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Abstract. A framework of Genetic Algorithm-Support Vector Machine (GA-
SVM) is proposed for SVMparameters (model) selection, and clustering algorithm
is also integrated with the framework to generate multiple optimal models, as well
as being condition of convergence for GA. Moreover, an ensemble method on
various SVM models assisted by TRUST-TECH methodology is put forward, to
enhance the generalization ability of a single SVM model. The performance of
GA-SVMand ensemblemethod is testified by applying them in both classification
and regression problems.Results show that, comparingwith traditional parameters
selection method (such as grid search), the proposed GA-SVM framework and
ensemble strategy can solve general classification and regression issues more
efficiently and automatically with better performance.

Keywords: Support vector machine · Genetic algorithm · Clustering algorithm ·
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1 Introduction

Support Vector Machine (SVM) has become a competitive learning algorithm since it
was developed by Vapnik and his co-workers in 1995 [1]. For recent decades, abun-
dant literature has proven its effectiveness in solving classification problems in pattern
recognition and regression analysis, which could be partially attributed to that SVM is
founded on the basis of Structural Risk Minimization (SRM) [2, 3]. Traditional machine
learning algorithms, such as Artificial Neural Network (ANN), form the learning rules
based on the principle of Empirical Risk Minimization (ERM), i.e., the minimization of
training errors. However, SRM balances ERM and VC dimension to ensure better gener-
alization ability. The VC dimension denotes the learning ability of a set of functions, or
informally, the higher the VC dimension is, the more complicated the learning machine
becomes.

One major advantage of SVM is that the optimal solution is unique when model
parameters are fixed, since the constructing/construction of SVM model equals solving
a convex quadratic programming problem. However, challenges exist at least in these
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fields: 1) selection of model parameters are usually empirical; 2) training process, espe-
cially for huge data, can be computationally expensive. The Sequential Minimization
Optimization (SMO) [4] algorithm is one of the most popular methods in solving the
QP problems in SVM and affirms its valid in many aspects and applications. Hence,
we focus more on the first challenge in this paper. Selection of model parameters, (or
referred as model selection, tuning parameters) aims to find the optimal parameters that
minimize the generalization errors of the SVM model, and these errors can often be
estimated either by direct testing based on data which have not been used for training or
by given bounds in previous studies such as [5–7]. Selection of parameters has always
been intractable since multiple parameters should be tuned simultaneously and search-
ing space of parameters could be problems-depended in most cases. Usual applicable
strategies include grid search [8], heuristic algorithms [9, 10], and gradient-based meth-
ods introduced in [11]. The Grid search method is always exhaustive and its accuracy
may depend on the steps of the ‘grid’, while traditional GA or SA may be stuck in a
local optimal solution and be time-consuming for convergence.

Another strategy for improving generalization ability is the ensemble of several
SVM models. Literature [12] defines the ensemble of classifiers as ‘a set of classi-
fiers whose individual decisions are combined in some way (typically by weighted or
unweighted voting) to classify new examples’. The literature also illustrates the reason
why ensembles could often outperform individual classifiers from views of statistics,
computations and representations. The ensemble of SVM actually consists of two tasks:
1) generation of different SVM models; 2) combination of these models in an appropri-
ate manner. Literature [13] describes representative methods of both tasks and discusses
their performance based on simulation results.

In this paper, we put forward a novel SVM ensemble method by adopting GA-
combined clustering algorithm and TRUST-TECH technologies [14, 15]. GA combined
with SVM (or GA-SVM) hybrid algorithm has shown its superior ability compared
with conventional SVM applications [16, 17]. Moreover, the concept of clustering is
introduced in SVM parameters tuning to ensure the diversity of SVM models as an
ensemble, as well as being a criterion to end the evolution of GA. TRUST-TECH was
developed to find high-quality solutions for general nonlinear optimization problems.
It has been successfully applied to solve machine learning problems including optimal
training ANNs, and in this paper it is adopted for optimal ensemble of SVM models.

2 Preliminaries

2.1 Support Vector Machine

SVM was first introduced to solve data classification problems or pattern recognition
(Support Vector Classification, SVC), and the maximal margin classifier forms the strat-
egy of the first SVM, namely to find the maximal margin hyperplane in an appropri-
ately chosen kernel-induced feature space [18]. For a given training set of pairs (xi, yi),
where the instance xi ∈ Rn and the label xi ∈{1, −1}, a typical representation of the
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implementation is given as (1)

min
ω,b,ξ

1
2ω

Tω + C
l∑

i=1
ξi

s.t. yi(ωTφ(xi) + b) ≥ 1 − ξi,

ξi ≥ 0.

(1)

Here, C is the penalty parameter of the error and is always positive. ξ i is the slack
variable which means allowed errors. Kernel function K(xi, xj) = φ(xi)Tφ(xj) can map
non-separable data (input space) into a higher dimension (feature space) where these
mapped data would be separable, and usual kernels include radial basis function (RBF)
K(xi, xj)= exp(−γ ||xi − xj ||2), γ > 0 linear oneK(xi, xj)= φ(xi)Tφ(xj), and polynomial
one K(xi, xj) = (γ xiT xj + γ )d , γ > 0, where γ , d are kernel parameters. Therefore, the
free parameters for classification in a given case consist of C and kernel parameters.

SVM for regression analysis (or termed Support Vector Regression, SVR) is devel-
oped, for example in ε-SVM to find a function f (x) that allows a deviation less than ε

from the actual target yi for all training data, and meanwhile make it as flat as possible.
The expression is given by (2)

min
ω,b,ξ

1
2ω

Tω + C
l∑

i=1
(ξi+ξ∗

i )

s.t. yi − ωTφ(xi) − b ≤ ε + ξi,

ωTφ(xi) + b − yi ≤ ε + ξ∗
i ,

ξi, ξ
∗
i ≥ 0.

(2)

Compared with (1), the additional parameter ε means that a deviation less then ε

would be ignored or could be described as the so-called ε-insensitive loss function |yi −
f (xi)|ε as (3) and Fig. 1 presented.

|yi − f (xi)|ε =
{

0 |yi − f (xi)| − ε

|yi − f (xi)| − ε, Otherwise
(3)

Fig. 1. ε-insensitive loss function

Lots of tools have been developed to solve SVM problems, among which LIBSVM
is popular for its high efficiency in SVMclassification, regression, probability estimation
and other tasks [19]. LIBSVM is also adopted in the following study.
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2.2 Genetic Algorithms

Genetic Algorithms (GA), are stochastic methods based on imitating Darwinian natural
selection and genetics in biological systems, which have been successfully used for
globally researching and optimizing problems [20]. In optimization problems, a set of
candidate solutions is termed as population and is coded by specific chromosomes.
And all candidate solutions will be evaluated by the objective function (often problems-
based) to find the best solutions which can be used to build the next generation of
the candidate ones. The successive steps could be described as follows: initialization
of the first generation, evaluation of the candidate solutions, selection of the best ones
and creation of the next generation using specific genetic operators (crossover, mutation,
etc.). The iterative computationwill be stoppedwhen it comes tomeeting the termination
condition [9].

Although it has been applied in many fields, GA still gets its drawbacks: weak ability
in local optimal search, premature convergence in certain situations, random solutions,
and all these may make this algorithm time-consuming and difficult to guarantee its
convergence. Thus, one aim of improvement on GA is how to speed up the convergence
to get optimal solutions.

2.3 GA-Combined Clustering

Clustering is a common technique for statistical data analysis, and its main task is to
group a set of objectives in a way that they are more similar within the same group
compared with objectives in others. General clustering algorithms include K-means,
K-modes and their variations.

Iterative Self-organizing Data Analysis Techniques Algorithm (ISODATA) [21] is
developed based on K-means and introduces the operation of ‘splits’ and ‘merges’ on
clusters, so the number of clusters is also variable. Basic processes could be summarized
as: 1) Initialization of controlling parameters; 2) Randomly placing the cluster centers,
and assigning samples to clusters based on their distance to cluster centers; 3) Calculation
of standard deviation within each cluster and the distance between cluster centers, and
splitting or merging clusters; 4) A second iteration is performed in the new cluster
centers; 5) Termination conditions include the average inter-center distance which falls
below the user-defined threshold, the average change in the inter-center distance between
iterations that is less than a threshold, or the maximum number of iterations reached.

At the end of the evolution process of GA, a set of optimal solutions are obtained.
Evaluation of these optimal solutions utilizing clusteringmethod (ISODATA is preferred
in this paper) is to analyze the probability of grouping strategy termed GA-combined
Clustering Algorithm (GACA). The purpose of GACA could be addressed as: firstly,
thismethod provides a termination condition for GA, avoiding potential time-consuming
evolution process with little effect; secondly, this method describes the distinctions of
optimal solutions generated byGA, and ismeaningfulwhenmulti-local optimal solutions
are needed for further work (e.g., ensemble of multiple solutions).
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2.4 TRUST-TECH Technology

TRUST-TECH was developed to find high-quality solutions for general nonlinear opti-
mization problems. It has been successfully applied to solve machine learning prob-
lems including optimal training ANNs [22, 23], estimating optimal parameters for finite
mixture models [24], as well as solving the optimal power flow problem [25].

TRUST-TECH-based methods can escape from a local optimal solution and search
for other solutions in a systematic and deterministic way. Another feature of TRUST-
TECH is its effective cooperation with existing local and global methods. This coopera-
tion starts with a global method for obtaining promising solutions. Then byworkingwith
robust and fast local methods, TRUST-TECH efficiently searches the neighboring sub-
space of the promising solutions for new local optimal solutions in a tier-by-tier manner.
A high-quality optimum can be found from the multiple local optimal solutions.

2.5 Ensemble of SVMs

Ensemble on machine learning has been well studied in [12] and the literature also
explains why ensemble can often perform better than any single classifier. Ensemble has
also beenwidely applied inANN, and can offer an effectiveway to alleviate the burden of
tuning the parameters of a single ANN, moreover, the results show ensemble is effective
in improved generalization capability [26, 27]. Factors may affect the ensemble results
including accuracy and diversity of member networks [28–30] and the combination
strategy used for ensemble [31, 32].

Ensemble of SVMs has also been studied, [13] expects that SVM ensemble can
improve classification performance greatly than using a single one, especially in multi-
classification cases, and propose to use the SVM ensemble based on the bagging and
boosting techniques. Literature [2] uses the boosting technique to train each SVM and
take another SVM for combining several SVMs.

In this paper, firstly, a set of SVMindividualswould be trained byGA-combined clus-
tering method; secondly, a selection of these SVM individuals would be optimally com-
bined, to form a nonlinear optimization problem; finally, ensemble of SVM individuals
will be finished by solving the optimization problem with TRUST-TECH technology.

3 Algorithm Procedures

3.1 SVM Parameters

Given the training data set andmethods, SVMparameter pwould decide the unique SVM
model. Thus, the selection of optimal parameters is actually the process of constructing
SVMwith best generalization ability. Asmentioned in part A, Section II, free parameters
in SVC include the penalty parameterC and kernel parameters. If using RBF (Gaussian)
kernel K(xi, xj) = exp(−γ ||xi − xj ||2), γ > 0, the SVC parameters to be optimized here
will be defined as pc = (C, γ ), and meanwhile in SVR the similar definition is pr = (C,
ε, γ ) and ε is the tolerable deviation.

The goal of parameters selection (optimization) is to identify proper pc or pr that
makes accurate classification or regression results on unknown data. One common
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method, as described in [8], suggests using a grid-search method with cross-validation.
One typical cross-validation method is called υ-folder cross-validation, which separates
all training data with the purpose of forming υ subsets with equal size. And then, each
subset (validating data) is valid using the SVM trained on the other υ-1 subsets (training
data). The operation repeats υ times so that each subset has been valid and got respond-
ing accuracy. The average of all υ accuracy could be seen as the accuracy to evaluate
the selected parameters. According to [8], cross-validation can also prevent over-fitting
problems. One extreme situation of the cross-validation method is the Leave-One-Out
(LOO) method, where υ is equal to the number of instances of all training data. Thus, all
instances will be valid by utilizing the LOOmethod. Literature [5] proves that LOO can
provide an unbiased estimate on the probability of test errors for known data. Yet, the
LOOmethod may be time-consuming, especially when the number of training instances
is huge. Grid-search tries pc or pr in the potential solution space according to some
simple rules, for example, an exponentially growing sequences of C and γ in [8]. This
method is straightforward and easy for implementation. However, the solution space in
SVR may become three dimensions and its efficiency is worrisome.

3.2 GA-SVM for Parameter Optimization

In this paper, the algorithm of optimizing parameters of SVM automatically by GA
is termed GA-SVM. Input of this algorithm is normally an approximate interval of
parameters, and output would be a set of optimal parameters. One significant element in
the evolution process of GA-SVM is the fitness function, which is a predefined objective
function that evaluates all individuals in eachgeneration and then ranks themaccordingly.
Figure 2 gives the framework of this algorithm.

Setting 1) GA parameters 
and 2) Objective Functions for 

SVM model evaluation

Termination condition 
satisfied?

Continue evolution process to 
obtain next generation of p

No

A set of optimal parameters 
are obtained 

Yes

Setting the upper and lower 
bounds of SVM parameters p 

Training and validating SVM 
models using Cross 
Validation(or LOO)

Calculation of validation error

Each parameters correspond to 
a SVM model

GA SVM

Updated 
p

Error

Fig. 2. Framework of GA-SVM
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It has to be elaborated in the framework:

1) Upper and lower bounds of parameters p are usually decided by a coarse cross
validation process. The simplest case, searching region for pc is a closed rectangle
region and pr a closed cuboid region.

2) Important GA parameters include size of the population α and evolution generation
β. From the view of parameters selection, λ is the number of optimal parameters in
each evolution process and β is the number of evolution times of parameters.

3) In the process of υ-folder cross validation, let the number of all known instances
is N, and each subset consists of M = N /υ instances where the correctly classified
number of instances of the jth validating subset is mj. Thus, validating error of SVC
is defined as (4)

σc = (1 − 1

υ

υ∑

j=1

mj

M
) ∗ 100% (4)

4) Similarly, in SVR, validating error is defined as (5), which is actually the average
of Mean Absolute Percentage Error (MAPE). In (5), f j(x) represents the estimation
function of the jth validating subset, and yi is the actual value of the corresponding
xi.

σr = 1

υ

υ∑

j=1

M∑

i=1

∣
∣
∣
fj(xi)−yi

yi

∣
∣
∣

M
∗ 100% (5)

5) At the beginning of the first loop, i.e., the initialization process, GA will randomly
generate λ parameters and then calculate fitness of these parameters.

6) For each individual of parameters in a certain generation, the validating error is of
negative relationship with the value of fitness function (called fitness), i.e., the lower
the validating errors are, the better the fitness is. By calculating the fitness of all
individuals, a roulette wheel selection based nonlinear ranking method is adopted to
rank all individuals according to the possibilities of the best fitness. Let the fitness
function be Ffitness(x), and pαaβb be the αath parameters in the βbth generation,
where a = 1, 2, …, α and b = 1, 2, …, β. P{x}is the possibility of selection for
following operation of crossover and mutation. There will be (6):

P
{
pαaβb

} = Ffitness(pαaβb)

β∑

b=1
Ffitness(pαaβb)

(6)

7) Based on the principles of “survival of the fittest”, individuals with higher fitness
would reproduce more offspring. Reproduction of next generation (offspring) is
realized by operations such as crossover and mutation. In this algorithm, multi-
point crossover and uniform crossover are used to generate new individuals with
exchanged information between old individuals. Mutation reflects another random-
ness in the evolution process, which generates new individuals in case that crossover
is not effective. Details about the process are presented in [21].
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8) In GA-SVM, the evolution process will be stopped until the βth evolution finishes.
During the evolution process, parameters in each generation are recorded. At the
end, all recorded parameters are compared in order to select one with the lowest
validating errors as the best one to build a SVM model.

9) It has to be noted that the best parameter is not always generated at the βth evolu-
tion. Numerical studies later in this paper show the evolution process may come to
convergence earlier. This explains why a fixed β may be time-consuming with low
efficiency.

3.3 Improvement on GA-SVM Using Clustering Method

However, drawbacks of GA-SVM for parameters selection are obvious, especially from
the view of ensemble: 1) criteria for convergence is not guaranteed, because a small β

may not ensure better evolution results and a big β may be tedious with little efforts; 2)
diversity of SVMmodels for ensemble is not available, for that the evolution process does
not consider differences of parameters within one generation and between successive
generations.

Clustering method would help in GA-SVM, and in this paper we combine ISODATA
with GA (or termed GACA) to optimize SVM parameters. In GACA, the evolution

process begins with a much smaller generation
∼
β, and after/when the evolution finishes,

a set of optimal parameters are obtained. Then, ISODATA is introduced to analysis the
internal relationship of parameters within this set and compared it with the previous one.
If the results of clustering satisfy the termination condition, the algorithm finishes; if

not, evolution process with generation
∼
β will continue based at the foundation of the

last evolution results and repeat the comparing operation. The algorithm would stop
until the termination condition satisfies that predefined repeating times are reached. The
procedure is described in Fig. 3.

After clustering on {p1} finishes, GA-SVM evolution will directly generate {p2},
i.e., comparison of clustering results happens for the first time only after clustering on
{p2} finishes.

In the end, a set of clustered parameters {pcld} are acquired, including corresponding
clusters.Moreover, in considering of Euclidean distance among parameters, the diversity
of SVM models is guaranteed.

3.4 Ensemble on SVM Using TRUST-TECH

LetK be the number of selected clusters of {pcld}, and pcld i is a representative parameter
(normally the cluster center) selected from the ith cluster, where i = 1, 2, …, K. Usually,
pcld i is the one with the lowest validating error of all parameters in the ith cluster, and all
pcld i should be within a neighborhood of min{pcld}. e.g., pcld i ≤ η min{pcld}, where η is
a factor ensuring the low validating error of selected parameters. Hence, parameters with
high parameters would not be chosen for the ensemble. The task of finding an optimal
ensemble on SVM models is achieved by solving the following optimization problem:

min E(v|S, x) =
Q∑

n=1

(

K∑

m=1

vm ◦ fm(xn) − yn)
2 (7)
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Begin the ith GA-SVM evolution with generations    , and 
obtain a set of parameters {pi}

Does the number of cluster centers 
of {pi}equal to that of  {pi-1} ? 

Clustering analysis on pi using ISODATA, and comparing 
clustering results of {pi} with that of {pi-1}

No Yes

Initializations for GA-SVM and ISODATA 

Do all distances between cluster 
centers of {pi} and the corresponding 

one of {pi-1} are no larger than a 
predefined minimal distance?  

Is i no less than a predefined 
repeating times?

Algorithm ends, and a set of clustered parameters are obtained.

Yes No

Yes

No

Fig. 3. Framework of Improving GA-SVM using ISODATA

E(v|S, x) is the ensemble function under a given set of SVM models S = {s1, s2, …,
sK}, v is the rules used for combination, {xn} is the testing data set that is not used in
the training and validating process, Q is the number of samples in the testing data set,
f m(xn) is the estimation function of mth SVM models when input is xn, and yn is the
desired output. Not that in SVR output of f m(xn) is real number, and in SVC (binary
classification) only integer 1 or −1.

In this paper, a linear combination of SVM models is considered. Thus v = (v1, v2,
…, vK ) represents the weight of each model and an optimization problem turns to a QP
problem (8):

minv E(v) = 1

2
vTCv

s.t. vT e = 1, v ≥ 0 (8)

where e = [1, 1, …, 1]T , C is the correlation matrix describing the relationship between
different SVM models. In SVR, C is calculated using (9)

Cij = 1

Q

Q∑

k=1

(fi(xk) − tk)(fj(xk) − tk), i, j = 1, 2, ...,K (9)
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While in SVC, C is calculated using (10)

Cij = 1

Q

Q∑

k=1

σiσj, i, j = 1, 2, ...,K (10)

whereσ i denotes the validating error of the ith SVM tested on a testing data ofQ samples.
Since C does not always have positive eigenvalues, the quadratic optimization prob-

lem (8) may be non-convex. Therefore, it might have multiple local optimal solutions.
Traditional iterative methods (e.g., Interior Point Method, IPM) which are effective in
solving the convex quadratic optimization problem may get stuck in a local optimal
solution in case of multiple local optimal solutions. TRUST-TECH technology is used
to solve (8), and a high-quality solution will be adopted for ensemble.

Using the logarithmic barrier function, the augmented Lagrange function of (8) is

Lμ(ν, θ) = 1

2
vTCv + θ(νT e − 1) + μ

K∑

i=1

lnvi (11)

where μ is the barrier parameter. Hence, the Karush-Kuhn-Tuker’s optimal conditions
are

∂Lμ

∂ν
= Cν + θe − μV−1e = 0 (12)

∂Lμ

∂θ
= νT e − 1 = 0 (13)

where V = diag(v1, v2, …, vK ). Multiplying both sides of (12) with V, we have

Hμ(ν, θ) =
(
VCν + θVe − μe

VT e − 1

)

= 0 (14)

By solving (12) and (13) with decreasing μ → 0, IPM will provide a local optimal
solution to the original problem (8) where μ = 0.

Actually, IPMplays a role of local solver, and then TRUST-TECH is used to compute
multiple local optimal solutions following procedure below:

Step1: Initialization. Set the initial point v0 = (1/K, 1/K, …, 1/K) and the set of SEPs
Vs = ∅.

Step2: Calculate the correlation matrix C and compute its eigenvalues λ1, λ2, …,
λK .

Step3: Use v0 as the initial point, apply the IPM to solve (8) and get an SEP υs0, and
update Vs = {υs0}.

Step4: If mini=1Kλi < ρ (ρ is a very small positive value), calculate the search

direction
{
d1, 
d2, ...
dK

}
.

Step5: For i = 1:m, search for an exit point υe along 
di in the generalized gradient
system (15),

dx

dt
= −∇HT (x)H (x) (15)
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which is defined based on problem (14) with associate energy function

E(x) = 1

2
‖H (x)‖2 (16)

If υe along 
di is found, step forward along the search direction to the point υ ′ = υs0
+ τ (υe − υs0) with τ being a small positive value. υ ′ will lie in the stability region of
the neighboring SEP.

Then, use υ ′ as an initial point, apply the IPM to get the tier-1 SEP, denoted as υsi,
lying in the neighboring stability region, and update Vs as Vs = Vs ∪ {υsi}.

Step6: The optimal combination vector is obtained as υ* = argminυ{E(υ)|υ ∈ Vs}.
End
The final ensemble function of SVR is expressed as (17)

Y (xn) =
K∑

m=1

vmfm(xn) m = 1, 2, ...K (17)

where Y (xn) is the final regression results with input xn.
In the case of SVC (binary classification), a weight-based voting process will

determine the final results as (18)

Y (xn) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
K∑

m=1
vmfm(xn) > 0

−1
K∑

m=1
vmfm(xn) < 0

fm′(xn)
K∑

m=1
vmfm(xn) = 0

(18)

where f m′ (x) is the estimation function corresponding to the maximum vm ∈ υ*. For
multiple-class problems, a similar voting strategy is adopted, where the basic principle
is that the instance is tagged to the most voted classification, and if two or more classes
win the same vote, the estimation with the highest weight reaches the final decision.

4 Application of Algorithm in Regression

In this chapter, we will solve a regression problem by using GA-SVM and ensemble.
Instead of clustering algorithms, independent repeating of GA-SVM will be applied to
generate multiple SVM models, and then all these models are ranked where top ones
are selected for ensemble.

4.1 Problem Definition

[33] points out that among all SVR problems, financial data and electric load time series
prediction appear to be the worthiest topics. In this thesis, the load forecasting problem
in EUNITE Network Competition 2001 is studied. According to [34], the problem is
described as follows.
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Given Data:

• Electricity load demand recorded every half hour, from 1997 to 1998.
• Average daily temperature, from 1995 to 1998.
• Dates of holidays, from 1997 to 1999.

Task:

• prediction of maximum daily values of electrical loads for January 1999

Main evaluation on results:

MAPE = 100 ∗

n∑

i=1

∣
∣
∣Li−L̂i

Li

∣
∣
∣

n
, n = 31 (19)

To make the final results comparable, raw data are preprocessed similar to [34].
Unlike parameters in SVC, the ones in SVR are a three- dimension pr = (C, ε, γ )

and thus a grid-search method will be more computationally complex (tries of solution
increasing from n2 to n3, where n is the number of ‘grid’). Anyway, GA-SVM deals
with this problem similar to SVC.

4.2 Multiple Models Generated by GA-SVM

In this stage, GA-SVM is firstly repeated ρ times and it will get ρ independent optimal
parameter. According to [2], SVM models with smaller ω tend to be of higher gener-
alization ability. Then, all ρ parameters would be ranked according to ω in descending
orders, and the top ρ′ parameter will be used for ensemble.

In the electric load forecasting problems, 50 optimal parameters (or models S = {s1,
s2,…, s50}) are generated by repeatingGA-SVM independently and then ranked. Top 10
models S′ = {s39, s49, s47, s7, s50, s10, s18, s23, s21, s17} are selected further according
to the value of ω, as showing in Table 1. By solving the corresponding optimization
problem (8), weight of each model of S′ is obtained, denoted as v′ = (0.0365, 0, 0.4845,
0.2358, 0.2432, 0, 0, 0, 0, 0). Thus, the final prediction is (20).

Y (xi) =
∑

Si∈S ′
fj(xi)v

′
j, i = 1, 2, ...31, j = 1, 2, ...10 (20)

where xi represents the maximum electric load of the ith date in January, 1999. f j(x) is
the corresponding estimation function of the jth which is the selected model in S′ with
v′
j, its weight.

To illustrate the performance of ensemble, a comparison between the prediction
results of ensemble models, single model (with the best ω) and the actual electric loads
is given in Fig. 4. Final results show that with the lowest ω model the MAPE is 2.566,
while with ensemble theMAPE is 1.866, which is better than the result obtained by Lin
in EUNITE competition using SVM with the MAPE = 1.982.
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Table 1. SVM models for ensemble

Before ranking After ranking

Models no Validating error Models no ω (descending order) Validating error

1 1.833 39 523.4863 2.756

2 1.604 49 4781.672 1.578

3 1.702 47 5349.222 1.557

4 1.818 7 7717.754 1.683

5 1.863 50 9073.668 1.590

6 1.510 10 9114.403 1.665

7 1.683 18 16202.6 1.563

8 1.361 23 16685.5 1.599

9 1.699 21 20775.92 1.568

10 1.665 17 26607.92 1.714

11 1.762 34 30603.84 1.617

12 1.828 2 30905.61 1.604

13 1.825 43 31191.94 1.586

14 1.407 27 55406.93 1.724

15 1.839 16 63099.55 1.610

… … … … …

50 1.610 42 68794.02 1.754

Fig. 4. Comparison among ensemble, single and actual load
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5 Conclusion and Future Work

A framework of GA-SVM is proposed in this paper, which will automatically optimize
parameters of SVM and generate optimal SVMmodels. The clustering algorithm is also
combined with GA-SVM as an enhancement, providing devious SVMmodels for future
ensemble, as well as being a convergent criterion. This paper also proposes an ensemble
strategy with the help of TRUST-TECH. Moreover, experiments in both classification
and regression problems show the validity of GA-SVM, the clustering algorithm and the
ensemble.
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