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Abstract. Convolutional neural network (CNN) is increasingly applied to data-
driven fault diagnosis of mechanical equipment spare parts. However, CNN train-
ing network parameters need a large amount of fault data, and better training
effect can be obtained by updating network parameters repeatedly. In this paper,
an improved CNN by multiwavelets is introduced multiwavelets into convolution
layer, the natural convolution attribute of multiwavelets is fused with convolu-
tion layer to fully release the two-channel feature extraction ability of multi-
wavelets transform. At the same time, we change the parameters of the multi-
wavelets convolution kernel to discuss the overall diagnostic performance of the
network in the same dataset. Thus, different multiwavelets kernel parameters are
customized according to different signal characteristics. The feasibility and effec-
tiveness of improved CNN by multiwavelets for case Western Reserve University
fault-bearing data are verified.

Keyword: Deeping learning · CNN · Multiwavelets · Signal processing · Fault
identification

1 Introduction

Rotating machinery is an indispensable part of the equipment manufacturing industry,
and rolling bearing is an important part of rotating machinery. Its small defects (such as
bearing crack and bearing abrasion damage) may lead to catastrophic accidents of the
whole mechanical structure. Therefore, the timely and accurate classification of rolling
bearing fault types has attracted many scholars [1–3].

The development of data-driven mechanical fault diagnosis benefits from the rapid
development of sensing technology, computing systems and information storage tech-
nology in recent years. These technologies provide technical guarantees for data acquisi-
tion, transmission, and storage in manufacturing systems [4, 5]. However, the abnormal
response of rolling bearing caused by fault is usually irrelevant. Due to the complex
nonlinear behaviors e.g., friction contact between components, radial clearance of bear-
ing and small vibration, the original time-domain signal show not only transient phe-
nomenon but also nonlinear dynamic effects. Noise and various uncertainties further
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exacerbate this situation [6]. Traditional fault diagnosis methods consist of three main
phases: Original signal acquisition, feature extraction and selection, fault classification
and fault prediction. For example, Yuan et al. proposed high-fidelity noise-reconstructed
empirical mode decomposition for mechanical multiple and weak fault extractions [7].
Qiao et al. used empirical mode decomposition, fuzzy feature extraction, and support
vector machines to diagnose and verify the faults of steam turbine generator sets under
three different working conditions [8]. Chen combined wavelet packet feature extrac-
tion technology andmachine learning technology, an onlinemonitoringmodel of logistic
regression is proposed. The effectiveness of the scheme is verified by analyzing the tool
wear vibration signal [9]. However, the traditional fault diagnosis methods listed above
have their limitations. First, traditionalmethods rely onmanual experience selection, and
the quality of extracted features directly affects the performance of the final classification
algorithm. Therefore, the stability of the diagnosis effect is not reliable. Second, In the
current era of big data, a large amount of data needs to be processed in time and quickly.
It takes time and effort to construct features manually. Even if the extracted features are
used to train the model, the efficiency of the final model prediction or classification still
needs to be improved.

Meanwhile, in order to meet the challenges of the big data era, people have done
a lot of research on intelligent fault diagnosis methods in recent years. Deep learning
models automatically find nonlinear features and realize classification by superimposing
multiple network layers, which has achieved promising results in many tasks of artificial
intelligence. Along with the development of the internet industry, lots of sensors are
used in the operation detection system of mechanical equipment. The large explosion of
data has made the traditional fault diagnosis methods difficult to meet the needs of the
market, which also aroused people’s interest in exploring the application of deep learning
methods in fault diagnosis. For example: stacked Auto-Encoders (SAEs) [10], Deep
Belief Networks (DBNs) [11], Recurrent Neural Networks (RNNS) [12], Generative
AdversarialNetworks (GAN) [13].Due to deep learning’s powerful function of nonlinear
feature mapping and advantage of end-to-end learning advantages, the results of bearing
diagnosis based on deep learning method have been significantly improved.

Convolutional neural network (CNN) is one of the representative deep learning algo-
rithms, it contains convolution layer, pooling layer, and complete connection layer. With
the help of these, CNN can directly train the original time-domain vibration signal and
identify the fault features hidden in the signal, so as to diagnose and classify different
types of faults, this effectively avoids subjective feature selection and human interven-
tion.As such, fault diagnosis technologydrivenbyoriginal data set has becomeattractive.
Weimer et al. adopt deep convolutional neural network, which overcomes the difficulty
of redefining manual fault characteristics for each new situation in the production pro-
cess and improves the automation and accuracy of monitoring [14]. Ince and Abdeljaber
et al. use 1DCNN to detect motor faults and this method has higher accuracy than the
model-based method [15, 16]. However, on one hand, the accuracy of CNN is extremely
dependent on large-scale datasets, for the research of rolling bearing diagnosis, the fault
data set is usually limited, and the cost of obtaining a large amount of training data is
very high. On the other hand, the performance of the diagnosis methodwill decline when
the training data set contains multiple fault features. The signal is caused by the coupled
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composite fault characteristics in the dynamic signals of complex systems.Besides,when
the data source distribution in the test set deviates from the training set data source in the
target domain, the diagnostic performance of the network will be observed to decline.
The signal differences are caused by different monitoring environments in which vibra-
tion signals are collected, e.g., different working loads, sensor positions, and rotation
speeds. CNN network model is difficult to train the network parameters of multiple
characteristic signals, but the actual working conditions are always changing, and the
same fault type does not exist in a single form.

Therefore, this paper by introducing the combination of multiwavelets transform and
CNN, the ability of multiwavelets containing multiple different frequency domain basis
functions to extract multiple faults at the same time, multiwavelets also fully inherit the
properties of single wavelets such as the property of orthogonality, symmetry, compact
support [17]. Besides, the features extracted from the first layer of the convolutional
neural network will affect the overall diagnostic performance of the network, the quality
of feature extraction directly affects the accuracy of whole network fault identification
and multiwavelets transformation is a natural convolution process based on multiple
wavelet basis functions. Therefore, replacing the first convolution layer of convolution
neural network with multiwavelets transform can not only give full play to the excellent
attributes of multiwavelets transform but also have better compatibility.

Besides, the multiwavelets basic functions are similar to fault features could extract
fault features in dynamic signals, this paper constructs customized multiwavelets layer
parameters according to different input signals, customized multiwavelets construct the
most matchingmultiwavelets basis function according to different signal characteristics.
The improved CNN by multiwavelets reduces the network training parameters, reduces
the problem of big data driving, and it improves the problem of poor fitting effect of
classical CNN in the case of multiple fault classification.

The rest of the paper is organized as follows. Section 2 mainly expounds on the
basic theory of multiwavelets and the basic structure of convolution neural networks.
Section 3 describes the basic structure of the improved convolution neural network by
replacing the multiwavelets. The simulation results are presented and compared with the
existing scheme in Sect. 4. Finally, we conclude this paper.

2 Basic Theory of Method

2.1 Multiwavelets

Multiwavelets Multiscales Analysis
Multiwavelets refer to wavelets generated by two or more functions as scaling functions.
The basic theory is to expand the multi-resolution analysis space generated by a single
wavelet with multiscales functions [18].

The vector valued function F(x) = (f1(x), f2(x), · · · fr(x))T , if there is fj(x) ∈
L2(R), j = 1, 2, · · · r, it is recorded as F(x) ∈ L2(R)r

(
π
2 − θ

)
, if � = (φ1, · · · φr)

T ∈
L2(R)2 satisfy the two-scale relationship:

�(t) =
N∑

k=0

Hk�(2t − k) (1)
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where {HK },K = 0, 1, · · · ,M is r × r two-scales matrix sequence, which is r-order
scale function. The r multiresolution analysis generated by �(x) is defined as:

Vj = closL2(R)

{
2j/2ϕi

(
2jx − k

)
: 1 ≤ i ≤ r, k ∈ Z

}
(2)

Vj is subspace with a resolution of 2j.
If Wj is the complement subspace of Vj space in Vj+1, the vector function �(x) =

(ψ1, ψ2, · · · , ψr)
T ∈ L2(R)r , the expansion and translation components construct a

Rise basis ofWj subspace

Wj = closL2(R)

{
2j/2ψi

(
2jx − k

)
: 1 ≤ i ≤ r, k ∈ Z

}
(3)

There is a matrix sequence {Gk}k∈Z , make �(x) = (ψ1, ψ2, · · · , ψr)
T satisfy the

following two-scale relationship:

�(x) =
N∑

k=0

Gk�(2x − k) (4)

where {Gk}, k = 0, 1, · · · ,N is r × r two-scales matrix sequence, which is r-order
wavelet function. Studies on multiwavelets with multiplicity r > 2 are rare. Hence,
r = 2 is studied in this paper.

By the dilations of Eq. (1) and Eq. (4), the following recursive relationship between
the coefficients (c1,j,k , c2,j,k)T can be obtained.

(
c1,j−1,k

c2,j−1,k

)
= √

2
K∑

n=0

Hn

(
c1,j,2k+n

c2,j,2k+n

)
, j, k ∈ Z (5)

(
d1,j−1,k

d2,j−1,k

)
= √

2
K∑

n=0

Gn

(
c1,j,2k+n

c2,j,2k+n

)
, j, k ∈ Z (6)

Hermite Spline Multiwavelets
Hermite splinemultiwavelets is the orthogonalmultiwavelets constructed by using third-
order spline function, which have 2-order continuous differentiability. The multiscales
support interval [0, 2], and they have 4-order approximation order. The support interval
of the mulitwavelets function is [0, 3] and they have 2-order approximation order. The
two scale relationship is shown in Eq. (7) and Eq. (8).

�(x) =
[

ϕ1(x)
ϕ2(x)

]
= H0�(2x) + H1�(2x − 1) + H2�(2x − 2) (7)

where H0 =
[ 1

2
3
4

− 1
8 − 1

8

]
,H1 =

[
1 0
1
2

1
8

]
,H2 =

[ 1
2 − 3

4
1
8 − 1

8

]
.

�(x) =
[

ψ1

ψ2

]
= G0�(2x) + G1�(2x − 1) + G2�(2x − 2)
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+ G3�(2x − 3) + G4�(2x − 4) (8)

where

G0 =
[ 67

240
7

240
− 95

972 − 1
162

]
,G1 =

[ −1 187
60

89
243

91
81

]
,G2 =

[ 173
120 0
0 26

9

]
,G3 =

[ −1 187
60

− 89
243

91
81

]
,

G4 =
[ 67

240 − 7
240

95
972 − 1

162

]

2.2 CNN

Convolutional Layer
Convolution layer extracts data features by convoluting the convolution layer parame-
ters with the input data. Usually, a convolution layer has multiple convolution kernels.
Because the same convolution kernel shares parameters in the process of convolution,
one convolution kernel learns a class of features, which is called mapping graph. To
calculate the output yi, first the inputs x1, x2, ..., xd are convoluted with convolutional
kernels Wi,d . Then, add all the convolutional operation results, the sum of convolution
results is added to scalar offset value bi. The output of the convolutional layer Zi can be
obtained as.

Zi = Wi ⊗ X + bi =
d∑

1

Wi,d ⊗ xd + bi (9)

where ⊗ represents the convolutional operation and Wi ∈ R
m×n×d is the convolution

kernel. Based on the nonlinear activation function, the output feature map yi can be
represented as.

yi = g
(
Zi

)
(10)

where g(·) represents the nonlinear activation function. In this research, convolution
layer is adopt the rectified linear unit (ReLU) function as the activation function.

Polling Layer
The pooled layer performs subsampling by checking the input data and extracts features
while reducing the dimension of the data. Pooling includes maximum pooling and aver-
age pooling, among which maximum pooling has the best effect, which can be described
as the following.

p1(i,j) = max(j−1)w<t<jw{a1(i,t)}j = 1, 2, · · · , q (11)

where p1(i,j) denotes t-th neuron of the i-th feature map in layer 1, w represent width od
convolutional kernel, j represent j-th pooling kernel.



424 G. Ren et al.

Fully Connected and Output Layers
The signal features extracted from the upper network are input to the first full connection
layer for one-dimensional sequence expansion. Each λc matrix by the finally output layer
will be input into a softmax function ϕ(·), which is defined by

ϕ(λc) = eλc

∑C
c=1 e

λc
, c = 1, · · ·C (12)

The ϕ = [ϕ(ν1), · · · , ϕ(νC)] represent a C-dimensional probability vector. Repre-
sents the probability distribution under C kinds of test conditions. The output value of
the softmax function represents the probability distribution of the input signal in each
tag.

3 The Presented Network Structure

Aiming at bearing fault, this paper improves the network framework based on CNN
is illustrated in Fig. 1. Original time-domain signals from sensor are directly extracted
features by multiwavelets layer of improved CNN, the feature signal extracted by mul-
tiwavelets is transmitted to deep network composed of one-dimensional convolutional
and pooling layers. Since the characteristic signal after multiwavelets transform is a
two-dimensional signal, the convolution kernel of the next convolution layer is also
a two-dimensional matrix, and the characteristic signal after passing through the first
convolution layer will be the one-dimensional characteristic signal, the dimension of
convolution kernel in other convolution layers is one-dimensional convolution kernel.
Finally, a fully connected (FC) layer and a multi category output layer composed of
softmax function are used as the bottom architecture of the network.

∂U

Feature 
map1  

1D
C

N
N

Feature 
mapN

CONV
layer

Pooling
layer

Mulitwavelets
layer

FC
layer

Output
layer

Input
segment

Time

Fig. 1. The structure of the improved CNN by multiwavelets.
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3.1 Multiwavelets Layer

The specific implementation steps of the multiwavelets layers are as follows.
Split sublayer: the signal f is divided into two new signal according to the odd and

even bits of the data sequence, even sequence samples are p and odd sequence samples
are q.

p(x) = f (2x) (13)

q(x) = f (2x + 1)x ∈ z (14)

Predict sublayer: we use the optimizermatrix ∂ to convolute even samples q to predict
odd samples p. The error between the predicted value and real value is � that defined
as detail coefficients.

� = p − ∂ ∗ q (15)

where ∂ is the matrix vector of prediction operator, the symbol ∗ represent matrix vector
convolution operation.

Update sublayer: the detail coefficients obtained by the predictor are transferred into
the update sublayer, it convoluted with updater U composed of the parameter matrix to
perform the operation and adding the result to p. The update sequence pU represent the
vector of approximation coefficients.

pU = p + U ∗ � (16)

where U represents the vector of two dimensionals matrix as updater.
The custom multiwavelet layer is based on the evolution of adaptive multiwavelet

theory, and also integrates the biorthogonal perfect reconstruction multi filter bank to
process the input signal. The transformation of parameter k control the matrix low-
pass and highpass filters {H,G, H̃ , G̃} as well as predict sublayer operation and update
sublayer operation {∂,U }.

G(k) = k
(
I − ∂

(
k2

)
/k

)
(17)

H(k) = I + U
(
k2

)
G(k) (18)

H̃(k) = I + ∂
(
k2

)
/k (19)

G̃(k) =
(
I − H(k)kU

(
k2

))
/k (20)

In order to ensure the linear phase of predictor filters, it require symmetry, the operator
∂ of predict sublayer is subjected to the symmetry condition.

∂(0) =
( 1

2
1
4

c − 1
4

)
, ∂(−1) =

( 1
2 − 1

4
−c − 1

4

)
(21)
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Next, operator U of update sublayer closely related to ∂ can be calculated as

U = {U (0),U (1)}, U (0) = ∂(−1)/2 =
(

1
4 − 1

8
− c

2 − 1
8

)

, U (1) = ∂(0)/2 =
(

1
4

1
8

c
2 − 1

8

)

(22)

Equation (22) show that the parameter c affects not only thematrix vector of predictor
∂ but also the matrix vector updater U . In other words, free parameter c will change the
multiscales and multiwavelets functions due to Eq. (21).

3.2 Multiwavelets Layer Parameters

The customized multiwavelets layer relies on the basic function to change its kernel
function with different input signals, to match different fault features more accurately.
Table 1 shows the important parameters of improved CNN by multiwavelets, here each
data sample of the input network contains 1024 sampling points. The shallowconvolution
layer is replaced by a multiwavelets layer with a kernel size of 10, and the number of
output channels is set to 1, which greatly reduces the shallow training parameters of the
network and improves the overall training speed and convergence speed of the network.
The fault features are extracted by multiwavelets layer and transferred into convolution
layers, the fault feature information is further mined. Two convolutional layers are set,
Conv1D represent one vector between convolution kernel and the input parameters. The
next adaptive maximum pooling layer adopt to the kernel number 16. Then pass feature
signal to the full connection layer. The final dimension of output data is m which is
consistent with the type of input label.

Figure 2 shows the date flow framework structure of improved CNN by multi-
wavelets, described as follows.

Step1: In the data preprocessing stage, the collected time-domain signals containing
various fault types are divided into training set and test set according to the ratio of 6:4.
Step2: In the training stage, two different fault timing signals are packaged into the same
two-dimensional matrix, the improved CNN is initialized.
Step3: According to different fault signal types, set different parameter c constraint
matrices ∂ and U , therefore, the kernel parameters of the multiwavelet layer are
determined.
Step4: The data is processed by the split sublayer, predict sublayer, and update sublayer
to extract fault features.
Step5: The fault features extracted from the shallow layer are introduced into two one-
dimensional convolutional layers and adaptivemaximumpooling layer, the fault features
characteristics of the input signals will be fully mined.
Step6: The results are calculated by the softmax function get the probability of each
feature label. At the same time, the gradient of each layer in the network model is
calculated by using the back propagation algorithm to continuously modify the network
parameters and improve the training accuracy.
Step7: The loss rate is calculated according to the cross entropy loss function to judge
whether the network accuracy has completed the training.
Step8: The well-trained network model is applied to the testing data.
Step9: Identify the fault type label for the input signal.
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Fig. 2. The flowchart of improved CNN by multiwavelets.

Table 1. The parameters of improve CNN model.

Name Kernel size Channel Data size

Data size 1 × 1024

Preprocessing 2 × 512

L1 Multiwavelets layer 2 × 5 1 2 × 1 × 256

L2 Conv1D 2 × 5 10 1 × 10 × 52

L3 Conv1D 1 × 25 16 1 × 16 × 227

L4 AdaptiveMaxPool1D 16 1 × 16 × 16

L5 Linear layer 1 1 × 1 × 100

L6 Softmax layer 1 m
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4 Experiment Verification

4.1 Experiment Description

In this section, the improved CNN by multiwavelets model is applied to the laboratory
bearing dataset of Case Western Reserve University (CWRU) for verification [19]. The
vibration signals of 12000 samples/second are collected through two accelerometers
(sensors) installed at the drive end of an electric motor in the test rig under four different
conditions. Table 2 shows the detailed working condition data of ten faults. The damage
diameter of three basic faults is 0.007 in., 0.014 in., and 0.021 in.. The signal sampling
frequency is 12 kHz. The collected signal of each fault state is divided into 100 training
samples and each sample contains 1024 points. The original signal is allocated to training
samples and testing samples by a ratio of 3:2.

Table 2. Rolling bearing operation state

0.007 0.014 0.021 Motor speed
(rpm)

Normal – – – 1797

Ball � � � 1797

Inner race � � � 1797

Outer race � � � 1797

4.2 Parameter Optimization of Multiwavelets Layer

In the process of training parameters, the networkwill initialize parameters, but the value
of random initialization parameters is uncertain, so it is difficult to fully show the feature
extraction ability of the multiwavelets layer, Fig. 3 shows the loss function decreases
during the iterative training of network parameters, which compares the network training
speed and fitting effect of parameters under different values, it can be observed from the
figure that when the c = −2, the network training speed and the stability of parameter
fitting reach the best, Table 3 shows fault classification average accuracy ofmultiwavelets
layer under different parameter values, and when multiwavelets parameter c = −2, the
network model full play to performance. Therefore, in the case of parameter c = −2,
the network model can achieve the best speed, stability, and diagnostic accuracy of
multi-fault classification.
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LO
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Epoch

Fig. 3. Changes of cross-entropy loss in different parameters.

Table 3. The accuracy of the dataset.

Dataset C = −3 C = −2 C = −1 C = 1 C = 2 C = 3

Accuracy
(%)

99.67 99.83 99.63 99.87 99.67 99.33

4.3 The Performance of Bearing Fault Diagnosis

Multilayer Perceptron (MLP), and 1DCNN are taken for comparison with the presented
solution, improve CNN model c = −2 as the parameter of multiwavelet. MLP consists
of four layers: input layer, output layer, and two hidden layers, 1DCNN has the same
convolution layer parameters as the improve CNN, in which the convolution kernel size
of the shallow network is 10. The two groups of experimental schemes are fully in line
with the principle of controlling a single variable.

Figure 4 is shown the CNN and improved CNN by multiwavelets decreased rapidly
in the first five iterations and converged in the seventh iteration, theMLP is difficult fully
converge in the multi-fault classification experiment, and the Cross entropy loss function
fluctuates greatly, this phenomenon proved that MLPmodel has obvious shortcoming in
nonlinear fitting problem. CNN network shows a good training effect in multi-fault non-
linear fitting fault. However, CNN fluctuated greatly in the 14th, 37th and 38th iterations
show that the training parameters are unstable in the process of multiple training. The
improved CNN by multiwavelets model not only inherits the excellent nonlinear fitting
ability of the CNN model in the face of multi-fault problems but also has the spatial-
temporal features extracted by themultiwavelets, whichmakes themodelmaintain better
network stability and reliability in multiple iterations compared with the classical CNN
model.
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LO
SS

Epoch

Fig. 4. Variation of loss value in different experimental schemes.

Table 4. Classification results in case.

Method Max
accuracy

Min
accuracy

Mean
accuracy

IMPROVE CNN 100.0% 99.3% 99.8%

MLP 59.0% 53.1% 54.0%

1DCNN 99.8% 97.4% 97.5%

The accuracy of these methods on commonDataset is listed in Table 4. After training
these three schemes five times, this paper brings the training parameters of each time
into the test set for verification, and the average accuracy shows that improved CNN has
a stronger ability to extract fault features. Fig. 5 visualizes the verification results of 400
sets of test sets by three methods, Figure (a) shows the confusion matrix thermodynamic
diagram of the improved CNN by multiwavelets. Figure(b) and Figure(c) show the
confusion matrix thermodynamic diagram of CNN andMLP respectively. These figures
indicate that the improved CNN has higher accuracy in fault classification.



An Improved Convolutional Neural Network Model 431

Fig. 5. Sample classification in validation set.

5 Conclusion

CNN method relies on training a large number of the same fault data and updating
network parameters through backpropagation to establish the recognition ability of the
same type of fault. However, under the actual working conditions, the types of bearing
faults are constantly changing, and it is difficult to collect sufficient data for the same
type of faults. When small datasets are employed, the first layer of CNN is difficult
to effectively extract deep feature parameters and it influences the performances of the
entire network. Therefore, an improved CNN bymultiwavelets is proposed in this paper.
The first layer of the model is the multiwavelets transform in signal processing, multi-
wavelets layer completely inherits the advantages of the fast extraction of features signals
from multiple wavelets base of multiwavelets. Original signals in the time domain are
directly input into the improved CNN, multiwavelets layer is used as a multi-channel
filter to extract multi fault features at the same time, subsequently, the features extracted
by the multiwavelets layer are fused as inputs to the next layer. By enhancing the abil-
ity of network shallow feature extraction, accurately extract fault features and reduce
network parameters. By incorporating multiwavelets feature extraction, this proposed
CNN method can accurately diagnose faults with smaller data set samples in practical
bearing diagnosis, and by customizing multiwavelets layer parameters, the influence of
shallow layer parameters on the overall network performance is discussed. The validity
of this method is fully verified by publicly experimental datasets and comparsion with
the traditional methods and classical methods.

Based on theCNNshallow layer replacementmultiwaveletsmodel, this papermainly
finds the multiwavelets layer parameters most suitable for fault characteristics through
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parameter optimization. In the future research direction, themultiwavelets layer parame-
ters can be adaptively matched with fault characteristics to improve the effect of network
diagnosis efficiency, and the underlying logic of CNN network training parameters can
be discussed based on the physical meaning of multiwavelets layer.

Acknowledgements. This research is sponsored by the National Natural Science Foundations of
China (No. 51975377 and 52005335), Shanghai Sailing Program (No. 21YF1430600).
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