soil fertility.
About 6 Tg C/year is lost due accelerated soil erosion due to water. Afforestation of
degraded sites coupled with mechanical measures is the main strategies for restora-
tion of wasteland. About 7–10 Tg C/year could be stored through restoration of
degraded soil, whereas 5–7 Tg C/year could be captured by erosion control.



Similarly, 6–7 Tg C/year could be sequestered by adoption of good agricultural
practices and 22–26 Tg C/year through secondary carbonates.
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3 Soil Carbon Loss in Context of Land Degradation

About 60% of degraded land in India is either unirrigated farmland or forest land.
The burgeoning population is increasing the pressures on soil resources. Deforesta-
tion is another evil that causes significant decrease in the area under natural forests.
Under existing climatic scenario such as the rising of temperature and shrinking of
annual rainfall in many parts of the country, there is a great risk for tropical soils of
the Indian subcontinent. It may cause further reduction in soil quality especially in
terms of decrease in soil organic carbon. To combat such a situation, the restoration
of organic carbon using best management practices along with improvement in the
forest and grasslands should form the strategic perspectives to sustain the health of
Indian soils. According to an estimate, the SOC stock is 21 and 63 billion tonnes in
30 and 150 cm soil depth, respectively (Lal 2004). To arrest the rising global
temperature below 2°C in this century and to prevent further rise in temperature,
192 countries ratified the COP 21 in Paris in 2015. Sequestration of carbon present in
air to soils is the best way out to achieve the COP 21 objectives (Minasny et al.
2017). The additional advantages of carbon sequestration such as favorable changes
on soil physical, chemical, and biological properties will help in increasing the world
food grain production (Lal 2015b). As per FAO (2015), grasslands cover less than
nearly 50% of the land surface area. About 70% of agriculture land lies mostly in
arid and semiarid regions of Africa, Asia, and America. These regions have very low
primary productivity in comparison to world average production (Abdalla et al.
2016). Although these regions store only about 10% of the global SOC stocks, it is
nearly half of that is sequestered in forests worldwide (FAO 2015). SOC in grassland
is very sensitive to land-use management practices. Research across the landscapes
has indicated depletion of SOC stocks in grassland soils due to their mismanage-
ment. There exists a large discrepancy in the management of grasslands with respect
to soil organic carbon. An analysis of 235 study sites in 18 countries concluded that
controlled grazing with high density of grazers was the best practice increase SOC
by 21% (Phukubye et al. 2022). Also, burning of grasslands decreased SOC by 9.3%
in most of studies. Controlled low grazing helps improve the SOC. Different climatic
conditions also decide the SOC management in grasslands. Burning in moist to
humid climates decreases SOC by 10.9%, while it is comparatively low (1.7%)
under arid to semiarid conditions. Exclusion of grazing was found advantageous
grasslands of arid and semiarid regions. Also policy planners have been suggested to
recommend rotational grazing instead of open grazing for sustainable management
of the pasture lands to prevent further degradation and decrease in SOC. Besides,
Conant et al. (2017) recommended best grassland management practices such as low
stocking rates, exclusion of grazing livestock, and planned rotational grazing-
enhanced SOC stocks. There are mixed report on effect of burning on SOC. In
some investigation burning of grasslands has improved SOC in subtropical humid



South Africa, while other studies in Spain (Granged et al. 2011) and Brazil (Nardoto
and Bustamante 2003) observed 35% and 13% decline for another site in Brazil.
Another intensive meta-analysis of 628 soil profiles showed that decreasing quality
of grasslands resulted in on average 9% decline in SOC (Dlamini et al. 2016). Also
decrease in SOC is associated with rise in frequency of grazing due to net loss of
vegetation and poor root development of grasses (Abdalla et al. 2016).
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4 Land-Use Impact on Soil Carbon Storage

Soil carbon dynamics changes with change in land-use system. It is crucial to
understand effect of land-use change on carbon sequestration for making best
management strategies to improve soil carbon buildup. Converting a forest land to
agriculture land causes a loss in SOC by about 20–50% (Don et al. 2011). Soil
carbon decreases by 59% even when land use is changed to agriculture from
grassland. However, the soil carbon stock improves from agriculture to forest or
grassland by 53% and 19% (Guo and Gifford 2002). Land-use change is a major
factor that disrupts carbon input output balance in any ecoregion. Intensive agricul-
ture leads to a significant loss of soil carbon and soil quality as well. Afforestation
provides a sustainable alternative for decreasing CO2 from atmosphere. Although,
several investigations have highlighted the contribution of afforestation in
addressing the changes in carbon in different regions, there is meager on SOC
changes with afforestation (Neal et al. 1999).

5 Microbial Diversity and Soil Carbon Storage

Shift in land use causes changes in biodiversity along with a significant effect on
ecosystem functions and services on a large time scale especially with respect to
SOC storage. (Poeplau et al. 2011). Resistant fractions of soil organic carbon
compounds in soil and physical protection of SOC are considered the predominant
mechanisms of SOC sequestration for enhancing carbon buildup. Recent theories
project the significant role of microbes for development of soil organic matter
(Lange et al. 2015). In general, SOC stock is a function of above- and belowground
biomass production, organic secretions from plant roots, and their subsequent
mineralization by microbes. The increase in carbon storage with plant diversity
reflects higher biomass production or prolonged persistence of plant-derived organic
materials due to slower decomposition. No single mechanism of soil carbon seques-
tration can be considered for all soils and production systems. The underlying
mechanisms could be many. Higher plant residue inputs might either increase the
rate of mineralization and subsequently lower the metabolic efficiency or even
increase the mineralization of native soil carbon. In opposite, higher amounts of
plant residue inputs could enhance carbon buildup due to increased microbial
necromass accumulation over time.
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6 Biochar: A New Resource for Soil Carbon Buildup

Carbon sequestration is the process that involves carbon capture from atmosphere
and its storage on long-term basis in soil, vegetation, or hydrosphere. Soil carbon
sequestration is storage of carbon in to soil on centurial or millennium basis. It
enhances microbial activities, improves soil health, and helps mitigate or defer
global warming. In fact, carbon is also captured naturally from the atmosphere
through various processes such as biological, chemical, or physical. Besides, there
are many artificial processes that can produce similar effects. Organic carbon derived
through photosynthesis is recycled through microbes in the carbon cycle. Pyrolysis
of this photosynthetically generated biomass makes it relatively inert as it is not
easily acted upon by microbes. Biochar is the product of slow pyrolysis of biomass
generally between temperatures 300 and 500°C. It has high carbon content generally
above 60%. Biochar preparation is thus a potential method for long-term soil carbon
storage. It has been estimated that biochar can remain stable in soil for hundreds to
thousands of years (Preston and Schmidt 2006). The half-life of biochar has been
found to vary from 100 to 10,000 of years. However, its properties are not constant
and vary significantly depending on type of feed stock and conditions of pyrolysis.
Along with the carbon sequestration, the biochar can be applied to soils for enhanc-
ing crop productivity and soil health. Thus, biochar has invited interest among the
scientific community for long-term storage of carbon in soils and to some extent as a
source of nutrient reservoir. Globally, the biochar production has been reported to be
between 50 and 270 Tg year-1 (Kuhlbusch 1998; Suman et al. 1997). Biochar
improves the water and nutrient holding capacity of soil and is being used as
manures across the countries. Biochar holds plant nutrients and supply to crops
when they need them. Among the indirect effects, it decreases leaching loss of
nutrients and provides them to plants slowly and reduces the need for fertilizers,
which ultimately minimizes cost of manufacture and transport, especially for nitrog-
enous fertilizers. Though humus has similar ability to sequester carbon for long time,
it requires years to form humus. However, biochar is made faster through pyrolysis.
In India, about 313.62 million tons are surplus out of total residue of 435.98 million
tons every year. These residues are either partially utilized or remain unutilized due
to various constraints (Murali et al. 2010). These may be utilized for making biochar
to sequester carbon directly into soil for years together as it does not degrade in soil
fast. Its half-life is around 1500 years. An incubation study on microbial decompo-
sition of rice residue biochar revealed that CO2 emission was reduced by 30–40% at
50 and 100% field capacity of the soil. It also improved the soil physical and
chemical properties and microbial community structure (Biederman and Harpole
2013; Rousk et al. 2010). Some of constituents of biochar such as minerals, volatile
organic compounds, and free radicals (Spokas et al. 2011) can sometime affect
microbial community structure (Ahmad et al. 2016; Mackie et al. 2015; Rutigliano
et al. 2014) and modify the soil enzyme activity (Paz-Ferreiro et al. 2014). Biochar
also has its influence on soil microbial biomass, bacteria/fungi ratio, and soil enzyme
activity.
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7 Agronomic Measures for Soil Carbon Storage

Non-judicious agriculture management practices for crop production have resulted
in decline of soil carbon and crop productivity throughout the world, although
healthy soil always helped to fight against combating the global warming due to
having high organic matter, which is always helpful in higher carbon dioxide
sequestration into the soil. Globally, it is estimated that 1417 pg of soil C is stored
in first upper 100 cm soil layer, whereas about 456 pg soil C is stored in above- and
belowground biomass and other dead organic matter (Hiederer and Kochyl 2012).
Soil C sequestration involves the capture of CO2 from atmosphere by plants and
stored in soil via addition of soil organic matter (SOM). In common, carbon stays
live in wide range of forms, majorly as vegetation, soil organic matter, atmospheric
CO2, and dissolved in sea water. In general, the SOC distribution and storage in soil
depend on natural as well as human-induced factors. For example, the high rate of
carbon storage in soils when decomposition rates are very slow and productivity is
very high is most commonly found in tropical rainforest areas. Similarly, the low
carbon storage was found in deserts and cropland areas due to low carbon input rate
and high rate of SOM decomposition due to removal of organic matter in the form of
crop harvest (Johnston et al. 2009). Agro-techniques/agronomic management
practices (tillage, crop rotations, fertilizers, and crop residue) for crop production
are also equally responsible for SOC storage/losses in soil. Besides, climatic
conditions and bioclimatic factors also influenced the soil carbon storage. Several
researchers have reported that adoption of zero-tillage operations, following
diversified crop rotations and application of organic sources of nutrients, can be
the best option to enhance the carbon storage (Smith et al. 2008: Paustian et al.
2016). In general, soil has a great potential to carbon sequestration as soil works both
as sources and sinks of carbon; however, it is determined by the availability of
carbon input intensity and its agronomic managements (Zomer et al. 2017). Almost
30% of total greenhouse emissions from agriculture are largely responsible due to
faulty agricultural activities that resulted in the decline of carbon content in soil. In
general, agro-techniques can be helpful in the lowering of the emission of green-
house gases (GHGs), if best agronomic management testacies are to be followed
under the intensive agricultural production system, and then soils would act as a sink
for carbon storage/sequestration.

Agronomic measures that can be useful in for soil carbon storage include
conservation agriculture (CA), zero tillage/minimum tillage, diversified
environment-friendly cropping systems, legume/cover crops, crop residue manage-
ment either though retention or incorporation, minimization of soil and water runoff
through mulching, integrated nutrient management (suitable combination of integra-
tion of organic and inorganic manures combinations), application of soil organic
amendment for improving soil fertility and promotion of agroforestry, etc. which are
the major agro-technologies that can be supportive in soil carbon storage for healthy
soils. These agro-techniques can be useful in lessening of different GHGs and
temperatures, minimizing the biotic and abiotic stresses for higher crop productivity
and improving soil health. Similarly, crop diversification is also an important aspect



that can contribute to carbon sequestration through variety of modified cropping
system and their root biomass. In common, application of agro-techniques in CA
stored soil carbon 1.8 Mg CO2 hectare

-1 year-1 (FAO 2008). The rates of carbon
sequestration varied under different management practices and land uses (Table 1)
although their management practices depend on several factors like climatic
conditions and locations (Paustian et al. 2016).
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Table 1 Rates of carbon storage varied under different management practices and land use

Land-use systems Carbon sequestration rate (Mg C ha-1 year-1)

Afforestation 0.60

Conversion to pasture 0.50

Use of organic amendments 0.50

Zero-tillage farming 0.30

Residue incorporation 0.35

Crop rotation 0.20

Data sources: Minasny et al. (2017)

8 Soil Carbon Dynamics Under the Practice of Conservation
Agriculture

In order to attain the goal of C sequestration, it is important that content of stable
pool of SOM should increase. In conservation agriculture, zero tillage, crop residue
incorporation/retention, and diversified crop rotation are the agro-techniques that
may increase carbon content in soil. The key mechanisms carbon storage in soil with
following of zero-tillage farming are increase in soil aggregates especially
microaggregates and deep placement of carbon contents. The minimization of tillage
operations will impact the maintenance of the carbon in unrecompensed crop residue
and enhance soil carbon storage. The burning or removal of crop biomass after
harvest of the economic produce leads to decline SOC especially under conventional
till farming.

West and Post (2002a) while analyzing the global dataset on C sequestration rates
reported that a multiplication factor of 1.16 and 1.07 may be used for computation of
enhanced soil carbon stock under no tillage and rotation complexity, respectively.
Another study by Chivenge et al. (2007) concluded that for developing best CA
practices to improve SOC contents and long-term agroecosystem sustainability,
priority should be the maintenance of C inputs (e.g., residue retention) but should
focus on the reduction of SOC decomposition (e.g., through reduced tillage) in fine-
textured soils. Conventional tillage practices for cultivation of agricultural crops led
to decrease in SOC form 30–50% (Schlesinger 1985; Sharma et al. 2000). Conse-
quently, increasing the emission of GHGs and enhancing the atmospheric tempera-
ture over the years affected the ecosystem services, brought unexpected changes in
climatic events, and then influenced the crop productivity and soil health. Further,
the impact of climate change is considered to attain a level where irreversible



changes are expected in the functioning of the planet Earth. Therefore, we reduce
emissions of greenhouse gases from the atmosphere in long-lived pools, so that it
cannot be re-emitted into the atmosphere (Kundu et al. 2013). Hence, conservation is
one of the best options for crop cultivation to increase the carbon storage in soil
while minimizing the GHGs emission (Meena et al. 2016) due to reduced fuel
consumption and improved the soil properties (physical, chemical, and biological)
(Lal 2003). Besides, it holds higher amount of leftover crop biomass (crop residue)
on soil surface which led to increase in SOC level on soil surface layer as compared
to conventional tillage (Drury et al. 1999; Huchinson et al. 2007), though tillage
practices may be varying upon the soil type, crop management practices, and
accessibility of agro-techniques. However, the relationship between tillage
operations and soil constitution and SOM dynamics is crucial for the soil carbon
storage/sequestration ability of agricultural soils. Long-term 67 field studies showed
that on average change in soil carbon sequestration from conventional till farming to
zero-tillage farming can sequester 57 ± 14 g cm-2 year-1 and highest carbon
sequestration was attained after 5–10 years of conversion period (West and Post
2002b). For improving carbon storage, the primary concern is reducing the emission
of GHGs from sources of point, viz., fertilizer use, volatilization rate, denitrification,
and crop residue burning, and in secondary the adoption of standardized agro-
techniques in combination with the carbon can sequester at desired level of carbon
(Kushwah et al. 2014). Furthermore, a report indicated that the following of zero-
tillage farming can sequester about 25 Gt carbon in the next 50 years, which can be
beneficial for carbon storage in soil (Pakala and Socolow 2004).
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9 Integrated Nutrient Management for Carbon Buildup

The application of chemical fertilizer is the primary cause of GHG emission mostly
nitrous oxide (N2O) emissions, and use of fertilizers and organic manures
contributed to agriculture at 0.68 and 1.8 Gt CO2 emission every year, respectively
(Tubiello et al. 2013). Besides, it is an established fact that nonscientific adoption of
chemical fertilizer has led to negative impacts in soil health and impaired the
environment quality, as it is a key source of N2O emissions (Adegbeye et al.
2020). Therefore, integrated nutrient management (INM) strategy should be able
to minimize the GHGs emission while enhancing soil carbon storage and sustaining
soil biodiversity (Meena et al. 2019). Soil C buildup is imperative for soil health and
higher crop biomass as it tailored various soil functions and ecosystem services. Also
carbon sequestration/storage has been proposed, a plan and policy to mitigate the
potential impact of carbon dioxide on climate (Deluz et al. 2020). CO2 emission
reduction measures and sequestration of atmospheric CO2 together are called nega-
tive emissions technologies (NETs). Soil may play important in the accumulation or
storage of atmospheric carbon through its sequestration as soil is considered as the
most feasible NET as it can store high amount of CO2 without any specific
technology requirement (EASACl 2018). Several researchers have reported that
use of inorganic fertilizers in combination of organic manures can boost soil carbon



storage and sustain the soil productivity over the years (Manna et al. 2005;
Purakayastha et al. 2008; Jha et al. 2014; Meena et al. 2019; Meena et al. 2021) as
inclusion of organic manures in nutrient management strategies sustains active and
slow release pools of soil carbon (Gami et al. 2009; Shahid et al. 2013). A good
planning on integrated nutrient management strategy and fertilizer (NPK) policy
program helps sequester atmospheric CO2 into soil organic carbon through
improved crop growth which consequently increases the soil organic matter by
improving soil carbon storage (Purakayastha et al. 2008). As fertilizer is necessary
for higher crop productivity (Verma et al. 2012) and combined use of crop residue
and nutrients, particularly nitrogen boosts the carbon sequestration up to
21.3–32.5% (Windeatt et al. 2014). However, the carbon stock or carbon sequestra-
tion rate is mainly depending on supply of carbon inputs in the form of leftover root
biomass and amount of organic manures along with fertilization. Hence, INM
strategy (integration of soil test based fertilizers along with organic manures) is a
promising technology for reducing emission of CO2 while increasing the carbon
storage in soil (Meena et al. 2021).
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10 Soil Carbon Dynamics Under Organic Agriculture

The adoption of organic farming is a well-recognized tactic to improve the soil
organic carbon storage. An estimate that the world’s mean carbon sequestration
potential of organic agriculture is nearly 0.9–2.4 Gt CO2 year

-1 is corresponding to
mean sequestration potential of about 200–400 kg C ha-1 year-1 for all croplands
(Niggli and Fliebbach 2009). However, carbon storage depends on the constancy
between quantity and quality of carbon inputs and rates of mineralization in soil.
There is an urgent need for the development of specific protocols to enhance carbon
storage. Optimal levels of SOC and nitrogen can be managed through adoption of
balanced fertilization along with diversified crop rotations (Purakayastha et al.
2008). Adoption of higher quantity of organic manures had also positive impact
on soil carbon storage, which might have higher belowground biomass (root bio-
mass) due to better plant growth and high soil nutrient status and help sequester
atmospheric CO2 into SOC by increased plant biomass. Hence, it is well established
that organic manure is a good source of organic matter contributed immensely
increasing soil carbon storage. Increment in soil carbon storage through adopting
carbon favoring management practices has great potential to mitigate the emission of
GHGs. Adoption of organic agriculture is paramount for sustaining soil health and is
a prime source of carbon which affects the soil carbon concentration in different
crops and cropping systems (Stewart et al. 2007). Previous researchers
(Purakayastha et al. 2008; Moharana et al. 2012; Meena et al. 2019) also reported
that use of organic manures along with NPK increased carbon sequestration in rice-
wheat system; however, inclusion of green manure crops in organic system
sequestrated more carbon in maize-wheat system (Kukal et al. 2009). Besides, use
of biochar (carbon-rich product) has positive impacts on soil health through carbon
sequestration; it increased the crop yield and strengthened the cation exchange



capacity, nutrient capacity of soil, and moisture capacity of soil, increasing the soil
organic matter and promoting the plant growth (Wei et al. 2020). The research
finding suggests that biochar sequesters about 50% of the carbon available within the
biomass feedstock depending on the availability of feedstocks (Lehmann et al.
2006).
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Continuous application of nitrogenous fertilizer alone resulted in decline in SOC
as evident from long-term fertilizer experiments which are being practiced over
50 years in under cropping system and soil types in different agroecological regions
of India, whereas balanced application of NPK either maintained or enhanced SOC
over the starting value. Continuous application of farmyard manure (FYM) along
with NPK resulted in significant improvement in SOC as well as crop productivity.
The improvement in SOC and crop productivity is mainly attributed to the greater
input of carbon in the form of belowground biomass and external carbon input. Here,
nutrient supply was far greater than the demand, which is important for improving
net primary productivity and maintenance of SOC at desirable state. Hence, it could
be concluded that balanced fertilization and integrated nutrient management
practices are an important strategy for minimizing CO2 concentration in atmosphere
by stabilizing carbon in soil.

It is also evident that alternate strategies like agri-silviculture, agri-horticulture,
and afforestation of degraded and wasteland were found to be more efficient for SOC
stabilization in comparison to sole cropping. These systems were found very effec-
tive not only for improvement in SOC content but also for reducing soil loss (Lal
2008). Agronomic practices like conservation agriculture, residue incorporation, and
organic farming and INM approach were found beneficial for restoration of soil
carbon as well as reduction in soil loss.

11 Future Strategies on Soil Carbon Storage

Each soil has an upper limit of soil carbon stabilization. This upper limit of carbon is
referred as soil carbon saturation or the protective capacity of soil. The difference of
stabilization deficit may be used as a priority tool for land-use evaluation for soil
carbon sequestration. It is generally observed that carbon stabilization would be
greater in samples with larger saturation deficit and soil carbon sequestration rate
decreased as the soil carbon content increased. Therefore, the planners, policy
makers, and administrators should take into account the current status of soil carbon
in stabilized pool and the capacity of soils to stabilize carbon. It is well proved that
once a soil attains its upper limit of carbon, then chances in improvement in soil
carbon would be meager with addition carbon input. Stabilization of decomposable
SOC can be obtained by complexation to mineral and organic soil surfaces, entrap-
ment within soil aggregates, and accrual to soil pores inaccessible to decomposers
and extracellular enzymes. Soil structure is one of the most important factors that
control and indicate the SOC sequestration in soil. Modification in soil physico-
chemical environment for proliferation of fungi is another viable strategy for soil
carbon stabilization. Some of the best management practices include changing the



quality of plant C inputs, long duration crop species, no-till system, neutral soil pH
and good amounts of exchangeable base cations (particularly calcium), proper
drainage, and erosion control.
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12 Conclusions

Carbon level in soil is the result of interaction of several ecosystem variables, of
which photosynthesis, respiration, and decomposition are most important. Soil
temperature and soil moisture are the key factors which affect ecosystem variables.
Anthropogenic activities determine whether the soil will act as a source or sink of
carbon dioxide. Loss of SOC stocks due to anthropogenic activities and land
degradation has created a soil carbon deficit that provides an opportunity to store
carbon in soil through several land management approaches.

• The steady state of soil carbon would only change when carbon input from
photosynthesis will be more than the soil carbon losses (respiration). In majority
of soils of India, the carbon content is in steady-state condition due to long-term
practice of repetitive management interventions.

• India should develop time-bound strategy for improving carbon storage in agri-
cultural soils taking into account antecedent/existing soil carbon content, soil
texture, and climate (rainfall and temperature) of the region.

• The next step is to define or compute the attainable carbon content of soils of
different region utilizing the knowledge gained from long-term fertilizer
experiments running across different agroecological regions of the country. For
example, attainable carbon content of coarse texture soils of Punjab should be
kept not more than 0.50–0.75% (oxidizable carbon concentration) because of soil
and climatic limitations, whereas fine-textured soils of central India can have
carbon concentration to the extent of 1.2–1.5% owing to high clay and moderate
rainfall conditions.

• Subsequently, attainable deficit of soil carbon stock of different agricultural soils
should be mapped, and priority intervention should be given to those soils which
are having higher carbon deficit.

• Based upon the attainable carbon deficit map of country, management
interventions (balanced fertilization, INM, conservation agriculture, residue
incorporation, crop rotations, biochar application) should be formulated to attain
the desired goal under the given time frame.

• Well-calibrated carbon models (RothC, APSIM, Century) may be used to know
the exact time frame for attaining the desired carbon stocks.

• Effort should be made to offset the process of land degradation by changing the
land-use pattern from agriculture to agri-silviculture.

• Next step is regular monitoring of soil carbon stock using state-of-the-art tech-
nology for precise determination of changes in soil carbon stock.

• Exploring new methods to accelerate market development for carbon farming.
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• Policy and procedure should be framed for auditable and verifiable accounts of
the baseline conditions and the additional benefits from adopting best manage-
ment practices.
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Soil Organic Carbon Sequestration
in Rice-Based Cropping Systems:
Estimation, Accounting and Valuation
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Abstract

Crop management practices largely govern the complex process of carbon
(C) sequestration in agricultural soils. In rice-based systems, small alterations in
cultivation practices can lead to increased soil organic carbon (SOC) contents in
soil and reduced GHG emissions, thereby complementing the C sequestration.
Due to enormous complexity of C sequestration process, monitoring soil C
changes could be costly and extremely variable in C stocks on micro- and
macro-scales. To assess the soil C change, the factors driving the driving soil C
dynamics are accounted, and models are developed. However, it is worth notable
that these modelling and measurement efforts are relatively new considering the
history of C dynamics. It will be challenging to settle on annual-to-decadal target
rates for rebuilding soil C based on the available modelling and measurement
tools. Overall, change in soil C fraction is reported in many studies with choice of
agronomic management practices in rice-based cropping systems. The combined
application of inorganic fertilizers and organic manures seems to be the best
option to increase rice yields while improving soil C accumulation. An attempt
has been made in this chapter to compile and analyse all the available information
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related to the soil C sequestration potential of rice-based cropping system,
particularly rice-wheat and rice-rice cropping system, in addition to the mecha-
nism, measurement and valuation of C.
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Abbreviations

BD Bulk density
C Carbon
CDM Clean Development Mechanism
SOC Soil organic carbon

1 Introduction

Soil is the greatest carbon (C) reservoir, accounting for more than 80% of total C in
the terrestrial biosphere. The transfer of C from the soil to the atmosphere is a
continual process that is heavily impacted by various factors. Soil organic carbon
(SOC) sequestration invariably refers to the process of restoration of SOC pool,
through conversion of atmospheric CO2 through the process of photosynthesis and
humification. It can be increased by enhancing the soil C stocks through sustainable
land management. Some of the agronomic management practices, viz. diversifying
the cropping system by crop rotations, choice of crop establishment method, fallow
period management, fertilizer and water management, have the potential to either
reduce or increase soil C stocks (Baker et al. 2007). Increased C losses would arise if
stored C is released into the atmosphere due to temperature-induced breakdown
(Bradford et al. 2016). A reduced C loss is induced by a relative increase in the
amount of contributed and/or plant-derived C over decomposition (Kallenbach et al.
2016; Paustian et al. 2016). The response is based on two factors: breakdown and
soil C addition. Increasing the soil C stock has many advantages which are strongly
tied to soil nutrient status, soil fertility, soil aeration, etc. In tropical soil,
temperature-induced breakdown leads to decline in SOC levels; however, complete
exhaustion of SOC in soil is not possible in nature. In general, a steady state is
maintained in the SOC levels of cultivated soils which is referred to as a lower
equilibrium limit (Buyanovsky et al. 1998). In an erosion-free environment, the
fluctuation in SOC level depends on the management practice. Crop cultivation leads
to SOC stabilization at the lower equilibrium level, but addition of organic inputs in
addition to fertilizer applications tend to shift the equilibrium towards the upper limit
(Nayak et al. 2012a). Extensive adoption of improved crop management practices is



recommended with an aim to maintain or increase SOC levels, thereby improving
soil fertility and mitigating climate change (Lessmann et al. 2021). The most recent
scientific discussions accept that timely intervention is needed to rebuild SOC for
sustainability.
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Rice is staple in South and East Asian countries, and it also represents a fairly
large fraction of global agriculture. It is established that transplanted rice have higher
soil organic C storage. Organic C accumulation is faster owing to slower organic
matter decomposition in low and shallow lowlands due to anaerobic/reduced condi-
tion created by flooding (Watanabe 1984). Microbial activity is slowed down under
flooded conditions resulting in declined decomposition rate. However, the potential
of C sequestration in rice-based cropping systems is not well recognized. In rice-
based systems small interventions in cultivation practices could result in substan-
tially modified SOC contents (Zhu et al. 2014). Heavy tillage operations and
intensive agriculture with flawed nutrient management in rice ecosystems are mainly
responsible for depletion of SOC pools. Ratnayake et al. (2017) reported significant
reduction or no increase in the soil C stocks in rice-based cropping systems.
Alternatively, Nayak et al. (2012b) reported potential of C sequestration in rice-
based cropping system with appropriate residue retention and nutrient management.

In this chapter, an attempt has been made to compile and analyse all the available
information related to the soil C sequestration potential of rice-based cropping
system, particularly rice-wheat and rice-rice cropping system, in addition to the
mechanism, estimation and valuation of C.

2 Potential of C Sequestration and Emission Reduction
in Rice Soils

C sequestration potential varies from region to region even under the same type of
management, due to difference in climate, soils, cropping systems and available
technologies. Extensive efforts have been made to identify the agronomic manage-
ment practices for soil C sequestration and emission reduction in rice soils. Table 1
lists several agricultural management practices and their role in either increasing C
inputs to soils or reducing C losses from soils.

Long-term studies (Table 2) have shown that agricultural practices involving
improved fertilizer management, application of manures, crop residue retention,
crop diversification, green and brown manuring, optimum tillage, rationalized irri-
gation and agro-waste recycling enhance C storage. These agricultural practices are
highly sustainable and help in mitigating climate change through C sequestration on
one hand and reduction of GHGs emissions on the other.

It has been pointed out that a combination these practices may be required to
effectively sequester C rather than depending on one particular practice. Higher C
input through cropping system and soil management practices is likely to maintain
the higher SOC level in soil (Mandal et al. 2007). For the past 15 years, calculated
potential of SOC sequestration under different ecoregions in different cropping
systems with diverse soil management options has been reported in India and abroad



√
√ √

Technology Region References

(Table 3). Globally, 40 to 80 billion tonnes of C is estimated to be sequestered in
agricultural soils over a period of 100 years (Cole et al. 1997) with appropriate
management practices. In India, the total potential of C sequestration is 12.7 Tg C
year-1 to 16.5 Tg C year-1 which includes about 8.5 Tg C year-1 from restored soils
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Table 1 Agricultural management practices that can increase organic carbon storage and promote
a net removal of CO2 from the atmosphere

Management practice Increased C inputs Reduced C losses

Improved crop rotations and increased crop residues √
Cover crops and green manuring √
Manure and compost addition √
Improved grazing land management √
Improved crop rotation with legumes √
Addition of biochar to croplands

No tillage and other conservation tillage √
Rewetting peat and muck soils (organic soils) √
Balanced fertilization √
Modified: Paustian (2014)

Table 2 Agricultural practices for soil carbon sequestration in rice-based cropping systems
reported in India

Cropping
system

Green manuring Rice-wheat North-west India Aulakh et al. (2001)

Rice-wheat North and Eastern
India

Nayak et al.
(2012b)

Rice-rice Tropical India Singh et al. (1991)

Rice-rice Tropical India Kumar and Goh
(1999)

Mulch farming/conservation tillage Rice-wheat North-west India Aulakh et al. (2001)

INM Rice-rice Northern India Dinesh et al. (1998)

Rice-wheat North-west India Yadav et al.
(2000a)

Rice-wheat Northern India Singh and Dwivedi
(1996)

Residue incorporation in rice with
barley straw

Rice-barley Tropical dryland Kushwaha et al.
(2001)

Residue incorporation in rice with
wheat straw

Rice-wheat North and Eastern
India

Nayak et al.
(2012b)

Restoration of sodic land Rice-wheat Central India Nayak et al. (2008)

Addition of FYM Rice-rice Eastern India Mohanty et al.
(2013)

Rice-rice Eastern India Shahid et al. (2017)

Rice-wheat North and Eastern
India

Nayak et al.
(2012b)
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Table 3 Effects of agronomic management techniques on percent increase in SOC content
over RMP

Cropping
system

Average increase
in SOC content
over control (%)

Residue incorporation Rice-rice 10 Iksan City,
South
Korea

Ku et al.
(2019)

Rice-
wheat

20 Ludhiana,
India

Singh et al.
(1994)

18 Kanpur,
India

Tiwari et al.
(1998)

34 Sabour,
India

Yadav et al.
(2000a);
Singh et al.
(2019)

14 Kalyani,
India

Majumder
et al. (2008)

Manure application to both
the rice crops

Rice-rice-
fallow

28 Dhaka,
Bangladesh

Naher et al.
(2020)

Green manure
incorporation before rice
planting

Rice-
wheat

16 Ludhiana,
India

Singh et al.
(1994)

11 Kanpur,
India

Yadav et al.
(2000b)

32 Sabour,
India

Yadav et al.
(2000a), Singh
et al. (2019)

FYM addition to both the
rice crops

Rice-rice 80 Assam,
India

Gogoi et al.
(2021)

18 Cuttack,
India

Mohanty et al.
(2013)

11 Cuttack,
India

Shahid et al.
(2017)

Rice-
wheat

14 Kalyani,
India

Majumder
et al. (2008)

33 Ludhiana,
India

Singh et al.
(1994)

15 Kanpur,
India

Tiwari et al.
(1998)

38 Sabour,
India

Yadav et al.
2000b

Biochar addition to both
the rice crops

Rice-rice 169 Cuttack,
India

Munda et al.
(2018)

Plastic mulching in ridge
and furrow system of
planting in rice

Rice-
fallow

86 Sichuan
Province,
China

Zhang et al.
(2013)

Double zero tillage,
i.e. zero-tillage DSR
followed by zero-tillage
wheat

Rice-
wheat

23 Chitwan,
Nepal

Paudel et al.
(2014)



and 6 Tg C year-1 to 7 Tg C year-1 from advanced agronomic management
practices (Lal 2004).
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2.1 Potential of SOC Sequestration in Rice-Rice Cropping System

Stagnation in rice productivity in rice-rice cropping systems has been an outcome of
extensive use of inorganic fertilizers. Moreover, the rice-rice system has become
associated with reduced fertility and overall decline in soil health. In fact, reports
from long-term fertilizer experiments throughout the world suggest deterioration in
physical, chemical and biological soil attributes for crop production with continuous
application of inorganic fertilizer in rice-rice system (Basak et al. 2016). Globally,
cultivation of double rice over the years have led to the destruction of soil structure,
as a result of which stability of soil aggregates have been disturbed and the C content
of soils have declined. Relatively lower magnitude of depletions in SOC is reported
in areas with continuous submergence (8–9 months in a year) of soils under rice-rice
system. Higher SOC concentration in lowland rice soils is generally observed
compared to upland soil. Swarup (1998) reported substantial increase of about
60% in SOC concentration over a period of 20 years with INM in rice-rice cropping
system. Possible explanation for lower SOC depletion may be lower inherent C
concentration in the studied soil.

Studies suggest that sole application of FYM and combination with FYM and
100% NPK both increased C content in soils significantly. This can be explained in
relation to increased biomass of crops (root biomass and root exudates) with
complementary and sometimes additive effect of organic and inorganic fertilizers.
An increase in SOC stock was reported by Majumder et al. (2008) and Chaudhary
et al. (2017) and attributed it to the combined application of fertilizers and FYM.
Similarly, Srinivasarao et al. (2012) reported increased SOC stock with sole appli-
cation of FYM. At a long-term study at Cuttack, India, SOC concentration and
stocks had increased substantially with combined application of chemical fertilizers
and manure as compared to untreated control in rice-rice cropping system (Shahid
et al. 2017; Mohanty et al. 2013). The SOC stock of surface soil increased in all
treatments as compared to the initial value recorded 41 years ago. The differences in
the SOC stock were non-significant in the greater depths of soil profile. It was also
established from the study that crop residue in the form of rice roots and stubbles is
sufficient to counter the C loss through decomposition of organic matter. C seques-
tration potential can further be improved with combined application of chemical
fertilizers and manure.

2.2 Potential of SOC Sequestration in Rice–Wheat Cropping
System

A perceived threat to rice-wheat cropping system is the reduction in SOC stock and
the associated reduction in nutrient supplying capacity of soil. Long-term studies in



India showed a decline in SOC content in treatments without addition of organic
input (Ladha et al. 2003). From the same studies, it is reported that applications of
FYM before rice in a rice wheat rotation resulted in SOC build-up and higher grain
production. Rice crop residues (agro-wastes) are burnt on field in huge quantities
particularly in North-west India. The burnt agro-wastes (19.6 million tonnes of straw
of rice and wheat) in India are equivalent to 3.85 million tonnes of SOC, 59,000
tonnes of nitrogen, 2000 tonnes of phosphorous and 34,000 tonnes of potassium.
The agro-wastes could be one of the alternatives to improve the SOC stocks in
addition to supplementation of plant nutrients. The combined use of organic input
(residue from rice or wheat) and inorganic fertilizer in rice-wheat systems may work
complementarily and increase the crop yield and SOC build-up.
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Studies in Indo-Gangetic Plains (IGP) suggest that the application of chemical
fertilizers over a period of 23–26 years in cereal-cereal (rice-wheat) cropping
systems has positively influenced the SOC of surface soil. However, a decrease of
2 and 35% of SOC concentration was reported with no fertilizer application in
middle and lower IGP, respectively, whereas at trans- and upper IGP, it has more
or less maintained the SOC level (Nayak et al. 2012b). Because of low SOC
concentration initially, trans- and upper IGP could maintain their SOC level with
no fertilizer application despite a declining yield trend. The higher stubble and root
biomass in response to fertilizer application in turn results in higher yield. The SOC
increased in surface soil along the IGP except at lower IGP where initial SOC value
was comparatively higher than others. Most of the reports from long-term
experiments suggested that optimum application of inorganic fertilizers helped in
increasing SOC stocks (Purakayastha et al. 2008) or maintaining the SOIC stocks
(Biswas and Benbi 1997). Brar et al. (2013) even reported C sequestration in rice-
wheat system without any external organic input. Some other reports suggest that
substitution of part of fertilizers through FYM or crop residue or green manure has
also enhanced the SOC considerably. The combination of organic and inorganic
sources improves the organic C content of soil over that achieved with fertilizers
alone, due to the additive effect of organic and inorganic sources and their interaction
thereof (Nayak et al. 2012a). Similarly, SOC build-up in response to cropping
system management, addition of manures with chemical fertilizers and incorporation
of paddy stubbles and green manures have been widely reported from long-term
studies (Yadav et al. 2000b).

In many of long-term experiments on rice-wheat system conducted in diverse
agro-climatic zones of India, application of 50% of N through FYM along with 50%
recommended dose of NPK in rice and application of 100% recommended dose of
NPK in wheat-sequestered 0.39, 0.50, 0.51 and 0.62 Mg C ha-1 year-1 over
untreated plots, respectively, at Ludhiana (Trans-Gangetic Plains), Kanpur (Upper
Gangetic Plains), Sabour (Middle Gangetic Plains) and Kalyani (Lower Gangetic
Plains), (Table 3). In China, Hao et al. (2008) reported that combined input of
chemical fertilizers and manures sequestered C in soils. Nayak et al. (2012b)
reported a very wide range of C sequestration (0.08 to 0.98 t ha-1 year-1) in IGP
with different organic inputs (FYM, crop residue, green manure) along with NPK in
rice-wheat system, which are similar reports from other studies (Causarano et al.



2008; Kundu et al. 2007). A C stock budgeting was reported by Bronson et al. (1998)
from different agroecosystems of Asia. It was reported that increase in C stock in soil
is possible even in tropical lowlands, even though very high temperatures prevail in
tropical region round the year. They opined that C mineralization was relatively slow
due to anaerobiosis. Addition of large quantities of organic C from photosynthetic
algal communities in the rice-based ecosystems is also responsible for slow miner-
alization of C. Similarly, it was also observed that clayey soils have more potential to
sequester C than sandy and silty soils in the lowland tropics, due to mineral coating
on SOC giving a physical protection (Matus et al. 2008). It also explains the reason
for higher SOC sequestration rate at lower IGP which is characterized by higher soil
clay content.
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Overall, the SOC enrichment (C sequestration) in soil with organic input is
largely established; however, the extent of SOC enrichment is dependent on many
other factors such as cropping systems and choice of crop management practices.

3 Estimation of SOC Sequestration

The variations in the SOC sequestration arise even under same management
practices because of various factors, viz. soil and climate type, cropping system,
etc. Under such scenario, estimations of soil C sequestration are being made using
measurement and monitoring technologies, to remunerate the C sequestration
achieved, through so-called moving baselines. Various analytical tools to assess C
sequestration/storage have been developed and available in the existing literature
(Paustian et al. 2019; Falloon and Smith 2000; Gulde et al. 2008; van Wesemael
et al. 2019; Wiesmeier et al. 2019). The measurement standards and procedures for
soil C sequestration are still evolving. Rapid and cost-effective measurements of soil
C concentration on a large scale, i.e. at the landscape and regional level, and on a
vertical scale at profile level are being tested for making recommendations (Lobsey
and Viscarra 2016; Ramifehiarivo et al. 2017). New technologies like eddy covari-
ance flux towers are being used to estimate C sequestration at the ecosystem level
(Nayak et al. 2019). For accurate estimation of SOC, some of the pre-estimation
parameters need to be considered along with the suitable methods of SOC
estimation.

3.1 Critical Pre-estimation Parameters for Accurate Assessment
of SOC

Establishing the Baseline
As mentioned earlier in the chapter, the SOC sequestration varies with choice of
management practice in a particular agricultural system, and it is influenced by soil
type and climatic factors. Many of the earlier researchers have calculated and
reported C sequestration on the basis of difference in SOC in the treated plot and
non-treated plot while considering the non-treated as the baseline without



considering the SOC stock before treatment implementation (Shahid et al. 2017).
Some researchers believe that this may give erroneous information (Nayak et al.
2019) because both the treated as well as non-treated plots are losing SOC, though at
a different rate. Hence, initial SOC level must be taken into account before imposing
the treatment so that a boundary line is fixed to correctly assess the SOC change, be it
steady state, retention, loss or gain of SOC (Olson 2013).
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Fixing a Timeline
Fixing a timeline is necessary for measuring the SOC sequestration as SOC changes
take place very slowly which support a higher inconsistency at spatial scale and
inconsistently lower instance of variability at a temporal scale. Detecting the SOC in
terms of absolute quantity compared to real initial value is difficult. Sometimes, it is
argued that less than 20 years is a very short time to establish equilibrium in SOC in
soil with high clay content. Similarly, in soils exposed to convention management
practices, loss of SOC continues for 50–100 years (Sanderman and Baldock 2010).
Therefore, Kumar et al. (2012) suggested that spatial variability and rate of SOC
change are the key factors for correct assessment of SOC sequestration. In light of
the above discussion, long-term field experiments lasting many years or decades are
recommended for assessing SOC sequestration within various agroecosystems and
crop management options.

Determination of the Frequency of Measurement
Soil C stocks are relatively stable in undisturbed soil; nevertheless, any disturbance
to topsoil causes SOC stocks to be lost. SOC is lost when grasslands and forests are
converted to other uses that involve soil disturbance. Apart from land-use change,
management methods, particularly in cropping systems and grasslands, can have a
considerable impact on SOC stocks. The frequency with which soil C stocks are
measured varies, depending on the land use and soil management system in practice.
The frequency has implications for the method used to prepare a C inventory as well
as expenses and can range from once a year for land-use change operations to once
every 5 years for long-term projects.

Sampling Method
The method for sample collection should be based on the objective (i.e. short- or
long-term storage change). Several methods are being used traditionally, viz. dig-
ging open pits, core sampling with a punch core, core drill method, etc. However,
sampling method should be chosen on the basis of objective of the study. For
example, augers should be used to take undisturbed cores, however, in a soil with
coarse roots, auger sampling should be replaced with rotary core device (Rau et al.
2011). Comparison studies are suggested to make a reasonable decision on choice of
sampling. Methodologies that combine soil pit and auger sampling techniques under
different soil, topography and cropping system should be tested and compared for
more comprehensive information related to choice of sampling method.
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Bulk Density Corrections
The calculation of SOC stock at a given depth is done with the help of SOC
concentration, bulk density (BD) and soil depth. Any error in the measurement of
BD across the depth of sampling in treated and non-treated plots would magnify the
bias and may result in complete wrong information on SOC stock. So, in order to
reduce the error, corrections in the BD should be made before calculation of SOC
concentration.

3.2 Measurement Techniques

There are numerous methods for estimating SOC, ranging from simple laboratory
techniques to a more complicated diffuse reflectance spectroscopy. The examples are
(1) Walkley and Black method or wet digestion or titrimetric determination, (2) col-
orimetry, (3) direct estimation of organic matter by loss-on-ignition, (4) CHN
analyser, (5) diffuse reflectance spectroscopy and (6) modelling.

Wet digestion or titrimetric determination is the most popular approach utilized in
the field, and it is also a cost-effective procedure. Despite its high accuracy, the C,
hydrogen and nitrogen (CHN) analyser is rarely utilized in field investigations due to
its high cost. Diffused reflectance spectroscopy is also costly, and it has yet to be
widely adopted in the field. The availability of models and data to represent local
situations limits modelling. The remote sensing method can only be utilized for large
projects, and it still requires modelling and validation using data from other sources.
It is necessary to enhance the accuracy and affordability of soil C collection and
measuring methodology in order to monitor C changes in the soil and biotic pool.
SOC stocks are calculated using two variables: SOC concentration and bulk density.

Wet oxidation Walkley and Black (1934) or dry combustion is the most used
method for determining SOC concentration (Wang and Anderson 1998). The
amount of organic C in most samples is known to be underestimated by the wet
oxidation method; hence a correction factor must be applied. The adjustment factor’s
magnitude is known to vary by soil type. Despite the availability of more reliable
procedures, the Walkley-Black method is still employed in some laboratories,
particularly in India. Over the last 10 years, significant work has been made in
refining, improving, and adapting the approach for measuring and monitoring soil C
sequestration at field and regional scales. It is currently possible to monitor changes
in soil C as tiny as 1 Mg C ha-1 or estimate them using simple or elaborate
simulation models (Paustian et al. 1997; Smith et al. 2007). More accurate
measurements will be more widely accepted if measurement errors are addressed
and the measurement procedure is unbiased. When monitoring C sink operations,
“uncertainties, transparency in reporting, and verifiability” should all be taken into
account, according to Article 3.4 of the Kyoto Protocol (Smith 2004). In situ
measurements can be done using laser-induced breakdown spectroscopy (Cremers
et al. 2001), inelastic neutron scattering (Wielopolski et al. 2000) and diffuse
reflectance IR spectroscopy (Christy et al. 2006).
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On some dynamic and geographically relevant basis, measurement and monitor-
ing procedures employing current or new methodologies must be integrated to field-
level and regional scales using computer simulation and remote sensing (Paustian
et al. 1997; Smith et al. 2007). When monitoring C sink for trading purposes,
uncertainty in measurement, transparency in reporting and verifiability should be
taken into account. Due to various pools and tiny incremental changes expected,
monitoring soil C changes at the project level could be costly and extremely variable
in C stocks on micro- and macroscales. SOC change could be estimated in one of
three ways: (1) using SOC stock change values for specific practices reported in the
literature based on research studies, (2) using process-based models of SOC dynam-
ics, parameterized from experimental data and (3) using a combination of baseline
measurements to assess the vulnerability of SOC pools and modelling informed by
baseline measurements and understanding of the factors driving soil C dynamics. It
is worth notable that these modelling and measurement efforts are relatively new
considering the history of C dynamics. It will be challenging to settle on annual-to-
decadal target rates for rebuilding SOC based on the available modelling and
measurement tools.

4 Policy for Protection of SOC Sequestration

4.1 Economic and Political Will for SOC Sequestration

In the developing countries, the policymakers are not forthcoming to incentivize C
sequestration measures because of permanence issues of SOC stocks, difficulty in
quantifying contribution of C sequestration towards yield increase and other
co-benefits. In the developing countries, the need for yield increase is prioritized
over soil C sequestration. It is agreed that the most effective way to accumulate SOC
is to increase C inputs, which implies that high organic C levels can be maintained
with improved management and C input, irrespective of climate, soil type and
cropping system. However, it is still difficult to quantify the contribution sequestered
C towards improvement in crop yields, which makes it difficult to convince the
policymakers for incentivizing the technologies related to enhancement of C seques-
tration. It is even more tedious to quantify the value of co benefits, viz. improvement
in soil biodiversity, reduction in pollution, erosion reduction or other societal
benefits. These co-benefits also vary spatially and temporally. Presently, SOC is
not taken into account in market-based policy, primarily for two reasons:
(1) expenses for ecosystem services (ES), as ES are difficult to measure and till
now not standardized, and (2) the priority of farmers is higher crop production and
not the C sequestration. Thus, new incentives for farmers to sequester extra SOC are
required. Amelung et al. ( ) proposed establishment of seven-point soil informa-
tion system for proper implementation of C sequestration policies:

2020

1. Soil information systems for many parts of the world, including yield gap
analyses and soil deterioration status.
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2. Realistic forecasts of local and regional yield growth per tonne of sequestered C.
3. Requirement of additional fertilizer for long-term C sequestration.
4. Accounting for greenhouse gas emissions throughout the life cycle of C

sequestering farming systems.
5. Regional and national maps showing soil C sequestration potential.
6. Accounting for organic material shift that may minimize stored C elsewhere.
7. Farmers’ incentives, social standards and initiatives to scale up adoption of C

sequestering practices.

Policies should evaluate both direct and indirect advantages, as well as local skills
for long-term site-specific soil management. These activities are expected to be more
effective throughout the world, tackling the common job of SOC sequestration on a
scale and at a level that is appropriate for the difficult problem of land management.

Clean Development Mechanism
The unwise exploitation of soil organic matter can be devastating if not conserved
and protected. It is the need of the hour to make regulation policies for conservation
and protection of soil organic matter/SOC. Proper valuation should be done for
protection of SOC as commodity, so that SOC can be traded like any other agricul-
tural commodity. Valuation in terms of C credits is one such international attempt to
sequester C and arrest the growth of GHGs emissions.

The Clean Development Mechanism (CDM) is one of the Kyoto Protocol’s
Flexible Mechanisms, as stated in Article 12. The rationale of the CDM is to promote
cleaner environment by implantation of energy efficient projects which help in
reduction in emission. The CDM is one of the Protocol’s “project-based”
mechanisms, in which commodities and services are created and catered with
reduced emissions. The CDM is sometimes referred to as production-based mecha-
nism as the CDM project produces an emission cut and it is subtracted against a
hypothetical baseline of emissions. The baseline emissions are the hypothetical
emissions that are predicted to occur in under conventional production system
without CDM intervention.

The logic behind the implementation of these projects in developing countries
only is mainly the substantially lesser expenditure incurred on emissions cut com-
pared to developed countries. Such as, according to Sathaye et al. (2001), environ-
mental regulation in developing countries is often lower than in developed countries.
As a result, it is often assumed that developing nations have more capacity to cut
their emissions than industrialized countries. The CDM was intended to meet two
objectives:

1. To help non-Annex I parties (the developed nations) in contributing to the
UNFCCC’s ultimate goal.

2. To help Annex I countries in meeting their quantifiable emission restriction and
reduction obligations (GHG emission ceilings).



Soil Organic Carbon Sequestration in Rice-Based Cropping Systems:. . . 153

Article 3.4 of Kyoto Protocol recognizes agricultural land as a potential C source
that should be included in the UNFCCC Parties’ regular emission inventories. The
Protocol, on the other hand, makes no provision for national credits for C sequestra-
tion in agricultural soils. Afforestation and reforestation projects will be eligible for
CDM credits throughout the Kyoto Protocol’s first 5-year commitment period
(2008–2012). Other sink activities will be ineligible, such as forest protection and
soil C sequestration. Nonetheless, soil C sequestration may be eligible for CDM
credits in future commitment periods (Gupta and Ringius 2001).

Baseline, Permanence and Leakage Related to CDM
In the absence of the CDM project, one of the major criteria is to create a baseline,
which includes C emission by sources or decrease by sinks. The baseline might be
the most expected land usage at the start of the project. The amount of sequestration
that happens as a result of project execution above and beyond the estimated
sequestration that would occur if the project was not completed is referred to as
additionally.

It is generally suggested that over a period of time, schemes for soil C
reaccumulation would be needed. This again raises the question of whether C stocks
can actually be permanent. It is well understood that below-ground C is relatively
more protected than above-ground C, i.e. plant biomass. So, forests might be felled
at a later point to add to the below-ground C; however, agriculture is unlikely to be
converted back to forests in emerging nations like India. Neither is it likely that
farmers who benefit economically from conservation agriculture will go back to
conventional agriculture. Therefore, question of permanence of soil C sequestration
remains unanswered.

By minimizing leakage issues, some forms of contracts can assist to limit the
probability of C sequestration reversal (Marland et al. 2001; Ellis 2001). The word
“leakage” describes a situation in which a project accidentally moves an unwanted
activity from one location to another, such as a forest conservation project that
reduces deforestation inside the project area but promotes deforestation elsewhere.
However, because soil C sequestration techniques are often more desirable than
other land-use systems, they are less likely to have leakage consequences.

4.2 Costs and Valuation of C

Tonne of C dioxide equivalent, or tCO2e, is used to calculate and express C trading.
The intricacies of the method for determining costs and valuation are still being
negotiated many years after the Kyoto Protocol was signed. In general, the polluting
entity must pay for inputs that are directly related to pollution, such as gasoline costs.
There are arguments in favour of accounting for all social costs (human health
impacts from global warming), which will not only account for all expenses but
also affect the polluting entity’s decisions and actions. To assess the societal cost,
value assessments on the significance of future climate impacts are required (Smith
et al. 2001). Because not all commodities and services have a market price,



valuations can be challenging. Inferring pricing for “non-market” products and
services is possible. These appraisals, for example, of human health impacts or
ecosystem impacts, are still being developed (Smith et al. 2001). There is an
increasing recognition that possible good effects of climate change in some areas,
such as tourism, do not compensate for negative effects in other areas, such as lower
food production (Smith et al. 2001). The fundamental benefit of economic analysis
in this field is that it enables for a thorough and uniform treatment of climate change
implications. It also allows for a comparison of the advantages of climate change
policy decisions to other feasible environmental policies. One C credit is equal to
one tonne of CO2, or CO2 equivalent gases in some markets. CERs are a form of
emissions unit (or C credit) awarded by the CDM Executive Board for emission
reductions. Under the Kyoto Protocol, greenhouse gas accounting for soil C in
agriculture is based on the rate of change in C stock. As a result, credit can be
gained if the old approach produces a drop and the new activity minimizes the rate
of loss.
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4.3 Challenges Associated with Valuation of C

The Kyoto Protocol does not include provisions for national crediting for C seques-
tration in agricultural soils. However, many countries and multinational companies
have made investment in C sequestration projects in agricultural soil outside Kyoto
Protocol. This necessitates a strong corporate social responsibility and also legisla-
tion for fair valuation of sequestered C. Robust legislation is essential to guarantee
that additionality, leakage and transaction costs are all loosened. It is anticipated that
converting all croplands in the United States to conservation tillage may sequester
25 Gt C over the next 50 years. Some farmers, for example, are earning money from
coal-burning fields through a C trading agreement negotiated through the Chicago
Climate Exchange (Baker et al. 2007). Payments are based on the adoption of
conservation tillage practices, which are estimated to sequester 0.5 t CO2 ha-
1 year-1 of CO2.

Farmers in India often have modest land holdings, making it difficult to aggregate
these small land holdings (1–5 acre farm size) into a major transaction for purchasing
C credits. However, reputable organizations may verify C sequestration or emission
reduction activities and grant VERs (verified emission reductions), which can then
be sold. As mentioned earlier in the chapter, the need for yield increase is prioritized
over soil C sequestration in India, and it will be a difficult task to convince the
farmers to adopt technologies for C sequestration even with higher transaction costs.
Many questions must be answered before soil C trading becomes a reality in
agriculture, including whether agricultural soils will be approved as a means of
meeting GHG emission commitments, whether incentives can be designed to avoid
countervailing C losses and how emissions reduction targets will be integrated into
farmers’ activities at the grass-root level.
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5 Conclusion

In order to understand the method, estimate and valuation of C, as well as the soil C
sequestration capacity of rice-based cropping systems, namely, rice-wheat and rice-
rice cropping systems, it has been attempted to consolidate and evaluate all the
material currently accessible. Likewise, to understand the method, estimate and
valuation of C, as well as the soil C sequestration capacity of rice-based cropping
systems, namely, rice-wheat and rice-rice cropping systems, it has been attempted to
consolidate and evaluate all the material currently accessible.
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Abstract

Environmental management and its sustainability are a key concern today.
Anthropogenic CO2 emission and its related negative consequences on environ-
ment were observed due to industrial development, mining, deforestation, and
intensive agricultural practices. This unstoppable rising CO2 concentration
impairs key environmental services and its sustainability. Recently, NOAA-
based Mauna Loa Atmospheric Baseline Observatory has reported CO2 concen-
tration of about 419 ppm in 2021 along with 40 billion MT of CO2 pollution
every year in the environment. This figures enough to represent unstoppable CO2

emissions which need global concern urgently. GHGs including CO2 emissions
raised global temperature are under the discussion table of IPCC and at global
policy platforms during Paris Agreement and COP-21. However, many countries
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have participated in Paris Agreement and COP-21 for reducing emissions and set
a target to reduce 2 °C global temperature identified by IPCC. Similarly, the target
of zero emission is also discussed in several climate policy papers including IPCC
and during Paris Agreement and COP-21. Introducing recent and updated
climate-resilient technologies, viz. carbon dioxide capture, and storage (CCS),
reduces excessive emission and performs C sequestration and storage for long
term in various environmental components such as lithosphere (soil/geology),
hydrosphere (ocean), and biosphere. Similarly, forest-based CO2 removal (CDR)
policy emphasized sustainable forest management (SFM) practices for greater
CO2 sink and storage in terrestrial forest ecosystem. Monitoring CO2 concentra-
tion in environment through remote sensing is an effective tool that helps to
assess CO2 sequestration at global level. An effective policy, research, and
favorable political situation are needed for greater potential of CO2 removal
and storage into the vegetation, ocean, and underground geological formation.
Thus, a hawk eye remains constant on rising CO2 in atmosphere and its seques-
tration through better research technologies for sustainable environment which
becomes global agenda for climate policy makers.
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1 Introduction

Anthropogenic activities including developmental projects, mining, deforestation,
intensive agricultural practices, and unsustainable land-use systems have promoted
continuous global emission of CO2 into the environment (Meena et al. 2022; Roy
et al. 2022; Thakrey et al. 2022). Today, energy demand has increased due to speedy
economic growth. A continuous energy demand has exerted pressures for using oil,
coal, and natural gas-based fossil fuels that lead to CO2 (major potent GHG)
emission into the environment. Excessive uses of fossil fuels due to industrial
revolution caused degradation of environmental health and its sustainability. Carbon
dioxide (CO2) is key potent GHG (greenhouse gas) which induces global warming
by heat trapping in environment. Extreme weather induces higher temperature and
uncertain rainfall that greatly affect overall biodiversity and related environmental
services (Anderson et al. 2016). The CO2 emissions from power plant, chemical
industries, automobiles, and other sources provoke environmental health and
sustainability by global warming and climate change phenomenon (Al-Maamary
et al. 2017). Similarly, other GHGs such as CH4 (methane), nitrous oxide, hydro-
fluorocarbon, and sulfur hexafluoride have increased continuously that deteriorate
ecosystem health and environmental sustainability (Al-Maamary et al. 2017; Ouda
et al. 2016). Rising temperature-mediated global warming has resulted 6, 8, and 4%
of species extinction in insects, plants, and vertebrates, respectively, which is major
concern of the world (IPCC 2018). Similarly, climate change declined quality and
production of poor subsistence plant communities but increased pests’ outbreak
(Koelbl et al. 2015).

Both ocean and terrestrial biosphere have absorbed half of this total CO2 emis-
sion, whereas remaining CO2 accumulates into the environment resulting into global
warming and climate change phenomenon. Scientific technologies, viz., negative
emission technologies and CCS (carbon capture and storage), have been allowed for
reducing GHG emissions. CCS play inevitable role in climate change mitigation by
capturing and storing atmospheric CO2 into the vegetation, ocean, and underground
geological formation. It employs storage and sequestration of carbon (C) into hydro-
sphere, lithosphere, and biosphere components of environment (Pianta et al. 2021).
Further, innovative strategies that mitigate high CO2 emission and achieve the goal
of limiting warming <2 °C were discussed by Integrated Assessment Models under
Paris Agreement (Edenhofer 2015; IPCC 2018). Afforestation and reforestation
technologies, bioenergy with CCS, biochar application, enhanced weathering, direct
air capture, and soil C sequestration-based technologies contributed 0.5–3.6,
0.5–5.0, 0.5–2.0, 2.0–4.0, 0.5–5.0, and 5.0 Gt (giga tons) CO2/year under sustain-
able global net emission technology. The process of rapid decarbonization
minimizes negative consequence of climate change and limits rising temperature
to keep below 2 °C which is highly discussed in the Paris Agreement (IPCC 2018;
Rockstrom et al. 2017). Forestry and other sustainable land-use systems have
positive impacts on our environment by 11–17% decrease in CO2 concentration.
Approx. 11% of global CO2 emission can be reduced through recovery of all forest
areas; however, fossil fuel-mediated 65% of global CO2 emissions are still major



concern today (Pachauri et al. 2014). In this context, adopting scientific-based CCS
technology would be helpful in combating global warming which gains global
attention due to its uncountable significances including environmental management.
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IPCC (Intergovernmental Panel on Climate Change) has discussed to reduce
GHGs by 50–80% in the year 2050 that helps in escaping our earth from catastrophic
collapse (Pachauri et al. 2014). Approx. 10 and 20 Gt CO2 per year by the year 2050
and 2100 can be achieved through increasing CO2 removal (CDR) from the atmo-
sphere and its storage into the soils and biomass (United Nations Environment
Programme (UNEP) 2017; National Academies of Sciences Engineering Medicine
2019). Moreover, CCS methods are viable strategies which can sequester approx.
125.0 Gt CO2 by the year 2100 which can be utilized as fuels with lesser emissions
(National Academies of Sciences Engineering Medicine 2019). Both underground
CO2 sequestration and C mineralization are key strategic solution for global
warming and climate change (National Academies of Sciences Engineering Medi-
cine 2019).

This chapter discusses CO2 concentration, its assessment, and sequestration in
environment. CO2 sequestration in forests, soils, saline aquifers, deep ocean, and
urban environment through CCS technology is comprehensively discussed. CO2

concentration monitoring through remote sensing and several CDR policies (REDD
+, Kyoto protocol, and CDM) for setting zero emission targets under IPCC and
COP-21-based climate policy is reported in this paper.

2 CO2 in Environment: Past, Present, and Future Analysis

Anthropogenic activities have released approx. 2035 ± 205 Gt CO2 in the atmo-
sphere from the year 1870 to 2015 (Le Quéré et al. 2015). As per Pachauri et al.
(2014), the value of CO2 has raised from 280 to 400 ppm (parts per million) along
with excessive temperature due to rising temperature of 0.8 °C, respectively. This
value would be 600–700 ppm during last decade of century that enhanced tempera-
ture up to 4.5–5.0 °C (Leung et al. 2014). Global atmospheric research and its
emission database has reported approx. 33.40 billion t CO2 that has been emitted
globally in 2011 which is 50% more than last two decades of CO2 emissions.
Similarly, CO2 level has increased from 280 (pre-industrial era) to 400 ppm (year
2013) with 0.8 °C of global earth temperature (IPCC 2007; NOAA 2013). Approx.
40% of global CO2 emissions are contributed by power plants which are further
expected to increase up to 60% by the end of this century (Alonso et al. 2017). 20%
of global CO2 emission was reported from transportation sectors, whereas both
agriculture and building sectors have contributed 17% of the total emission
(Pachauri et al. 2014). Fossil fuel burning increases approx. 10% of higher CO2

concentration during the year 1970–2010.
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3 Assessment Report on CO2

As per IPCC (2000), CO2 concentration will be increased from 600 to 1550 ppm
which is 25 to 90% more global GHG emission by the year 2030. A total of 40.0 Gt
CO2 per year has been reported currently by IPCC (IPCC 2018). The value of CO2

has been increased and reached up to 415 ppm as per National Oceanic and
Atmospheric Administration’s Mauna Loa Observatory (Keeling and Graven
2021). UNEP has predicted 3.2 °C global temperatures along with 7.60% of
decreasing CO2 leads to 1.5 °C global warming (UNEP 2019). IPCC 5 and 4 Assess-
ment Report (AR5 and 4) has confirmed negative consequences of increasing
anthropogenic GHGs on our environment and its sustainability (IPCC 2007).
From 1983 to 2012 (30 years duration) was recorded the warmest years of the last
1400 years. Moreover, IPCC AR5 has given guidelines to reduce global temperature
below 2 °C with reduction in global CO2 emissions by 41.0–72.0 and 78–118% by
2050 and 2100, respectively (IPCC 2013). Similarly, participating countries have
discussed about enhancing green economy for sustainable development rather than
any bonded agreement for CO2 emission control in the last COP-19 conference held
in Poland, 2013. IPCC has reported various programs for GHG emission reduction
through latest CCS technologies which provided important feedbacks to many
researchers and policy makers in the world (IPCC 2005). However, many authors
have reported different aspects of CCS technologies and its environmental impacts
(Lv et al. 2012).

4 CO2 Sequestration: Conceptual Framework

Rising CO2 directly affects earth temperature that results into global warming and
climate change phenomenon. CO2 is key potent GHG characterized by huge volume
and fast growth rate (Brierley and Kingsford 2009). The reduction in emission of
anthropogenic CO2 through C sequestration has been the key viable tool that
mitigate rising global warming and climate change (IPCC 2005). Many processes
such as geological (lithosphere), ocean (hydrosphere), biological (biosphere), and
mineral storage of CO2 are considered as key strategy for minimizing the negative
consequences of global warming on environmental health and sustainability
(Lubrano Lavadera et al. 2018). CO2 storage/sequestration in the environment is
depicted in Fig. 1 (Pianta et al. 2021; Linda and Singh 2021; Lal 2008).

CO2 sequestration in lithosphere (as geological storage) is most prevalent practice
in which CO2 is stored as coal, gas, oil, saline aquifers, and other natural gases (Park
2005). As per Voormeij and Simandl (2004) technologically, CO2 gas is split from
offshore emitting source of flue gas which is further transported to storage site and
then injected into underground reservoir as geological storage. The leakage problem
is constantly observed in this entire process of storage which needs regular monitor-
ing to avoid leakage losses (Doria 2005). Similarly, ocean storage (hydrosphere) is
another important process in which CO2 is injected into the ocean at greater depth of
1500 meter (Voormeij and Simandl 2004). Moreover, storing CO2 in below ocean



seabed at greater depths of 3000 meter is another form of ocean storage (Brewer et al.
2000). CO2 becomes much denser than oceanic water at this depth which therefore
does not require much care and monitoring (Voormeij and Simandl 2004). Thus, a
global CO2 sequestration projects for mitigating global warming and climate change
issues is depicted in Fig. 2 (Gíslason et al. 2018; Global CCS Institute 2019;
National Academies of Sciences Engineering Medicine 2019).
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Fig. 1 CO2 storage/sequestration in the environment (Pianta et al. 2021; Linda and Singh 2021;
Lal 2008)

5 CO2 Capture and Storage Technologies: Current Status
and Overview

Increasing GHGs including CO2 rises atmospheric temperature resulted global
warming that leads to deterioration of environmental health and ecosystem pro-
cesses. In this context, CCS is the key strategic solution which not only cuts CO2

emission but also captures/sequesters atmospheric CO2 to achieve emission reduc-
tion targets. CO2 reduction strategies, its application area, advantages, and
limitations are discussed in Table 1 (Leung et al. 2014). However, many authors
have discussed about significance and processes of CCS technology which includes
capture of CO2, its separation, transportation, storage methods, leakage issue, timely
monitoring, and life cycle analysis. Similarly, CCS technology is further dependent



on plant types and fuel that generate CO2 continuously. Absorption is important CO2

separation process of CSS technologies which is considered most mature and
regularly adopted due to lower cost and high efficiency. Pipeline is adopted for
transportation of large volume of CO2. Likewise, CO2 storage in saline aquifers is
gaining wider recognition due to its tremendous potential of storage capacity.
However, a lack of capital investment and poor economic incentives are a major
hurdle that affects overall CCS deployment and its processes (Leung et al. 2014).
CO2 capture technologies contribute 70–80% of the total cost employed into setup of
full CCS system which includes capture, storage, and transportation of CO2. There-
fore, an effective research and development programs are needed to reduce the
operating costs and energy penalty. Moreover, pre-combustion, oxyfuel combustion,
and post-combustion are three key important CO2 capture systems (Blomen et al.
2009; Leung et al. 2014). Pre-combustion is very expensive process under CCS
technology but less competitive which becomes promising substitution due to
greater demand for hydrogen producing technologies other than lesser availability
of fossil fuels (Leung et al. 2014). Similarly, CCS becomes more productive for
environmental management due to application of nanotechnology, many algae, and
biochar. A high sorption potential of GHGs is observed under nanomaterials in
laboratory (Alonso et al. 2017). Moreover, CO2 can be captured by microalgae from
flue gas stream which is further utilized for biofuel purposes that represent CO2 as
feedstock irrespective to pollutant (Kumar et al. 2018; Packer 2009).
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Fig. 2 CO2 sequestration projects for mitigating global warming and climate change issues in the
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Table 1 CO2 reduction strategies, its application area, advantages, and limitations (Leung et al.
2014)

CO2

reduction
strategies

Energy
conservation
and its
efficiency
enhancement

Industrial and several
commercial areas are
mainly uses for
application of this
technologies

Approx. 10–20% of
energy saving is
reported

Energy-saving tools
needed higher capital
costs for its installation
and performance

Clean fuels
utility
enhancement

Natural gases are
utilized in the
substitution of coal for
power generation

Coal produced highly
toxic and more CO2

than natural gas which
produced 40–50% less
CO2 less C content and
greater combustion
capacity

Natural gases involve
higher fuel cost

Clean coal
technology
adoption

Conventional
combustion is replaced
by both PFBC
(pressurized fluidized
bed combustor) and
IGCC (integrated
gasification combined
cycle)

Less emission of air
pollutants by coal is
reported

Technology can be
rolled out globally
which required a
significant investment

Renewable
energy usage

Wind, hydro-, solar,
and thermal power
along with biofuels is
greatly developed

Low GHG emission
along with greater
usage of natural
resources

Faces the limitation in
availability of these
local natural resources.
However, the cost of
renewable energy is
higher than
conventional energy

Nuclear
power
development

Research and
development phase are
greatly initiated for
nuclear fission which is
highly adopted in
Russia, the USA,
China, France, and
Japan

Zero emissions of
GHGs

Nuclear power
generation and its utility
are controversial due to
Fukushima nuclear
accident occurred in the
year 2011

Reforestation
and
afforestation
program

Applied and prevalent
in all countries of the
world

Simple and eco-friendly
approaches for greater
potential of CO2 storage

Restricts/prevents the
usage of land for other
purposes
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6 CO2 Sequestration in Environment

6.1 Forest

Anthropogenic deforestation and forest degradation have promoted global CO2

emission into the environment (Pearson et al. 2017; Le Quéré et al. 2018). A total
2.30 and 1.30 m km2 of gross forest loss and net deforestation have been reported in
the year 2000–2012 and 2010–2015, respectively (Hansen et al. 2013; FAO 2018).
However, 3.70 Gt CO2 per year emitted only through deforestation activity in the
year 2000–2012 (Tyukavina et al. 2015). Moreover, approx. 2.10 Gt CO2 per year
emitted due to various forest degradation by fires, fuelwood, and timber harvesting
in the same period (Pearson et al. 2017). Therefore, CO2 capturing and its seques-
tration are key processes that must be promoted for minimizing negative
consequences of global warming impact on environment (Raj and Jhariya 2021;
Yadav et al. 2022). In this context, adopting sustainable forest management (SFM)
and forest landscape restoration (FLR) are key strategies that must be employed for
ecological restoration of degraded land and climate change mitigation (Jhariya et al.
2019a, 2019b). However, it is poorly known about the CO2 capture extent and its
capacity through forest restoration programs which is greatly associated with climate
change mitigation.

In this context, Bernal et al. (2018) performed a research on quantifying biomass
accumulation and CO2 removal rates in different FLR programs. They observed both
woodlots and planted forests contribute highest value of CO2 removal rates ranging
from 4.5 to 40.7 t CO2/ha/year. Similarly, CO2 removal rates (t CO2/ha/year) for
mangrove tree restoration ranked second (23.10) followed by natural regeneration
(9.1–18.8) and agroforestry system (10.8–15.6) during 20 years of growth.

6.2 Soil

Soil is another most important natural resource that sustains lives and harbor many
flora and fauna. Soil performs variety of ecosystem services that maintains environ-
mental health and sustainability (Jhariya and Singh 2021a, 2021b). CO2 storage and
sequestration are key services provided by soils that maintain organic C pools along
with global warming and climate change mitigation. CO2 storage and sequestration
vary as per soil types and nutrient loads which further get modified by prevailing
climatic factors. Mafic and ultramafic rocks need to be grind up to smaller size (even
less than the size of mine trailing) which is used to spread on farming, forestry, and
other land-use soils for better CO2 removal and storage (Edwards et al. 2017;
Beerling et al. 2018). Moreover, the process of CO2 storage and sequestration is
further enhanced by microbial populations in the soil (Power et al. 2013). However,
the presence of both chromium and nickel in mafic- an ultramafic rock becomes
health hazards once it oxidized. Technically, both DACSS (Direct Air Capture using
Synthetic Sorbents) and DACEW (for carbon mineralization) are key options for



enhancing global CO2 removal constantly (UNEP 2017; National Academies of
Sciences Engineering Medicine 2019).

6.3 Saline Aquifer

Storing CO2 in saline aquifer through sequestration process becomes viable option
for mitigating C footprint and global warming issues. Saline aquifers are considered
for underground CO2 storage through geological sequestration process rather than
coal bed and oil and gas reservoirs (IPCC 2005; Sprunt 2006). Saline aquifer is
permeable and porous types of reservoir rocks which contains saline fluid and
distributed largely with a great capacity (Hesse et al. 2006). Many authors have
reported the potential of saline aquifer for removal, storage, and sequestration of
atmospheric CO2 globally. As per Sengul (2006) and Jikich et al. (2003), saline
sandstone aquifers have sequestered about 1.0 mMT of CO2 year

-1 which is just 3%
of Norway’s annual CO2 emissions. Projects for CO2 storage in saline aquifers in
different region of the world are depicted in Fig. 3. Therefore, saline aquifers play
important role in CO2 sequestration which maintains environmental health and
sustainability.

6.4 Deep Ocean Storage

Ocean is hydrosphere component of environment which ranked highest in natural
CO2 sink and covered >70% of earth surface. Approx. 38,000 Gt C with the rate of
1.70 Gt C/year. is reported under ocean (hydrosphere). Likewise, 50–100 Gt C is
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Fig. 3 Projects for CO2 storage in saline aquifers in different region of the world



produced by ocean in the form of phytoplankton which is greater than CO2 uptake by
terrestrial vegetation (Yamasaki 2003). A 50.0 times more C is available in the ocean
than atmosphere which is reported by C inventory (Rackley 2010). Further, CO2

become liquefied and reached to the bottom due to its higher density than ocean
water (House et al. 2006), whereas injecting CO2 in this way remains many decades
(Adam and Caldeira 2008). Injecting CO2 at the greater depth of >3.0 km inside the
ocean sediments promotes permanent geological storage of CO2 (House et al. 2006).
Therefore, deep ocean storage becomes viable sink of anthropogenic CO2. A heavy
and continuous CO2 injection in ocean affects its chemistry by reducing pH that may
result ocean acidification and several negative consequences on marine ecosystem
(Seibel and Walsh 2001). Many studies have been conducted research in this
direction. For example, Hall-Spencer et al. (2008) have reported less marine biodi-
versity and poor ecosystem health due to ocean acidification near volcanic CO2

vents. Similarly, an ocean ecosystem which is resistance to acidification process
could be more deteriorating in nature by rising temperature due to global warming
(Rodolfo-Metalpa et al. 2011). Therefore, an effective scientific research is needed to
understand CO2 removal, storage, and sequestration into the ocean under marine
ecosystem that ensures environmental management and ecological stability.
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7 CO2 Sequestration in Urban Environment: Key Insight

Urban ecosystem plays key role in CO2 removal and its storage which minimizes
negative consequences of global warming and climate change (Khan et al. 2020a,
2020b). Earth greenhouse effects and its potential enhancement are becoming the
major environmental problem today. Among all, CO2 is a major potent GHG which
highly contributes in global warming phenomenon. Several development projects in
the urban cities including industrial growth ensure higher CO2 emission into the
atmosphere. Thus, CO2 emission is directly linked with high economical develop-
ment through various anthropogenic activities that pertain in urban cities which
directly affects urban ecosystem and health. In this context, growing plant and tree
species can absorb higher CO2 form the atmosphere and minimize deleterious
impacts of rising temperature on ecosystem and environment (Khan et al. 2022;
Raj et al. 2022). Urban ecosystem function as CO2 sequestration for environment
management is depicted in Fig. 4 (Gómez-Baggethun et al. 2013; Parsa et al. 2019).

CO2 sequestration by woody perennial trees along the roadside and parks is
playing viable role in checking continuous emission of CO2 into the atmosphere.
Scientifically, woody perennial trees can remove CO2 from the atmosphere and fix as
organic C and other food material in the form of biomass during the process of
photosynthesis. Many authors have reported the role of urban ecosystem in CO2

removal, its storage, and sequestration. For example, roadside plantation removed
approx. 73.60 t CO2 which accounts 22% of total CO2 production in the urban
ecosystem. Thus, urban ecosystem greenery is effective tool for offsetting CO2

generation through anthropogenic activities. Minimizing the consumption of fossil
fuels by planting trees could maximize the CO2 sequestration effectively in the urban



cities (Kiran 2011). Francesco Ferrini and Fini (2011) have reported about CO2

sequestration of 18 kg/year/tree in well-managed urban cities that ensure a better
environmental management and ecological stability. Moreover, the i-Tree
Eco-model is recently being utilized for studying C storage and sequestration
potential of urban trees and its role in climate change mitigation (Parsa et al.
2019). Thus, studying CO2 removal, its storage, and sequestration is important for
urban planning and management that ensure better ecosystem health and environ-
mental services along with climate change mitigation.
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Fig. 4 Urban ecosystem function as CO2 sequestration for environment management (Gómez-
Baggethun et al. 2013; Parsa et al. 2019)
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8 Microbes for Enhanced CO2 Sequestration in Environment

Microbes play an important role in CO2 sequestration that minimizes the global
warming along with greater optimization for production of chemical substance.
Microbial CO2 sequestration is considered as green and sustainable technology
that minimizes C emission and ameliorates environment through biofuels and
chemical productions. Microbial CO2 fixation and its efficiency are declining day
by day, and C yield of some desire chemical is decreased due to associated microbial
CO2 emissions. In this context, several technologies such as engineering CO2-fixing
pathways and energy-harvesting systems are employed which induce greater CO2

fixation in autotrophic and heterotrophic microorganisms. Furthermore, both energy
metabolism and several metabolic pathways are rewired to minimize microbial CO2

emissions along with greater production of C-based value-added products. Thus,
adopting some biotechnological tools could potentially enhance microbial CO2

sequestration for better environment and ecosystem management (Hu et al. 2019).

9 CO2 Capture and Storage: A Way Forward for Sustainable
Environment

IPCC has defined CCS as a sustainable process in which CO2 from power plants and
industrial and other energy-based sources is captured, conditioned, compressed, and
transported to other storage places for long term isolation from the environment
(IPCC 2018). The importance and significance of CCS have been discussed by many
policy makers and national and international organization globally. IEA
recommended CCS for achieving the goal of net zero emission. Similarly, UK’s
climate change committee signifies CCS due to its necessity for environmental
management and its sustainability (Climate Change Committee 2020). Oil refineries
and iron, steel, glass, paper, and cement factories along with agricultural fertilizers
industries contribute 20% of global CO2 emission which is captured and stored by
CCS technologies (International Energy Agency 2020). Moreover, CCS plays key
role in minimizing global C footprint by offsetting 10 percent of global GHG
emissions by oil and gas industry (McKinsey and Company 2020). CCS is a realistic
and promising tool that fulfills the net zero emission by achieving IPCC recommen-
dation of less than 2 °C global temperature (IPCC 2018). IEA (International Energy
Agency) has reported CCS technology which helps in reducing global CO2 emission
up to zero by 2070, whereas this technology also mitigates approx 5.60 billion t CO2/
year by 2050 (International Energy Agency 2020). Thus, CCS technology protects
the earth from GHGs (mainly CO2), mitigates C footprint and global warming, and
ensures environmental management and sustainability (Zhang et al. 2021).
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10 Remote Sensing Techniques for CO2 Capture and Storage

Remote sensing performs noncontact and cost-effective monitoring having extensive
scope of observations in many storage sites. Many studies have been conducted on
remote sensing-based monitoring technologies, its merits and demerits, and devel-
opmental trends in many software for monitoring CO2 injection stages. Remote
sensing-based different monitoring methods for assessing CCS technology under
regional projects in the world are depicted in Table 2. CO2 leakage monitoring, its
proper observation, and detection of leakage point are key services provided by
remote sensing. Injection well modification and monitoring well implementation are
not needed due to noncontact measurement under remote sensing. Thus, monitoring
data collection and background monitoring are more secure and convenient which is
significantly cost-effective than underground monitoring system (Zhang et al. 2021).
Remote sensing can be classified into satellite, ground-based observation, and aerial
monitoring which is based on observation platforms (Queißer et al. 2019). Ground-
based monitoring system has greater significance due to its high resolution and
greater precision. Moreover, remote sensing monitoring system can be further
divided into direct and indirect measurement. Surface CO2 concentration comes
under direct measurement, whereas surface deformation along with surrounding
ecological environment and its changes comes under indirect measurement
(Verkerke et al. 2014).

1 and 2 μm is appropriate wavelength recommended for proper CO2 detection
(Sakaizawa et al. 2013). Similarly, open path is considered as more appropriate due
to its less maintenance as compared to close path for detection of leakage
(Haslwanter et al. 2009). DIAL (differential absorption Lidar), TDL (tunable diode
lasers), Raman LiDAR, FTIR (Fourier Transform Infrared), etc. are open-path active
sensing techniques which are highly recommended for detecting CO2 sequestration.
However, DIAL (differential absorption LiDAR) is a promising tool for measuring
GHG concentration in the atmosphere (Shi et al. 2020). Similarly, RCLD (remote
carbon dioxide leak detector) is a hand-based mobile instrument which is used to
detect leakage in any pipeline infrastructure. A collection and processing of Raman
echo signal under Raman LiDAR are helpful for measuring the CO2 concentration
and its distribution in the environment (Ahmad and Billiet 1991). However, Raman
LiDAR is poorly utilized under CCS monitoring due to weak signal of Raman echo
during detection of CO2 in the environment (Thomas et al. 2013). Recently, a
RM-CW IPDA LiDAR-based instrument was designed having low-noise
single-photon counting with high sensitivity which detects CO2 concentration very
accurately (Quatrevalet et al. 2017). Similarly, AVIRIS (airborne visible/infrared
imagery spectrometer) has been used for detecting CO2 leakage very accurately.
Monitoring of CO2 concentration in environment has been performed by
C-observing satellite which is passive remote sensing technique. SWIR (shortwave
infrared) and NIR (near-infrared)-based satellite observation perform better moni-
toring which covers target area in large scale for longer time as compared to ground-
based operation (Zhang et al. 2014). However, GOSAT (greenhouse gas observation
satellite) is world’s first satellite that was launched by Japan which is equipped with
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(continued)
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Table 2 Remote sensing-based different monitoring methods for assessing CCS technology under
regional projects in the world

Operating start time and
purposes of CCS
technology

Monitoring

Alberta Basin-based
projects in the region of
Alberta and B.C. Canada

CCS technology for
“storage” purpose with
operating start time was
1990

Seismic method
of monitoring

Brydie et al.
(2014)

Brindisi project in the Italy CCS technology for
“storage” purpose with
operating start time was
2012

Microseismic
method of
monitoring

Gaurina-
Međimurec
et al. (2018)

California-based project in
the region of the USA

CCS technology for
“EOR” purpose with
operating start time was
2014

Tracer method of
monitoring

Budinis et al.
(2018)

Edwardsport Project in the
USA

CCS technology for
“storage” purpose with
operating start time was
2015

Well logging
method of
monitoring

Hamilton
et al. (2009)

Fenn Big Valley-based
project in the different
location of Alberta at
Canada

CCS technology for
“ECBM” purpose with
operating start time was
1998

Flow method of
monitoring

Solomon
(2007)

Frio project in the USA CCS technology for
“storage” purpose with
operating start time was
2004

VSP method of
monitoring

Leung et al.
(2014)

Fushan oil field-based
project in China

CCS technology for
“EOR” purpose with
operating start time was
2018

Tracer method of
monitoring

Li et al.
(2008)

Greengen project in China CCS technology for
“EOR” purpose with
operating start time was
2015

Downhole
pressure-based
method of
monitoring

Ziemkiewicz
et al. (2016)

In Salah project in the
region of Algeria

CCS technology for
“storage” purpose with
operating start time was
2004

InSAR-based
method

Eiken et al.
(2011)

Jilin oil field project in
China

CCS technology for
“EOR” purpose with
operating start time was
2007

Gas tracer
method of
monitoring

Ren et al.
(2016)

Jingbian project in the
Ordos Basin of China

CCS technology for
“EOR” purpose with
operating start time was
2012

InSAR method
of monitoring

Guo et al.
(2019)



Project in regions method References

FTS (Fourier transform spectrometer) and CAI (cloud and aerosol imager) used for
CO2 distribution in environment (Tian et al. 2018). Similarly, OCO-2 (Orbiting
Carbon Observatory) was firstly launched by the USA which is equipped with high-
resolution spectrometers and detect CH4 and CO2 with greater precision (Zeng et al.
2020).
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Table 2 (continued)

Operating start time and
purposes of CCS
technology

Monitoring

Kelly-Snyder field-based
project in Texas (USA)

CCS technology for
“EOR” purpose with
operating start time was
2004

InSAR method
of monitoring

Yang et al.
(2015)

Weyburn-Midale project in
Saskatchewan region of
Canada

CCS technology for
“EOR” purpose with
operating start time was
2000

Gas Tracer,
InSAR

Zaluski et al.
(2016)

Salt Creek-based project in
Wyoming region of the
USA

CCS technology for
“EOR” purpose with
operating start time was
2006

InSAR method
of monitoring

Zhao et al.
(2012)

Qinshui Basin project in
China

CCS technology for
“ECBM” purpose with
operating start time was
2003

InSAR tracer
method of
monitoring

Wong et al.
(2010)

Permian Basin-based
project in Texas region of
the USA

CCS technology for
“ECBM” purpose with
operating start time was
2005

Seismic method
of monitoring

Ren and
Duncan
(2019)

RECOPOL project in the
region of Poland

CCS technology for
“ECBM” purpose with
operating start time was
2003

Tracer method of
monitoring

Li et al.
(2013)

11 CO2 Removal Policy: Recent Advances and Challenges

Many scientific papers and technical reports are available for CDR policy which is
further gaining importance after Paris Agreement which focused on CDR gover-
nance and policy making (Minx et al. 2017). Today, net zero emission is becoming
major targets for researchers, scientists, stakeholder, and policy makers. The target
of zero emission is discussed in several climate policy papers including IPCC special
report 2018 and during Paris Agreement in 2015. Both stakeholders and climate
policy makers have diverted their attention on CDR technology which helps in
achieving zero emission targets for better environmental management. Several
countries have set a target for C emission and are trying to achieve zero emission



which reflects the importance of CDR technology. However, scientific papers
including case studies on various CDR technologies, its governance, and policy
are still lacking. Meanwhile, several political actors and policy makers are
emphasized on net-negative emission targets during the adoption of the Paris
Agreement and the publication of the IPCC’s Special Report on Global Warming
of 1.5 °C (SR1.5). Similarly, ensuring balance between GHG emission and its proper
removal (CO2 removal) are the key targets for climate policy makers which further
needs to be strengthened at political levels. Thus, increasing attention on net zero
emissions can be under operational phase by accompanying the principle of anthro-
pogenic CDR technologies (Fuss et al. 2020). Net-negative emission and CDR
recover the C budgets and its management which is further discussed in IPCC
globally (IPCC 2018). However, a proper governance of CDR technology and its
configuration formulated updated design of CDR policy under various climatic
events towards net zero emissions societies (Geden and Schenuit 2020). Many
challenges are being faced during promotion and development of CDR technology
and related policies. Social debates, public perceptions, sociopolitical prioritization,
innovation updation, and incentive structure for R&D-based key challenges have
been observed in promotion and development of CDR technology and related
policies (Colvin et al. 2020; Cox et al. 2020; Rodriguez et al. 2020; Woroniecki
et al. 2020; Fridahl et al. 2020; Bellamy et al. 2021). The failure of CDR design for
convention mitigation and emission reduction due to poor policy is also a key issue
and challenge (Geden and Schenuit 2020).
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12 CDR Integration into Climate Policy and Political
Approach: Analytical Framework

Integrating CDR with climate policy regimes introduce a different routes of
approaching CDR politically. Climate policy is well deserved, and organized
institutional-based policy domain includes clear-defined actors, path dependencies,
and various political positions. As per Schenuit et al. (2021), participated countries
have chosen variety of techniques and ambitions for designing the CDR to achieve
the emission reduction targets. They also choose different policy instrument for
fulfilling zero emission target that is discussed in many domestic climate policies
after political changes of adopting Paris Agreement and IPCC SR 1.5. However,
both the USA and Australia have not yet confirmed for adopting zero emission target
at national level. CDR methods are already discussed in climate policy, but it is often
divided into natural and technological approaches due to several political debates.
Thus, certain CDR methods are reframed into natural or nature-based under many
political implications (Bellamy and Osaka 2020; Woroniecki et al. 2020). EU has
mobilized climate science and plays a key role in finance of integrated assessment
modeling community which performs CDR issue diffusion at various political
agenda (Low and Schäfer 2020).
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13 Forest-Based CO2 Removal: Policy Tool, Design,
and Management Approach

Forests are largest natural resources that harbor many flora and fauna and provide
uncountable ecosystem services including climate change mitigation through CDR
technology (Jhariya and Singh 2021c). It plays significant role in C sink and
maintain C mobilization, storage, and flux (Manral et al. 2022). CDR through
forestry and its integration with policy tools and design are key topic of discussions.
However, applying effective and scientific management approaches would be more
viable for forest-based CDR performance (IPCC 2014; Wear and Coulston 2015). A
rewiring of policy tool, design, and various management approaches is a prerequisite
for better CDR in forest ecosystem. Managing forest for offsetting C emissions
through CDR technology is a global concern today. This can be further achieved by
shifting of land-use systems to others for improving C storage and sequestration in
forest ecosystem. Moreover, nature-based climatic solutions signify various ecolog-
ical processes to ensure C storage and sequestration (Awasthi et al. 2022). CDR
potential under nature-based climatic solution can be increased up to 50% through
checking forest conversions and promoting reforestation, fire management, and
various SFM practices in the USA (Fargione et al. 2018). About 25% of current
world atmospheric C pool can be stored into the forest ecosystem (Bastin et al.
2019).

The successful promotion of forest-based CDR requires effective policy designs
and tools including regulatory, informational, educational, incentive, and procedural
tools. However, in past the CDR policy tools have stressed upon information
gathering on C stocks, and fluxes correlated with forest disturbance. It is urgent
need to rewire existing forest CDR policy into new and updated policy tools and
designs which performs a significant role in environmental management and society
development. Moreover, rewiring of CDR tools and design would be helpful in
managing forests that ensure resilient landscapes, environmental management, and
its sustainability at global scale. This CDR tool and design updating also helps in
mitigating C footprint and climate change along with delivery of other ecosystem
services (von Hedemann et al. 2020). REDD+-based policy, Kyoto Protocol, and the
Clean Development Mechanism (CDM) are three key policy initiatives that use
international funds for ensuring forest-based CDR for environmental sustainability.
However, several international policy for ensuring forest-based CDR is depicted in
Table 3 (von Hedemann et al. 2020).

13.1 REDD+-Based Policy for Negative Emission/Net Zero Emission

REDD+-based international policy is considered the best tool for strengthening
forestry-based CDR process that performs climate mitigation mechanism which is
highly discussed in Paris Agreement 2015. The basic principle and premise of
REDD+ remain unchanged and under which economically developing countries
are financially compensated for forest-based CDR (Turnhout et al. 2017). REDD+ is
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firstly emphasized under UNFCCC (United Nations Framework Convention on
Climate Change), and its scope expanded over promising CDR strategies along
with C stock management through SFM practices (den Besten et al. 2014).
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13.2 The Kyoto Protocol and the Clean Development Mechanism

The first agreement of Kyoto Protocol was signed in the year 1997 that discussed
limited role of forest resources in C footprint and climate change mitigation due to
uncertain and fair discussion on CDR mechanism. Both industrialized and economi-
cally developing countries were signatories to this protocol of which GHG reduction
targets have been discussed enormously (Boyd et al. 2009). Similarly, economically
developing countries can sell all certified emission reductions (CERs) to
industrialized countries which are highly permitted by CDM protocol. This protocol
has integrated many policy tools which include market based and regulatory tools for
ensuring CDR effectively. Therefore, these two international policies highly
emphasized the forest-based CDR which is utmost important for environmental
management that ensure SDG. However, the first project on CDM was accredited
in 2000 and extended up to the year 2012 (van der Gaast et al. 2018). Both
afforestation and reforestation programs through SFM were initiated under CDM,
although many projects are focused on net zero emission or CDR (van der Gaast
et al. 2018). Thus, Kyoto Protocol and many CDM projects have initiated forest-
based CDR which gets further strengthened by adopting SFM that minimize C
footprint and global warming for achieving climate-resilient environment and
sustainability.

14 CO2 Capture and Storage: Crucial for UN COP-21

For checking excessive emission of CO2, a total 190 countries were involved in Paris
(Conference of Parties-COP-21) in the year 2015 for minimizing global temperature
below 2 °C by the end of this century. It has directed IPCC to set a target for reducing
global temperature through CCS technology that helps in sequestering atmospheric
CO2 unconditionally (IPCC 2014). COP-21 has directed to utilize several negative
emission technologies along with BECCS (bioenergy with CCS) and direct air
capture which helps in limiting global warming <2.0 °C. Furthermore, it has
discussed to keep CO2 level below 450 ppm and predicted CO2 storage 120 to160
Gt CO2 with the rate of 10.0 Gt CO2/year by the year 2050 (Bui et al. 2018). C
neutrality concept performs zero balance between C emission and its absorption
which is already discussed by many countries under COP-22 conference. Similarly,
Paris Agreement has been rectified by several countries for introducing CCS
technologies which was discussed at the COP-24 meeting in Poland (Balibar
2017). Moreover, COP-21 has recommended several strategies including energy
conservation and its efficiency promotion, adopting renewable and low C fuels,
afforestation program along with developing of CCS technologies (Leung et al.



2014). Paris Agreement suggested less than and in between 1.5 and 2 °C of average
atmospheric temperature (UNFCCC 2015). For achieving the goal of 1.5 °C global
average atmospheric temperature, zero emission technologies need to remove 10 Gt
CO2 per year (IPCC Special Report 2018).
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15 Future Research-Based Roadmap for CO2 Capture
and Storage

CO2 storage and sequestration are key strategies for mitigating global warming and
C footprint which ensure environment management and its sustainability (Banerjee
et al. 2021). Ongoing research on CO2 sequestration under CCS technology must be
more scientific and policy-oriented. Recent scientific technology and its updation
helps in CO2 sink storage and transportation under CCS technology. Roadmap for
future research must be reframed for enhancing the capacity of CO2 sequestration
under CCS technology and its transportation to storage site and then injected into
underground reservoir as geological storage. Moreover, CCS technology, viz.,
pre-combustion, oxyfuel combustion and post-combustion must be strengthened
for enhancing CO2 storage potential and its transportation in ocean and geological
sites. Poor infrastructure and high operational cost, along with vigorous energy
intensive processes, are key problems observed in CCS technology. High opera-
tional cost, CO2 storage issues, and injection rates constraint are key factors that
hamper smooth function and adoption of CCS technology (Lane et al. 2021). This is
the reported key area of research that needs to be further resolved urgently through
effective policy and scientific research-based future roadmap. Further, a combined
research, policy, and global countries’ coordination under Paris Agreement and
COP-21 would strengthen CO2 sequestration technology for ensuring climate-
resilient environment (Anwar et al. 2018). A future research roadmap on recent
technologies is needed for successful remote sensing application in monitoring CO2

concentration in environment and identifying leakage problems. Similarly
strengthening forest-based CDR technology through adoption of better scientific
research and management in SFM ensures higher CO2 sequestration for ecological
stability and environmental sustainability. Moreover, a balance among technical,
social, economical, and political situation would be helpful for successful deploy-
ment of CCS technology (Williamson 2016). Thus, scaling up of CO2 sequestration
technology through proper research, policy, and management are key solution for
ensuring climate security (Jhariya et al. 2022).

16 Conclusion

Anthropogenic CO2 emission induces global warming and climate change issues
which affects environment health and sustainability. Offsetting CO2 emission
through C sequestration is a viable tool that helps in maintaining C flux and balance
in the environment. CO2 sequestration through better CCS technology ensures



climate security with greater environmental services. However, CDR technology
and its adoption require updated scientific research under reframing policy which
must be integrated with sound political situation. The net zero targets and zero
emissions are already discussed by IPCC and several other climate policy under
Paris Agreement and COP-21. Achievement of this target can be possible through
adopting recent scientific technology of CCS. Moreover, SFM and other sustainable
land-use system check excessive CO2 emission and stored into vegetation and soil
for long term. Furthermore, CO2 concentration monitoring through remote sensing
and its sequestration under CCS technology would be helpful in mitigating C
footprint and global warming issue. Therefore, an effective research and policy are
needed for higher CO2 sequestration that helps in achieving the targets of zero
emission and promise environmental management and its sustainability.
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Abstract

Soil degradation is a major issue through various countries across the globe.
During the present century, it was observed that land degradation has become a

M. K. Jhariya (*)
Department of Farm Forestry, Sant Gahira Guru Vishwavidyalaya, Ambikapur, India

A. Raj
Pt. Deendayal Upadhyay College of Horticulture and Forestry, Dr. Rajendra Prasad Central
Agriculture University, Samastipur, India

A. Banerjee
Department of Environmental Science, Sant Gahira Guru Vishwavidyalaya, Ambikapur, India

R. S. Meena
Department of Agronomy, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi,
India
e-mail: meenars@bhu.ac.in

S. S. Bargali
Department of Botany, Kumaun University, Nainital, India

S. Kumar
ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, India
e-mail: sandeep.kumar5@icar.gov.in

S. Nema
SoS, Forestry and Wildlife, Bastar Vishwavidyalaya, Jagdalpur, India

Poonam
Krishi Vigyan Kendra, Navgaon (Alwar-I), Sri Karan Narendra Agriculture University (SKNAU),
Jobner, India

P. R. Oraon
Department of Silviculture and Agroforestry, Faculty of Forestry, Birsa Agricultural University,
Ranchi, India

# The Author(s), under exclusive license to Springer Nature Singapore Pte
Ltd. 2022
R. S. Meena et al. (eds.), Plans and Policies for Soil Organic Carbon Management
in Agriculture, https://doi.org/10.1007/978-981-19-6179-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-6179-3_8&domain=pdf
mailto:meenars@bhu.ac.in
mailto:sandeep.kumar5@icar.gov.in
https://doi.org/10.1007/978-981-19-6179-3_8#DOI


predominant phenomenon among different environmental perturbation. As per
one estimate, 3 billion people (1/3) across the globe are suffering crisis situation
in terms of land degradation. Anthropogenic process such as deforestation and
land-use changes causes 30% reduction in C (carbon) stock. Further, faulty and
unscientific agricultural practices cause more than 50% depletion of soil organic
C. This in turn causes reduction of 5–7 tons C/hectare. Therefore, proper soil
management along with maintenance of soil C pool becomes important from the
context of arresting further soil degradation. In this connection, 122 countries
across the globe have already initiated land restoration and rehabilitation
programs. Considering this fact sustainable land-use practices in the form of
agroforestry and ecofriendly farming become essential component for well-
being of human civilization. Agroforestry has huge potential to provide 50%
demand of fuelwood, 60% of small timber, 75% of plywood, 60% of paper pulp
raw material, and up to 10% green fodder requirement with a ground coverage of
29.38 million hectare (8.94% of country’s area). This in turn contributes up to
38% of C sink to the total sink of forest and other vegetation of the country.
Proper policy and planning are essential requirement to properly manage soil C
and maintain the long-term soil sustainability. Key policy issues include 4p1000;
Bonn Challenge has been initiated throughout the world for proper management
of soil health and sustainability. For C management and maintenance of soil
fertility practices such land degradation neutrality, sustainable land management
is the effective measure. In this perspective, key policy agenda includes Agenda
2030 Target 15.3 on Land Degradation Neutrality which has already been
initiated for public awareness regarding soil resources. Further, more than
60 countries are working in the field of integrated soil fertility management for
soil organic C buildup through agroforestry. Agroforestry implementation
through National Agroforestry Policy 2014 is a masterstroke for India to imple-
ment agroforestry practices under diverse land use prioritizing 20 multipurpose
tree species under policy perspective. Overall, suitable policy and planning on
case-to-case basis are required to formulate to achieve the 2030 goal of sustain-
able development.
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1 Introduction

Soil ecosystem is an important component on the earth. The soil quality and health
regulate the agricultural production and systems. Soil organic carbon (SOC) is major
constituent which maintains the soil nutrients, fertility, productivity, and overall
sustainability (Lal 2004a, 2004b). The tropical soils are poor in nutrient contents and
reflect low soil organic C especially in the subhumid, arid, and semiarid climate
region which limits the productivity of agroecosystem. The rising human population
increases the pressure on the natural resources and requires more food for human
civilization. This also leads towards tropical deforestation for increasing the agricul-
tural land for fulfilling the food requirement (Jhariya and Singh 2021a, 2021b,
2021c). For producing more agricultural commodities, most people undergo inten-
sive agricultural practices that are unsustainable and decrease the soil C stock.
Conversion of forest lands to agricultural land alone causes the reduction of 30%
C stock (Lal 2004a, 2004b; Mandal 2020).

Tropical regions are most diverse and threatened region due to anthropogenic
encroachment, over use of resources, mismanagement, lack of technological adapta-
tion and advancement, land use, changing climate, population rise, etc. (Raj et al.
2018a, 2018b). These regions cover approximately 8 billion-hectare area globally.
As per a report, nearly one third to half of the topsoil SOC is lost due to alteration in
land-use system (Lal 2004a; Mandal 2020). Managing C in the tropics and subtrop-
ics addresses the motto of global significance. C is an important aspect in different
ecosystem in the present context and linked with ecosystem services towards natural
balance and human civilization (Samal et al. 2022). Globally, the deforestation and
faulty land-use practices along with unscientific exploration of the natural resources
are causing the depletion of SOC pool of various ecosystems through degradation
process (Raj and Jhariya 2021a, 2021b; Jhariya et al. 2022; Yadav et al. 2022).

The intensive agriculture practices can affect the soil organic matter (SOM)
quality and quantity in great extent (Meena et al. 2020, 2022). Matson et al.
(1997) mentioned that agriculture cultivation can cause 50% decline of SOC in a
time span of 25 years. Further, Lal (2002) mentioned that in the USA, the converted
natural habitat of farming purposely removed 30–50% of SOC which is approxi-
mately 4.4–7.2 Mg C/ha. Therefore, the judicious management of land resources is
essential from soil health point of view. In this context, agroforestry (cultivating
trees+crops+animal husbandry, etc. with various combination and design) seems to
be promising due to its diversified outputs and ecological functions under the
changing climatic scenario as well as a key instrument to deal with food crisis,
nutritional, food security, and soil sustainability (Singh and Jhariya 2016). Agrofor-
estry helps to meet the international agenda of sustainability and sustainable devel-
opment (Jhariya et al. 2019a, 2019b; Raj et al. 2020; Banerjee et al. 2020).

Managing soil organic carbon (SOC) is challenging, and its timely monitoring is
important for sustainable land management (SLM) practices. SOC density varies
from region to region, even in meter or data fluctuation over the time. These regional
variations of SOC pools are due to diverse practices of agroforestry models in the
world. SOC changes under various agroforestry models. Therefore, SOC mapping



and tracking of organic carbon (OC) fluctuation and its dynamics over time is very
much essential followed by managing SOC through better soil study. Further,
advancement in the technological process involves use of software tools, for agro-
forestry modeling is the need of the hour. Policy for better management of SOC
includes monitoring of SOC status and its changes, giving appropriate guidance to
land managers, adopting agroforestry models as per SOC status, and enhancing SOC
through SLM practices (Roy et al. 2022). Addressing poor SOC content through
adopting climate-resilient agroforestry system is a smart choice which needs more
scientific plan and policy reformation. Land degradation neutrality (LDN) is novel
management policy that can be achieved through practicing SLM. The plan of
adopting LDN is discussed in many policies which is already adopted by
122 countries and has committed for land restoration and rehabilitation programs.
Thus, LDN is policy-oriented strategy which can achieved through SLM including
agroforestry system that ensure higher SOC pools through better C (carbon) seques-
tration (Chotte et al. 2019). Different SLM practices and its impact on SOC for
strengthening LDN are depicted in Table 1 (Sanz et al. 2017).
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Scientifically oriented agroforestry system enhances OC into the vegetation and
soils that manage ecosystem health and its sustainability. Therefore, an attempt has
been made to critically address the key issue of soil C management, plan, policy, and
their effectivity towards soil sustainability under agroforestry system. Further, it
would provide a deep insight on various policies and planning that is ongoing in an
efficient manner throughout the globe for mitigating climate change, optimizing soil
C sequestration, and betterment of soil health.

2 SOC in Ecosystem: Policies, Plans, and Potentials

A long-term C storage in soils as stable form of organic matter for more than 20 years
is termed as SOC sequestration (Chenu et al. 2019). Globally, mineral soils have
potential to sequester C in between 0.40 and 8.6 Gt CO2eq and minimize net GHGs
emissions up to 71% (�10–12 Gt CO2eq year-1) annually from AFOLU (Agricul-
ture, Forestry and Other Land Use) (IPCC 2014; Jia et al. 2019). Lal (2004a) has
reported C content in various ecosystems which plays key role in C storage and flux
for ecosystem health and sustainability. For example, biotic and atmospheric C
contributes 560 and 760 Gt, whereas soil ecosystem stores 2500 Gt C (1550 and
950 Gt in soil organic and inorganic components). Similarly, peatland ecosystem
stores 600 Gt C which is also C-rich ecosystem which needs protections for greater
ecological stability and environmental sustainability (Rumpel et al. 2020). These
figures represent global C sequestration potential in different ecosystems that ensure
a variety of ecosystem services including greater biodiversity, food availability, and
climate change mitigation (Sykes et al. 2020). SOC retention through SLM practices
improves flora and fauna habitat, increases biodiversity and water availability,
provides greater moisture retention, enhances soil fertility, and minimizes erosion
problems in various ecosystem (Griscom et al. 2017; Paustian et al. 2019).



Example of SLM
practices
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Table 1 Different SLM practices and its impact on SOC for strengthening LDN

Impact on SOC
ranges from
high impact
(1) to low
impact (3)

Different land-use
practices under SLM
technologies

Potential impacts on
land degradation neutral
(LDN)

Agricultural land system

Vegetation
management practice-
based SLM
technology

2.40 1. Practicing
conservation agriculture
system ensures less soil
disturbance through
minimum tillage. Soil
covers through crop
residues as mulching is
also observed. Adopting
intercropping and better
crop rotation practices
are also key practices for
higher crop
diversification and
sustainable agricultural
production
2. Contour hedge-based
SLM practices are also
recommended for better
crop-soil management
in agriculture system

Soil enrichment as
fertility enhancement, C
management through
better sequestration
potential, water
regulation, erosion
control, etc.

Integrated soil fertility
management (ISFM)
based land-use system
under SLM

2.30

Less soil disturbance-
based land-use system
under SLM

2.30

Integrated pest
management (IPM)-
based SLM
technology

2.20

Soil erosion control
(SEC)-based land-use
system

2.0

Water management
under SLM
technologies

1.60

Grazing/pasture land system

Integrated soil fertility
management (ISFM)
based land-use system
under SLM

2.50 1. A sustainable nutrient
management is
observed in this system
2. Contour hedge-based
SLM practices are
recommended for better
pasture-soil
management in this
system

Higher C sequestration
and SOC pools, erosion
control, efficient
nutrient cycling,
degraded grazing land
restoration, etc.

Vegetation
management practice-
based SLM
technology

2.30

Sustainable land-use
system for grazing
pressure management

2.20

Land-use practices for
animal waste
management under
SLM technologies

2.0

Forests or woodland system

Forest restoration-
based land-use
practices under
sustainable forest

3.0 1. Assisted regeneration
is promoted which is a
good example of SLM
practices
2. Establishment of

Biodiversity
conservation, higher C
sequestration and SOC
pools, erosion control,

(continued)



practices under SLM
technologies

Example of SLM
practices

management (SFM)
technology

protected forest areas in
different localities
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Table 1 (continued)

Different land-use

Impact on SOC
ranges from
high impact
(1) to low
impact (3)

Potential impacts on
land degradation neutral
(LDN)

and efficient nutrient
cycling

Afforestation/
reforestation under
SLM practices

2.80

Reducing
deforestation through
better SLM
technology

2.50

Fire control, pest and
disease control under
SLM technology

2.0

Soil erosion control
(SEC)-based land-use
system in forest
ecosystem

1.80

Sustainable forest
management (SFM)
technology

1.70

Proper drainage
system under forest-
based SLM
technology

1.0

Mixed systems

Agroforestry system-
based SLM
technology

3.0 1. Adopting plantation
crop/fruit trees in mixed
system as agroforestry
2. Integrating
multipurpose trees
(MPTs) on crop and
grazing lands
3. Kitchen garden

Biodiversity
conservation, higher C
sequestration and SOC
pools, erosion control,
efficient nutrient
cycling, microclimate
moderation,
windbreaks, better
resource use efficiency,
and sustainable
production with high
ecosystem services

Vegetation
management practice-
based SLM
technology

2.30

Sustainable land-use
system for grazing
pressure management

2.20

Globally, 60% of total SOC pool is shared by top ten countries of which 50% are
covered by top five countries as Russia, Canada, the USA, China, and Brazil (FAO
and ITPS 2018). SOC sequestration potential (Mt C year-1) in croplands and peat C
stock (Mt C) in different countries of the world is depicted in Fig. 1a, b (Zomer et al.
2017; Crump 2017). As per figure SOC sequestration potential (Mt C year-1) in
croplands is as follows: the USA (124.7) > India (103.8) > EU (84.5) > China



124.7

103.8

84.5

65.4

62.6

36.2

35.9

26.8
21.1

19.8

A

B

USA India

EU China

Russia Australia

Brazil Canada

Mexico Nigeria

SOC sequestration potential (Mt C yr-1)

139,819

124,762

48,993

26,454

5,427

4,934

4,926
4,802

4,535

2,924

Canada Russia

Indonesia USA

Papua New Guinea Brazil

Malaysia Finland

Sweden China

Peat C stock (Mt C)

(65.4)>Russia (62.6)>Australia (36.2)>Brazil (35.9)>Canada (26.8)>Mexico
(21.1) > Nigeria (19.8), respectively. Highest peat C stock (Mt C) is contributed by
Canada (1,39,819) followed by Russia (1,24,762) and Indonesia (48,993), whereas
least value was recorded by China (2924), respectively (Zomer et al. 2017; Crump
2017).
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Fig. 1 (a, b) SOC sequestration potential (Mt C year-1) in croplands and peat C stock (Mt C) in
different countries of the world

Strategic plan and policies are needed to retain SOC pools in different ecosystems
for welfare of biodiversity and environmental health. Effective crop residue



management, grassland and pasture land management, peatland management, cover
crops and uses of green manures, application of organic amendments, conservation
and zero tillage practices, agroforestry, and silvopastoral systems are some of the key
strategies for greater SOC restoration in the ecosystems (Boddey et al. 2010; Crump
2017; Zomer et al. 2017; Minasny et al. 2017; Cardinael et al. 2018; Chotte et al.
2019; Meena et al. 2021).
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Concerning the C sequestration in different land-use system, Lal et al. (1998)
addressed the two key points, i.e., management aspects and policy instrument. From
management point of view, they suggested the components such as land-use and
agricultural practices, soil conservation and management, plant types, and agricul-
tural waste management for betterment of soil environment. Further, effective
management policies and supportive agricultural policy are the essence of
sustainability (Jhariya et al. 2021a, 2021b, 2022).

The best management practices of agriculture, forestry, and conservation
approaches helps in net SOC gain. Higher SOM gain into soil system can enhance
the productive traits of soil environment as well as quality of climate (Kumar et al.
2022a). The interlinking between soil fertility regimes with management practices
such as agroforestry can accelerate C sequestration and soil C sink for long time
period (Jhariya et al. 2018). The C sequestration dynamics and potential are strongly
linked with the land use, management practices, cultivation practices, types of
agroforestry, and carrying capacity of the ecosystem (Fig. 2, Mandal 2020).

0

0.05

0.1

0.15

0.2

Conservation Tillage

INM

Agricultural intensification

Eroded land restoration

Salt affected soil restoration

Afforestation

Grassland and pasture

Water conservation and

management

C sequestration potential (Mg/ha/yr)

Fig. 2 Potential of C sequestration under various options in the tropics
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3 Plan and Initiatives for SOC Restoration and Climate
Change Mitigation

Organic carbon sequestration into the soils can remove 0.79 to 1.54 Gt C/year from
the atmosphere which helps in stabilizing carbon and mitigating C footprint and
climate change issues (Fuss et al. 2018; IPCC 2019). However, recognizing the
value of SOC, many plans and policies were initiated towards addition of C into the
soils through various SLM practices which helps in restoration of degraded land.
Several countries have prepared effective plan and policy for SOC restoration
through adoption of global land restoration initiatives, i.e., Bonn Challenge and
4 per 1000 are key initiatives (Bonn Challenge 2017). Similarly, 20 and 100 m ha of
degraded land is under planning for restoration in America and Africa, respectively
(WRI 2017). Recently, three high level initiatives have been recognized due to soils
as global C agenda for C footprint and climate change mitigation. 4p1000 initiative,
Koronivia workshops on agriculture, and RECSOIL program (re-carbonization of
soils) are three key initiatives those have similar messages towards SOC enhance-
ment in parallel to climate resilience agricultural system and practices (Rumpel et al.
2018; FAO 2019a, 2019b; Banerjee et al. 2021). Moreover, different measures and
its potential effects on major soil groups for C sequestration in the world are depicted
in the Table 2 (Driessen et al. 2001; IUSS Working Group WRB 2015; Amelung
et al. 2020).

4 Monitoring SOC Towards LDN Achievement

Limited studies are found on SOC tracking and its accurate estimation under SLM
intervention in the tropics. Assessment by using affective methods, tools, and
technologies is prioritized for achieving LDN target. Monitoring SOC in agrofor-
estry systems scale up the LDN concept and its sustainability. Soil sampling
framework and related scientific methodologies face many challenges due to wider
soil variability in agroforestry models (FAO 2019a, 2019b). MODIS-based remote
sensing models are considered effective software tools and models for SOC assess-
ment but not in accurate figures due to changes and fluctuation in SOC dynamics
(Vagen et al. 2016). Thus, adopting latest modeling tools, remote sensing-based
scaling technology along with recent soil databases is used for accurate SOC
estimation in agroforestry system in the tropics (Winslow et al. 2011; Kumar et al.
2022b).

5 Agroforestry and C Dynamics

Agroforestry appears to be a key model for managing the natural resources, produc-
tion of agriculture, and achieving the national target of forest cover for sustainable
production and development (Raj et al. 2019a, 2019b). Various scientific reports are
available citing the role of agroforestry in soil productivity and sustainability.
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Table 2 Different measures and its potential effects on major soil groups for C sequestration in
regions

Different measures Potential effects
Major soil groups for C
sequestration Regions

Organic residue
management and
fertilizer inputs

Organic residue and
fertilizer inputs
enhance soil fertility
and plant productivity.
It can enrich saline soil
of poor in nutrient and
SOC

Major target soil
groups are Ferralsols,
Acrisols, and Lixisols
which are highly
weathered soils.
Arenosols for sandy
soils and Gypsisols for
semiarid soils are also
targeted for enhancing
C sequestration
potential

Regions of
Australia, Africa,
Brazil, and China
are comprised
target soil groups

Liming practices N2O emission
reductions and fertility
enhancement in acidic
soils

Ferralsol, Cambisol,
Phaeozem, Andosol
Acrisol

China, Brazil, and
African region

Application of
biochar

Emission reduction of
N2O and NH4 and
improved soil
properties

Soil is highly
weathered (Ferralsols,
Podzols Acrisols)

Columbia, Brazil,
Eastern Asia

Mulching/cover
cropping and
no-tillage practices

SOC enhancement,
erosion control, and
water preservation in
cropping period

Lixisols, Ferralsols,
Acrisols, and Nitisols

China and Ethiopia

No-tillage practices
and other soil
management
through bed and
furrow management

Soil structure
maintenance

Acrisols, Vertisols,
Ferralsols, Phaozems,
Chernozems

India, the USA,
Ethiopia, Brazil,
Russia, China,
Zaire

Process of deep soil
loosening

SOC enhancement,
with higher yield
productivity

Luvisols, Anthrosols,
Durisols

European
countries,
Australia,
New Zealand,

Precision farming,
cover cropping
including other crop
systems
management

Higher SOC pools and
resource use efficiency

Cambisols, Luvisols,
Acrisols, Fluvisols

Western Europe,
China, Australia,
Vietnam

Water management
through flooding
system

SOC decomposition
reduction through
proper drainage
system

Anthrosols, peatlands,
Fluvisols, Histosols,
Gleysols, Stagnosols,
Planosols

South Eastern Asia
and Central Africa

Irrigation system Salinity maintenance
and higher yield
productivity

Lixisols, Kastanozems,
Calcisols, Solenetz

Australia,
South Africa, the
USA



However, the degree of its performance and outputs depends upon the site
conditions, ecological amplitude of species, compatibility of trees, crops, and other
components under the given set of environments. The sole production in the form of
either crop or tree has some limitation in terms of soil, resource utilization, econom-
ics, environment, and ecological aspects (Singh et al. 2022). In this context, agro-
forestry has positive outputs which includes efficient nutrient cycling, reducing the
loss of soil and nutrients, improving the soil characteristics (physical, chemical, and
biological), resource conservation, and food security as well as sustainability (Bhatt
et al. 2006; Jhariya et al. 2015).
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C trading and financing in global context have put the agroforestry as dynamic
and potential mechanism which makes it attractive in developing nations. Agricul-
tural intensification with agroforestry can enhance the C pools beside the food
production. The research and innovation towards biophysical, economical, and
management aspects related to C sequestration and eco-friendly production are the
needs of the present time. In India, substantial areas are degraded and can be utilized
for afforestation and reforestation which subsequently serve as C sink and land
development and improvement. The soil C pool is an important aspect from global
climate change perspective. These sinks are promising and can be efficiently
improved through proper research and development. The research-based evidence
gives the road map for judging the potential practices with least harm to the soil and
the environment (Jhariya 2017). Koppad and Tikhile (2014) mentioned about
different land-use systems that reflect different SOC values which include 1.29%
in dense forest, 1.22% horticulture plantation, and least 0.75% in agricultural land.
The natural forest with higher species diversity can sequester more C than the single-
species plantations. Thus, agroforestry has got wider application in terms of biodi-
versity restoration, biomass accumulation, and more C sequestration.

Agroforestry contributes up to 50% demand of fuelwood, more than 60% of small
timber, nearly 75% of plywood, 60% of paper pulp raw material, and up to 10%
green fodder requirement besides the households needs with an area coverage of
25.32 M ha (approx. 8.20% of country’s area) (Dhyani 2018). Further, nearly 15% of
total cultivated area has diverse form of agroforestry which comprises of 11.2%
irrigated and 16.5% of rainfed areas. The higher plants and shrubs significantly
support the fodder quantity in arid and semiarid region especially in the lean or dry
period when there is least or nonavailability of green fodder. Therefore, silvipastoral
system is one of the promising land uses for degraded lands (Dhyani 2018). The
restoration of alkali soils thorough silvipastoral practice was mentioned by Dagar
et al. (2001) by using the combination of tree and grass species. An estimate by Nair
et al. (2010) revealed that the agroforestry system has the C sink potential of
0.29–15.21 Mg/ha/year aboveground and 30–300 Mg/ha C up to 1 m depth of
soil. Further they mentioned it has the potential of 12% of terrestrial C of world.
Therefore, it is essential to put stress upon the underutilized area that can be utilized
efficiently through agroforestry adoption and development by linking the World
Bank initiatives on the Community Development Carbon Fund and the BioCarbon
Fund towards improving the ecosystem resilience (Nair et al. 2010).
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Managing C through various forestry schemes is pivotal to enhance the C
sequestered in vegetation and soil pool. The agroforestry system has shown wider
potentiality of C sequestration, and it varied from 25 to 96 Mg C/ha, depending upon
the species and site interactions, biomass production, and ecological amplitude of the
species (Dhyani 2018). Various researches confirmed that agroforestry is a
promising system for increasing plant and soil C stock as well as adapting and
mitigating the climate change. Further, Ram Newaj and Dhyani (2008) mentioned
the tropical agroforestry can sequester C up to 12–228 Mg/ha with average rate of
95 Mg C/ha.

As per the study of Reddy (2002), the SOC and C mitigation potential in various
land-use systems reflected that the higher values were under the alternate land-use
practices than the farming and fallow land use. The highest SOC was recorded in the
order of agri-silviculture (19.93 Mg/ha) > silvi-pasture (17.47 Mg/ha) > agri-silvi-
horticulture (17.02 Mg/ha) > Leucaena leucocephala (15.68 Mg/ha) > Acacia
albida (15.23 Mg/ha) > Eucalyptus camaldulensis (13.22 Mg/ha) > Tectona
grandis (12.54 Mg/ha) > Dendrocalamus strictus (11.65 Mg/ha) > Azadirachta
indica (11.43 Mg/ha) > agricultural system (9.4 Mg/ha). Further, C mitigation
potential was reported to be higher in agri-silviculture (4.23 Mg/ha) than the fallow
and agricultural land (Reddy 2002).

6 Agroforestry Practices for SOC Management

The SLM technologies play key role in land/soil management by controlling land
degradation and productivity enhancement through various approaches (WOCAT
2007). The World Bank has estimated 0.2–2.0 Mg C/ha/year under 1000 SOC
sequestration under SLM technologies through various meta-analysis approaches
in the world (World Bank 2012). Science-Policy Interface (SPI) has reported various
SLM practices in agriculture, agroforestry, forestry, and other grazing lands for
ensuring climate-resilient practices through enhancing higher SOC pools (Sanz
et al. 2017). Overall, agroforestry system is the greatest technology that enhances
OC into the soil, and in turn greater SOC pools ensure higher agroforestry produc-
tivity which leads to LDN concept and soil sustainability. Thus, climate-resilient
agroforestry practices under SLM technology strongly influence a SOC pool which
is the basis of land/soil management (Fig. 3, Sanz et al. 2017).

Further, different measures for SOC implementation in the countries are depicted
in Fig. 4 (Wiese et al. 2021). Agroforestry and silvo-pastoralism are key important
SOC relevant measures practiced by 67 countries for agricultural mitigation and
adaptation. Likewise, other measures such as conservation agriculture, grassland or
pastureland management, organic amendment applications, and erosion control
practices are followed by 34, 30, 22, and 50 numbers of countries for agricultural
mitigation and adaptation. No-tillage, mulching, use of cover crops, and fallow
systems are utilized by least numbers such as 11, 6, 3, and 2, respectively. Integrated
soil fertility management (ISFM) is also an important SOC relevant measure adopted
by 19 countries globally which not only maintains SOC pools but also enhances soil



biodiversity and related ecosystem services (Wiese et al. 2021). Therefore, these are
key strategic measures that enhance SOC pools through higher C sequestration
potential under agricultural mitigation and adaptation.
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Fig. 3 Sustainable land management including agroforestry system for land degradation neutral
(LDN) through better SOC pools

7 Utilization of Diverse Land Under Agroforestry to Improve
C Reserve

Wasteland and dryland formation are the major example of environmental degrada-
tion that is taking place at an unprecedented rate throughout the globe. Ecological
approaches for resolving these issues could be effectively managed through agrofor-
estry practices.

In dryland condition, soil contributes 33% of SOC and soil biological diversity. It
has also proved their potential to mitigate global climate change and address food
security. Drylands occupy nearly 42% of the earth’s land comprising of 44% of
cultivable land and nearly ½ of global livestock. These drylands are essential due to



its valuable C storage of high degree of permanence and long period into the soil as
compared to humid regions. Drylands have substantial biodiversity and important
land use. They support nearly 2 billion people and 1/4 of global endangered species
(Davies et al. 2012). These ecosystems are culturally and biologically diverse and
rich and reflect tropical and temperate climates with 0.65–1.0 aridity index. Based on
this index, drylands are classified into arid, semiarid, hyper-arid, and dry subhumid
lands. Most of the drylands (about 72%) are found in the third-world nations. The
extent of degraded and drylands are mostly equal in terms of their quantity at world
level, but the solutions for its management towards utilization may vary than the
humid lands. High level of poverty and underdevelopment scenario in drylands
needs different nature of plan, management regimes, policies, and investments
towards addressing the desertification and further from land degradation. Further
land restoration and managing soil biota and soil C need adoption of SLM and
diversified production system like agroforestry.
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Fig. 4 Different measures for SOC implemented across various countries

The agroforestry practice gradually builds the soil biodiversity and overall eco-
system productivities. The Agenda 2030 Target 15.3 on Land Degradation Neutral-
ity emphasized on the creating awareness of people towards land resources, soil
biota, and soil C for sustainable development. Laban et al. (2018) mentioned that soil
biodiversity contributes up to 1.5–13.0 trillion US dollar per annum in the form of
ecosystem services. The agroforestry, scientific cropping system, management
practices, and improvement of the environmental condition with ecofriendly
practices enhance the C stabilization and hence improve the C sink. Changes in



agriculture, land use, and tree covers are likely to modify the material cycling and
soil environment as well as C reservoir which influences the overall sustainability
and equilibrium of environment and ecosystem (Li and Mathews 2010; Bastida
2006).
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The terrestrial C is changing due to biotic interferences such as deforestation,
change in land use, and biomass burning (Bhattacharyya et al. 2000). As per the land
use in the global C stock, agroecosystem contributes 17%, 39% by forest and 34%
by the grassland ecosystems (WRI 2000). The agroforestry model which has multi-
story vegetation including seasonal crops, grass, shrubs, small trees, and higher
plants can perform efficiently than low canopy stratum. The combination of various
plants species can enrich the biodiversity of the region. Lal (2004a, 2004b) men-
tioned that the ecosystem sinks more C that has rich biodiversity than the ecosystem
possesses less biodiversity.

The dryland ecosystem has various limiting factors specially soil condition and
water availability. The planting of trees, shrubs, and grasses have the potential to
reduce the soil loss, increase the ground water recharge, and improve the microcli-
mate. This tree facilitates the shelter for birds and mammals and the nutrient gets
deposited in the form of dung and other form of organic materials. Such kind of
nutrients deposition are called as resource island or islands of fertility generated by
trees, shrubs, and bushes that commonly occur in desert areas. Further these strata
also influence the ground vegetation, earthworm activities, and soil ecosystem. The
plant species in agroforestry system also serve the nutrient loading through stem
flow and other processes. These are some key indicators of stability or risk of
desertification in drylands. Planting of various tree species in agroforestry practice
offers the alternatives to soil improvement and farming systems and leads towards
sustainability of tropical soils and farming systems (Lal 2004a, 2004b).

8 Agroforestry Policy Instrument

Agroforestry has become a burning issue all over the world at the present context of
climate change, biodiversity loss, environmental degradation, ecosystem imbalance,
population explosion, loss of productivity of agroecosystem, and overall natural
balance of earth ecosystem. As an integrated approach, it includes diverse form of
land use which boosts up the productivity of the integrated unit. But the major hurdle
lies between successful implementation of agroforestry practices. Various countries
across the globe have successfully formulated and implemented agroforestry policies
to a broader scale (Table 3).

In this context, India framed its first agroforestry policy in the year 2014 to focus
on boosting the agricultural production, proper marketing of agroproduce along with
extension activities. Such initiatives were taken both at global level and from Indian
perspective due to its multifaceted benefits. For instance, it addresses the issue of
food security through sustainable food system and provides sustainable ecosystem
services and above all the net economic gain for well-being of human civilization.
The need is to develop suitable strategy in order to move towards production on



sustainable basis (Jhariya et al. 2019c). The benefits of having proper agroforestry
policy across the country have been reflected through various countries across
different continents. Considering all these policies, the major issue is improving
the economic output while minimizing environmental loss for the rural livelihood
which is highly beneficial for the people of developing countries. In this context, the
case of National Steering Committee on Agroforestry of Malawi plays significant
role by disseminating the positive results of agroforestry and also tries to explore the
hindrances and unsuccessful factors that may hamper the success of agroforestry.
Economic dropdown in agroforestry has been accompanied by subsidy in the
European Commission in order to promote the agroforestry practices.
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Table 3 Global initiatives towards policy and reforms in the agroforestry (compiled: Chavan et al.
2010; Bernard et al. 2019; Smith 2019; USDA 2019; Pande 2021)

Schemes Activities Ministry Nation

The India National
Agroforestry Policy
2014

Plantation of TOF in the form
of urban, recreation, rural, and
semi-urban landscape

Ministry of
Agriculture and
Farmers Welfare

India

Ethiopian National
Watershed and
Agroforestry Multi-
stakeholder Platform

Interlinkage between the
stakeholders on broader spatial
scale of agroforestry and
watershed development

Ministry of
Agriculture and
Livestock

Ethiopia

Rwanda agroforestry
and action plan
2018–2027

Integration of leadership and
synergistic approach for
successful implementation of
agroforestry

Ministry of
Environment

Rwanda

National Agroforestry
Policy 1986

Research and developmental
activities through training,
education, awareness, and
extension activities

Ministry of Food
and Agriculture

Ghana

National Agroforestry
Policy 2019

Selection of suitable
agroforestry system, species,
germplasm, and financial
security in terms of subsidy,
insurance and incentives

Ministry of
Agriculture and
Livestock
Development

Nepal

Reinterpretation and
implementation of the
Forest Code

Improving accessibility to
on-farm trees, legal framework
for felling, and access rights

Ministry of
Environment

Niger

Agroforestry Strategic
Framework 2019–2024

Latest technology and their
application for successful
agroforestry adoption

US Department of
Agriculture

The USA

Rural Development
Policy 2007–2013

Proper economic incentive,
funding, proper training,
extension activity for
agroforestry promotion

Agriculture and
Rural Development
Ministry of member
States

European
Union

The National Program
for Strengthening
Family Farming 2003

Allocating of optimum funds
through economic reforms
along with improvement in the
extension activities

Ministry of
Agrarian
Development

Brazil
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In Central America, the Republic of Guatemala has framed separate policy for the
small land holdings farmers to introduce trees in their farmland for promoting
agroforestry. Similarly, the government of Kenya has converted policy into legal
framework by enactment of law in which 1/10 of land area of the land owner should
come under tree cover. The USDA (United States Development Agency) has
strengthened the extension activities by bringing it as key policy issue. From
Indian perspective, numerous policy initiatives in the field of agriculture, forest,
wildlife, and allied fields have been implemented successfully that both directly and
indirectly contribute to the promotion of agroforestry. The initiation of landmark
policy of agroforestry in India was originated through a program organized by the
World Congress on Agroforestry in New Delhi. Under this program the major focus
was given to identify the hurdles of agroforestry implementation. Under the presence
of representatives of more than 80 nations, the president of India launched the NAP
(National Agroforestry Policy) 2014. This was a landmark decision in order to
recognize the multiple benefits of agroforestry as well as better promotion through-
out the country. This was a transforming policy that promoted the socioeconomic
upliftment of economical weaker rural poor farmers. The policy emphasized to
develop institutional infrastructure development to promote agroforestry at national
level. It also framed the guidelines of proper marketing of agroforestry produce that
would bring economic security for the small landholders. Further, major issues such
as economic subsidy, insurance cover, maintenance of germplasm, and interlinkage
between industry and rural livelihood for betterment of the poor people systematized
the markeing chain of forest produce. At the initiation phase, 20 different species of
multipurpose tree were selected as agroforestry species that are to be used for
economic gain (Jhariya et al. 2019c; Pande 2021). Another, bigger transformation
of NAP 2014 was to bring various departments under as single banner to work in
collaboration for better output. Various nodal centers and boards were framed for
monitoring of agroforestry practices. The policy also promotes massive extension
and reserach and development activities under differnt agroclimatic zones for better-
ment in terms of productivity, profitability, and sustainability (Jhariya et al. 2019c).

All these policies were aimed to improve the forest cover up to 33% of land area
of the country. In this context, Chhattisgarh is playing a significant role that helps to
eradicate the poverty and increase the income of rural farmers. Similarly, in Madhya
Pradesh the Lok Vaniki scheme was implemented since 1999 for the same purpose.
Under the scheme, the major focus was effective management of the degraded forest
area of the private farmlands onwed by a farming community. This in turn would be
helpful for the farmers to increase their economic gain as well as rural livelihood.
The scheme was distributed to more than 40 districts of the concerened state and
consists of more than 600 active management plans. Many of the farmers were given
proper training in the form of sensitization, awareness, capacity building, and
adoptability for successful implementation of the scheme. In other parts of the
country, plantation on fallow lands and farm bunds were done following standard
guidelines to get more economic output. Such initiatives serve numerous purposes in
the form of valuable ecosystem services. It includes climate change mitigation,
bioenergy, biomass production, soil health and fertility management, and above all



proper C cycling within the forest and agroecosystem (Chavan et al. 2015; Jhariya
et al. 2019b).
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9 Affords Towards Soil Management and Ecological
Restoration

Soil is a key component that promotes the agricultural productivity as well as
socioeconomic upliftment of rural dwellers that enhances prosperity and well-
being of humankind. With gradual passage of time throughout the globe, soil
resources are getting depleted rapidly under the pressure of agricultural production.
This framed the pathway of conservation of soil resources through proper planning
and strategy formulation. Subsequently most of the planning and policy formulation
were aimed towards sustainable utilization of the soil resource with proper manage-
ment (Meena et al. 2022; Jhariya et al. 2022).

The concern for soil resource raised from 1980 onwards under the circumstances
when FAO included Global Soil Chapter in the year 1982. Further, soil policy at the
global level was published by UNEP (FAO 1982; UNEP 1982). Similar reports in
relation to soil and land quality were addressed in the UN convention for combating
desertification in which proper measures were taken to address the issue of depletion
of soil and land quality. Further, under the Millennium Ecosystem Concept,
agroecosystem was given top priority to provide optimum protection and conserva-
tion (FAO 2007). In 2008, an emerging issue in relation to agricultural productivity
came to forefront in the form of food crisis, and, thus, the entire scientific community
of the globe became committed to think about various soil resources to cope with the
problem. According to the latest development UNCCD the “Zero Net Land Degra-
dation” scheme was launched so that policy can be framed to reduce the soil
degradation. It was supported by the sustainable development conference organized
by UN who addressed land degradation neutrality throughout the world for protec-
tion of soil resource (UN 2012). FAO along with other renowned organization tends
to work together in collaboration to promote soil conservation and wise use of land
resources. Subsequently this leads to development of Global Soil Partnership which
involved awareness generation in the issue of soil, food security, land degradation,
and declaration of 2015 as International Year of Soils (FAO and ITPS 2015).

From Indian perspective, the central government launched various programs for
combating soil erosion loss and restoration of degraded lands across the country. The
Ministry of Agriculture developed watershed programs, soil conservation programs,
and soil reclamation and restoration programs at various levels for protection of soil
and land resource development (Chaudhari 2018). Considering the effective man-
agement of soil and ecological restoration of degraded habitat agroforestry practices
can be fruitful option to perform the aforesaid task. As an integrated unit, it adds
biomass to the soil and thus increases the SOC content which helps to improve the
quality and fertility of the soil. Further, in the present era of soil degradation,
agroforestry also helps in effective soil C management by maintaining the balance
of soil C dynamics.
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10 Plans for Improving SOC and Stock

Globally, the land resource is depleting due to unsustainable practice and misman-
agement of soil resources. The problem is further aggravated by frequent occurrence
of natural hazards. This in turn leads to rapid depletion of SOC from the lithosphere.
More soil gets depleted, and ecosystem services gets hampered which is reflected
from tropical world of third-world nations (Mandal 2020; Khan et al. 2021a, 2021b).

For effective management of soil resource, soil C management is an important
step to look over (Fig. 5). In this context, proper management and alteration of SOC
pool needs to be studied to evaluate the problem. Understanding the problem leads to
its solution in the form of C capture or sequestration which is a potential process to
maintain the C balance. Research reports reveals that both SOC and stock signifi-
cantly vary as per varied climatic and soil condition which is important to regulate C
flux and maintain soil ecosystem balance. Soil ecosystem is an important ecosystem
that tends to have significant amount of C pool and is also a potential site to act as C
sink (Lal 2004a, 2004b).

Utilization of proper agroforestry practices along with suitable species is a key
component for improvement of SOC and C stock of any soil resource. This should
give prior consideration in order to promote soil C buildup as well as its related
fertility (Khan et al. 2021c). Various site-specific models including leguminous and
nonleguminous crop have shown significant promise in the context of SOC buildup
and nitrogen balance in order to promote conservation and sustainable utilization of
soil resource. Cropping pattern and maintenance of suitable cropping calendar could
also help in SOC management.

In order to manage soil and land resource, understanding the C dynamic is an
important and crucial issue. Farmers are directly connected with the soil, and,
therefore, they should be properly trained and made aware about the facts of soil
resource depletion and sustainable management policy. This should be supported
from the government sector through proper action plan and implementation of
suitable policy and scheme at grassroot level. This in turn requires proper monitoring
of soil as well as implementation of strict regulation from small to large spatial scale.

11 Research and Development for Soil Health Protection
and Management

Gradual shrinkage of land areas became the inhabitable truth under the pressure of
humankind throughout the world. Among this issue, soil health is the key component
as better soil health leads to productive agricultural unit; therefore research and
developmental activity should be aimed towards proper protection and management
of soil health (Kumawat et al. 2021; Mechergui et al. 2021). This can be achieved
through sustainable agricultural practices that fulfil the food demand along with
optimum soil health. Agroforestry has the potential to act as a major C reserve or
sink. Research and development should be aimed for screening of suitable agrofor-
estry system that has the ability of maximum C sequestration followed by gradual



buildup of soil C pool. This would help to maintain the fertility and quality of soil
and can be considered as suitable policy measure for protection and management of
soil health.
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Further, proper management of soil health and effective conservation measures
may lead to protection of soil in terms of fertility and quality. Conservative measures
should also aim for maximum sequestration of C to combat changing climate. Policy
should be aimed to evaluate the process of soil protection in terms of addressing food
security. Proper soil management would also lead to improve the water use effi-
ciency. Study should be aimed to understand the interaction between soil and
climatic factors that would govern the land use and cropping pattern. Research
findings should be converted into extension activities under the aggies of
policymakers that would help to prioritize the soil protection measures for the benefit
of the society and sustainability of the ecosystem.

12 Agroforestry Plans and Policies for Soil and Environmental
Protection

Soil is the most important resource for humankind in terms of productivity and
sustaining the life on earth surface. Therefore, proper management and sustainable
use of the soil are the key mandate for humankind in the coming times. In order to do
that, suitable steps for proper policy formulation and strategic implementation of the
policies are the gross requirement for sustainable land-use practices (Lal 2010). In



the Asian subcontinent, rapid growth of industry, urban expansion, as well as
alteration of land use have caused drastic effect on land resource. As a consequence
of that, depletion of soil quality and soil health reduced the productivity of the soil.
Thus, suitable practices need to be implemented for minimization of depletion of soil
resources and for their sustainable use. In this connection, agroforestry is a revolu-
tion giving different benefits and ecosystem services for betterment of soil health and
production. The major focus in implementation of agroforestry practices should be
given on site-specific basis so that the productivity and conservation come hand to
hand in the form of win-win strategy. This particular approach was incorporated in
NAP 2014 to improve the agroforestry cover of the country as well as sustainable
land use (Jhariya et al. 2019c; Pande 2021).
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Nowadays, government initiatives aimed towards implementing various ecologi-
cal farming processes in the form of organic farming, precision farming, and other
allied eco-friendly practices. Agroforestry seems to be occupying a significant
position among those practices in order to achieve the sustainable goal of food
security and sustainability. This in turn would improve the soil health and fertility
and do world good to restore the quality of the degraded soil (Bouma 2020).

13 Planning for High SOC Buildup Through Different
Land Use

Degeneration of soil is taking place at an unprecedented rate due to industrialized
pattern of agriculture. Various problems such as soil salinity, acidity, loss of
nutrients and C pool, and erosion are leading to formation of drylands that ultimately
converts into desert (Blanco and Lal 2008). Therefore, proper monitoring of soil
resources in the context of soil degeneration is the need of the hour and suitable
policies, and planning should be aimed towards gradual buildup of SOC to fulfil the
sustainable goals. Mechanical tillage is a suitable option for SOC buildup and
maintains the soil to perform efficiently. SOC is an important component for
maintaining soil health and quality and therefore requires technological boosting
for its development and enhancement (Lal 2016). Agroforestry as a technological
tool is also important for gradual buildup of SOC in the soil resource. Agroforestry
increase the resource use efficiency of soil resource through sustainable land-use
practices in the form of SOC buildup followed by active reserve of C in the soil
environment (Meena et al. 2021; Jhariya et al. 2022).

Basic agricultural procedures such as maintaining cover crop and sustainable
utilization of crop residue may help to protect the SOC pool that has a secondary
impact of improving soil moisture, nutrient, and diversity. Further, it helps to reduce
the loss of the top soil layer. Cropping pattern can be arranged on the basis of proper
utilization of indigenous species as well as precipitation pattern that helps resilience
of soil ecosystem along with good soil health (Jhariya et al. 2019a, 2019b). Crops
with wider adaptability are preferred in this context as they tend to improve the
efficiency in utilization of resources. On the other hand, integrated management on



farm level may combat numerous problems that lead to decline in agricultural
productivity.

14 Action Plans for Policymakers

Since human beings learned agricultural practices, the major aim was to view it as
the production unit that fulfils the daily needs of livelihood along with net economic
return. Thus, soil has become a precious resource considering its degeneration
trends. Proper policies and planning in this context are yet to be implemented
properly in terms of maintaining SOC pool and stock throughout the globe. Thus,
humankind is facing the challenges of improper land use, desertification, dryland
formation, and above all decline in productivity and yield. Therefore, formulation of
proper policies to frame the context of sustainable soil resource for the policymakers
is the need of the hour. In doing this, one needs to develop proper monitoring of the
soil health, quality, soil functioning, land use and land cover mapping, land capabil-
ity classification, etc. (Jhariya et al. 2022; Meena et al. 2021). On the basis of these
aspects and findings, proper policies should be framed for sustainable management
of soil resources. Now, from implementation perspective, local condition, geology,
climate, and topography should be given due consideration for its effective manage-
ment. Another, important aspect includes ecological restoration of degraded site
which should be a key agenda for policy formulation.

Proper training and skill development towards maintaining soil health and SOC
buildup should be emphasized with new technological intervention. R & D activities
and extension services should be laid down among the farming community for
successful implementation of the policies at government and policymakers’ level.
It should be such that it would fulfil the demand of farmers and local people (Katyal
et al. 2001). Multidisciplinary approaches towards sustainable agroecosystem
should be framed with implementation of sound knowledge base on soil health
and their management. This would help in identifying the key areas of management
of soil resource and would work for the well-being of people (Raj et al. 2020; Kumar
et al. 2020; Banerjee et al. 2020). Integration of various components of
agroecosystem through various practical approaches would be also helpful to
address the bigger issue such as changing climate, mitigation, and overall sustainable
development.

Agroforestry has a potential role towards conservation of natural resources in
terms of SOC buildup, soil health and fertility, as well as soil biodiversity. Agrofor-
estry has worked as a remarkable revolution to combat deforestation activities,
promote reforestation, restore degraded lands, and above all improve soil health
and quality for better production. Policymakers have a key role to play in the form of
developing proper markets and marketing chain for the agroforestry produce along
with proper pricing, market value, and local demand. This would help in higher level
of agroforestry adoption at grassroot level. This would help to achieve the
sustainability goal in terms of conservation and management of soil resource (Raj
et al. 2022a, 2022b).
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15 Conclusion

Soil C management is key process for maintaining soil health and productivity.
Maintenance of SOC pool helps to arrest soil erosion, topsoil layer, as well as
conservation of soil resource. Further, as a technology it provides multiple benefits
in terms of increasing productivity and yield. Addressing larger issues, such as
preventing desertification and soil erosion loss, and combating climate change are
some of the important role of agroforestry in agroecosystem. Policies and planning
need to be developed in order to promote the successful implementation of agrofor-
estry schemes across the globe with proper involvement of planners, decision-
makers, government officials, scientist, and academicians, along with the target
people who would be benefitted the most by adopting such technology. In this
context, NAP 2014 is a significant step that has promoted the increase of agrofor-
estry cover over the country which would provide additional benefits in the form of
various ecosystem services. This would help in all-around development of soil
ecosystem and would help to achieve the goal of sustainable development.
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Abstract

The productivity of soil depends on its quality, which is mainly governed by the
soil organic carbon (SOC) stock and its dynamics. Degraded lands are undoubt-
edly getting much attention as the demand for food, feed, and fuel continues to
increase at the unprecedented rates, whereas productive agricultural land is
shrinking in many parts of the world. It has been computed that ~3.6 million
hectares area worldwide have been already degraded, and at present world is
losing agricultural land comparable to 26 football fields per minute. Degraded
lands are extremely poor in the SOC stock; hence, great opportunity exists to
restore the SOC stock of such lands. Soil plays a vital role in carbon (C) capturing
and storage; therefore the management practices aiming at restoring SOC stock in
degraded lands are needed to be identified. The estimated global potential for
sequestration of total C is between 78 and 106 million Mg year-1, where 12.9% is
contributed through restoring degraded soils and 45.6% through controlling
erosion as well as its management. Among the different management practices,
the application of organic amendments, conservation agriculture, soil conserva-
tion measures, tree plantations, and agroforestry practices have shown enormous
potential to sequester C in the soils. The application of organic amendments can
ameliorate and enhance SOC stock as well as improve soil fertility of degraded
soils. Conservation agriculture practices especially zero tillage and residue reten-
tion enhances soil C content in the soil under long-term perspectives.
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Afforestation of degraded lands has a tremendous potential to sequester atmo-
spheric C and could be major sink of carbon dioxide (CO2) if their potential is
fully utilized. Agroforestry systems also play an important role in mitigating
climate change, having the ability to sequester atmospheric CO2 both in plant
parts and soil systems. Despite the immense potential of soil to store C, the
several constraints and challenges, such as, lack of land use planning, technologi-
cal limitation and their poor dissemination, and ineffective action plans are
creating obstacles in devising strategies for sequestering C in the soils. Therefore,
devising of appropriate futuristic strategy on soil C sequestration in degraded
lands could bridge the gap between the constraints and opportunities.
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Abbreviations

AFS Agroforestry system
C Carbon
CA Conservation agriculture
CO2 Carbon dioxide
CT Conventional tillage
DOC Dissolved organic carbon
DSR Direct seeded rice
EC Electrical conductivity
FYM Farm yard manure
GHGs Greenhouse gases
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IPCC Intergovernmental Panel on Climate Change
PB-SSNM Permanent bed along with site-specific nutrient management
RT Reduced tillage
SOC Soil organic carbon
SOM Soil organic matter
SWCM Soil and water conservation measures
ZT Zero tillage

1 Introduction

Degradation of natural resources is one of the major issues faced by the technocrats
and policy planners across the globe. Globally, at present, about one-third of the land
is degraded, which is affecting 3 billion people, and the situation is expected to



worsen further with the increasing demand of food grain (FAO 2020). It has been
estimated that about 3.6 million hectares (ha) land area across the global is degraded
(UNCCD 2004), and currently world is losing productive agricultural land equiva-
lent to 26 football fields per minute. As part of the Bonn Challenge, India has
pledged to restore 13 million ha of degraded and wasteland by 2020 and an
additional eight million ha by 2030. Despite the known fact that degraded lands
are relatively less productive and more susceptible to climate change, they are at
much attention at across the globe. It is well-known that greenhouse gases (GHGs)
emission was projected to escalate 40–110% during 2000–2030 as a result of
the human-induced activities (IPCC 2007). Consequently, climate change will
further worsen land degradation to impend environment and threaten agricultural
sustainability.
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In India, at present, the estimated degraded land is 147 M ha which formed as a
consequences of water erosion (94 M ha), acidification (16 M ha), flooding
(14 M ha), wind erosion (9 M ha), salinity (6 M ha), and combination of the different
factors (7 M ha) (Bhattacharyya et al. 2015). The rehabilitation of these degraded
land is a major issue because India supports a major chunk of world’s human (18%)
and livestock population (15%), while the total land area of country is 2.4% of the
global land area. Despite low land area in proportion to total human and livestock
population, India ranks second in term of agriculture production worldwide. As per
2018 estimates, around 50% of the Indian workforce were employed in agriculture
and contributed 17–18% to GDP of the country (Patil and Khan 2019). The eroded,
salt-affected, desert, deforested, and abandoned lands constitute the major category
of degraded lands. The several anthropological activities, such as improper land use,
illicit mining, excessive grazing, deforestation, and land-use change, erosion, desert-
ification, waterlogging, salinization, intensive cultivation, and imbalanced use of
fertilizers and pesticides, etc. accelerate the degradation process that subsequently
transforms a productive land to a unproductive one (Fig. 1). Degradation strongly
affects soil quality by decreasing the SOC stock, which subsequently affects the
plant growth and yield (Mehta et al. 2018). Soil degradation affects SOC stock
through reduction in biomass production, and C losses due to the decomposition and
erosion process, which influences their long-term storage capacity in the soils
(Kumar et al. 2021a). The degraded lands are also adversely affected by changing
climate which severely affects the agricultural production, water resources, ecology
and biodiversity, human well-being, and wildlife habitat (Sivakumar 2007; Stavi and
Lal 2015).

SOC stock acts as a core driver in regulating ecosystem services, sustaining agri-
cultural productivity, and mitigating climate change across the globe (Bispo et al.
2017). The reduction in SOC stock is one of the major issues faced by the farmers
and land owners worldwide. The large numbers of factors are responsible for
alteration of the SOC stocks. The poor SOC stocks leads to change in the soil
physical, chemical, and biological properties. However, large number of practices
have been developed and implemented to restore the SOC stock. Despite that, the
planned practices have failed to achieve the restoration target fixed by the resource
conservationist, although projections of scientific advancement and new



technological development suggest a greater success in this aspect (Bagdi et al.
2017). This formidable challenge has led for urgent research/land-use planning to
devise advance agriculture practices and systems for assessing their feasibility,
applicability, profitability, and sustainability in degraded lands (Bhattacharyya
et al. 2015). The estimated global potential for sequestration of total C is between
78 and 106 million Mg year-1, where 12.9% is contributed through restoration of
degraded soils and 45.6% by erosion prevention as well as its management (Lal
2005). Erosion transports around 4.9 Pg of soil and 115.4 Tg of C every year in
India, resulting in emission of around 34.6 Tg of C into the atmosphere (Mandel
et al. 2019). Mandel et al. (2019) also outlined that between 19 and 27 Tg C year-1

could be sequestered by soils via adopting suitable technological alternatives in
the erosion-afflicted areas of India, which creates opportunity to reduce around
24.5% of the total GHGs emissions from agricultural soils in India (94 Tg C).
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In order to restore SOC stock of degraded lands, the various organic matter
enriching practices, such as, application of organic amendments, conservation agri-
culture (CA), agroforestry, afforestation, and soil and water management practices
have indicated enormous potential to improve and restore the SOC stock, as these
measures have been strongly recommended in such lands by the previous
researchers (Kurothe et al. 2014; Bhan 2016; Ali et al. 2017). These practices in
such lands can provide a large number of benefits, for example, controlling run-off,
improve soil physico-chemical properties, mitigating climate change, promoting
plant growth, enhancing biomass/C stock which directly or indirectly can restore



the SOC stock. As soil plays a vital role in C capturing and storage, the quantification
of its stock is a crucial task (Bhattacharyya et al. 2008). Moreover, the role of
different agricultural practices deserves attention to plan soil C restoration measures,
as presently extensive information is available regarding this throughout the globe.
Therefore, studies available worldwide are needed to comprehensibly analysed and
discussed to devise policy and programmes at national and international level for
resorting the SOC stock.
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2 Good Agriculture Practices for Enhancing Soil Organic
Carbon Stock in Degraded Lands

The anthropogenic activities contribute GHGs emission into atmosphere which is
one of the major factor responsible for the climate change (IPCC 2013). Soil is a
major reservoir of terrestrial C (2500 Gt), which either is in soil organic (1550 Gt) or
in inorganic (950 Gt) form (Lal 2004). Any loss of C from the Soil C pool
considerable contributes to the increase of CO2 concentration in atmosphere
(Smith 2008). SOC stock is an important component in soil that contributes to soil
quality, productivity, and land sustainability. In the present context of climate
change, good agricultural practices—such as application of organic amendments,
farm yard manure (FYM), biochar, composts, crop residues, CA practices, adoption
of agroforestry model, etc.—are considered important strategies which can signifi-
cantly improve the SOC stock in the degraded lands (Corbeels et al. 2019).

2.1 Balanced Fertilization with Organic and Inorganics

In India, farmers follow both balanced and imbalanced fertilization to their crops.
The soil C sequestration is influenced indirectly due to effects of these practices on
the crop performance. The rhizodeposition of C in below-ground C inputs through
roots, rhizodeposition, etc. is approximately 54–63% in cereals (Hirte et al. 2018). In
general, an apparent increase in SOC stock upon balanced fertilization through
organic and inorganic sources was reported by the many researchers (Fig. 2). The
greater addition of organic C through plant residues and root biomass C in soils
under balanced fertilization as evidenced by higher crop yields under balanced
fertilizer treatments (Majumder et al. 2007). However, such build-up of SOC varied
with the ecology, soil type, and regional climate. Crops capable of producing higher
residues and root biomass C should be included in the cropping systems for
increasing net C sequestration in the soil.

2.2 Application of Organic Amendments

Organic amendments are the C-based substance of biological origin. The application
of these amendments (farm manure, poultry manure, compost, and biochar) has



potential to enhance the SOC stock and ameliorate properties of degraded soils
(Srivastava et al. 2016; Meena et al. 2019). For example, organic amendments apart
from the amelioration action also improve the quality of salt-affected soils by
(1) accelerating the native calcite (CaCO3) dissolution through formation of carbonic
acid (H2CO3) in the soil that results in release of inherent Ca2+ in soil solution to
facilitate the exchange of Na+, (2) enhancing porosity of the soil that improves the air
and water movement in soils, and (3) further improving the water-stable aggregates
and permeability in soil (Fig. 3) (Rezapour et al. 2022). Application of organic
amendment in salt-affected soil is the effective approach in reducing toxic saline
condition. Recently Leogrande and Vitti (2019) conducted a comprehensive review
on the efficiency of different organic amendments on reclamation of salt-affected
soils and reported that organic matter inputs can be an excellent option for sodicity
reclamation along with improving SOC stock in these soils.
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2.3 Conservation Agriculture

Conservation agriculture (CA) is the amalgamation of minimum soil disturbance
mainly zero tillage (ZT) or reduced tillage (RT) with retention of crop residues and
diversified cropping systems, especially inclusion of legumes. The negative impact
of green revolution was visible in the late 1990s that resulted in the yield stagnation
of cereal crops, lowering of ground water table, depletion of soil organic matter,
deterioration of soil physical health, emergence of micro- and macronutrient defi-
ciency, and degradation of overall soil quality. All these factors triggered the adop-
tion of CA to address these above-mentioned issues. CA has been accepted as an
updated crop production technology for better soil physical health, better nutrient
recycling, and enhanced microbial activity and biological diversity along with



enhanced soil C sequestration vis-à-vis lowering GHGs emission. Soil C sequestra-
tion is the prime need for restoring soil fertility as C plays key role in maintaining
soil quality. In India, tropical and subtropical climate coupled with conventional
tillage (CT) and practices like residue burning decelerates SOC build-up. CA
practices especially ZT; residue retention enhances soil C content in the soil under
long-term perspectives. In large number of studies, the soil C accumulation under
CA was clearly observed in top soil layer (0–5 cm) irrespective of soil and climate
(Das et al. 2013; Bhattacharyya et al. 2015; Veloso et al. 2020). When cotton
(Gossypium herbaceum)-wheat (Triticum aestivum) were grown under CA, ZT
with bed planting and ZT with flat planting recorded 28% and 26% higher SOC
stock, compared to CT with bed planting (5.5 Mg ha-1) at 0–5 cm layer in North
India (Das et al. 2013). Inclusion of summer mung bean (Vigna radiate) in between
ZT wheat and direct seeded rice (DSR) resulted in soil C build-up in North-western
Indo-Gangetic Plain in 0–5 cm soil layer (Bhattacharyya et al. 2015). In Eastern
India, after 7 years of CA practices, Samal et al. (2017) concluded that adoption of
full CA practices like DSR-ZT wheat-ZT mung bean along with full residue
retention resulted in highest SOC stock of 48 Mg C ha-1, which was 15% higher
over farmer’s practice in 0–30 cm soil layer.
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Fig. 3 Different organic amendments and their role in amelioration of salt-affected soils

In a study, Yadav et al. (2019) reported that double rice cropping system with RT,
integrated nutrient management practice, and partial residue retention (30%)
recorded highest C accumulation (1.3 Mg C ha-1) and highest sequestration rate
(428 kg ha-1 year-1) over other treatments in Eastern Himalayan region. In rice



(Oryza sativa)-mustard (Brassica nigra) cropping system, higher SOC sequestra-
tion, SOC pools (29.9 vs. 29.1 Mg ha-1 and 29.7–29.8 vs. 29.0 Mg ha-1), C
sequestration rate (450 vs. 265 kg ha-1 year-1 and 391–428 vs. 221 kg ha-
1 year-1), and C retention efficiency (7.7 vs. 4.6% and 6.6–6.9% vs. 4.7%) were
observed in ZT with residue retention and mulched treatments over CT with residue
incorporation, and no mulched treatments (Yadav et al. 2019). He further
suggested that growing of cow pea (Vigna unguiculata) in pre-rainy season as
cover crop doubled the C sequestration rate (478 kg C ha-1 year-1).
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In Northwest India, enrichment of SOC content under CA is more pronounced
with maize (Zea mays)-based (7.7 g kg-1), compared to rice-based (7.5 g kg-1)
cropping system and farmer’s practice (4.5 g kg-1) in 0–15 cm layer after 4 years of
cropping cycle (Jat et al. 2018). Further, Jat et al. (2019) reported that adoption of ZT
and full residue retention for 4 years recorded maximum improvement of SOC stock
(70%) under ZT maize-ZT wheat-ZT mung bean treatment compared to farmer’s
practice (16.2 Mg C ha-1) and ZT DSR-ZT wheat-ZT mung bean at 0–15 cm soil
depth. Similarly, soil C pools were also higher under the above full CA treatments
over the farmer’s practice. Adoption of permanent bed and flatbed ZT practices in
maize-based cropping systems for 6 years improved C content and SOC stock over
flatbed CT at 0–5, 5–15, and 15–30 cm depths, respectively, in a sandy loam soil
(Parihar et al. 2018a; b). Parihar et al. (2020) further calculated C sequestration and
soil quality under maize-wheat-mung bean cropping system with varying tillage and
nutrient management options. Permanent bed along with site-specific nutrient man-
agement (PB-SSNM) recorded highest C content (44.1%) over unfertilized CT plot.
Similarly, maximum SOC stock, C input (3.41 Mg ha-1 year-1) and C sequestration
rate (1.15 Mg ha-1 year-1) were also obtained in PB-SSNM treatment. In Central
India, higher proportion of large size water-stable aggregates, aggregate-associated-
C, and higher proportions of non-labile C under no tillage over CT were reported by
Somasundaram et al. (2018) in 0–5 and 5–15 cm layers after four cropping cycles.
After 6 years of cropping cycles, Dey et al. (2020) reported that double ZT + residue
retention in rice-wheat system sequestered ~2 Mg ha-1 total SOC in the 0–15 cm
soil layer, where significant losses were registered in CT. Maize-based CA system
showed higher SOC and stability of humic acid C compared to CA based rice system
(Datta et al. 2022).

2.4 Tree Plantations

Afforestation has been considered as the most important tool to prevent the soil
degradation (Hu et al. 2015). In most cases, the degraded lands are dominated by
dwarf trees and bushes which have insignificant ecological and economic value;
therefore the plantation of native and superior tree species is generally preferred in
such lands for greater biomass production and higher C sequestration, which is the
ultimate goal to address the issue of climate change (Kaul et al. 2010). Under
degraded soil conditions, vegetation biomass production and SOC stock in degraded
environment may be better sustained and improved if afforestation measures are



adequately implemented (Sanwal et al. 2017). Afforestation of degraded land can
provide multifarious ecosystem services which include provisioning services, viz.
fodder, timber, fuel, non-timber forest product, medicine, and gum; regulating
services, viz. nutrient cycling, controlling soil erosion, moderating climate, and C
sequestration; supporting service, viz. net primary production and soil formation;
and cultural services, viz. recreation (Kumar et al. 2021b). Selection of appropriate
tree species is another important criterion that greatly influences the success of
afforestation. Species such as Azadirachta indica, Acacia catechu, and Emblica
officinalis produced higher biomass and C stock in the dry degraded lands
(Parandiyal et al. 2006; Singh et al. 2012a, b). Therefore, assessing species perfor-
mance in term of growth, biomass production, and C stock is also required for
a successfull afforestation plan.
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Afforestation has the potential to produce greater biomass which may contribute
to the increased C stock in the degraded lands. In contrast, degradation of land
decreases the vegetation C stock as a consequence of poor survival and low biomass
of the tree species. Therefore, afforestation of degraded land has potential to
sequester greater atmospheric C and could be a major sink of CO2, if their potential
is fully utilized (Kaushal et al. 2016). Kumar et al. (2020) advocated the promotion
of agroforestry to enhance the climate resilience and C sequestration in highly
degraded ravine to fulfil the climate change mitigation and adaptation objectives
(Fig. 4). Some previous investigations have equally advocated the increased C stock
in degraded lands (Návar 2008; Deng et al. 2017; Mehta et al. 2018). Moreover,



continuous efforts (every year) of selective species planting and adoption of sustain-
able practices in degraded lands could balance and manage global C cycle.

Besides vegetation C, enhancing soil CO2 sequestration in degraded lands is
considered as one of the high priority agenda by the technocrats and policy planner.
Most of the analysis showed that the degraded lands are extremely low in the SOC
stock (Pande et al. 2021). The deforestation coupled with soil erosion is considered
as the major factor in low SOC stock in these lands. This may results in poor soil
physico-chemical properties to adversely affect the vegetation growth and biomass
production. In contrast, tree plantation improves SOC stock in degraded lands that
might positively influences soil health and quality, which improves the overall pro-
ductivity of such ecosystem. Large number of previous researchers has also noted
the increased soil C as a consequence of afforestation (Forrester et al. 2006;
Laganiere et al. 2010; Giling et al. 2013).

Tree plantation in salt-affected soils not only rehabilitate the salt-affected soils but
also serve many ecosystem functions such as sequestration of atmospheric CO2 and
ensure livelihood security of the resource poor famers. In a reclaimed sodic soil,
Datta et al. (2015) measured the distribution of organic C pools under different land
uses, namely, guava (Psidium guajava), litchi (Litchi chinensis), mango (Mangifera
indica), jamun (Syzygium cumini), Eucalyptus (Eucalyptus tereticornis), mesquite
(Prosopis juliflora), and rice-wheat cropping system and found the higher efficiency
of guava plantation in sequestering SOC stock (133 Mg C ha-1) and also in passive
pool (76 Mg C ha-1) at 2.0 m soil depth (Fig. 5). Similarly, Garg (1998) evaluated
SOC build-up in an alkali soil under four tree land uses, such as, acacia [Acacia
nilotica (L.)], shisham [Dalbergia sissoo], mesquite [Prosopis juliflora], and arjuna
[Tamarind arjuna]) and showed that shisham and mesquite recorded higher organic
C with higher microbial activities in upper 60 cm soil depth. A study showed that
the C sequestration rate was 0.2–0.8 Mg C ha-1 year-1 after 20 years of planting of
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Fig. 5 Overall soil organic carbon storage into different pools under different land uses in a
reclaimed sodic soil. Vertical bars indicate ±S.E. of mean of the observed values (Data sources:
Datta et al. 2015)



different trees species in an alkali soil with maximum C sequestration under mes-
quite (9.3 g kg-1) (Fig. 6) (Singh and Gill 1990).

The planting trees is a viable option for those situations where salt-affected soils
cannot be reclaimed through conventional techniques. In salt-affected soils, due to
lesser plant growth/vegetation, the C input to soil are very low which is the main
cause of is lower SOC in salt-affected soils (Minhas et al. 2021). At ICAR-CSSRI,
for commercial cultivation in salt-affected soils, a number of salt-tolerant agrofor-
estry and fruit trees, shrubs, grasses, and medicinal and aromatic plants have been
identified. Some of the promising agroforestry species are mesquite, acacia, Tamarix
articulata, and Casuarina equisetifolia. In high pH soils, for sustained fuel wood
and forage production, the P. juliflora-Leptochloa fusca based silvipasture system
has been found promising. Appropriate planting techniques have been standardized
for raising tree plantations in saline (subsurface planting, ridge-trench method,
subsurface planting, and furrow irrigation system) and sodic (ridge-trench method,
auger-hole method, pit auger-hole method, pit-auger hole and furrow method) soils.
Different fruit-based agroforestry systems with bael (Aegle marmelos), amla, and
karonda (Carissa carandas) as tree components and cluster bean (Cyamopsis
tetragonoloba) (in Kharif) and barley (Hordeum vulgare) (in Rabi) as subsidiary
components, have been found practically feasible and remunerative. These tree
species significantly increased the C input to soil through roots and enhanced the
SOC content in salt-affected soils. Moreover, SOC stock in soil can be improved
under properly managed agroforestry system with the potential C sequestration rate
of 1.5 to 3.5 Mg C ha-1 year-1particularly in smallholder agroforestry system of
tropics (Montagnini and Nair 2004).

“Biosaline agriculture” is another promising technology developed at ICAR-
CSSRI. Here, salt-tolerant tree or plant species are successfully grown under highly
saline soil or saline ground water. Halophytes such as Salicornia, Atriplex, and
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Salvadora species are successfully grown in otherwise unproductive saline soils.
Another promising technology is “biodrainage” which involves growing of salt-
tolerant trees for lowering of the ground water table in waterlogged areas (Sharma
and Singh 2019). The main criteria for selection of trees in biodrainage are salt
tolerance and higher transpiration rate. Eucalyptus tereticornis is the most preferred
tree species used in biodrainage. ICAR-CSSRI also developed a technology for the
sustainable disposal of wastewater in tree plantations (Sharma and Singh 2019).
Rehabilitation of salt-affected soils serves many ecosystem functions like atmo-
spheric CO2 sequestration and contributes to livelihood security of famers. Recently,
C dynamics in salt-affected soils was reviewed by Datta et al. (2019), and they
emphasized the tremendous potential of the salt-affected soils to sequester C which
improved the quality of those degraded soils besides serving many ecosystem
functions.
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2.5 Soil and Water Conservation Measures

It is widely known that soil erosion destabilizes the productive agriculture land;
leading to the reduced crop yield and soil C stock. Research in mountainous regions
has observed that agricultural practices augment soil erosion, resulting in the adverse
effects on the SOC stock (Lizaga et al. 2020). For the tropic region, influence of crop
cultivation on inducing soil erosion is expected to be substantially on the lower side.
In most cases, intensive agriculture activities or other anthropogenic-related
activities generate high soil erosion, resulting in the formation of degraded lands
devoid of any productivity (Pani 2020a, b). Under such conditions, plant growth and
biomass production in areas having degraded soil environment may be better
sustained and improved if soil and water conservation measures are undertaken.

To recover unproductive degraded lands, various soil and water conservation
measures (SWCM), e.g. contour bund, terrace, check dams, trench, tree plantations,
and agroforestry, have been found highly effective in controlling soil erosion. The
trench and terrace creates favourable physical, chemical, and biological environment
as well increase the SOC stock (Tenge and Hella 2005; Kebede 2014). In particular,
higher SOC and soil water in terrace and trench have been reported to increases soil
nutrients availability to facilitate the plant growth (Singh et al. 2020). The SWCM
improve the soil physico-chemical properties through conservation of the soil
nutrients in degraded lands. In particular, SWCM decrease the moisture, carbon,
and nutrient loss through run-off and soil loss (Lal 2016). For instance, SWCM
increased the availability of C, nitrogen, phosphorous, and potash in the soil (Singh
et al. 2012b; Kaushal et al. 2021a; b). Further, Jiao et al. (1999) proved that SOC
content increased by 25% in terraced land compared to slope after 20 years. This
suggests that the SWCM have potential in improving soil physico-chemical
properties of the degraded land (Moradi et al. 2012, 2014).

The soil conservation have been extensively reported to increases SOC which
improves soil quality, resulting in the increased vegetation cover of degraded lands
(Ran et al. 2013). For example, in China, Zhuang et al. (2016) found that SWCM



improved tree canopy and the sapling survival up to 98% with spruce (97.0%) and
cedar (98.0%). Similarly, Zhang et al. (2014) observed that the terraces and pits
increased growth and canopy cover of Pinus orientalis in degraded land. In general,
Singh et al. (2012a) also concluded that trenching improved SOC that increased the
plant growth in the degraded lands. The quantity of water and nutrient conserved in
soil and their availability determines the level of biomass production in plants (Hishe
et al. 2017). For instances, SWCM were observed to increase the OC and nutrient
availability in soils that contributed to the enhancement of biomass and C in sapota
(Kumar et al. 2021b). By and large, reshaping degraded lands creates a congenial
soil environment that results in greater biomass accumulation and consequently
improved the SOC stock (Kurothe et al. 2014). In recent years, great interest has
been generated in the ability of SWCM to accumulate SOC stock in the degraded
lands (Chave et al. 2004; Navar 2008; Mugasha et al. 2013; Deng et al. 2017). For
example, contour trench improved biomass in Acacia catechu that contributes in
increasing the SOC in the degraded lands (Singh 2012; Singh et al. 2012a). In
general, the SWCM-induced SOC enrichment in degraded lands could contribute to
the climate change mitigation through enhanced CO2 sequestration.
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2.6 Agroforestry Practices

Globally agriculture accounted for 25% of CO2, 50% of CH4, and 70% of N2O
emission (Hutchinson et al. 2007). Emission of CO2 is mainly due to burning of
fossil fuels, clearing and burning of forest, and expanding and intensification of
agriculture. Sequestering atmospheric C and storing it in the terrestrial biosphere are
one of the best strategies for mitigating the GHG emission. Intergovernmental Panel
on Climate Change (IPCC) reported that the land-based mitigation—agriculture and
forestry—can be highly effective measure to mitigating GHGs emission. These
measures can abate approximately 94–343 Pg C equivalent of GHG emission,
which is 15–40% of the total abatement required for mitigating the climate change
effects. Among all types of land use considered in the IPCC report, the agroforestry
land use was observed to possess the highest potential for C sequestration. Agrofor-
estry system (AFS) has a strong potential in the mitigation of atmospheric GHGs
through accumulation in soil and plant systems (IPCC 2000). Estimating the amount
of C sequestered by agroforestry poses unique opportunity and has indicated a
mitigation potential of 1.1–2.2 PgC in terrestrial ecosystems over the next 50 years
(Makundi and Sathaye 2004; Solomon et al. 2007). Similarly, it was estimated that
the average C sequestration rate of the agroforestry is 0.2–3.1 t Cha-1 (Watson et al.
2000; Pandey 2002). Across the globe, several researchers have discussed the
benefits and limitations of agroforestry in term of C sequestration (Schroeder
1994; Dixon 1995; Albrecht and Kandji 2003), but limited literatures are available
on comprehensive comparisons of various practices in each eco-region. Lal (1999)
estimated the C sequestering potential in dry lands to be fairly low and ranging
between 0.05 and 0.3 Mg C ha-1 year-1. Overall, degradation would also lead to a
decline in SOC stock and an increase in CO2 emission from such soils. Moreover,



quantifying soil degradation induced production and C loss and factors that influence
erosion, such as different agricultural practices, tree plantations, and native grasses
either individually or in combination-based system is important. As there have been
lack of agroforestry research conducted in degraded lands, the roles and relevance of
agroforestry in restoring degraded soil, enhancing productivity, and sequestering
SOC in these ecosystems are still unclear and non-existent; consequently continuous
faulty agricultural practices have caused the huge loss of C from the soils. Therefore,
a combination of different practices in agroforestry (annual + perennial) may greatly
improve the systems hydrological conditions, plant productivity, and SOC seques-
tration potential (Kumar et al. 2020, 2021b).
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Stefano and Jacobson (2018) conducted a meta-analysis of 53 published studies
to assess changes in SOC stock after transforming different land-use systems to
agroforestry. Findings showed a decrease in SOC stock of 25% in the land-use
change from forest to agroforestry. The change from agriculture and pasture/grass-
land to agroforestry increased SOC stock by 34% and 9%, respectively. The
conversion to agroforestry produced significant SOC stock increases at 0–30 cm
(10%). Among AFS, significant SOC stocks increases were reported at various soil
horizons and depths in the land-use change from agriculture to agrisilviculture and to
silvopasture, pasture/grassland to agrosilvopastoral systems, forest to silvopasture,
forest plantation to silvopasture, and uncultivated/other to agrisilviculture. Never-
theless, the IPCC (2000) estimated that 630 million ha of unproductive crop lands
and grasslands could be converted to agroforestry worldwide, with the potential to
sequester 586,000 Mg C year-1 by 2040. These AFS offers solutions to some of
these climate change-related ecosystem management problems (Fig. 7). Therefore,
agroforestry can be one of the tools for climate change adaptation and mitigation
throughout the globe.

Global Status
Across the globe, diverse agroforestry practices have shown enormous potential to
sequester atmospheric C (Tables 1 and 2). A comprehensive meta-analysis of soil C
sequestration rates derived from 43 studies in agroforestry systems (0–60 cm depth)
was undertaken in China which showed highest C sequestration rates in shelter belt
(0.52–0.92 Mg ha-1 year-1), followed by agrosilvicultural systems
(0.43–0.70 Mg ha-1 year-1) and silvopastoral systems (0.02–0.23 Mg ha-1 year-
1) (Hübner et al. 2021), indicating the highly effectiveness of shelter belts and
agrosilvicultural systems to increase SOC stock.

In Europe, agroforestry relative to conventional agriculture contributes signifi-
cantly to C sequestration, increases a range of regulating ecosystem services, and
enhances biodiversity (Kay et al. 2019). The wide range of agroforestry practices
was identified, and their C sequestration potentials were ranged between 0.09 and
7.29 t C ha-1 year-1. Moreover, promoting agroforestry in the priority areas would
improve the ecological and environmental services. The strategic and spatially
targeted establishment of AFS could provide an effective means of meeting EU
policy objectives on GHG emissions. The mean SOC stock of various AFS in North
America was observed to be 3.6 Mg C ha-1 in riparian buffers, 6.9 Mg C ha-1 in
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alley cropping, 1.21 Mg C ha-1 in silvopasture, and 6.4 Mg C ha-1 year-1 in
windbreaks (Udawatta and Jose 2011). Fontes (2006) studied the system of cacao
(Theobroma cacao) with erythrina (Erythrina variegata) and reported the C seques-
tration rate of 2.7 Mg C ha-1 year-1in Brazil. In Europe, a silvopastoral system
based on Monterey pine (Pinus radiata) showed the C stock ranged between 40.8
and 102.4 Mg C ha-1 (Mosquera-Losada et al. 2011). The C sequestration rate in
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Fig. 7 Climate change mitigation and adaptation process in agroforestry

Table 1 Carbon sequestration potential of different agroforestry systems across globe

Potential
(Mg ha-1)

Humid tropical high, Africa Agrosilvicultural 29–53 Murthy et al.
(2013)Humid tropical low dry lowlands, South

America
39–102
39–195

Humid tropical dry lowlands, Southeast
Asia

12–228
68–81

Humid tropical low, Australia Silvipastoral 28–51

Humid tropical high humid tropical low dry
lowlands, North America

133–154
104–198
90–175

Humid tropical low, northern Asia 15–18

Sub-Saharan, Africa Agroforestry 8.4–33.7 Unruh et al.
(1993)

Faidherbia albida parkland, Sahel, West
Africa

Agroforestry 59.8 Takimoto
et al. (2008)
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(continued)
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Table 2 Carbon stock and sequestration rate in different agroforestry systems of the world

C stocks (Mg C
ha-1)

C
sequestration
rate (Mg C
ha-1 year-1)

North
America

Riparian
buffers

Above-
ground

7.5–
269

123 2.6 Udawatta
and Jose
(2011)Below-

ground
2.0–
14.4

4.6

Soil 1.8–
5.5

3.6

Alley
cropping

Above-
ground

0.05–
96.5

26.8 3.4

Soil 0.05–
25

6.9

Silvopasture Above-
ground

1.17–
12.2

4.9 6.9

Soil 1.03–
1.38

1.21

Windbreaks Above-
ground

0.68–
105

Soil 23.1 6.4

Hybrid
poplar

367.0 0.73

White spruce 186.0

Canada Shelter belt
trees

Deciduous
(green ash,
Manitoba
maple, hybrid
poplar, and
Siberian elm)

110–
367

Kort and
Turnock
(1998)

Conifers
(white
spruce, scot
pine, and
Colorado
spruce)

107–
186

Shrubs
(choke
cherry,
villosa lilac,
Buffalo
berry,
Caranga and
sea
buckthorn)

160–
387

Brazil Cacao with
Erythrina

2.7 Fontes
(2006)
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different AFS in African region was studied, and it was reported that the rate of C
sequestration was in the range of 0.22–0.77, 0.4–0.8, and 0.22–5.8 Mg C ha-1 year-
1 in West, South, and East Africa, respectively.
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Table 2 (continued)

C stocks (Mg C
ha-1)

C
sequestration
rate (Mg C
ha-1 year-1)

Europe Pinus
radiata

40.8–
102.4

Mosquera-
Losada
et al.
(2011)

Africa Faidherbia
albida
plantation

0.22–0.77 Woomer
et al.
(2004)

Home
gardens

0.4–0.8 Batjes
(2004),
Henry
et al.
(2009)

Eastern
Tanzania

Rotational
woodlot
system

18–26 2.32–
5.10

Kimaro
et al.
(2011)

Claveria,
Philippines

Smallholder
farming
system

Above-
ground

3.9 to
159.7

0.3–
17.9

Brakas
and Aune
(2011)

Chilean
Patagonia

Silvopastoral AG + BG 224 Dube et al.
(2011)

Kimaro et al. (2011) reported C stock of 18–26 Mg C ha-1 and C sequestration
rate of 232–5.10 Mg C ha-1 year-1 in rotational woodlot system. The different AFS
of the Claveria, Philippines, like home garden, mango plantation, multi-strata
agroforest, and coffee plantation had C stocks >100 Mg ha-1 (Brakas and Aune
2011). The systems such as corn with mango, corn with timber trees, coconut
plantation, coconut with banana, bush fallow, and corn with banana had relatively
low C stocks (<20 Mg ha-1). Some other AFS had C stocks within the range of
40–100 Mg ha-1, i.e. corn with coffee (Coffea arabica), banana (Musa paradisia-
cal) with fruit trees, banana (Musa paradisiacal) plantations, fallow with indigenous
and fruit trees, corn with timber and fruit trees, and woodlots (Brakas and Aune
2011). The C stock of above-ground and below-ground components together in
silvopastoral systems and plantation was recorded 224 and 199 Mg C ha-1, respec-
tively, in Chilean region of Patagonia (Dube et al. 2011).

Indian Status
Agroforestry practices are considered sustainable land management tools to enhance
biodiversity and increases C sequestration, compared with tree-less systems in India.
In a study Kumar et al. (2020) showed that the sapota (Manilkara zapota)-based tree



Erosion type

plantation and soil–water conservation enhances C sequestration of agroecosystem
in semi-arid degraded ravine lands. Findings showed that the cultivated terrace,
trenching, and uncultivated terrace recorded 4.8%, 25.8%, and 43.4% lower C stock
in sapota tree, respectively, compared with sole slope. Under similar set of
conditions, the maximum total GHG emission was observed in tree-crop system,
followed by sole crop system and minimum in sole tree system (Fig. 8). However,
net biomass C stock and C sequestration were observed higher in sole tree system,
compared to the tree-crop system (Jinger et al. 2022) which indicates that the tree
plantation in degraded ravine land also improves the SOC stock. Kumar et al. (2022)
further showed that the afforestation of degraded ravine practice improved the SOC
stock by 73% (0–80 cm depth), compared to non-afforested ravine, as the SOC stock
in afforested ravine was 3.50 Mg ha-1 higher as compared to the degraded ravine.
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Fig. 8 Total greenhouse gas
emission and net carbon
balance in different systems
(Jinger et al. 2022)
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Table 3 Carbon sequestration potential through restoration of eroded lands in India

C sequestration
potential
(t C ha-1 year-1)

Area
(M ha)

Total potential (million t C
year-1)

Water erosion in arable
lands

73.27 0.08–0.12 5.86–8.79

Ravine lands 3.97 0.14 0.56

Shifting cultivation 4.91 0.74 3.63

Water erosion in open
forest

9.30 0.50 4.65

Pasture and grazing
lands

10.26 0.53 5.44

Riverine lands torrents 2.71 0.15 0.41

Data source: Mandel et al. (2019)



The increase in C sequestration potential through restoration of eroded lands in India
is explained in Table 3. These studies indicate that degradation negatively affected
the SOC stock in the degraded lands.
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One of the paramount oil seed tree is coconut (Cocos nucifera) in tropical region
and cultivated in>80 countries globally. This tree has a potential that can act as a net
sink for atmospheric C besides supply of many other ecosystems services. The AFS
of Karnataka and Tamil Nadu dominated by coconut and mango including other tree
species recorded C stock of 0.81–4.73 and 0.66–6.59 Mg ha-1, respectively (Murthy
et al. 2013). Similarly, study also revealed that coconut tree can store C ranging from
47.01 to 107.60 Mg ha-1 in the coastal region of West Bengal (Mitra et al. 2018).
Bhagya et al. (2017) studied coconut based intercropping with mango, jamun, and
kokum (Garcinia indica) in Kerala and revealed that above-ground C stock varied
from 53.02 (coconut + kokum) to 60.93 Mg ha-1 (coconut + jamun) and below-
ground C stock (0–60 cm) ranging from 78.69 (coconut + kokum) to 82.47 Mg ha-1

(coconut + mango). However, coconut alone stored 51.14 Mg ha-1 as above-ground
C and 47.06 Mg ha-1 as below-ground C.

In arid region of Rajasthan, India the agroforestry covers ~1.49 million ha area
that play a vital role in mitigation and adaptation of climate change via trapping CO2

from atmosphere and storing it in tree biomass. The major woody species, viz.
Prosopis cineraria, Capparis decidua, Tecomella undulate, Acacia tortilis, Ziziphus
mauritiana, and Azadirachta indica are dominant on farming land in scattered
patches which are the backbone of livelihood of people in arid environment. These
traditional AFS have stored biomass C in the range of 1.0 to 8.6 Mg ha-1 and
organic C in soil ranging from 4.5 to 16.5 Mg ha-1 with a tree density varying from
1.4 to 14.9 trees ha-1 (Chavan et al. 2021). Agroforestry on farming land of
Rajasthan has potentiality of 0.26 Mg C ha-1 year-1 and 0.95 CO2 Mg ha-
1 year-1 to reduce C footprints and mitigate climate change. A fruit tree-based
orchard recorded soil organic C stock of 14.5 Mg ha-1 in surface soil layer
(0–30 cm) with highest (19.5 Mg ha-1) in Khejri block (Singh and Singh 2015).

In Northern part of India, the block plantation of multipurpose tree species such as
Eucalyptus (2.5–3.5 year age) with 2500–2777 trees ha-1 and Tectona grandis
(10 to 30 year age) with 494–570 trees ha-1 has the potentiality of C sequestration
of 4.40–5.90 and 2.25–3.74 Mg C ha-1 year-1 (Dhyani et al. 1996). Populus
deltoids (7 year age) in agroforestry with 400 to 740 trees ha-1 have been reported
C sequestration potential ranged between 1.98 and 9.40 Mg C ha-1 year-1 in Indo-
Gangetic region (Chauhan et al. 2010; Rizvi et al. 2011). In the tropical region mixed
tree species which are being grown in the form of home garden have been
sequestered 1.60 Mg C ha-1 year-1 which was 71 years old with 667 individuals
ha-1 (Saha et al. 2009). The mitigation and adaptation strategies of AFS have been
illustrated in the Fig. 7. Mitigation includes long-term and short-term sequestration
of C in biomass and soil and emission reduction. Ecosystem services are the major
contributor in adaptation to reduce the vulnerability that ultimately leads to improve-
ment of security, health, and social status. The C sequestration potential of various
AFS in India is explained in Table 4.



Agroforestry systems Region
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Table 4 Carbon sequestration potential of various agroforestry systems in India

C sequestration potential (Mg C ha-1 year-
1)

Agri-horticulture Northwestern
Himalayas

2.08

Agrisilviculture Northwestern
Himalayas

0.63–0.8

Silvopastoral system Northwestern India 6.82

Agrisilviculture
system

North India 34.61

Home gardens Kerala 1.60

Silvi-pasture Semi-arid areas of India 1.89–3.45

Agrisilviculture Uttar Pradesh 3.70

Agrisilviculture Central India 31.37

Agrisilviculture Central Himalaya 0.256

Data source: Zahoor et al. (2020)

3 Soil Organic Carbon Behaviour

The behaviour of SOC varies with the soil physico-chemical properties. For
instances, soil salinity decreases the global SOC stock as world soils may lose 6.8
Pg SOC due to salinity by the year 2100 (Setia et al. 2013). Higher sodicity and the
presence of Na+ make SOMmore mobile and cause erosion loss of dissolved organic
matter (DOC) and labile SOC pools in the salt-affected soils (Mavi et al. 2012; Singh
et al. 2022). Further high sodicity imparts recalcitrant character to the SOC as the
basic electrolytes (Ca2+, Mg2+ and Na+) block the functional groups of organic
matter such as COOH and OH forming polymers of dense inflexible molecules
resistant to microbial attack (Oades 1988). Incorporation of organic amendments in
sodic soils is a better management option with great advantage of improvement in
soil biological properties compared to chemical fertilizer. Application of organic
amendments leads to increased partial pressure of CO2 within soil profile that lowers
the pH value in soil solution and subsequently increases the dissolution of native
CaCO3 mineral and reduces the soil sodicity. Sodic soils generally have poor
structural stability attributed to low organic matter and high sodium contributing
soil dispersion (Wang et al. 2021; Minhas et al. 2021). The organic amendments
incorporation in sodic soils binds the small particles of soil in to large water-stable
aggregates thus sequesters more C in the soil aggregates. Salt-affected soils have a
great potential to sequester organic C upon application of organic amendment.
Saline soils are a better niche for organic C sequestration due to better aggregation
(Deb et al. 2020). Qu et al. (2019) also observed reduction in the decomposition rate
of soil C and DOC with increase in salinity level. Contradictory to this, in arid
regions the saline water application reduces the SOM content from 0.34% to 0.25%.
However, the incorporation of organic amendments results in a significant increase
in SOC under canal water irrigation with FYM treatment (0.68%). Similarly, FYM



treatment enhances SOC content even under saline water irrigation. Chandel et al.
(2021) also reported that alternate application of saline and fresh water helps in the
build-up of soil C while maintaining the soil nutrient pools compared to sole
application of saline or fresh water application. Thus, saline water application
alone and alternatively with organic amendment can enhance SOC content in soil.
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Biochar plays an important role in soil C fixation. Biochar improves the SOC
significantly in the surface soils (Sun et al. 2020), and the total organic C is not
affected by the biochar application. Biochar has the great potential to store large
quantity of C in soil. It acts as a soil conditioner that enhances the crop productivity
and soil quality along with decreasing the GHG emission (Singh et al. 2019a; b; Wu
et al. 2019). Biochar increases the recalcitrant SOC pool that further leads to C
sequestration (Yanardağ et al. 2015). The recalcitrant fraction/passive pool of C
increased with carbonization temperature that enhances C storage in the soil (Saleem
et al. 2022). Conclusively, biochar produced at higher temperature (>500 °C)
sequesters more C compared to biochar produced at lower temperature. Chahal
et al. (2017) also reported that biochar application to saline soils can be used as an
important source to sequester C while minimizing nutrient losses in the salt-affected
soils. Biochar application at different rate significantly increases DOC at all the
salinity levels (Singh et al. 2018). They also reported that application of biochar at
the rate of 2–4% enhances DOC by 52–89% in EC 8 dSm-1 and 81–119% in EC16
dSm-1 soil, respectively. Chahal et al. (2017) reported that DOC was highest in
glucose amended soil followed by rice straw > farmyard manure
> = biochar> = unamended soils as glucose decomposes more rapidly than the
other amendments.

The addition of vermicompost is also proved to be a good strategy for the full
recovery of saline-sodic soils. Application of 10% vermicompost reduces 50% of the
exchangeable sodium percent. Similarly, application of pressmud mitigates the
adverse effect of saline irrigation by reducing the soil sodium adsorption ratio and
increasing the SOM content (Muhammad and Khattak 2009). Neutralization of
alkalinity by pressmud and gypsum+pressmud increases crop yield that returns
more C to soils (Basak et al. 2021). Pressmud increases the very labile pool of the
C which was associated with higher organic matter, cellulose, hemicellulose, and
lignin nutrient availability through pressmud application compared to gypsum and
control.

4 Challenges of Carbon Sequestration
in the Degraded Lands

Soil C sequestration as stable SOM provides a long-term solution to reduce the CO2

concentration in the atmosphere (Gupta and Sharma 2011a; b) and supports the
resilience of agroecosystems and environmental sustainability (Yadava 2010). Soil
C sequestration plays a crucial role in enhancing soil health and agricultural produc-
tivity (Cowie et al. 2011) and prevents the degradation of soil (Rajan et al. 2010).
Despite the huge potential of soil to store C, several constraints and challenges are



hindering the C sequestration potential in these soils. The multifold constraints, such
as various biotic and abiotic disturbances, are causing land degradation and are also
posing difficulties in their rehabilitation (Tomar et al. 2021). At present, best
agricultural and forest-based ecosystem models are not available that may support
restoration of degraded lands. In arid regions, SOC is limited by the accelerated rate
of oxidation under prevailing high temperatures (Lal 2003). The unavailability of
moisture in arid zones may further worsen the soil C storage potential. Moreover,
depletion in SOC is one of the most deceptive and hidden processes of soil
degradation that negatively affects agricultural production through altering soil
properties and microbial activities and occurrence of essential nutrient deficiencies.
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Some of the major limitations that are hindering the reclamation progress include
the outdated database of degraded lands, limited technological options for managing
and reclaiming the degraded lands, increased vulnerability of degraded lands to
changing climate, and barriers in technology adoption and implementation by the
stakeholders (Kaushal et al. 2021b). Demenois et al. (2020) reveal the predominance
of social and economic barriers such as lack of knowledge or training, increased
difficulties of fieldwork, workload, risk handling, funding, and social pressure.
Biophysical constraints such as limited potential of SOM storage or rainfall scarcity
and variability also appear more to be important.

The harmonizing remote sensing data generated at different scales and adopting
modelling approaches could help in the rapid assessment of C status in the degraded
lands of the country. Identification of hotspots through high-resolution data and their
ground-truthing improves the accuracy of remote sensing data. To gain progress in
this direction, both understanding basic processes and effective technology imple-
mentation would be important for effectively managing and restoring the soil C of
degraded lands. The changing circumstances require a multidisciplinary approach to
tackle multiple challenges of degraded lands such as water scarcity, salinity stress,
soil erosion, heat stress, drought, nutrient deficiencies, and elemental toxicity as
these factors are responsible for decline of soil C. Moreover, there is a need to
address the multiple stressors simultaneously rather than focusing on single stress
alone, and an integrated land management package is needed to be developed by
taking into consideration a large number of factors together to revive soil C of
degraded lands.

Climate change has been posing a huge risk to the farming community especially
in the arid and semi-arid degraded lands. Therefore, in degraded rain-fed areas of the
country, building resilience to climate change is urgently required through adapta-
tion and mitigation measures. The precise delineation of climate change effects and
devising adaptive strategies especially for crop production and farmer livelihood
security could reduce the vulnerability to climate-induced risks. The climate change
has caused an increase in degraded lands and loss of soil C in the different states of
India. The IPCC (2021) has also emphasized that desertification and land degrada-
tion are the two most important concerns of the changing climate. The development
of a crop and agroecosystem specific package of practices could enhance
agroecosystem resilience and adaptive capacity in degraded lands, especially in the
direction of water management and agroforestry development in the rain-fed areas.
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Despite massive yearly CO2 exchanges between the atmosphere and agricultural
areas, the net flow is expected to be nearly balanced when land-use change is taken
into account (Alscher 2011). The conversion of the degraded land into different
productive systems like cropland, forest, alley cropping, pasture land, and other
vegetation for atmospheric CO2 capturing is a challengeable task in view of the
financial constraints and lack of skilled manpower (Meena et al. 2020). India has
already accepted the “Bonn Challenge” in a worldwide initiative to rehabilitate
26 million ha of deforested and degraded land by 2030 (The Hindu 2020) for that
effective technological implementation is urgently required to achieve the desirable
outcome. During the Conference of the Parties (COP) 2015 in Paris, India has made
one of the most significant commitments in Asia to join the hand in fighting against
climate change (ICAR 2020). As a result, there is an urgent need to increase areas
under arable lands by transforming degraded lands into different agricultural
ecosystems through sustainable intensification (IPCC 2021).

5 Futuristic Strategies for Carbon Sequestration
in Degraded Lands

The soil C sequestration is recognized as a cost-effective strategy to mitigate climate
change during first two to three decades of the twenty-first century. At present, the
GHGs in atmosphere are increasing at the rate of 0.5%, 0.6%, and 0.25 ppb for CO2,
CH4, and N2O, respectively, and the contribution to global warming to an extent of
20% is due to agricultural activities and 14% is due to land-use changes and
unregulated deforestation. Major agricultural activities that contribute to emission
of GHGs include ploughing, application of manures and fertilizers, soil drainage,
biomass burning, and crop residue removal. The soil degradation factors such as
erosion, compaction, decline in soil quality, and salinization are also responsible for
emission of GHGs, especially loss of soil. Historic global C loss due to agriculture is
estimated at 55 Pg to 100 Pg from soil C pool and 100–150 Pg from the biotic C
pool. Adoption of recommended agricultural practices can lead to an enhanced SOC
storage and accumulation as well as contribute to the restoration of soil quality.
Improved agricultural practices include mulching and conservation tillage, growing
cover crops, eliminating summer fallow, using balanced fertilizer inputs including
precision farming and use of biosolids, adopting improved cropping systems and
CA, applying integrated nutrient management and soil amendments including
biochar, promoting afforestation and agroforestry, managing soil-water through
drainage and irrigation, and restoring degraded soils has enormous potential to
sequester C in the vegetation and soil systems. Establishment of perennial pastures
can also sequester 0.84 ± 0.11 Mg C ha-1 year-1 in different kinds of lands. The
long-term solution to the risk of potential global warming lies in finding alternatives
to fossil fuel. Stratification of SOC with depth was common under conservation
agricultural management and appears to be integrally linked to abatement of soil
erosion, improvement in water quality, and SOC sequestration. Conservation and
management of degraded land have the potential to build soil fertility, restore soil



functions, and mitigate GHGs emissions due to accumulation of organic matter on
soil surface. Land management practices such as water management, fencing, and
biodiversity improvement may also improve C sequestration (Stavi and Lal 2015;
Meena et al. 2020). Therefore, the strategy of soil C sequestration in degraded land is
a bridge to a brighter future.
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African continent contributes around only 3% of the total global CO2 emissions
from fossil fuel burning and cement production, and it could participate in the
management of the global C cycle through C sequestration. Improvements in
agricultural techniques and land-use practices could lead to a higher agricultural
productivity and soil C accumulation. Soil C constitutes a significant part of the total
C stock in Africa, and land-use systems and agricultural practices increasing the soil
C stock could produce GHG offsets that foreign investors might purchase under the
clean development mechanism. In the Southeastern United States, land owners have
great potential to restore soil fertility and mitigate greenhouse gas emissions through
adoption of improved conservation agricultural systems (e.g. continuous no-till,
high-residue crop rotations, high organic matter inputs).

Overall, the cause of the degradation must be recognized and treated to rehabili-
tate and improve productivity of degraded land. Designing the agriculture and tree
plantation ecosystem models based on the land and local identified resources may
immensely support in restoring the degraded land. It could also support the ecologi-
cal services and soil biodiversity for maintaining the long-term sustainability of land
resources under the changing climate.

6 Policies and Programmes

The restoration of degraded lands requires devising appropriate policy and action
plans. Accordingly, various centrally sponsored schemes, policies, and programmes
have been implemented in India to restore and address the issues associated with
such soils, which are as follows:

6.1 National Mission for a Green India

The National Mission for a Green India, sometimes also abbreviated as the Green
India Mission (GIM), is one of eight missions formed as part of the National Action
Plan on Climate Change (NAPCC). It was started in February 2014 with the
objective of maintaining, restoring, and increasing India’s declining forest cover,
as well as adapting and mitigating the effects of climate change. It envisions a
comprehensive approach to greening that goes beyond tree planting and prioritizes
multiple ecosystem services such as biodiversity, water, and biomass conservation.
The protection of mangroves, wetlands, and critical habitats, as well as provisioning
services such as fuel, fodder, and timber and non-timber forest products, as well as
increased income from forest-based livelihoods for households living in and around
forests were also priotrized under this scheme. The objective might also enhance C



sinks, particularly via sustainable management of forests and degraded lands, in
order to assist fragile species/ecosystems and forest-dependent populations in
adapting to changing climate.
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6.2 National Afforestation Programme

The National Afforestation Programme (NAP) was formed through the consolida-
tion of four ninth plan centrally sponsored afforestation schemes administered by the
Ministry of Environment, Forests and Climate Change, namely, the Conservation
and Development of Non-timber Forest Produce including Medicinal Plants Scheme
(NTFP), the Integrated Afforestation and Eco-Development Projects Scheme
(IAEPS), the Area Oriented Fuel Wood and Fodder Projects Scheme (AOFFPS),
and Association of Scheduled Tribes and Rural Poor in Regeneration of Degraded
Forests (ASTRP) in year 2000. This programme is operated by the National Affor-
estation and Eco-Development Board and Ministry of Environment, Forest and
Climate Change, Government of India (MoEFCC), for afforestation of degraded
forest lands. The main objective of NAP is ecological restoration of degraded forests
and to develop the forest resources with peoples’ participation with focus on
improvement in livelihoods of the forest-fringe communities, especially the poor.

6.3 Compensatory Afforestation Fund Management
and Planning Authority

Compensatory afforestation means whenever forest land is diverted for non-forest
purposes such as mining or industry, the user agency pays for forest planting on an
equal area of non-forest land, or twice the area of degraded forest land, if such land is
not available. In summary, Compensatory Afforestation Fund Management and
Planning Authority are intended to encourage afforestation and regeneration
operations while also ensuring sustainability as a strategy to compensate for forest
land that has been transferred to non-forest uses. The funds are mostly used to treat
watershed regions, support natural generation, manage forests, preserve and manage
wildlife, relocate communities from protected areas, manage human-animal
conflicts, provide training and awareness, and offer wood-saving equipment,
among other things.

6.4 National Action Programme to Combat Desertification

As a signatory to the United Nations Convention to Combat Desertification
(UNCCD), India, developed the National Action Programme for Combating Desert-
ification in 2001 to address the issues of desertification.
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6.5 Green Highway Policy 2015

The Ministry of Road Transport and Highways introduced the Green Highway
initiative in 2015 to encourage the greening of highway corridors with the involve-
ment of the community, farmers, non-governmental organizations, and government
institutions. The policies’ particular aims were to encourage greening and construc-
tion of environmentally friendly national highway corridors that would overcome
issues and prepare the way for sustainable development. Simultaneously, it will
mitigate the impact of air pollution and dust on the national highways by planting
trees and bushes which function as natural sinks for pollutants in the air and will help
prevent soil erosion on embankment slopes. It will also improve the C sequestration
in areas that would otherwise be barren and unutilized.

6.6 National Agroforestry Policy, 2014

India becomes the first country to adopt a comprehensive policy on agroforestry,
i.e. National Agroforestry Policy, 2014. In order to address the agroforestry sector’s
challenges which include adverse policies, weak markets, and a scarcity of institu-
tional finance for transforming lives of rural farming communities, protecting
ecosystems, and ensuring food security through sustainable means. The primary
objectives were to encourage and increase tree planting in an integrated manner and
complementarily way, to protect and stabilize ecosystems, and to promote resilient
farming. In India, the total area under agroforestry is predicted to double by 2050 due
to restoration of fallows, cultivable fallows, pastures, and groves, as well as rehabili-
tation of degraded and problematic soils.

6.7 Reducing Emissions from Deforestation and Forest
Degradation

Globally, anthropogenic emissions from land use, land-use change, and forestry
account for between 9% and 11% of global GHGs emissions, owing to widespread
deforestation and forest degradation in developing nations (IPCC 2014). To combat
this, the agenda of “Reducing emissions from deforestation and forest degradation in
developing countries (REDD)” was first introduced in United Nations Framework
Convention on Climate Change (UNFCCC) as a climate change mitigation option to
address the emission from deforestation and forest degradation in 2005. With time,
the notion of “forest conservation, sustainable management of forests and enhance-
ment of forest C stocks in developing countries” was introduced and the concept is
now collectively referred to as “REDD+.” All five REDD+ programmes are focused
on increasing and improving forest and tree cover (FTC), which aligns with the
National Forest Policy’s target of bringing 33% of the country’s land area under
FTC. Trees outside forests (TOF), particularly on degraded areas, can considerably
contribute to the country’s C sink. Particularly, TOF action will be a critical



component of the country’s REDD+ plan, which aims to increase forest C sinks by
2.5 to 3 billion tonnes of CO2 equivalent by 2030, as stated in the country’s Intended
Nationally Determined Contributions (INDC) to the UNFCCC.
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7 Conclusion

Land degradation is threatening the livelihood of global population as well as
adversely affecting the carbon stock of soils. The application of organic
amendments, conservation agriculture, soil conservation measures, tree plantation,
and agroforestry practices has indicated strong potential in enhancing productivity
and increasing net soil carbon stock in degraded lands. Although the large number of
practices have been developed for restoring soil carbon, the validation and compari-
son of best practices is still needed to be further explored. More studies examining
how much C can be sequestered or stored in different degraded lands around the
world are needed. Moreover, the sustainable land management via restoring land
productivity and soil carbon stock is the most promising tools for halting and
reversing land degradation and desertification and therefore could contribute in
achieving the food security and land degradation neutrality.

8 Future Prospective

The soil C sequestration can be enhanced through reclamation of the degraded lands.
Globally, a large area is available for the plantation activities and other similar
activities. There is a need to focus on afforestation, reforestation, and agroforestry
plantations on degraded lands in order to reclaim targeted 26 million ha area of
degraded lands by 2030 in India. This will help in providing a boot to the ecology
and economy of the regional populations, besides availability of raw material to the
industries. Agroforestry and organic matter enrichment practices will improve the
soil fertility and store huge amount of the carbon via stabilizing the atmospheric
CO2. Degraded lands are often characterized by acidic pH, low levels of key
nutrients, poor soil structure, and limited moisture retention capacity, and these
practices will also improve the soil physio-chemical properties. Moreover, good
deal of information is available about the ways to improve degraded soils, but the
cost of implementation is often a limiting factor. However, the additional financial
and environmental benefits of C sequestration may compensate the economics of
land reclamation activities. Therefore, there is a need to devise appropriate policy
and action plans to restore SOC stock of the degraded lands.
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