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Abstract. Recently, Laplacian pair-weight vector projection (LapPVP)
algorithm was proposed for semi-supervised classification. Although Lap-
PVP achieves a good classification performance for semi-supervised
learning, it may be sensitive to noise and outliers for using the neighbor
graph with a fixed similarity matrix. To remedy it, this paper proposes a
novel method named Laplacain pair-weight vector projection with adap-
tive neighbor graph (ANG-LapPVP), in which the graph induced by the
Laplacian manifold regularization is adaptively constructed by solving an
optimization problem. For binary classification problems, ANG-LapPVP
learns a pair of projection vectors by solving the pair-wise optimal for-
mulations in which we maximize the between-class scatter and minimize
both the within-class scatter and the adaptive neighbor graph (ANG)
regularization. The ANG regularization is to learn the ANG whose simi-
larity matrix varies with iterations, which may solve the issue of LapPVP.
Thus, ANG-LapPVP simultaneously learns adaptive similarity matrices
and a pair of projection vectors with an iterative process. Experimen-
tal results on an artificial and real-world benchmark datasets show the
superiority of ANG-LapPVP compared to the related methods. Thus,
ANG-LapPVP is promising in semi-supervised learning.

Keywords: Semi-supervised learning · Binary classification · Manifold
regularization · Adaptive neighbor graph

1 Introduction

Recently, more and more research attention acts in for semi-supervised classifi-
cation tasks. On the basis of graph theory, the manifold regularization is becom-
ing a popular technology to extend supervised learners to semi-supervised ones
[2,4,6]. Considering the structure information provided by unlabeled data, semi-
supervised learners outperform related supervised ones and have more applica-
tions in reality [1,3,12,15].

Because the performance of semi-supervised learners partly depends on the
corresponding supervised ones, we need to choose a good supervised learner to
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construct a semi-supervised one. Presently, inspired by the idea of non-parallel
planes, many supervised algorithms have been designed for dealing with binary
classification problems, such as generalized proximal support vector machine
(GEPSVM) [9,16], twin support vector machine (TSVM) [7], least squares
twin support vector machine (LSTSVM) [8], multi-weight vector support vector
machine (MVSVM) [18], and enhanced multi-weight vector projection support
vector machine (EMVSVM) [17]. In these learners with non-parallel planes, each
plane is as close as possible to samples from its own class and meanwhile as far
as possible from samples belonging to the other class. Owing to the outstanding
generalization performance of TSVM and LSTSVM, they have been extended to
semi-supervised learning by using the manifold regularization framework [3,12].
In [12], Laplacian twin support vector machine (LapTSVM) constructs a more
reasonable classifier from labeled and unlabeled data by integrating the manifold
regularization. Chen et al. [3] proposed Laplacian least squares twin support vec-
tor machine (LapLSTSVM) based on LapTSVM and LSTSVM. Different from
LapTSVM, LapLSTVM needs to solve only two systems of linear equations with
remarkably less computational time. These semi-supervised learners have proved
that the manifold regularization is a reasonable and effective technology. On the
basis of EMVSVM and manifold regularization, Laplacian pair-weight vector
projection (LapPVP) was extended to semi-supervised learning for binary clas-
sification problems [14]. LapPVP achieves a pair of projection vectors by max-
imizing the between-class scatter and minimizing the within-class scatter and
manifold regularization.

These performance of semi-supervised learners is partly related to the neigh-
bor graph induced by the manifold regularization. Generally, the neighbor graph
is predefined and may be sensitive to noise and outliers [10]. To improve the
robustness of LapPVP, we propose a novel semi-supervised learner, named
Laplacain pair-weight vector projection with adaptive neighbor graph (ANG-
LapPVP). ANG-LapPVP learns a pair of projection vectors by solving the
pair-wise optimal formulations, where we maximize the between-class scatter
and minimize both the within-class scatter and the adaptive neighbor graph
(ANG) regularization. In ANG, the similarity matrix is not fixed but adaptively
learned on both labeled and unlabeled data by solving an optimization problem
[11,19,20]. Moreover, the between- and within-class scatter matrices are com-
puted separably for each class, which can strengthen the discriminant capability
of ANG-LapPVP. Therefore, it is easy for ANG-LapPVP to handle binary clas-
sification tasks and achieve a good performance.

2 Proposed Method

The propose method ANG-LapPVP is an enhanced version of LapPVP. In ANG-
LapPVP, we learn an ANG based on the assumption that the smaller the distance
between data points is, the greater the probability of being neighbors is. Like-
wise, ANG-LapPVP is to find a pair of the projection vectors by maximizing
between-class scatter and minimizing both the within-class scatter and the ANG
regularization.
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Let X = [X�;Xu] ∈ R
n×m be the training sample matrix, where n and

m are the number of total samples and features, respectively; X� ∈ R
�×m and

Xu ∈ R
u×m are the labeled and unlabeled sample matrices, respectively; � and u

are the number of labeled and unlabeled samples, respectively, and n = �+u. For
convenience, we use yi to describe the label situation of sample xi. If yi = 1, xi

is a labeled and positive sample; if yi = −1, xi is a labeled and negative sample;
if yi = 0, xi is unlabeled. Furthermore, the labeled sample matrix X� can be
represented as X� = [X1;X2], where X1 = [x11,x12, . . . ,x1�1 ]

T ∈ R
�1×m is the

positive sample matrix with a label of 1, X2 = [x21,x22, . . . ,x2�2 ]
T ∈ R

�2×m is
the negative sample matrix with a label of −1, � = �1 + �2, �1 and �2 are the
number of positive and negative samples, respectively.

2.1 Formulations of ANG-LapPVP

For binary classification tasks, the goal of ANG-LapPVP is to find a pair of
projection vectors similar to LapPVP. As mentioned above, the proposed ANG-
LapPVP is an enhanced version of LapPVP. To better describe our method, we
first briefly introduce LapPVP [14]. For the positive class, LapPVP is to solve
the following optimization problem:

max
v1

vT
1 B1v1 − α1vT

1 W1v1 − β1vT
1 X

TLXv1

s.t. vT
1 v1 = 1

(1)

where α1 > 0 and β1 > 0 are regularization parameters, L is the Laplacian
matrix of all training data, and B1 is the between-class scatter matrix and W1

is the within-class scatter matrix of the positive class, which can be calculated
by

B1 =
(
X − euT

1

)T (
X − euT

1

)
(2)

and
W1 =

(
X1 − e1uT

1

)T (
X1 − e1uT

1

)
(3)

where v1 ∈ R
m is the projection vector of the positive class, u1 = 1

�1

∑�1
i=1 x1i

is the mean vector of the positive samples, e1 ∈ R
�1 and e ∈ R

� are the vectors
of all ones with different length.

In the optimization problem (1), the laplacian matrix L is computed in
advance and is independent of the objective function. The concept of ANG was
proposed in [11], which has been applied to feature selection for unsupervised
multi-view learning [19] and semi-supervised learning [20]. We incorporate this
concept into LapPVP and form ANG-LapPVA.

Similarly, the pair of projection vectors of ANG-LapPVP is achieved by a
pair-wise optimal formulations. On the basis of (1), the optimal formulation of
ANG-LapPVP for the positive class is defined as:

max
v1,S1

vT
1 B1v1 − α1vT

1 W1v1 − β1(vT
1 X

TLs1Xv1 + γ1ST
1 S1)

s.t. vT
1 v1 = 1, S1e = e, S1 > 0

(4)
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where S1 is the similarity matrix for the positive class, Ls1 is the Laplacian
matrix related to S1 for the positive class, and γ1 > 0 is a regularization param-
eter.

Compared with (1), (4) has a different term, or the third term, which is called
the ANG regularization here. S1 varies with iterations, and then the Laplacian
matrix Ls1 = Ds1 − S1 is changed, where Ds1 is a diagonal matrix with diag-
onal elements of (Ds1)ii =

∑
j(S1)ij . The first and second terms represent the

between- and within-class scatters of the positive class, and the regularization
parameter α1 is to make a balance between these two scatters. ANG-LapPVP
can keep data points as near as possible in the same class while as far as possible
from the other class by maximizing the between-class scatter and minimizing
the within-class scatter.

For the negative class, ANG-LapPVP has the following similar problem:

max
v2,S2

vT
2 B2v2 − α2vT

2 W2v2 − β2(vT
2 X

TLs2Xv2 + γ2ST
2 S2)

s.t. vT
2 v2 = 1, S2e = e, S2 > 0

(5)

where v2 is the projection vector for the negative class, α2, β2, and γ2 are positive
regularization parameters, S2 is the similarity matrix for the negative class, Ls2

is the Laplacian matrix related to S2, B2 and W2 are the between- and within-
class scatter matrices for the negative class, respectively, which can be written
as:

B2 =
(
X − euT

2

)T (
X − euT

2

)
(6)

and
W2 =

(
X2 − e2uT

2

)T (
X2 − e2uT

2

)
(7)

where u2 = 1
�2

∑�2
i=1 x2i is the mean vector of negative samples, e2 ∈ R

�c is the
vector of all ones.

2.2 Optimization of ANG-LapPVP

Problems (4) and (5) form the pair of optimization problems for ANG-LapPVP,
where projection vectors v1 and v2 and similarity matrices S1 and S2 are
unknown. It is difficult to find the optimal solution to them at the same time.
Thus, we use an alternative optimization approach to solve (4) or (5). During
the optimization procedure, we would fix a set of variables and solve the other
set of ones.

When S1 and S2 are fixed, the optimization formulations of ANG-LapPVP
can be reduced to

max
v1

vT
1 B1v1 − α1vT

1 W1v1 − β1vT
1 X

TLs1Xv1

s.t. vT
1 v1 = 1

(8)

and
max
v2

vT
2 B2v2 − α2vT

2 W2v2 − β2vT
2 X

TLs2Xv2

s.t. vT
2 v2 = 1

(9)
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which are exactly LapPVP.
According to the way in [14], we can find the solutions v1 and v2 to (8)

and (9), respectively. In [14], (8) and (9) can be respectively converted to the
following eigenvalue decomposition problems:

B1v1 − α1W1v1 − β1XTLs1Xv1 = λ1v1

B2v2 − α2W2v2 − β2XTLs2Xv2 = λ2v2

(10)

where λ1 and λ2 are eigenvalues for the positive and negative classes, respectively.
Thus, the optimal solutions here are the eigenvectors corresponding to the largest
eigenvalues.

Once we get the projection vectors v1 and v2, we take them as fixed vari-
ables, then solve S1 and S2. In this case, the optimization formulations of ANG-
LapPVP are reduced to

min
S1

vT
1 X

TLs1Xv1 + γ1ST
1 S1

s.t. S1e = e, S1 > 0
(11)

and
min
S2

vT
2 X

TLs2Xv2 + γ2ST
2 S2

s.t. S2e = e, S2 > 0
(12)

For simplicity, let (Z1)ij = ||vT
1 xi − vT

1 xj ||2 and (Z2)ij = ||vT
2 xi − vT

2 xj ||2.
Then matrices Z1 and Z2 are constant when v1 and v2 are fixed. Thus, (11) and
(12) can be rewritten as:

min
S1

1
2
(S1 +

1
2γ1

Z1)T (S1 +
1

2γ1
Z1)

s.t. S1e = e, S1 > 0
(13)

and
min
S2

1
2
(S2 +

1
2γ2

Z2)T (S2 +
1

2γ2
Z2)

s.t. S2e = e, S2 > 0
(14)

Because (13) and (14) are similar, we describe the optimization procedure
only for (13). First, we generate the Lagrangian function of (13) with multipliers
δ1 and ζ1 as follows:

L(S1, δ1, ζ1) =
(
S1 +

1
2γ1

Z1

)T (
S1 +

1
2γ1

Z1

)
− δ1(S1e − e) − ζ1S1 (15)

According to the KKT condition [13], we derive the partial derivative of
L(S1, δ1, ζ1) with respect to the primal variables S1 and make it vanish, which
results in

S1 = δ1 + ζ1 − 1
2γ1

Z1 (16)
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Similarly, the similarity matrix S2 is achieved by

S2 = δ2 + ζ2 − 1
2γ2

Z2 (17)

where δ2 and ζ2 are positive Lagrange multipliers.
Since the constraint Se = e, we have

δ1 + ζ1 =
1
n

+
1

2nγ1
Z1 (18)

and
δ2 + ζ2 =

1
n

+
1

2nγ2
Z2 (19)

where the parameters γ1 and γ2 can be computed as follows [11]:

γ1 =
1
n
eT

(
k

2
Z1qk − 1

2
Z1q̃k−1

)
(20)

and

γ2 =
1
n
eT

(
k

2
Z1qk − 1

2
Z1q̃k−1

)
(21)

where k is the neighbor number in the graph, qk and q̃k−1 are indicator vectors.
We set qk = [0, 0, · · · , 0, 1, 0, · · · , 0, 0]T ∈ R

n in which the k-th element is one
and the others are zero and q̃k−1 = [1, 1, · · · 1, 0, · · · , 0, 0]T ∈ R

n in which the
first (k − 1) elements are one and the others are zero.

2.3 Strategy of Classification

The pair of projection vectors (v1,v2) can project data points into two differ-
ent subspaces. The distance measurement is a reasonable way to estimate the
class label of an unknown data point x ∈ R

m. Here, we define the strategy of
classification using the minimum distance.

For an unknown point x, we project it into two subspaces induced by v1

and v2. In the subspace induced by v1, the projection distance between x and
positive samples is defined as:

d1 = min
i=1,2,··· ,�1

(
vT
1 x − vT

1 x1i

)2
(22)

In the subspace induced by v2, the projection distance between x and negative
samples is computed as:

d2 = min
i=1,2,··· ,�2

(
vT
2 x − vT

2 x2i

)2
(23)

It is reasonable that x is taken as the positive point if d1 < d2, which is the
minimum distance strategy. Thus, we assign a label to x by the following rule:

ŷ =
{

1, if d1 ≤ d2
−1, Otherwise

(24)
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2.4 Computational Complexity

Here, we analyze the computational complexity of ANG-LapPVP. Problems (4)
and (5) are non-convex. The ultimate optimal pair-wise projection vectors are
obtained by applying an iterative method. In iterations, the optimization prob-
lems of ANG-LapPVP can be decomposed into eigenvalue decomposition ones
and quadratic programming ones with constraints.

The computational complexities of an eigenvalue decomposition problem
and a quadratic programming one are O

(
m2

)
and O

(
n2

)
, respectively, where

m is the number of features and n is the number of samples. Let t be the
iteration times. Then, the total computational complexity of ANG-LapPVP is
O

(
t
(
m2 + n2

))
. In the iteration process of ANG-LapPVP, the convergence con-

dition is set as the difference between current and previous projection vectors,
i.e., ||vt

1 − vt−1
1 || ≤ 0.001 or ||vt

2 − vt−1
2 || ≤ 0.001.

3 Experiments

We conduct experiments in this section. Firstly, we compare ANG-LapPVP with
LapPVP on an artificial dataset to illustrate the improvement achieved by the
ANG regularization. The comparison with other non-parallel planes algorithms
on benchmark datasets is then implemented to analyze the performance of ANG-
LapPVP.

3.1 Experiments on Artificial Dataset

An artificial dataset, called CrossPlane, is generated by perturbing points orig-
inally lying on two intersecting planes. CrossPlane contains 400 instances with
only 2 labeled and 198 unlabeled ones for each class. The distribution of Cross-
Plane is shown in Fig. 1. Obviously, some data points belonging to Class +1 are
surrounded by the data points of Class −1 and vice versa.

Figure 2 plots the projection vectors learned by LapPVP and ANG-LapPVP.
We can see that projection vectors learned by ANG-LapPVP are more suitable
than LapPVP. The accuracy of LapPVP is 91.50%, and that of ANG-LapPVP
is 97.00%. Clearly, ANG-LapPVP has a better classification performance on the
CrossPlane dataset. In other words, ANG-LapPVP is robust to noise and out-
liers. In to all, the ANG regularization can improve the performance of LapPVP,
which makes ANG-LapPVP better.
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Fig. 1. Distribution of CrossPlane.
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(a) LapPVP
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(b) ANG-LapPVP

Fig. 2. Projection vectors obtained by LapPVP (a) and ANG-LapPVP (b).

3.2 Experiments on Benchmark Datasets

In the following experiments, we compare ANG-LapPVP with supervised algo-
rithms, including GEPSVM, MVSVM, EMVSVM, TSVM and LSTSVM to eval-
uate the effectiveness of ANG-LapPVP, and compare it with semi-supervised
algorithms (LapTSVM, LapLSTSVM and LapPVP) to verify the superiority
of ANG-LapPVP on ten benchmark datasets. The benchmark datasets are col-
lected from the UCI Machine Learning Repository [5]. We normalize the datasets
so that all features range in the interval [0, 1].

Each experiment is run 10 times with random 70% training data and the rest
30% test data. The average classification results are reported as the final ones.
The grid search method is applied to finding the optimal hyper-parameters in
each trial. Parameters β1 and β2 in both LapPVP and ANG-LapPVP are selected
from {2−10, 2−9, . . . , 20}, and other regularization parameters in all methods are
selected from the set {2−5, 2−4, . . . , 25}. In semi-supervised methods, the number
of nearest neighbors is selected from the set {3, 5, 7, 9}.
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Table 1. Mean accuracy and standard deviation (%) obtained by supervised algorithms
with different scale of labeled data.

Dataset Percent GEPSVM MVSVM EMVSVM TSVM LSTSVM ANG-LapPVP

Breast 10% 97.08 ± 1.15 95.92 ± 1.27 96.64 ± 0.91 96.02 ± 1.05 97.06 ± 0.66 98.25 ± 1.18

30% 97.39 ± 0.98 96.73 ± 2.74 95.78 ± 2.08 97.54 ± 1.16 97.49 ± 0.87 97.54 ± 0.80

50% 97.25 ± 0.66 96.58 ± 1.33 95.55 ± 1.82 97.87 ± 1.03 97.91 ± 0.46 97.44 ± 0.46

Check 10% 53.36 ± 1.82 54.68 ± 2.79 54.22 ± 2.43 61.13 ± 0.01 54.45 ± 3.30 61.76 ± 3.15

30% 52.26 ± 1.50 51.46 ± 2.11 54.58 ± 3.76 59.80 ± 3.49 54.62 ± 3.58 73.62 ± 3.82

50% 55.81 ± 2.07 50.53 ± 1.80 53.29 ± 2.70 55.61 ± 1.79 53.89 ± 1.79 75.51 ± 2.34

German 10% 71.13 ± 1.32 69.90 ± 1.21 60.00 ± 2.48 73.80 ± 1.74 73.60 ± 2.09 72.93 ± 1.72

30% 74.63 ± 2.09 38.13 ± 8.83 61.87 ± 2.23 76.10 ± 2.20 75.97 ± 2.47 73.67 ± 1.04

50% 75.00 ± 1.89 68.03 ± 5.16 61.13 ± 2.97 76.93 ± 1.00 76.67 ± 1.72 73.93 ± 0.90

Haberman 10% 66.88 ± 7.43 65.70 ± 7.12 58.82 ± 4.18 75.91 ± 3.17 76.02 ± 2.73 77.67 ± 2.33

30% 71.72 ± 5.51 67.31 ± 6.04 55.70 ± 5.73 77.42 ± 2.27 78.17 ± 2.49 78.71 ± 2.81

50% 75.81 ± 1.98 73.87 ± 3.51 55.91 ± 3.83 78.49 ± 2.03 77.96 ± 2.22 79.14 ± 3.17

Heart 10% 76.63 ± 7.69 73.04 ± 6.08 81.52 ± 3.90 67.61 ± 10.56 78.26 ± 4.38 81.96 ± 3.77

30% 80.87 ± 2.36 60.33 ± 7.48 81.41 ± 3.18 80.89 ± 3.34 83.46 ± 3.40 84.13 ± 2.77

50% 82.89 ± 2.08 82.39 ± 4.46 82.61 ± 1.85 82.65 ± 3.90 84.07 ± 3.60 84.24 ± 2.47

Hepatiti 10% 60.00 ± 8.79 67.23 ± 6.20 68.72 ± 3.62 60.43 ± 8.64 57.87 ± 8.26 75.11 ± 2.00

30% 62.34 ± 7.31 64.47 ± 6.95 70.00 ± 5.16 62.77 ± 5.87 70.21 ± 4.91 76.26 ± 3.81

50% 69.15 ± 1.81 67.23 ± 3.64 70.21 ± 4.60 68.09 ± 1.00 65.32 ± 3.02 82.13 ± 2.69

Liver 10% 58.56 ± 3.06 59.90 ± 5.07 57.60 ± 2.24 70.29 ± 1.15 68.65 ± 4.60 71.35 ± 2.02

30% 57.50 ± 4.34 61.83 ± 2.87 55.10 ± 2.27 70.73 ± 2.87 69.52 ± 2.31 71.06 ± 3.19

50% 61.83 ± 4.28 65.00 ± 2.80 52.02 ± 3.28 71.62 ± 1.82 70.29 ± 2.92 72.40 ± 2.03

Sonar 10% 62.03 ± 7.14 73.28 ± 7.81 61.41 ± 5.85 72.34 ± 3.04 67.81 ± 4.67 74.84 ± 5.13

30% 73.13 ± 3.81 75.63 ± 2.11 62.34 ± 5.02 72.50 ± 3.70 63.28 ± 4.67 79.22 ± 3.76

50% 80.47 ± 4.12 81.08 ± 5.37 59.22 ± 5.07 66.72 ± 6.08 72.50 ± 1.32 81.41 ± 2.80

Wdbc 10% 95.64 ± 2.16 94.77 ± 1.60 94.48 ± 1.00 84.48 ± 6.69 85.93 ± 4.49 96.45 ± 0.89

30% 95.70 ± 1.26 79.07 ± 19.63 94.94 ± 0.99 96.51 ± 1.78 96.28 ± 1.51 97.73 ± 0.70

50% 97.97 ± 0.88 96.86 ± 0.78 94.07 ± 2.14 97.38 ± 1.43 98.26 ± 0.27 98.38 ± 0.92

Wpbc 10% 76.23 ± 1.77 76.23 ± 4.84 66.07 ± 7.00 72.95 ± 4.59 68.20 ± 2.34 78.69 ± 1.73

30% 75.08 ± 3.52 72.79 ± 3.39 63.93 ± 8.29 70.00 ± 8.07 71.31 ± 3.56 80.49 ± 0.52

50% 77.70 ± 3.64 77.70 ± 2.07 63.93 ± 6.60 76.39 ± 1.15 79.67 ± 4.18 80.67 ± 0.85

Comparison with Supervised Algorithms. We first compare ANG-
LapPVP with GEPSVM, MVSVM, EMVSVM, TSVM and LSTSVM to inves-
tigate the performance of adaptive neighbors graph. Specially, we discuss the
impact of the different scale of labeled data on these algorithms. Additionally,
ANG-LapPVP has 50% training samples as unlabeled ones.

Table 1 lists the results of supervised algorithms and ANG-LapPVP with
10%, 30% and 50% of training data as labeled samples, where the best results
are highlighted. Experimental results in Table 1 show the effectiveness of ANG-
LapPVP. With the increasing number of labeled data, the accuracy of ANG-
LapPVP on most datasets goes up gradually, which indicates that the labeled
data can provide more discriminant information. Moreover, we observe that
ANG-LapPVP trained with unlabeled data has the best classification perfor-
mance on all ten datasets except Breast with 50% labeled data and German
with three situations, which fully demonstrates the significance of the adaptive
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Table 2. Mean accuracy and standard deviation (%) obtained by semi-supervised
algorithms on 30% unlabeled data.

Dataset LapTSVM LapLSTSVM LapPVP ANG-LapPVP

Breast 95.17 ± 1.58 97.30 ± 1.63 97.77 ± 0.95 98.25 ± 1.18

Check 50.90 ± 5.01 58.04 ± 3.36 60.00 ± 1.50 75.78 ± 3.09

German 70.17 ± 1.97 73.87 ± 2.22 70.93 ± 0.21 72.43 ± 1.16

Haberman 69.46 ± 3.59 74.52 ± 2.03 71.83 ± 7.07 77.53 ± 2.51

Heart 72.83 ± 6.87 81.41 ± 6.33 84.02 ± 2.18 81.96 ± 4.73

Hepatiti 57.87 ± 6.17 66.17 ± 6.22 73.40 ± 4.84 75.11 ± 2.02

Liver 59.23 ± 6.80 66.35 ± 3.42 60.19 ± 2.65 70.67 ± 2.28

Sonar 67.34 ± 4.51 74.22 ± 3.40 68.91 ± 5.28 75.78 ± 4.12

Wdbc 94.42 ± 1.82 96.51 ± 1.37 95.47 ± 0.77 96.80 ± 0.63

Wpbc 73.77 ± 5.01 79.02 ± 2.16 77.21 ± 0.52 79.18 ± 1.74

similarity matrices provided by labeled and unlabeled training data. Generally
speaking, semi-supervised algorithms outperform the related supervised ones,
and the proposed ANG-LapPVP gains the most promising classification perfor-
mance.

Comparison with Semi-supervised Algorithms. To validate the superi-
ority of ANG-LapPVP, we further analyze experimental results of LapTSVM,
LapLSTSVM, LapPVP and ANG-LapPVP. Tables 2 and 3 list mean accuracy
and standard deviation obtained by semi-supervised algorithms on 30% and 50%
training samples as unlabeled ones, respectively, where the best results are in
bold. Additionally, there are 20% training samples as labeled ones.

From the results in Tables 2 and 3, we can see that ANG-LapPVP has a
higher accuracy than LapPVP on all ten datasets except Heart with 30% unla-
beled data. The evidence further indicates that ANG-LapPVP with the ANG
regularization well preserves the structure of training data and has a better clas-
sification performance than LapPVP. Moreover, compared with the other semi-
supervised algorithms, ANG-LapPVP has the highest accuracy on eight datasets
in Table 2 and on nine datasets in Table 3. That is to say, ANG-LapPVP has
substantial advantages over LapTSVM and LapLSTSVM. On the whole, ANG-
LapPVP has an excellent ability in binary classification tasks.
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Table 3. Mean accuracy and standard deviation (%) obtained by semi-supervised
algorithms on 50% unlabeled data.

Dataset LapTSVM LapLSTSVM LapPVP ANG-LapPVP

Breast 95.45 ± 2.00 97.77 ± 0.74 96.16 ± 1.54 98.58 ± 0.55

Check 50.86 ± 5.04 56.64 ± 2.64 59.63 ± 0.80 61.76 ± 3.15

German 71.17 ± 2.33 74.10 ± 0.74 72.67 ± 1.51 73.20 ± 1.00

Haberman 70.11 ± 4.35 66.45 ± 4.72 74.30 ± 2.12 79.46 ± 2.89

Heart 73.80 ± 7.02 77.93 ± 8.39 78.04 ± 5.22 82.39 ± 2.28

Hepatiti 59.79 ± 6.06 65.53 ± 5.92 67.66 ± 4.89 71.06 ± 4.04

Liver 59.62 ± 5.91 63.85 ± 5.48 62.21 ± 4.44 71.35 ± 2.02

Sonar 66.09 ± 3.76 72.03 ± 2.01 70.00 ± 1.77 73.13 ± 5.25

Wdbc 94.01 ± 1.40 94.88 ± 1.19 95.41 ± 0.75 96.45 ± 0.89

Wpbc 74.10 ± 3.26 90.68 ± 3.55 90.30 ± 1.28 93.03 ± 3.27

4 Conclusion

In this paper, we propose ANG-LapPVP for binary classification tasks. As the
extension of LapPVP, ANG-LapPVP improves its classification performance
by introducing the ANG regularization. The ANG regularization induces an
adaptive neighbor graph where the similarity matrix is changed with iterations.
Experimental results on the artificial and benchmark datasets validate that the
effectiveness and superiority of the proposed algorithm. In a nutshell, ANG-
LapPVP has a better classification performance than LapPVP and is a promising
semi-supervised algorithm.

Although ANG-LapPVP achieves a good classification performance on
datasets used here, the projection vectors obtained by ANG-LapPVP may be
not enough when handling with a large scale dataset. In this case, we could
consider projection matrices that may provide more discriminant information.
Therefore, the dimensionality of projection matrices is a practical problem to be
addressed in our following work. In addition, multi-class classification tasks in
reality are also in consideration.
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