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Abstract. The existing incomplete multi-view graph clustering (IMGC) meth-
ods mainly focus on leveraging available samples among different views to
explore the weak local structure information, resulting in inexact or unreliable
affinity graphs for clustering. More importantly, they fail to exploit the spatial
structure information among graphs. To graciously address both, in this paper, we
propose a novel IMGC method, claimed as robust principle component analysis
(RPCA)-induced graph tensor learning (RPCA-IGTL) for incomplete multi-view
inferring and clustering. This model can synchronously perform missing part fill-
ing, complete data inferring, and diagonalized graph tensor learning to obtain the
more exact and reliable affinity graphs for clustering. Especially, the proposed
method first designs a RPCA-induced local manifold learning framework, which
bridges complete data inferring in feature space and the diagonalized graph learn-
ing in graph semantic space. Both objects can boost each other to fully exploit the
underlying local structure information among incomplete view data. Besides, a t-
SVD based tensor low-rank constraint introduces to exploit the spatial structure
of graph tensor and complementary information of diagonalized affinity graphs.
Extensive experiments have demonstrated the effectiveness of our method com-
pared to the previous state-of-the-art methods.

Keywords: Incomplete multi-view inferring and clustering · Robust principle
component analysis · Low-rank graph tensor

1 Introduction

Multi-view clustering (MVC) has become an increasingly pervasive research topic due
to its powerful ability of handling multi-view data for improving clustering performance
during the past few decades [4,19]. The implementation of these methods quite depends
on an assumption that views among samples are visible. However, this assumption will
not hold anymore owing to the absence of multi-view data, especially in certain practi-
cal applications [9,22]. This tremendously limits the aforementioned MVC methods to
handle incomplete MVC (IMVC) tasks.
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Recently, lots of IMVC methods have been proposed to alleviate the absence prob-
lem of data and can be roughly divided into three main categories: kernel based IMVC,
non-negative matrix factorization (NMF) based IMVC (NMF-IMVC) [3], and graph
based IMVC, also known as incomplete multi-view graph clustering (IMGC) [26,27].
For first category, [16] first proposes to complete kernel Gram matrix to deal with
incomplete kernel problem for IMVC. Unfortunately, it is merely appropriate for the
incomplete case that at least one base kernel is complete, which greatly prevents its
application in practice. To this end, many scholars propose absent multiple kernel learn-
ing models for incomplete clustering. Typically, multiple kernel k-means with incom-
plete kernels clustering (MKK-IKC) [10] proposes to learn the kernel coefficients and
the clustering partition matrix in a joint objection to fill the incomplete base kernels
and clustering. However, it is great difficult for kernel based IMVC methods to tune the
suitable kernel parameters for predefined base kernels.

For second category, most of them directly fuse multiple complementary representa-
tions into a low-dimensional consensus representation for clustering [5]. Another meth-
ods use mean values or zeros to fill the incomplete parts and then couple a weighted
strategy [2,18,21,23]. These methods can directly obtain a consensus representation
for reducing the impact of the incomplete samples of different views. Despite its effec-
tiveness, NMF-IMVCmethods always obtain an uncompacted representation since they
neglect the intrinsic (such as inter-view) structure of multi-view data. For instance,
incomplete multi-view clustering with flexible locality structure diffusion (IMVC-
FLSD) [23] integrates the consensus representation learning and the objection weighted
learning into a unified model to explore the certain paired similarity in different views.

Compared to most NMF-IMVC methods, IMGC methods can better preserve the
geometric structure of data, especially for the local geometric structure among data
in graph learning process, which has been proved to very significant for clustering
[20,22,25]. Incomplete multi-view spectral clustering with adaptive graph learning
(IMVSC-AGL) [20] directly uses available multi-view data to generate a consensus
representation for clustering. To sum up, the above mentioned IMVC methods always
focus on adequately exploring the effective information of available samples to obtain
preferable clustering, while lacking of the ability of recovering missing views.

To this end, a unified embedding alignment framework (UEAF) [22] attempts to
address IMVC problem by recovering the missing views rather than only leveraging
available views data. However, it is seriously sensitive to noise and outliers, resulting in
the inferior affinity graph and clustering results.

To address above problems, we propose a novel IMGC method, namely Robust
Principle Component Analysis Induced Graph Tensor Learning (RPCA-IGTL), to syn-
ergistically recover missing views and infer complete data without noise for improve
the IMVC. Particularly, we first extend the traditional RPCA model to manifold regu-
larized RPCA framework for handling the challenging incomplete multi-view recover-
ing problem. And then, we couple the adaptive neighbors graph learning with manifold
regularized RPCA framework into a unified objective function. Besides, an enhanced
block diagonal constraint and t-SVD based tensor low-rank constraint are simultane-
ously imposed on the learning of affinity graph, so as to guide the missing data recov-
ering and complete data inferring. In summary, the contributions of this paper mainly
include the following:
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Fig. 1. Framework of the proposed RPCA-IGTL.

– To address the original incomplete and noise data, we design an elegant RPCA-
induced manifold learning framework. It integrates missing part completing, low-
rank complete data inferring, and local manifold learning into a unified objective
function, such that the more exact and reliable graphs can be learned for improving
the clustering performance.

– Instead of suboptimal block diagonal regularizer with extra parameter, a more flexi-
ble block diagonal constraint with parameter free is considered to precisely control
the number of diagonal blocks of graphs in framework, which is greatly signifi-
cant for clustering. Further, with the t-SVD based tensor low-rank constraint on
the learned diagonal graphs, the spatial structure and complementary information
among incomplete graphs can be exploited as possible.

– Compared to two base line and several state-of-the-art IMVC and IMGC methods,
our method achieves important improvement on various scale datasets.

2 Related Work

2.1 Notation Summary

Through this paper, we denote 3-order tensor, matrix and vector as M ∈ R
n1×n2×n3 ,

Mn1×n2 , M, respectively. M � 0 is the positive semi-definite matrix. The Mi,j,k is
the element ofM, where the fiber is denoted asM(:, j, k),M(i, :, k), andM(i, j, :),
as well as the slice is denoted as horizontal slice M(i, :, :), lateral slice M(:, j, :),
and frontal slice M(:, :, k). For convenience, M(:, :, k) is simplified as Mk or Mk.
Mf = fft(M, [ ], 3) andM = ifft(Mf , [ ], 3) are the fast Fourier transformation
(FFT) and inverse FFT along the third direction of tensorM, respectively.
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The tensor singular value decomposition (t-SVD) and t-SVD based tensor nuclear
norm (t-TNN) are defined as the following

Definition 2 (t-SVD-Based Tensor Nuclear Norm, t-TNN). ‖M‖� is the t-SVD
based tensor nuclear norm ofM ∈ R

n1×n2×n3 , which is denoted as the sum of singu-
lar values of all the frontal slices of Mf , i.e.,

‖M‖� =
n3∑

k=1

∥∥∥Mk
f

∥∥∥
∗
=

min(n1,n2)∑

i=1

n3∑

k=1

∣∣∣Sk
f (i, i)

∣∣∣ (1)

where Sk
f is obtained by t-SVD of frontal slices of Mf , i.e., Mk

f = Uk
fSk

fVk
f

ᵀ
. Uk

f

and Vk
f are the corresponding left and right singular value matrices.

2.2 Adaptive Neighbors Graph Learning (ANGL)

By adaptively assigning an affinity value for each sample as neighbor value of another
sample, adaptive neighbors graph learning [14] can be mathematically expressed as

min
Sv

n∑

i=1

n∑

j=1

D(xv
i ,xv

j )s
v
ij (2)

D is the distance criterion between any two samples, and the larger distance indicates
the smaller affinity value sv

ij corresponding to v-th view. (2) can effectively learn an
affinity graph with local geometrical structure preserving.

2.3 Robust Principle Component Analysis (RPCA)

The model of RPCA takes the form of

min
D,E

‖D‖∗ + αφ(E) s.t.X = D+E (3)

which has a strong recovery guarantees as the first polynomial-time method [1]. X in
(3) denotes the damaged or noisy samples, and is decomposed as the low-rank sample
matrix and sparse error matrix, respectively. φ(·), α and ‖·‖∗ denote the certain regular-
izer of noise, regularization parameter and nuclear norm, respectively. Most algorithms
have demonstrated that low-rank representation can well characterize the relationship
between data. Low-rank representation in (3)D can be deemed as the clean data recov-
ered from original data X, which has been extensively used in video surveillance and
image denoising [11].

3 Proposed Method

Different from partial multi-view learning [18], incomplete multi-view learning is a
significantly challenging research topic. Since the incomplete view data (missing parts)
will destroy the original affinity between multi-view data, resulting in deceptive affinity
values. Further, the unreliable affinity graphs constructed from these data will cause
the terrible clustering results. Thus, we develop a RPCA inferring framework (RPCA-
IGTL) to simultaneously infer the missing view data and diagonalized graphs learning
for clustering. Intuitively, Fig. 1 has given a clear pipeline of RPCA-IGTL.



RPCA-Induced Graph Tensor Learning 89

3.1 Model of RPCA-IGTL

In complete partial multi-view graph clustering, adaptive neighbors graph learn-
ing (ANGL) becomes increasingly prevalent and has achieved the promising results
recently [2]. Based on ANGL of (2), multi-view graph clustering (MVGC) can be for-
mulated as

min
Sv

r∑

v=1

n∑

i,j=1

(‖xv
i − xv

j ‖22sv
ij + γsv

ij
2)

s.t. ∀i, s�
i 1 = 1, 0 ≤ si ≤ 1,rank(Lv

S) = n − c

(4)

where smaller distance between samples xv
i and xv

j automatically learns a larger
affinity value sv

ij to construct the affinity graph Sv , and vice versa. γ is a parame-
ter to control the neighbors between samples and r represents the number of view.
Here, Lv

S = Pv − (Sv + (Sv)�)/2 and c are a Lagrangian matrix and the number
of cluster, respectively. The degree matrix Pv can be computed via pv

ii =
∑

j sv
ij .

rank(Lv
S) = n − c is a widely used Lagrangian rank constraint to pursue a graph

with exact connected components for improving clustering performance. Owing to
Lagrangian rank constraint and the capacity of local manifold structure, the complete
MVGC methods have received lots of attention recently. However, (4) needs all views
data to be complete. To address this challenging problem, it urgently requires a way to
infer or recover the missing view data. To this end, we consider that RPCA has a strong
recovery ability as the first polynomial-time method in (3). Here, one may utilize clean
data to substitute X in (4). Apparently, there is only available samples information
without missing samples information in D, such that the missing view information is
ignored. Inspired by (3), we first design an inferring framework as mentioned in the left
of Fig. 1, and this framework can be mathematically fulfilled as

min
D,E

‖D‖∗ + αφ(E) s.t.X+BW� = D+E (5)

where BW� is the complete missing part, and W is a index matrix to explicitly
enforces the entries to be zeros corresponding to the missing samples from B. W can
be construct via

W v
i,j =

{
1, if the i-th missing sample is xv

j

0, otherwise
(6)

Not here that we can take full advantage of different incomplete prior information
to construct corresponding index matrix W, so as to deal with various of incomplete
cases. By extending (5) to multi-view model, and we seamlessly integrate this model
and (4) into a unified objection as

min
Bv,Dv,Ev,

Sv,Zv

r∑

v=1

‖Dv‖∗ + α‖Ev‖1 + βTr(DvLv
S(D

v)�) + γ‖Sv‖2F

s.t. ∀v,Xv +Bv(Wv)� = Dv +Ev,rank(Lv
S) = n − c

(7)

where β is hyper-parameter. φ(·) = ‖ · ‖1 on Ev is l1 norm, which can alleviate error
in the available samples of Xv and make the most of useful information in Xv transfer
toDv . Frobenius norm is imposed on Sv to avoid trivial solution.
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Although (7) has the power of inferring the information of missing views, it still
exists the following limits: First, it neglects the complementary information among dif-
ferent views and spatial structure of graphs. Second, 1) n is usually much larger than c,
so that it is illogical to find a high-rank Lv

S by minimizing rank(Lv
S); 2) more impor-

tantly, rank(Lv
S) = n − c is not able to control the targeted number of blocks; 3) the

solution of rank(Lv
S) = n− c always introduces an extra hyper-parameter. To address

these problems, we propose a novel IMGCmethod, named RPCA-induced graph tensor
learning (RPCA-IGTL) for incomplete multi-view inferring and clustering, as follows

min
Bv,Dv,Ev,

Zv,S

r∑

v=1

‖Dv‖∗ + α‖Ev‖1 + βTr(DvLv
SD

v�) + γ‖S‖�

s.t. ∀v,Xv +Bv(Wv)� = Dv +Ev,Tr(Sv) = c, 0 � Sv
ij � 1(Sv)� = Sv

(8)

where Tr(·) is a trace norm. To address the first problem, we stack the r affinity graphs
into a tensor S∗ ∈ R

n×n×r to well capture the complementary information among
different views and spatial structure information of graphs. And then S∗ is rotated to
Sn×r×n so as to better exploit inter-view information, which can simultaneously reduce
the computational complexity from O(rn2log(r) + rn3) to O(rn2log(n) + r2n2).
Further, a t-SVD based tensor nuclear norm is imposed on S inspired by following two
facts: 1) the views of different Sv , originating from the same dataset source, possess
some consensus structure information; 2) the learned tensor S should enjoy the low-
rank property since the number of clusters c is always much less than the number of
samples n. For another problem, the more exactly block diagonal constraint Tr(Sv) =
c, 0 � Sv

ij � 1, (Sv)� = Sv not only directly encourages affinity graphs to be block
diagonal rather than inducing an extra hyper-parameter to solve rank(Lv

S) = n − c,
but also can control the number of blocks. As mentioned in the right part of Fig. 1,
the imposed block diagonal constraint can control the graphs with intra-cluster dense
and inter-cluster sparse as the input of tensor, which will vastly benefit to exploiting
inter-view graph spatial structure information in high-order graph semantic space.

3.2 Optimization

By introducing an auxiliary variable G and {Z}r
v=1, a seven-step alternating direction

method of multipliers (ADMM) is developed to optimize non-convex problem (8) as
follows

min
Bv,Dv ,Ev,
Sv,Zv,G

r∑

v=1

‖Dv‖∗ + α‖Ev‖1 + βTr(ZvLv
S(Z

v)�) + γ‖G‖� +
μ

2
‖G − S +

Y3

μ
‖2F

+
μ

2
‖Xv +Bv(Wv)� − Dv − Ev +

Yv
1

μ
‖ +

μ

2
‖Zv − Dv +

Yv
2

μ
‖2F

s.t. ∀v,Zv = Dv ,G = S,Tr(Sv) = c, 0 � Sv
ij � 1, (Sv)� = Sv

(9)

where μ is a penalty parameter. Yv
1 ,Y

v
2 and Yv

3 are Lagrangian multipliers.
� Step 1. D-subproblem: Fixing the other variables except the recovering D, we

update D via

min
D(v

(‖Dv‖∗ +
μ

2
‖Dv − Hv‖2F ) (10)
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whereHv = (Xv +Bv(Wv)� +Zv −Ev + (Yv
1 +Yv

2)/μ)/2, and (10) can obtain a
closed-form solution via by the singular value thresholding operator [24].

� Step 2. Z-subproblem: By keeping the other variables unchanged except Z, the
subproblem of Z becomes

min
Zv

&(βTr(ZvLv
S(Z

(v))�) +
μ

2
‖Zv − Dv +

Yv
2

μ
‖2F ) (11)

By taking the derivative of Z and setting it to be zeros, we then have Z(v)∗
= (μDv −

Yv
2)(2βL

v
S + μI)−1.

� Step 3.E-subproblem: The other variables are fixed exceptE, theE subproblem
of problem (9) reduces to

min
Ev

&α‖Ev‖1 + μ

2
‖Ev − Cv‖2F (12)

where Cv = Xv + Bv(Wv)� − Dv + Yv
1

μ . Such subproblem can first be written in
vector form, and efficiently solved by Lemma 3.2 in [8].

� Step 4. B-subproblem: The inferring matrix B can be obtained by fixing the
other variables except B as follows

min
Bv

μ

2
‖Xv +Bv(Wv)� − Dv − Ev +

Yv
1

μ
‖2F (13)

By setting the first-order derivative of B to zeros, we can obtain the closed-form solu-
tion as Bv = −(Xv − Dv − Ev +Yv

1/μ) ∗ Wv ∗ ((Wv)�Wv)−1.
� Step 5. S-subproblem: The other variables remain unchanged except S, sub-

problem of S can be reformulated as

min
Sv

β

r∑

v=1

Tr(ZvLv
S(Z

v)�) +
μ

2
‖Gv − Sv +Yv

3/μ‖2F

⇒min
Sv

‖Sv − Av‖
s.t. ∀v,Tr(Sv) = c, 0 � Sv

ij � 1, (Sv)� = Sv

(14)

where Av = Gv +Yv
3/μ − β

μ ∗ Qv , and qv
ij = ‖zv

i − zv
j ‖22. qv

ij is the ij-th element of
Qv . For each Sv , the optimal solution can be obtained by Theorem 1.

Theorem 1 For a symmetric affinity matrix S ∈ R
n×n, the spectral decomposition of

S is denoted as A = UDiag(δ)U�. The following problem

min
S

‖S − A‖2F s.t. Tr(S) = c,S� = S,0 	 S 	 1 (15)

has optimal solution given by S∗ = UDiag(ρ∗)U�, where ρ∗ is the solution to

min
ρ

‖ρ − δ‖22, s.t. 0 ≤ ρ ≤ 1,ρ�1 = c. (16)
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Proof. For two symmetric matrices S ∈ R
n×n and A ∈ R

n×n, and let ρ1 ≥ ρ2 ≥
· · · ≥ ρn and σ1 ≥ σ2 ≥ · · · ≥ σn be the ordered eigenvalues of S andA, respectively.
Due to the fact that Tr(S�A) ≤ ∑n

i=1 ρiσi shown in [13], we obtain

‖S − A‖2F = Tr
(
S�S

)
+ Tr

(
A�A

) − 2Tr
(
S�A

)

=
n∑

i=1

ρ2i +
n∑

i=1

δ2i − 2Tr
(
S�A

)

≥
n∑

i=1

(
ρ2i + δ2i − 2ρiδi

)

= ‖ρ − δ‖22

(17)

Note here that the above equality holds when S admits the spectral decompositionA =
UDiag(σ)U�. Addionally, the constraints 0 	 S 	 1,Tr(S) = c are equicalent to
0 ≤ ρ ≤ 1, ρ�1 = c, respectively. Thus, S∗ = UDiag(σ)U� is optimal to problem
(16) with σ∗ being optimal to problem (17). After that, we can obtain the final solution,
S∗ = (S∗ + (S∗)�)/2, to satisfy the constraint A� = A. The proof is completed. �

Finally, an efficient iterative algorithm in [14] can be employed to solve (17).
� Step 6. G-subproblem: The subproblem of G can be transformed as follows

min
G

γ‖G‖� +
μ

2
‖G − S +Y3/μ‖2F (18)

Let M = S − Y3/μ and according to the following Theorem 2, we can apply the
tensor tubal-shrinkage of M to solve the problem (18).

Theorem 2 [28] For a scalar τ > 0 and two three-order tensors T ∈ R
n1×n2×n3 ,

M ∈ R
n1×n2×n3 , the global optimal solution of the following problem

min
T

τ‖T ‖� +
1
2
‖T − M‖2F (19)

where τ = γ
μ . And (19) can be computed by tensor tubal-shrinkage operator as follows

T = Cn3τ (M) = U ∗ Cn3τ (G) ∗ V� , (20)

where M = U ∗ G ∗ V� and Cn3τ = G ∗ Q. Q ∈ R
n1×n2×n3 denotes a f-diagonal

tensor and each diagonal element of Q is defined as Qf (i, i, j) =
(
1 − n3τ

G(i, i, j)
)

+
.

� Step 7. ADMM variables-subproblem: We update variables of ADMM via

Yv
1 = Yv

1 + μ(Xv +Bv(Wv)� − Dv − Ev)
Yv

2 = Yv
2 + μ(Zv − Dv)

Y3 = Y3 + μ(G − S)
μ = min(η μ, μmax)

(21)

where both η and μmax are the scalars of ADMM. The pseudo-code is depicted as in
Algorithm 1, whose convergence condition ismax{|objt+1 −objt|, ‖St+1 −St‖2F } ≤
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Algorithm 1 Algorithm to the proposed IMGC method.

Require: Multiple incomplete data {Xv}r
v=1, α, β and γ, μ = 0.01, μ0 = 1010, η = 2.

Ensure: Graphs Sv , inferring data Bv , recovering data Dv .
1: Initialize {D}r

v=1, {B}r
v=1, {E}r

v=1, {Z}r
v=1, {G}r

v=1, {Y1}r
v=1, {Y2}r

v=1, {Y3}r
v=1 to

be zeros. {S}r
v=1 are initialized by constructing k-nearest neighbor graphs from {Xv}r

v=1.
2: repeat
3: Update theD via (10);
4: Update the Z via (11);
5: Update the E via (12);
6: Update theB via (13);
7: Update candidate graphs {Sv}r

v=1 via (14);
8: Construct S via bvfold and rotate on {Sv}r

v=1;
9: Update the tensor A via (19);
10: Update the ADMM variables via (21);
11: untilmax{|objt+1 − objt|, ‖St+1 − St‖2

F } ≤ ε;
12: Output ̂S = (

∑r
v=1 S

v)/r.

Table 1. Benchmark datasets.

Database Class View Objective Samples

BBCSport 5 4 Documents 116

Handwritten 10 2 Digit images 2000

Caltech7 7 6 Generic object 1474

MNIST 10 3 Digit images 10000

ε. Here, obj, t and ε = 10−5 are the objection value of function, iteration number and
threshold value, respectively.

Computational Complexity: The computational complexity of (9) involves the follow-
ing main subproblems, including (10), (11), (12), (13), (15), and (19). And the major
computational cost involves (10), (11), (15), and (19). (10) needs to compute matrix
SVD with the complexity O(rn2) by leveraging an approximation rank technique like
PROPACK package [6]. (11) requires the complexity of O(rn3) due to the matrix
inversion. (15) involves the skinny SVD operation to compute the c largest eigenvalue-
eigenvector pair of graphs with O(rn2). (19) involves fft and ifft operators on the
n × r × n tensor, the complexity is O(rn2 log(n)), then it also requires to compute
the SVD of each frontal slice with size n × r in the Fourier domain, thus the complex-
ity is O(rn2 log(n)) + O(r2n2) in total. Here, we ignore (12), (13) and the variables
of ADMM since they are basic matrix operations. The computational complexity of
Algorithm 1 can be summarized as O(n3) since t and r are far less than n.

4 Experiment

Evaluation and Datasets: As shown in Table 2, 4 popular datasets from various appli-
cations, cluster-numbers, view-numbers and sample-numbers are employed to evaluate
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(a) Handwritten: X of View 1 (b) Handwritten: D of View 1

(c) Handwritten: X of View 2 (d) Handwritten: D of View 2

Fig. 2. The visualization via t-SNE [12] for original data and inferring complete data with missing
rate of 30% on Handwritten dataset.

the compared methods with three criterions: accuracy (ACC), normalized mutual infor-
mation (NMI), and Purity. Here, the bigger values of criterions indicate a better clus-
tering performance. (1) Handwritten contains 2000 samples and averagely distributes
in 10 classes, we merely choose pixel average features and Fourier coefficient features
to construct two views. (2) Caltech7 is a prevalent 7-object dataset with 1474 sam-
ples, which is consisted of six features corresponding to 6 views, including LBP, GIST,
Gabor, wavelet moments, CENTRIST and HOG. (3) BBCSport has 116 samples from
5 classes, whose 4 views contains different feature dimensions with 2158, 2113, 2063
and 1991 in this paper. (4) MNIST consists of 70000 samples of 28-by-28 pixel size,
where we randomly select the 10000 samples, and then following [29] to construct 3
different views.

Compared Methods: We compare our approach with two base line methods, includ-
ing best single view (BSV) and Concat, as well as several state-of-the-art IMGC meth-
ods, including PVC [7], GPMVC [15], IMG [26], MIC [18], OMVC [17], DAIMC [3],
UEAF [22], and GIMC-FLSD [23], APGLF [27].

Incomplete Data Construction: Following the incomplete data construction from [22],
10%, 30%, and 50% samples of all evaluated datasets (except MNIST) are randomly
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Fig. 3. The graph recovering with missing rate of 50%.

moved for each view to construct the incomplete multi-view datasets with correspond-
ing missing rates, where each sample owns at least one view. Further, 10%, 30%, 50%
and 70% samples are randomly selected as the paired samples for MNIST dataset. Then,
we remove half of the remaining samples for one view, and follow the previous strategy
to remove the next view until the last view.

Inferring Complete Data and Affinity Graph Recovery: Before performing Algo-
rithm 1, the dense clusters of ellipse in Fig. 2 (a) and (c) are caused by the incomplete
information of original dataX, where incomplete part is filled with 0. After performing
our Algorithm 1, the dense clusters of ellipse in Fig. 2 (b) and (d) have a good discrim-
inant, where incomplete information are inferred and filled with the valid information
value. This intuitively proves the validity of inferring complete data D.

As mentioned in Fig. 3, we have shown the affinity graph of our method on BBC-
Sport and Handwritten datasets. It is easy to find that: 1) compared to original affinity
graph (here, we adopt inner product to produce graph X�X.), the edges of graphs
corresponding to the missing part can be gradually completed well with the increas-
ing of iterations; 2) even in missing rate with 50%, both BBCSport and Handwritten
have clear block diagonal structure, i.e., blocks of graphs are equivalent to the class of
original data, this plays a critical role for clustering.

Experimental Results: Following [23], we repeatedly perform 5 times independent
experiments of all the comparison methods, and then the average clustering per-
formance and standard deviation are presented in Table (2). From the experimental
results of Table (2), we can obtain the following observations: 1) our RPCA-IGTL
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Table 2. Clustering results (i.e., ACC, NMI and Purity) of the comparison methods in terms of
five varying scale datasets. The best results are highlighted in bold. For compared methods, most
of experimental results are copied from [23].

Dataset Metrics MR BSV Concat GPMVC MIC DAIMC OMVC UEAF GIMC-FLSD APGLF our

BBCSport ACC 10% 67.35±3.86 69.32 ± 4.56 49.48 ± 6.46 50.51 ± 2.10 62.53 ± 8.16 51.45 ± 5.67 77.13±5.21 79.02±4.47 91.38±4.21 88.90±3.26

30% 54.17±3.91 60.21 ± 3.85 42.89 ± 4.66 47.05 ± 3.96 60.66 ± 9.71 44.28 ± 5.01 85.21±4.61 76.29±1.91 81.03±1.86 84.48±1.26

50% 49.37±2.96 50.82 ± 3.02 40.13 ± 4.77 45.52 ± 1.87 54.51 ± 9.18 49.57 ± 4.37 68.27±4.01 69.71±4.20 75.00±4.16 78.45±3.81

NMI 10% 65.35 ± 3.09 62.86 ± 5.61 28.14 ± 6.93 30.47 ± 2.91 49.24 ± 8.20 39.37 ± 6.46 69.52±3.89 71.81±3.60 79.37±1.66 81.09±1.83

30% 50.39 ± 4.68 40.31 ± 5.28 18.94 ± 4.84 26.30 ± 4.57 46.99 ± 9.23 40.32 ± 5.12 67.21±3.21 64.64±2.54 71.53±2.11 80.31±3.68

50% 36.81 ± 3.95 27.13 ± 5.21 17.82 ± 5.18 24.54 ± 3.19 36.54 ± 9.40 42.65 ± 4.91 54.81±3.08 52.28±5.91 55.27±5.21 73.07±2.96

Purity 10% 72.57 ± 4.98 79.12 ± 4.26 56.83 ± 6.16 56.19 ± 2.13 71.49 ± 7.03 52.56 ± 5.78 87.21±4.92 88.45±2.70 91.38±3.26 93.97±3.61

30% 55.86 ± 4.28 68.51 ± 4.36 47.84 ± 4.16 51.22 ± 4.38 69.71 ± 9.91 54.52 ± 5.24 86.38± 4.21 85.34±1.68 87.07 ±2.52 93.10±2.63

50% 42.21 ± 4.34 50.08 ± 4.37 45.60 ± 4.21 50.41 ± 2.91 62.90 ±4.88 56.47 ± 5.16 76.89±3.76 77.67±5.16 79.31±4.88 91.38±3.21

Handwritten ACC 10% 71.32 ± 4.35 82.12 ± 1.89 79.61 ± 3.96 70.62 ± 3.20 78.23 ± 3.49 73.90 ± 2.63 80.18±2.56 87.27 ± 1.98 88.10 ± 1.72 99.45 ±2.36

30% 55.31 ± 4.21 78.31 ± 1.27 77.15 ± 3.28 63.07 ± 2.59 75.15 ± 2.01 68.19 ± 3.78 77.12 ±2.38 84.29 ± 1.62 87.45±2.11 98.35 ± 2.34

50% 41.43 ± 5.89 66.91 ± 1.14 71.28 ± 2.49 55.17 ± 3.29 64.28 ± 3.92 59.12 ± 3.50 71.26±2.89 77.27 ± 2.28 81.55±2.69 98.15 ± 1.67

NMI 10% 58.85 ± 1.48 78.20 ± 2.90 72.19 ± 2.16 63.27 ± 2.11 64.16 ± 2.17 61.16 ± 3.01 70.13 ±1.58 79.16 ± 1.06 89.04±1.21 98.53 ± 2.37

30% 52.03 ± 1.20 65.34 ± 2.13 69.16 ± 2.31 55.21 ± 1.98 61.16 ± 2.37 58.22 ± 3.38 65.23±1.21 75.27 ± 1.95 85.22±1.31 96.02 ± 1.08

50% 45.52 ± 1.16 56.31 ± 2.66 67.26 ± 3.03 50.15 ± 2.16 52.15 ± 2.11 51.15 ± 2.16 61.31±1.27 69.83 ± 1.21 82.85±1.29 95.63 ± 1.27

Purity 10% 66.15 ± 1.98 83.01 ± 1.56 81.15 ± 2.84 73.11 ± 2.46 78.26 ± 2.17 73.16 ± 2.27 83.72±2.67 87.93 ± 1.62 88.10±1.74 99.45 ± 0.91

30% 58.86 ± 1.35 70.23 ± 2.09 78.22 ± 2.38 64.27 ± 2.27 74.27 ± 2.53 67.27 ± 2.83 80.12± 2.98 83.16 ± 1.15 85.50±1.13 98.35 ± 1.21

50% 52.29 ± 1.69 61.35 ± 2.95 72.27 ± 3.93 58.72 ± 2.27 65.82 ± 3.82 60.27 ± 3.28 73.21±3.52 76.87 ± 2.27 82.85±76.33 98.15 ± 1.09

Catech7 ACC 10% 61.32 ± 2.78 45.48 ± 2.67 43.34 ± 3.30 41.77 ± 3.64 42.26 ± 4.03 38.89 ± 2.64 51.63±4.23 48.20±1.55 66.82±1.35 77.82±1.73

30% 45.23 ± 3.15 44.31 ± 1.54 40.81 ± 4.90 40.47 ± 3.36 41.16 ± 3.49 37.77 ± 3.91 43.62±1.02 47.14±1.12 48.14±2.65 50.14±2.83

50% 44.24 ± 1.87 40.61 ± 3.01 34.25 ± 3.93 38.88 ± 4.95 38.35 ± 2.78 36.50 ± 2.79 37.11±3.16 44.08±2.41 46.31±1.88 49.32±1.94

NMI 10% 45.83 ± 1.29 45.71 ± 1.04 29.08 ± 3.00 35.52 ± 1.72 42.71 ± 2.65 27.74 ± 1.57 40.13±2.36 44.84±0.85 50.34±2.06 60.55±2.13

30% 36.25 ± 3.12 41.74 ± 2.45 21.24 ± 7.05 31.10 ± 1.95 40.29 ± 2.44 23.76 ± 3.47 32.21±2.08 42.32±1.05 45.16±3.84 48.04±2.95

50% 28.58 ± 1.56 35.66 ± 2.31 13.41 ± 3.31 26.67 ± 3.29 36.22 ± 2.27 19.87 ± 3.32 25.24±1.51 36.53±1.91 42.65±1.37 44.82±1.25

Purity 10% 84.17 ± 0.94 86.28 ± 0.39 78.41 ± 1.86 80.86 ± 1.12 84.63 ± 1.37 78.95 ± 0.88 82.31±1.87 86.62±0.34 86.58±0.87 87.11±0.64

30% 76.28 ± 1.36 84.28 ± 0.91 74.31 ± 6.28 78.24 ± 1.62 83.79 ± 1.25 76.90 ± 2.19 79.88±2.56 85.63±0.65 85.96±0.97 86.16±0.87

50% 72.19 ± 0.77 79.68 ± 0.84 68.71 ± 3.75 74.99 ± 3.58 82.60 ± 0.96 75.23 ± 2.46 77.61±2.30 83.33±0.96 84.27±1.86 85.96±1.97

overwhelmingly surpasses the compared methods, especially in Handwritten and BBC-
Sports datasets, our method has a larger improvement with the increasing of missing
rate, the reason may be that our method can well capture the graph spatial information
of graph semantic space; and 2) the clustering performance decreases on all datasets for
each method with the increasing of missing rate, and the great decline on BBCSport,
and Handwritten datasets for BSV and Concat methods can demonstrate the validity of
exploring inter-view information; 3) compared to UEAF and GIMC-FLSD, w.r.t. 50%
high missing rate, our method improves 34.32% and 25.80% in terms of Purity, respec-
tively. Compared to recent proposed APGLF [27], our method has also achieved the
satisfied clustering performance. This profits from the learned inferring complete data
and high-quality affinity graphs.

Note here that the datasets of Table (2) are the widely used to deal with the IMVC
methods. To better evaluate the performance of the proposed method, we also employ
the large scale MNIST to perform incomplete clustering and report the results in Table
(3). As can be seen, our method still has a superior clustering performance in large scale
dataset.

Parameter Sensitivity Analysis:Our RPCA-IGTL involves three parameters α, β, and
γ required to be set properly, which can control the noise termEv , manifold regularized
term Tr(DvLv

S)D
v�, and the effect of spatial graph tensor S, respectively. As shown

in Fig.(4), it is insensitive for our parameters to work well for a wide range of α, β.
Although it seems to be a little sensitive to γ, this indicates effectiveness of high-order
spatial structure information. In fact, we always find satisfied clustering performance in
a large range (i.e., α ∈ [103, 10−4], β ∈ [10−5, 10−1], and γ ∈ [10−3, 10−1] ).
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Table 3. Experimental results of UEAF, GIMC-FLSD, APGLF and our RPCA-IGTL on the
MNIST dataset with 10,000 samples.

Methods Metrics Missing rate UEAF GIMC-FLSD APGLF Proposed

MNIST ACC 10% 80.28 86.18 89.31 97.19

30% 77.39 83.06 87.69 95.89

50% 69.28 71.68 84.46 93.61

70% 64.72 68.82 80.29 92.20

NMI 10% 69.86 74.25 88.45 94.64

30% 67.71 70.41 86.12 93.27

50% 58.36 61.32 73.96 91.05

70% 49.16 56.26 70.45 84.31

Purity 10% 80.28 86.18 88.46 97.19

30% 78.31 83.06 85.46 95.89

50% 70.03 72.21 74.16 94.21

70% 66.26 69.18 71.79 92.93

1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1 1e1 1e2 1e3
1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1

1e1

1e2

1e3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) γ = 1e − 2 and tune α, β.

1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1 1e1 1e2 1e3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
M

I

Handwritten

(b) α = β = 1e − 2 and tune γ.

Fig. 4. The NMI in terms of α, β and γ on the Handwritten dataset with a missing rate of 30%.

Convergence Analysis: To demonstrate the convergence of Algorithm (1), we experi-
mentally record the objective values and NMI in terms of BBCSport and Handwritten
datasets with missing rate 10%, 30%, 50% at each iteration. As illustrated in Fig. 5 , we
find that: 1) the residual curves for different missing rate converge rapidly and consis-
tently till to the stable point, where the objective values of each iteration are calculated
via max{|objt+1 − objt|, ‖St+1 − St‖2F } ≤ ε; and 2) NMI w.r.t. iterator of RPCA-
IGTL consistently and gradually increases until objective values become stable. This
can prove the fast and stable convergence property of Algorithm (1).
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Fig. 5. The convergence curves and NMI of the proposed RPCA-IGTL method on BBCSport
dataset in terms of 10%, 30%, and 50% missing rate.

5 Conclusion

Although the existing ANGL-based IMGC methods have the power of handling incom-
plete multi-view data, while they cannot take full use of the structure information
hidden in the incomplete view data. To address these problems, we propose a novel
IMGC method, i.e., RPCA-IGTL. It designs an elegant RPCA-induced manifold learn-
ing framework and jointly introduces the graph tensor low-rank constrain and enhanced
block diagonal constraint. By leverage a mutually reinforcing way, it can fully exploit
the manifold structure information of inferring complete data in feature space and
the inter-view graph spatial structure information of graph tensor in graph semantic
space. Experimental results on several datasets with various scale and missing rate have
demonstrated the superiority for inferred complete data and clustering performance.
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