Chapter 4 )
Protogyny in Fishes s

Yoichi Sakai

Abstract Of approximately 480 hermaphroditic fish species, over 300 have been
confirmed to undergo protogynous (female-to-male) sex changes. The occurrence of
protogyny is strongly related to polygynous mating systems and follows the predic-
tion of the size-advantage model based on the concept of life history strategies that
maximize lifetime reproductive success. Sex change in females often occurs in a
situation where females become dominant after the disappearance of dominant males
in the local group. However, females are also observed to change their sex even in
the presence of a dominant male (i.e., bachelor sex change and harem-fission sex
change). Female tactics associated with sex change, for example, intergroup move-
ment to improve the social condition and fast growth at the expense of spawning, are
also known. This chapter introduces the results of widely studied protogynous sex
changes in fish hermaphroditism and focuses on functional contexts and individual-
level social mechanisms.

Keywords Bachelor sex change - Diandry and monandry - Harem-fission sex
change - Mating systems - Sex change process - Social control

4.1 History of the Study of Protogynous Sex Change in Fish
Biology

As mentioned in the previous chapter (see Chap. 1), sequential hermaphroditism (sex
change) is a widely documented phenomenon in fishes, including in 41 families of
teleost orders (Kuwamura et al. 2020). Of the approximately 480 hermaphroditic fish
species, at least 314 species from 20 families of teleost orders have been confirmed
to undergo protogynous sex changes (Table 4.1). This is the highest among the four
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Table 4.1 Number of protogynous species and methodology of confirmation in each fish family

Methodology
Number of Aquarium Field surveys and/or

Order-family species Histology | experiment experiments in nature
Gobiiformes

Gobiidae 24 18 12 8
Uncertain orders in Ovalentaria

Pomacentridae 6 6 1 2

2 2 0 1

Pseudochromidae
Cichliformes

Cichlidae L1 | 0 1 L0
Cyprinodontiformes

Pocciliidae | 1 L1 1 0
Synbranchiformes

Synbranchidae | 4 | 4 | 1 | 0
Trachiniformes

Pinguipedidae 7 7 2 2

Trichonotidae 1 1 0 0
Labriformes

Labridae 99 94 9 9

Odacidae 1 1 0 0

Scaridae 36 36 0 1
Perciformes

Serranidae 66 65 7 2

Pomacanthidae | 22 9 11 6

Malacanthidae 1 1 0 1

Cirrhitidae 6 6 1 1
Scorpaeniformes

Scorpaenidae 1 1 0 0
Spariformes

Nemipteridae 2 2 0 0

Lethrinidae 11 11 0 0

Sparidae 22 19 0 0
Tetraodontiformes

Balistidae 1 1 0 1
Total 314 285 46 34

Order and family names are arranged following Nelson et al. (2016)

The numbers of species in each family and methodology are summed up from data in Chap. 6. The
number of species for which there is a report of female pre-maturity even in one population, even if
there are different opinions, were counted

Species in which only bidirectional sex change has been reported and those with weak evidence of
protogyny are excluded
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types of hermaphroditism (i.e., simultaneous, protandry, protogyny, and bidirec-
tional; Kuwamura et al. 2020).

Atz (1964) initially summarized the documentation of hermaphroditism, mainly
from anatomical and histological approaches in various taxa, representing the first
step toward an integrated view of hermaphroditism in fish biology. Protogyny
(female-to-male sex change) was recorded in at least 26 species including serranids,
sparids, and labrids (Atz 1964). Similar to many other biological fields related to
natural history, studies on sex change in fish have gradually increased since the
1960s. In a review by Reinboth (1970), 41 fish species were reported to be
protogynous, including 16 from Serranidae, 3 from Sparidae, 12 from Labridae,
and 3 from Scaridae. These four families are still recognized as the main groups
displaying protogyny and constitute approximately 71% of all the 314 protogynous
fish species (223 species; Table 4.1). In addition, these families include valuable
fisheries resources, permitting scientists to obtain specimens via fishery activities for
histological analysis. The gonad histology and size distribution pattern analyses
remain the basic approaches to identifying the occurrence of sex change. Of the
314 species, 285 (91%) were confirmed to be protogynous by sampling analysis and
gonad histology (Table 4.1).

After diving, including SCUBA, became popular in the 1960s, field researchers
conducting underwater observations or experimental surveys have studied reef fishes
that are not major targets of fisheries. In a review of hermaphroditism in fishes by
Yogo (1987), protogyny was recorded in approximately 180 species, including
41 serranids, 84 labrids, and 33 scarids. The number of confirmed species has
increased since the review by Reinboth (1970), based on the studies of reef fishes
in diving surveys.

Underwater surveys are useful for understanding the processes and patterns of
protogynous sex change at the individual level. In addition to providing a detailed
understanding of the reproductive styles in fisheries resources, the methodology was
synchronized with biology to reveal the adaptive significance of behavioral and
ecological traits. A detailed understanding of the animal group, social structure, and
mating patterns is a key concept in behavioral ecology studies. Long-term individual
discrimination methodologies are adopted to reveal life history strategies or tactics,
including sex change patterns. The best-known examples of protogynous fish,
including the bluestreak cleaner wrasse Labroides dimidiatus in the Indo-Pacific
reefs and the bluehead wrasse Thalassoma bifasciatum in the Caribbean reefs, are
model animals for various topics in behavioral ecology. In addition, various wrasses,
parrotfishes, gobies, Dascyllus damselfishes, Parapercis sandperches, and serranids,
including Pseudanthias squamipinnis (formerly Anthias squamipinnis), Centropyge
angelfishes, and cirrhitid hawkfishes, provided outstanding field data that signifi-
cantly contributed to the nature of sex change as a mating strategy. Many researchers
have ever conducted field studies on shallow reefs and confirmed functional
protogynous sex changes in 34 fish species via observational surveys (Table 4.1).
Thus, the phenomenon of sex change has been a central topic of reproduction and
sexuality in reef fish since the 1970s.



90 Y. Sakai

The establishment of an underwater diving system has enabled observational
researchers to collect live specimens from reefs in good condition for rearing in
aquarium experiments (e.g., Suzuki et al. 1979; Hioki et al. 1982; Ross et al. 1983;
Sunobe and Nakazono 1993). Aquarium experiments are useful for understanding
the individual abilities of sex changes, revealing hermaphroditic sexualities, by
controlling rearing conditions in terms of social combinations in simple cohabitated
environments. This approach overcomes the difficulty in observing deep water or
cryptic habitat (e.g., inside small holes or crevasses) fishes. However, the mainte-
nance of reproductively active conditions in individual experimental fish is impor-
tant for confirming sexual patterns. Demersal egg spawners, such as gobiid fishes,
are one of the groups successfully used in rearing experiments; protogynous sexu-
ality has been confirmed in 12 gobiid species in aquarium studies. Rearing experi-
mental methods have often been applied to pelagic egg spawners such as labrids
(9 species), serranids (7 species), and pomacanthid angelfishes (11 species). Overall,
46 fish species have been confirmed to be protogynous in aquarium experiments
(Table 4.1).

4.2 Mating Systems of Protogynous Fishes

Protogyny occurs in various fish groups. Data on the mating systems of up to
131 protogynous fish species were obtained through observational field surveys
(Table 4.2). The extensive data on mating systems indicated that protogynous
sexuality was strongly related to polygynous mating systems (Robertson and Warner
1978; Warner and Robertson 1978; Kuwamura 1984; Warner 1984, 1988, 1991;
Kuwamura et al. 2020). A recent phylogenetic approach revealed that the mating
system was an important driver of evolutionary transition in sex allocation in labrid
fishes (Hodge et al. 2020).

Mating systems in fishes can be classified using a combination of spatial relation-
ships of individuals and their mating relationships within local populations
(Kuwamura 1984, 1997). Males of various reef fishes often establish territories to
protect females and/or their resources. Harem polygyny occurs when male territories
almost completely encompass several female home ranges (or territories) to maintain
a stable mating relationship with cohabiting females (Robertson 1972; Kuwamura
1984, 1997). The other major pattern of the polygynous mating system is called the
male territory-visiting polygamy (MTV polygamy; Kuwamura 1997). Males estab-
lish mating territories as spawning sites and females visit the site during the mating
period and have opportunities for mate choice. Males exhibiting preferable charac-
teristics have opportunities for polygynous mating. MTV polygamy is called as
lek-like polygamy in some labrids (Moyer and Yogo 1982; Moyer 1991). These two
polygynous mating systems are widely known in reef fishes. Both harem polygyny
and MTV polygamy were confirmed in 60 protogynous fish species, respectively
(Table 4.2). The detailed characteristics and examples of each type are presented
below.
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4.2.1 Harem Polygyny

The cohabitation of multiple females within male territories and the establishment of
stable mating relationships are the characteristics of harem polygyny. Large males
maintain stable territories encompassing female home ranges or female territories
and monopolize mating opportunities with cohabiting females. Pair spawning
between territorial males and cohabiting females is the main form of mating in
haremic fishes. Commonly, the largest individuals in each harem group function as
males and the other smaller individuals function as females.

In Parapercis sandperches, pomacanthid angelfishes, and cirrhitid hawkfishes, all
protogynous species ever examined their mating systems showed harem polygyny.
Many harem species are also known in the Labridae (17 of 53 protogynous species
whose mating system is known), Scaridae (7 of 22), and Serranidae (6 of 17)
(Table 4.2). Harem polygyny is also confirmed in Gobiidae, Malacanthidae,
Scorpaenidae, and Balistidae (Table 4.2) with one protogynous species record in
each family.

In terms of spatial relationships among females, three types of group structures
are distinguished in harem polygyny (Kuwamura 1984; Sakai and Kohda 1997).

4.2.1.1 Cohabiting Female-Type Harem

In the cohabiting female-type harem, the home ranges of females overlapped with
each other (Fig. 4.1). This harem is recorded from Bodianus rufus and L. dimidiatus,
Centropyge angelfishes, and Holacanthus tricolor (a total of nine species;
Table 4.2). Frequent social interactions among harem members have been reported
in this type of harem. Males repeatedly conduct patrols within their territories and
have social contacts with females. The females meet with each other during the
daytime and interact socially. The dominance order among harem members is based
on body size (Kuwamura 1984; Sakai and Kohda 1997). Females of different body
sizes cohabit, usually exhibiting a dominant linear relationship among harem mem-
bers (linear-type harem; Fig. 4.1). Social interaction among cohabiting harem
members is an important characteristic related to the mechanism of sex change in
these fishes (see Sect. 4.5, Social control of sex change).

However, even in this type of harem, females of similar body sizes become
mutually exclusive regarding their territories. Individuals with different body sizes
overlap in their home ranges, whereas those with similar body sizes become
territorial. Consequently, male territories are sometimes divided into two female
subgroups (Robertson 1974; Kuwamura 1984; Hoffman 1985; Hourigan 1986;
Sakai and Kohda 1997; Munday et al. 2009). The harem structure with female
territoriality is found in harems of the cleaner wrasse L. dimidiatus (Kuwamura
1984) and Centropyge and Holacanthus angelfishes (Hourigan and Kelley 1985;
Sakai and Kohda 1997) and is described as a branching-type harem (Fig. 4.1), related
to the variation in the timing of sex change (see Sect. 4.6, Harem-fission sex change).
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4.2.1.2 Territorial Female-Type Harem

In this type, females maintained individual territories and divided the dominant male
territory (Fig. 4.2), as confirmed in Parapercis sandperches, Halichoeres, Iniistius
and Xyrichtys wrasses, the serranid Cephalopholis miniata, Malacanthus sand
tilefish, cirrhitid hawkfish, and the triggerfish Sufflamen chrysopterus (a total of
14 species; Table 4.2). Exclusive territorialities among harem females are caused by
the protection of shelter resources in open habitats (Clark 1983; Baird 1988), mating
resources (Ishihara and Kuwamura 1996; Seki et al. 2009), and food resources
(Shpigel and Fishelson 1991; Kadota et al. 2011). In contrast to the cohabiting
female-type harem, social interactions among females occur infrequently, but dom-
inant males often interact with females during territory patrols and courtship.

4.2.1.3 Aggregating Female-Type Harem

This is often seen in fish gregariously hovering in the water column to feed on
zooplankton (Shapiro 1981; Moyer 1984; Yogo 1985; Sakanoue and Sakai 2019).
No territorial relationship was found among the gregarious females, and a size-
related spatial relationship was not found in the harem. This harem type was
recorded in the coral-dwelling Dascyllus damselfishes, a serranid P. squamipinnis,
and Genicanthus angelfishes (11 species; Table 4.2). The lack of apparent exclusive
relationships among females in this harem is similar to that in cohabiting female-type
harems. Females stably spawn with territorial males in each aggregating female-type
harem, similar to the other two types of harems.

All the 11 protogynous species maintaining aggregating female-type harems
showed a multi-male harem structure, where two or more territorial males dominated
a female harem. The single male harem of the planktivorous serranid
P. squamipinnis swimming in the water column includes up to nine females (Shapiro

Female A (8.0)

Sm Male

Female D (6.8)
Female B

Female B (7.4)

Male A (8.8)

Fig. 4.2 Typical example of the spatial relationship of the territorial female-type harem. Male
territories (thick lines) and female territories (thin lines) of two harems of the hawkfish
Cirrhitichthys falco on the reefs of Kuchierabu-jima Island, southern Japan (/eft; redrawn from
Kadota et al. 2011). Each male territory encompasses two female territories. Total lengths (cm) are
given in parentheses. A schematic model of two female territories within a male territory is also
shown (right; redrawn from Kuwamura 1984) (photo Tatsuru Kadota)
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Male A

Female B

Fig. 4.3 Typical example of the spatial relationship of the aggregating female-type harem. Harem
groups of the coral-dwelling damselfish Dascyllus reticulatus are formed on shelter corals. Single
male harems often occur on corals with wide gaps between long branches (a), while multi-male
groups often occur on corals with narrow gaps between fine short branches (b). A schematic model
of a multi-male group is also shown (right); females often swim together and their home ranges
(thin lines) overlap within male territories (thick lines) (photo Rei Sakanoue)

1977; Yogo 1985). In contrast, in the case of a harem with more individuals, multiple
males cohabit, for example, a multi-male harem of P. squamipinnis included
15 males and 72 females (Yogo 1985). The females’ home ranges overlap with
multiple male home ranges providing opportunities to change spawning partners
within a harem, suggesting the possibility of promiscuous mating. Thus, increased
harem size often leads to multiple male groups.

High-density multi-male groups of the coral-dwelling Dascyllus damselfish often
occur in high coral cover habitats (Fricke 1980; Shpigel and Fishelson 1986).
However, multi-male harem groups sometimes occur, even in habitats with low
coral cover (Asoh 2004). In Dascyllus reticulatus, the group structure strongly
depends on the shelter spaces in the coral branches; single males tend to monopolize
harems of large females in corals with long branches (Fig. 4.3a) ,providing wide
shelter spaces suitable for large individuals, whereas relatively small adults inhabit
corals with short branches providing narrow spaces in high density (short-branch
groups; Fig. 4.3b). Multi-male group composition often occurs in short-branch
groups even in the low coral cover habitats (Sakanoue and Sakai 2019).

The presence of multiple males within a harem group indicates the occurrence of
sex change by a female in the presence of a dominant male. The process and social
context of sex change in this harem type will be described later (Sect. 4.6).

4.2.2 Male Territory-Visiting Polygamy

In Labridae and Scaridae, MTV polygamy is the most frequent form of mating
system (37 of 53 protogynous wrasses and 18 of 22 protogynous parrotfishes;
Table 4.2). Phylogenetic analyses have found that the ancestral mating systems of
labrid fish most likely belong to MTV polygamy (Hodge et al. 2020). These two
families occupy 92% of the 60 MTV polygamy records. These labrids and scarids
are fast swimmers; most are pelagic egg spawners, and hence use offshore spawning
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Female B

5.6
66 Female A

Female B

= Female C
| —

Female D

Fig. 4.4 Typical example of the spatial relationship of the male territory-visiting (MTV) polyg-
amy. Home ranges of females (thin lines) and territories of nest-holding males (thick lines) of
Fusigobius neophytus on the reefs of Kuchierabu-jima Island, southern Japan (left; redrawn from
Tsuboi and Sakai 2016). Some females overlap their home ranges with multiple male territories.
Total lengths (cm) are given in parentheses. A schematic model indicates mating relationships in
MTV polygamy, in which females can change male mating territories for spawning (right; redrawn
from Kuwamura 1997) (photo Miyuki Tsuboi)

sites for dispersing eggs and transporting them offshore (Colin and Bell 1991;
Kuwamura et al. 2009). MTV polygamy has been found even in fishes showing
paternal care for demersal eggs within their mating territories: Symphodus wrasses,
Coryphopterus, Fusigobius, Lythrypnus gobies, and the synbranchid Monopterus
albus (Table 4.2; Fig. 4.4).

In fish with MTV polygamy, territorial males frequently develop bright body
coloration to attract females, similar to leks in birds. In contrast, territorial males with
harem mating systems maintain large body sizes for resource and female defense,
but do not generally show sexual dichromatism or dimorphism. These differences in
male characteristics are consistent with the theory of sexual selection.

In MTV polygamy, the primary mating form involves pair spawning between
territorial males and visiting females. Large individuals within a local population
tend to become territorial males. It is well known that some territorial males often
have the opportunity to spawn with many females (Warner 1984, 2001). In addition,
alternative mating tactics such as sneaking, streaking, and group spawning are often
observed in smaller males because of a relatively loose monopoly on mating
opportunities with females by territorial males (Warner 1984, 2001; see Sect. 4.3).
Some smaller males have pair spawning opportunities with females moving toward
the male territorial spawning sites; this interception is called sneaking. The release of
sperm by smaller males simultaneously with territorial males, coinciding with male-
female pair spawning is called streaking.

In addition, small males often form groups to spawn with females (i.e., group
spawning). The group spawning was exclusively confirmed in pelagic egg spawners
and reported in at least 27 protogynous fish species (Table 4.2). Nearly all these
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cases are observed in labrids (17 species) and scarids (9 species). Of the 27 group
spawning species, 93% (25 species) maintained MTV polygamy (Table 4.2). At
spawning sites in MTV polygamy, group spawning is observed along with pair
spawning, as females are ready to spawn together. In the high-density population site
of the bluehead wrasse T. bifasciatum, the group-spawning males drive out territorial
males from spawning sites, where females prefer to spawn and get frequent mating
opportunities (Warner 1984, 2001).

Some labrids and scarids are reported to exhibit different mating systems among
populations, including harem polygyny or MTV polygamy (two Cheilinus species,
Epibulus insidiator, Halichoeres melanurus, two species of Scarus, and Sparisoma
radians; Table 4.2). Although the mechanism promoting variation in mating sys-
tem has not been revealed in many labroid fishes, one comparative field study on
H. melanurus provides insight into this issue. The wrasse maintains reproduction by
MTYV polygamy, where females actively change their mates over a long mating trip
visiting different males (Kuwamura et al. 2000). However, under high predation
risks, females repeatedly spawn with nearby males, resulting in a mating system
similar to that of harem polygyny (Karino et al. 2000). Under social or environmen-
tal conditions restricting female mate choice, mating based on MTV polygamy may
flexibly shift to a harem-like group structure.

4.2.3 Monogamy

In protogynous gobies, the monogamous mating system is confirmed in coral-
dwelling Gobiodon and Paragobiodon species (5 species; Table 4.2). In these
monogamous gobies, males play an important role in egg guarding by covering
the eggs spawned on the surface of coral branches (Kuwamura et al. 1994;
Nakashima et al. 1996; Munday et al. 1998). The largest individuals function as
males at the beginning of pair formation within local groups. These goby species are
observed to form pairs of size-matched individuals. It has been reported that sex
differences in growth (Kuwamura et al. 1994) and growth regulation between pairs
(Munday et al. 2006a) are mechanisms that drive size-matched pairs. Details are
described in the following chapter (Chap. 5).

The protogynous serranid Cephalopholis hemistiktos is reported to maintain a
monogamous mating system with small territorial home ranges in small patch reef
habitats isolated from sandy beds (Shpigel and Fishelson 1991). It is suggested that
poor food availability in habitat restricts group size and forces monogamy in
serranids. However, an exceptional example of a harem group comprising one
male and two females has been observed (Shpigel and Fishelson 1991), suggesting
the potential ability to establish harem polygyny when they settle in prey-rich
habitats. Further field examination of mating systems of C. hemistiktos is expected
to reveal whether it is obligately monogamous or facultatively monogamous and
potentially harem polygynous, depending on the habitat conditions.
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4.2.4 Spawning Aggregation

Spawning aggregation is reported in at least 164 species of coral reef fishes in
26 families (Claydon 2004) and occurs in the middle of the reproductive process
just before spawning. It involves long-distance migration to offshore areas suitable
for spawning and is often observed in those with a habit of spawning at limited and
specific times (Robertson 1983; Claydon 2004). Spawning aggregation was
recorded in 16 protogynous fishes, including 11 serranids in Cephalopholis,
Epinephelus, Mycteroperca, and Plectropomus (Table 4.2). In addition, four
protogynous labrids and one protogynous scarid species have also been recorded
with spawning aggregation (Table 4.2). However, spawning aggregations cannot be
considered under a comparable independent mating-system category.

Owing to the considerable difficulties in conducting field observation in offshore
waters where spawning aggregations often occur, detailed individual-level data on
mating behaviors are limited. Harem mating systems or MTV polygamy with
records of spawning aggregation habits have been reported in two labrids (Cheilinus
fasciatus and Cheilinus undulatus), a scarid Scarus iseri, and two protogynous
serranids (Cephalopholis fulva and Epinephelus adscensionis) (Table 4.2). How-
ever, in most cases, whether the territorial structures of harems and MTV polygamy
are formed in areas where individuals aggregate to spawn remains to be elucidated.
Six serranids, namely, C. fulva, Epinephelus guttatus, Epinephelus ongus,
Moycteroperca microlepis, Mycteroperca phenax, and Plectropomus leopardus per-
form pair spawning ascents (Erisman et al. 2009; Nanami et al. 2013), implying the
broad occurrence of male territoriality to secure mating partners at the spawning sites
where females form aggregates. In contrast, group spawning in S. iseri occurs
following spawning aggregation (Colin 1978). Further research on spawning aggre-
gates is needed to obtain data on spawning territoriality and mate fidelity (stable or
promiscuous) with notes on their spawning forms, which clarify their actual status as
mating systems.

4.3 Monandry and Diandry

Two types of males are known in protogynous fishes: primary males and secondary
males derived from females (Reinboth 1970). The coexistence of small males and
large territorial males within a local population occurs in several protogynous fishes.
Histological approaches have revealed that small males not derived from sex
changes in females occur in several protogynous fishes. The non-sex-changing
males, called primary males, differ from males derived from sex change (secondary
males) in terms of gonadal maturation or development. No remnants of the ovarian
structure or ovarian cells were histologically verified in or around the testicular
structure of primary males (Reinboth 1970; Sadovy and Shapiro 1987). Diandry is
defined by the coexistence of two types of males in a population or species; in
monandry, all males are derived from the sex change of females.



108 Y. Sakai

Table 4.3 Relationship between occurrence pattern of male types and mating systems of
protogynous fishes

Occurrence pattern of Size assortative Harem polygyny MTV polygamy
male types monogamy (n = 6) (n=>51) (n=>52)
Monandry (n = 71) 6 46 19

Diandry (n = 32) 0 3 29

Unknown (n = 6) 0 2 4

Number of species summarized from Table 4.2, excluding species with more than one mating
system records and those only with spawning aggregation

Monandry was confirmed in 89 protogynous species and diandry in 37 including
various labrids and scarids (Table 4.2). The occurrence of both or only one of these
types of males is related to the mating system of fish. The following discussion
focuses on protogynous species with only one known mating system (i.e., monog-
amy, harem polygyny and MTV polygamy) for comparison, with the exception of
species that exclusively exhibit spawning aggregation.

In total, 71 and 32 protogynous fish species are identified as monandrous and
diandrous, respectively (Table 4.3). Monandry is broadly confirmed in fish
maintaining stable mating relationships, that is, harem polygyny and monogamy.
In all, 46 of the 51 species of harem fish (90%), and all 6 monogamous protogynous
fishes are monandrous (Table 4.3). Territorial males monopolize mating in harems or
secure mating opportunities within monogamous pairs in monandric fishes. Thus,
pair spawning between territorial males and females is the primary form of mating.
In most cases, sneaking or streaking is rare because of the strong territorial domi-
nance of males (but see Ohnishi et al. 1997; Muifioz and Warner 2003a).

Some MTV polygamous fish species are monandric (19 species; Table 4.3).
However, the number of monandric species with MTV polygamy may be
overestimated, because the frequency of primary males within a population varies
with population density in various diandric MTV polygamous fishes (Warner 1984).
Therefore, reports of monandry in MTV polygamous fishes should be carefully
re-examined for the possibility of the occurrence of primary males, depending on
the population density.

Of the 32 diandric species 91% (29 species) exhibited MTV polygamy in their
mating system (Table 4.3). Many diandrous wrasses and parrotfishes possess high
free-swimming abilities and produce pelagic eggs in the water column. Diandric
sexuality has also been confirmed in demersal egg spawners, i.e., a goby Fusigobius
neophytus (Tsuboi and Sakai 2016) and some haremic Dascyllus damselfish (Cole
2002; Asoh and Yoshikawa 2003; Table 4.2).

Primary males of diandric labrids and scarids develop large testes even when they
are small, providing an advantage during streaking or group spawning (Robertson
and Warner 1978; Warner and Robertson 1978; Warner 1984, 2001). Primary males
often maintain female-like body coloration and behave stealthily to sneak or streak,
while avoiding attacks from territorial males performing courtship displays to
approaching females for pair spawning. Sex-changing females and primary males
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of diandric labroid fishes can become territorial males after growth and exhibit
secondary body coloration.

The occurrence of small males due to small female sex change (see Sect. 4.7) or
immature female sex change (i.e., prematurational sex change) is not defined as
diandry, as long as ovary-related tissues are histologically present. In the case of the
monandric labrid Notolabrus celidotus (formerly Pseudolabrus celidotus), small
males derived from protogynous sex change of immature females (prematurational
sex change) coexist with large sex-changing males within a population showing
MTV polygamy (Jones 1981). In addition, the occurrence of males via
prematurational sex change has also been detected in Bodianus eclancheri
(Labridae), Sparisoma cretense (Scaridae), Lethrinus nebulosus (Lethrinidae), and
Pagrus ehrenbergii (Sparidae) (Chap. 6). Furthermore, the prematurational sex
change may also occur in at least three labrids: Cirrhilabrus temmincki, Labrus
bergylta, and Labrus mixtus; a serranid Paralabrax maculatofasciatus; a nemipterid
Scolopsis monogramma; a lethrinid Lethrinus atkinsoni; and a sparid Pagrus
pagrus.

The origin and sexuality of primary males in diandric fish have long been
discussed. It has long been believed that primary males are gonochoric without
sexual plasticity. However, primary males of the genera Halichoeres and Parajulis
have recently been shown to have the ability to change sex to females (Kuwamura
et al. 2007; Miyake et al. 2008). In addition, juveniles of the famous diandric wrasse,
T. bifasciatum, have been confirmed to become primary males or females, depending
on social conditions, for example, conspecific densities (Munday et al. 2006c¢). Since
plastic sexuality has been confirmed in the primary males of some diandric wrasses,
it may not be necessary to distinguish between males by prematurational sex change
and those by direct maturation to primary males. Research to elucidate the details of
the social and environmental conditions under which prematurational sex change
occurs is expected to provide an integrated understanding of the mechanisms of
small male emergence in protogynous fishes.

4.4 Adaptive Significance of Protogyny Explained by
the Size-Advantage Model

Protogyny is recorded mainly in fishes that maintain harem polygyny or MTV
polygamy, where large dominant males can obtain polygynous mating opportunities.
This condition coincides with the prediction of the adaptive significance of
protogynous sexuality using the size-advantage model (SA model; see Chap. 1).
The SA model predicts that protogynous (female to male) sex change will be
selectively favored in fishes with polygynous mating systems, where large males
monopolize mating to the detriment of small ones (Warner 1975, 1984, 1988).
Small young males generally have poor mating opportunities in polygynous
mating groups dominated by large territorial males. In contrast, females maintain
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mating opportunities, even when their body size is small. In this social context, it is
predicted that individuals can maximize their lifetime reproductive success by
maturing as females first and changing sex into males after growing larger. For
many protogynous fishes that maintain harem polygyny or MTV polygamy, it has
been widely confirmed that large territorial males obtain high reproductive success
via multiple spawning opportunities in local groups. Therefore, the prediction of the
SA model fits well with the social and mating conditions of the polygynous mating
groups.

The emergence of primary males in situations that favor protogyny, in which
large males dominate reproduction, is also theoretically well explained. Warner’s
(1975) SA model shows that the characteristics of the mating system, such as mate
choice by females and the degree of monopoly of reproductive opportunities by
males, determine the direction and frequency of the sex change phenomenon. In the
bluehead wrasses 7. bifasciatum, the number of individuals living in a patch reef
varies greatly depending on its size. On large reefs harboring large populations of the
wrasse, large numbers of small primary males that do not have a territory group
together to interfere with the spawning of territorial males and then conduct group
spawning at females’ favorite spawning sites (Warner 1984). This shows that in a
population where it is difficult for territorial males to monopolize reproduction, the
proportion of primary males will be high. This is consistent with the predictions of
the SA model. Based on this concept, Charnov (1982) also successfully accounted
for variation among populations in the proportion of primary male bluehead wrasses
in field data using an ESS model that predicts an optimal value for the proportion of
primary males occurring under the influence of the reproductive success of territorial
males. In other words, the frequency of the occurrence of primary males may mutate
depending on the advantage of primary males in terms of their mating tactics in the
local habitat.

It has been hypothesized that sexual differences in life history traits, such as
mortality or growth rates, may also favor the evolution of protogynous sex change
(Charnov 1982; Warner 1988; Iwasa 1991). In general, individuals maximize fitness
by first maturing with lower mortality or higher growth rate and later changing into
the other sex. For the coral-dwelling goby Paragobiodon echinocephalus with a
size-assortative monogamous mating system, where size-fecundity relationships are
equal in both sexes, the adaptive significance of protogynous sexuality (despite the
ability to reverse sex change; Table 4.4, see Sect. 4.5) is explained by the growth rate
advantage: females grow faster than males in each pair (Kuwamura et al. 1994).
Because the reproductive success of a monogamous pair of P. echinocephalus is
limited by the body size of the smaller mate, regardless of sex and male body size,
which strongly determines reproductive success in the parental care role, a smaller
individual will become a female in the newly formed pair, and adult females will
undergo sex changes in males when they form new pairs (Kuwamura et al. 1994). In
the case of another coral-dependent monogamous goby, Gobiodon histrio, the effect
of sex-specific growth differences on sex change is limited (Munday 2002; Munday
et al. 2006a).
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In a monandric scarid, S. radians, in addition to pair spawning by territorial
brightly colored males (terminal phase: TP) with drab-colored females (initial phase:
IP), non-territorial bachelor IP-colored secondary males derived from females con-
duct streaking and group spawning (Muifioz and Warner 2003a, 2004). By incorpo-
rating sperm competition within local groups (i.e., possibilities of paternity loss
suffered from streaking) and size-fecundity skew (i.e., future expected fecundity of
the other females remaining in the harem), the SA model was extended to predict that
large females maintaining high fecundity do not always undergo sex change (Mufioz
and Warner 2003b) with a field test of the hypothesis using the parrotfish S. radians
harem (Mufioz and Warner 2004). The new version of the SA model may explain
variations in the timing of sex change among populations or species, especially in
MTYV polygamous fishes, which sometimes show intense sperm competition.

In addition, an ESS model incorporating sex-specific growth rates and the effect
of female nutritional status on the clutch size as life history parameters predicts that
well-nourished females achieve high reproductive success as they change sex on
attaining a larger size than poorly nourished ones (Yamaguchi et al. 2013). In some
situations, well-nourished females no longer change sex (i.e., lifelong females). This
notional approach also explains tactical variations in the size and timing of
protogynous sex change (Sect. 4.7).

The foregoing reports reveal the adaptive significance of protogynous sexuality in
fishes explained through the maximization of lifetime reproductive success.

4.5 Social Control of Sex Change: Broad Occurrence
of Takeover Sex Change

Experimental manipulations and underwater observational surveys have signifi-
cantly contributed to studies on the processes, patterns, and conditions of
protogynous sex change. In various haremic protogynous fishes, the male body
size varies among local groups (Warner 1988). Furthermore, males are always the
largest in each local group, and thus the most dominant in size-based dominance
order within a group (Robertson 1972; Moyer and Nakazono 1978; Kuwamura
1984; Sakai and Kohda 1997; Kadota et al. 2011). Therefore, the timing of
protogynous sex changes is determined by the relative body size and dominance in
groups, rather than the absolute body size. Even in MTV polygamous fishes, similar
relative body size-based dominance order and size-based sexuality have been con-
firmed (Warner and Swearer 1991; Sakai et al. 2002, 2007). If females begin sex
change at a fixed body size or a certain age, then local group member composition
related to body size would not be observed in nature.

As protogynous sex change is mediated by relative size and dominance, females
may not change sex unless they become relatively larger than their group members,
even when they attain the absolute size at which many other females change sex. As
a result, females do not often undergo sex changes in natural conditions, as revealed
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by many demographic studies. For example, in the haremic angelfish Centropyge
ferrugata on the reefs of Okinawa, southern Japan, 9 of 31 females underwent
protogynous sex changes in a 3-year-long demographic survey (Sakai 1997). In
the case of cleaner wrasse L. dimidiatus, 8 of 31 females showed sex changes in a
3-year-long survey on the reefs of southern Japan (Sakai et al. 2001). Kadota et al.
(2012) observed protogynous sex changes in 3 Cirrhitichthys falco females in a
3-year survey of the population, including 11 females on the reefs of southern Japan.
Aldenhoven (1984) conducted demographic surveys in four populations of
Centropyge bicolor on reefs of Great Barrier Reef to follow 36 harems (2-3 females
in each harem) for 2.5 years and confirmed sex reversal of 1 or 2 individuals in most
populations, although there was an exceptional population with frequent sex changes
(20 sex changes; Aldenhoven 1984) (see Sect. 4.6, Bachelor sex change). These
findings suggest that females change sex in situations that make them dominant in
the local group, many cases, the disappearance of dominant males.

Robertson (1972) first highlighted the importance of social interactions in the sex
change of protogynous fish. He conducted experiments on males removed from
harems and showed that the loss of the dominant male is an important social factor
that promotes female sex change. In a 2.5-year demographic survey, Robertson
(1974) found that females of the cleaner wrasse L. dimidiatus often showed sex
changes in harems where the dominant males disappeared. In each cohabiting
female-type harem (Table 4.2), a dominance order based on relative body size
through behavioral interactions was found (Robertson 1974; Kuwamura 1984;
Sakai and Kohda 1997). The dominance rank affects the timing of sex change by
females adopting a conditional strategy, “if dominant, be a male; if not, be a female.”
The importance of social status within a local group, affecting the start or delay of
sex change, is often called the “social control of sex change” (Robertson 1972).

After discovering the social control of sex change, male removal from a polyg-
ynous group or female-only cohabitation is often used to confirm protogynous sex
change in field or aquarium experiments using various fishes. In fish whose sex
change patterns have been surveyed in nature, the most common example is that of
the largest female changing sex after the disappearance of the dominant male to take
over the harem, called takeover sex change (Sakai 1997). Eleven protogynous
species are known to undergo takeover sex change in nature (Table 4.4). In addition,
male removal experiments in fields or male-loss conditions in aquariums showed
takeover sex changes by females in a total of 57 species (25 and 41 species,
respectively; Table 4.4). In total, 60 protogynous fish species were confirmed to
undergo sex change by females after the loss of males, implying the broad occur-
rence of social control of sex change.

The rationale behind this observation is that if females started sex changes when
the male was present, they would be chased out of the group by the territorial male
(but see Sects. 4.6 and 4.7). If females do not conduct sex change even after the
disappearance of the dominant male, the harem would be taken over by another male
that has intruded into the territory or group members would leave the territory to
search for new mates. In either case, the future reproductive success of females is
considerably lower than that of individuals undergoing takeover sex change
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Table 4.4 A list of fishes that have been confirmed to conduct protogynous sex change under the
male-loss conditions by rearing experiment in aquarium (A) or field experiment (F), with notes on
takeover sex change after the male disappearance observed in natural conditions

Takeover sex
change
Order/family/ Mating observed in
species system | Experiments | nature References
Gobiiformes
Gobiidae
Coryphopterus A Cole and Shapiro (1990)
dicrus
Coryphopterus | MTV A Cole and Shapiro (1992)
glaucofraenum
Coryphopterus A Cole and Shapiro (1990)
hyalinus
Coryphopterus A Cole and Shapiro (1990)
lipernes
Coryphopterus A Cole and Robertson (1988)
personatus
Eviota A Cole (1990)
epiphanes
Fusigobius MTV X Tsuboi and Sakai (2016)
neophytus
Gobiodon MG F* Munday et al. (1998)
histrio
Gobiodon A? Cole and Hoese (2001)
okinawae
Gobiodon MG F, A? Nakashima et al. (1996)
quinquestrigatus
Lythrypnus MTV F (artificial Reavis and Grober (1999),
dalli habitat), A* Black et al. (2005) and
Lorenzi et al. (2006)
Paragobiodon | MG F, A* x* Kuwamura et al. (1994),
echinocephalus Nakashima et al. (1995) and
Lassig (1977)
Paragobiodon | MG F Lassig (1977)
xanthosomus
Rhinogobiops A Cole (1983)
nicholsi
Trimma ND F, A* x?* Sunobe and Nakazono (1990,
okinawae harem 1993) and Manabe et al.
(2007b)
Uncertain orders in Ovalentaria
Pomacentridae
Dascyllus AF F Kuwamura et al. (2016a) and
aruanus harem, Asoh (2003)
MTV

(continued)
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Table 4.4 (continued)
Takeover sex
change
Order/family/ Mating observed in
species system | Experiments | nature References
Dascyllus AF A x?* Tanaka (1999), Asoh (2005b)
reticulatus harem, and Sakanoue and Sakai
MTV (2022)
Cichliformes
Cichlidae
Metriaclima A Stauffer Jr and Ruffing (2008)
cf. livingstoni
Cyprinodontiformes
Poeciliidae
Xiphophorus A Lodi (1980)
helleri
Trachiniformes
Pinguipedidae
Parapercis TF F X Stroud (1982)
cylindrica harem
Parapercis TF F, A X Nakazono et al. (1985) and
snyderi harem Ohnishi (1998)
Labriformes
Labridae
Bodianus rufus | CF F Hoffman (1983, 1985) and
harem Hoffman et al. (1985)
Choerodon A Sato et al. (2018)
schoenleinii
Halichoeres ND F Sakai et al. (2002)
melanurus harem,
MTV
Halichoeres TF F Munday et al. (2009)
miniatus harem
Iniistius TF F, A Nemtzov (1985)
pentadactylus harem
Labroides CF F, A® X Robertson (1972), Kuwamura
dimidiatus harem et al. (2002, 2011) and Sakai
et al. (2001)
ND F Moyer (1991)
Macropharyngodon | harem
moyeri
Parajulis MTV A Sakai et al. (2007)
poecilopterus
Pteragogus MTV A Shimizu et al. (2022)
aurigarius
Thalassoma MTV F Warner and Swearer (1991)
bifasciatum and Hoffman et al. (1985)

(continued)
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Takeover sex

change
Order/family/ Mating observed in
species system | Experiments | nature References
Thalassoma MTV A Ross et al. (1983)
duperrey
Thalassoma MTV A Warner (1982)
lucasanum
Scaridae
Sparisoma ND F Muiioz and Warner (2003a,
radians harem, 2004)
MTV
Perciformes
Serranidae
Cephalopholis A Liu and Sadovy (2004)
boenak
Epinephelus A Kline et al. (2011)
adscensionis
Epinephelus A* Okumura (2001)
akaara
Epinephelus A? Quinitio et al. (1997), Chen
coioides et al. (2019, 2020, 2021)
Epinephelus F Mackie (2003)
rivulatus
Pseudoanthias A Hioki et al. (2001)
pleurotaenia
Pseudoanthias | AF F, A X Fishelson (1970), Yogo
squamipinnis harem (1985), Shapiro (1981) and
Shapiro and Boulon Jr (1982)
Pomacanthidae
Apolemichthys A? Hioki and Suzuki (1995)
trimaculatus
Centropyge CF A Hioki and Suzuki (1996)
acanthops harem
Centropyge CF X Aldenhoven (1984, 1986)
bicolor harem
Centropyge CF F*, A? X Sakai (1997), Sakai et al.
ferrugata harem (2003a) and Kuwamura et al.
(2011)
Centropyge A? Hioki and Suzuki (1996)
fisheri
Centropyge A Hioki (2002)
heraldi
Centropyge CF F Moyer and Nakazono (1978)
interruptus harem
Centropyge CF F (artificial Lutnesky (1994, 1996)
potteri harem | habitat)

(continued)
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Table 4.4 (continued)

Takeover sex
change
Order/family/ Mating observed in
species system | Experiments | nature References
Centropyge CF F Sakai et al. (2003b)
vrolikii harem
Genicanthus A Hioki et al. (1995)
bellus
Genicanthus AF A Suzuki et al. (1979)
lamarck harem
Genicanthus AF A Hioki et al. (1982)
melanospilos harem
Genicanthus A Carlson (1982)
persomatus
Genicanthus AF A Suzuki et al. (1979)
semifasciatus harem
Genicanthus A Hioki et al. (1995)
watanabei
Malacanthidae
Malacanthus TF F Baird (1988)
plumieri harem
Cirrhitidae
Cirrhitichthys A* Kobayashi and Suzuki (1992)
aureus
Cirrhitichthys TF X Kadota et al. (2012)
falco harem
Tetraodontiformes
Balistidae
Sufflamen TF F Takamoto et al. (2003)
chrysopterus harem

MG size-assortative monogamy, MTV male territory-visiting polygamy, CF harem cohabiting
female-type harem, TF harem territorial female-type harem, AF harem aggregating female-type
harem, and ND harem harem types unidentified (see Table 4.2)

X indicates that there are reported cases

“Reversed sex change (male to female) was also confirmed

immediately after male loss. Thus, regardless of the mating system, subordinate
females broadly adopt takeover sex change as a life history tactic for protogynous
fish (Table 4.4).

The SA model was mathematically formulated as a life history strategy model to
explain the adaptive significance of the direction and timing of sex change, viewed
as an evolutionary response to demographic parameters of the entire population
(Warner 1975, 1984). The social control of sex change is an individual-level
mechanism that drives variations in the timing of sex change within and between
species. However, the SA model can also be applied at the scale of the local mating
group and explain the advantage of sex change based on the reproductive values of
individuals as males or females relative to the size of the other individuals in the
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mating group (Munday et al. 2006b). Thus, the validity of the SA model as a theory
to explain the advantage of sex change remains unchanged, even in fishes that
demonstrate socially controlled sex changes. However, empirical studies of fishes
that exhibit social control of sex change have revealed variations in the timing of sex
change within species. How they relate to the reproductive, social, and environmen-
tal conditions of local groups will be discussed in the next section.

4.6 Alternative Examples of Protogynous Sex Change

Mating systems of protogynous fishes, including harem polygyny and MTV polyg-
amy, where large territorial males monopolize mating opportunities, may favor the
evolution of the conditional strategy “if dominant, be male.” However, to achieve a
dominant status, females sometimes adopt sex changes without waiting for the
disappearance of males. In other words, females do not always wait until they
become dominant (i.e., the largest) in the original local group because of the
disappearance of males. Although sex change after the male loss has already been
observed in a wide range of protogynous fish species, it is emphasized that sex
change starts earlier than the timing of male loss, the pattern initially referred to as
“early sex change” (Moyer and Zaiser 1984).

In protogynous fishes demonstrating socially controlled sex change (i.e., takeover
sex change after male loss), females of 18 species changed sex even in the presence
of the dominant male (Table 4.5). In addition, three haremic species without any
observation records of takeover sex change (C. tibicen, H. tricolor, and Xyrichtys
martinicensis; Table 4.5) have records of sex change in male presence. With the
empirical data accumulation, it became clear that the early sex change initially
mentioned by Moyer and Zaiser (1984) could be divided into two major processes:
bachelor sex change and harem-fission sex change. For two gobies Rhinogobiops
nicholsi and F. neophytus and a wrasse Choerodon schoenleinii, detail processes of
the sex change under the male presence were unrevealed. For the remaining 15 spe-
cies, either or both patterns of bachelor sex change or harem-fission sex change have
been identified (Table 4.5). This view of the phenotypic flexibility of sex change is
an alternative life history tactic determined by field studies, in which identified
individuals were observed continuously over time. In addition, tactical behaviors
of females that may favor the acquisition of sex change opportunities through group
migration and fast growth has also been reported. Three perspectives on alternative
tactics (i.e., bachelor sex change, harem-fission sex change, and female tactics
toward the faster acquisition of sex change) are introduced below.
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4.6.1 Bachelor Sex Change

One of the processes of protogynous sex change demonstrated in the presence of a
male is becoming a bachelor male. A female leaves the male’s territory and changes
sex to become a bachelor male that will spend a reproductively inactive period
(Aldenhoven 1984, 1986; Moyer and Zaiser 1984; Hoffman et al. 1985; Moyer
1987; Warner 1988). This is called “bachelor sex change” as described by Sakai
(1997). Bachelor sex changers have been reported in the haremic goby Trimma
okinawae, the damselfish D. reticulatus, the sandperch Parapercis snyderi, the
temperate wrasse N. celidotus, the bluehead wrasse T. bifasciatum, the bucktooth
parrotfish Scarus radians, and three Centropyge angelfishes (C. bicolor,
C. interruptus, and C. tibicen) (9 species; Table 4.5).

Bachelor sex change was found earlier in harem species of Centropyge
angelfishes, and its advantages have been discussed (Moyer and Zaiser 1984;
Aldenhoven 1984, 1986). Bachelor sex changers were subsequently identified in
harem fish species of various taxa (Table 4.5). Sex-changing females undergoing a
period similar to bachelor males have also been confirmed in MTV polygamous
wrasses and parrotfishes, under the effective social control of sex change (Table 4.5).
In the case of the MTV polygamous labrids N. celidotus and T. bifasciatum, and a
scarid S. radians, females would abandon their home ranges and become
nonterritorial males before reaching territorial male status (Jones 1981; Warner
1984; Hoffman et al. 1985; Muiioz and Warner 2003a).

Since bachelor sex changers could have continued to breed as females if they had
not changed sex, they would have incurred significant opportunity costs if the period
of bachelorhood until taking over the harem was long. However, the cost can be
compensated by high reproductive success after taking over the harem (Aldenhoven
1984, 1986; Moyer and Zaiser 1984; Warner 1991). To acquire a reproductive
position, a sex-changing individual must (1) wait for the territorial male to disappear,
(2) wait for a new female (or juvenile) to settle in its home range, or (3) deprive the
territorial male of some of its females (Moyer 1987). The last option is often adopted
as another type of sex change tactic, called “harem-fission sex change,” described
later. Of these, the first tactic appears to be the most successful for bachelor males. In
this case, bachelor males have to enter the group earlier than the completion of
takeover sex change by the group’s largest female after the territorial male’s
disappearance to mate with the females. In C. bicolor, seven cases were identified
in which bachelor males took over a harem that lost its male (Aldenhoven 1984).

Moyer and Zaiser (1984) observed bachelor sex changers wandering over a wide
area as a floater to visit several harems in two Centropyge angelfish harems,
suggesting that they assess the surrounding group conditions to find harems without
males where they could take over. It is believed that it is not easy for a bachelor male
to displace a larger territorial male. The floating behavior of bachelor males is
important in detecting the loss of territorial males (Moyer and Zaiser 1984; Moyer
1987). However, reports on the behavioral patterns of bachelor sex changers are very
limited.
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A 2.5-year demographic study by Aldenhoven (1984) in four populations of
C. bicolor confirmed the frequent occurrence of bachelor males in a population
exhibiting high mortality and high harem density. For population conditions pro-
moting bachelor sex changers, high mortality rates in both territorial males and
reproductively active females may increase the chances of group takeover by
bachelor males having low mortality rates. The annual mortality rate of males in
the population with frequent bachelor sex change was 2—13 times higher than that in
populations where only takeover sex change was observed (Aldenhoven 1984,
1986). High harem density also favors the occurrence of bachelor sex changers,
because the conditions of many harems could be easily assessed (Aldenhoven 1984,
1986; Warner 1988, 1991). In a population where 19 bachelor males appeared, each
harem was in close proximity to an average of 4.1 harems (Aldenhoven 1984).

In contrast, Moyer and Zaiser (1984) and Moyer (1987) suggested the advantages
of low-density conditions for obtaining females from male territories. Although
subsequent studies have confirmed that harems with increased size are more likely
to experience sex change and group splitting by sex changers when the male is
present (Lutnesky 1994; Sakai 1997), these processes are distinct from bachelor sex
change (for details, see Sect. 4.7, the harem-fission sex change). Moyer’s view as a
pioneer of field observations of various sex change patterns appears to be based on
sex change in the presence of males being lumped together as early sex change. Field
experiments that followed bachelor males (not bachelor sex changers but widowed
after mate loss) under low-density conditions have confirmed cases of pairing with
other males, resulting in reversed sex change to females, although they sometimes
acquire females (Kuwamura et al. 2002, 2011; Kadota et al. 2012). Hence, it is
probable that low density is not an effective condition for bachelor sex changers.

A high growth rate is an important characteristic of bachelor sex changers in
Centropyge angelfish harems (Moyer and Zaiser 1984), which would be advanta-
geous in dominating the harem of females and obtaining preferred mating territories
through competition among males. In the case of the MTV polygamous wrasse
T. bifasciatum, sex changers spend considerable time as nonterritorial bachelor
males (Hoffman et al. 1985), and nonterritorial males exhibit 1.5 times higher
growth than females (Warner 1984). Large body size is generally crucial to dominate
the harem of females and maintain mating territories in polygynous fishes (Warner
and Schultz 1992; Kuwamura et al. 2000). Bachelor sex changers grow at the
expense of their current reproductive opportunities to achieve a faster male repro-
ductive status (Moyer and Zaiser 1984; Moyer 1987; Warner 1988).

Similarly, many small females left the harem and proceeded to change sex to
bachelor males in the late breeding season in territorial female-type harems of the
sandperch P. snyderi, where females maintain exclusive territories (Nakazono et al.
1985; Ohnishi 1998). This might be called “synchronized bachelor sex change.”
Bachelor sandperch males achieve high growth during the nonbreeding season and
become territorial in the next breeding season (Ohnishi 1998). The body size of
sex-changing females of P. snyderi was within 86% of the male body size,
suggesting that the relative size threshold between dominant males and females
may affect the start of synchronous sex change in females in the presence of males



4 Protogyny in Fishes 123

(Ohnishi 1998). Thus, high growth is a key characteristic for acquiring territorial
male status.

Bachelor sex changers may obtain growth or survivorship advantages during their
nonbreeding status, potentially increasing their possibility of taking over a harem.
Using field observations and mathematical models, Aldenhoven (1986) showed that
even in populations with high harem density and survival advantages of bachelor
males, not all females undergo a bachelor sex change. It is expected that the
respective advantages of takeover and bachelor sex changes are strongly influenced
by each other’s frequency (frequency-dependent selection). However, no other study
has been able to make a similar tactical assessment and evaluation of bachelor sex
changers.

Moreover, the social conditions of females promoting bachelor sex change
remain uncertain due to the lack of observational studies on individual bachelor
sex changers. In an observational field survey of a population of 7. okinawae,
sex-changing females that moved out of the harems where dominant males were
present became bachelor males in the vacant space (Manabe et al. 2007b). In
addition, it is common for a female of similar size to a female that underwent a
bachelor sex change to be present in the original harem. Although changes in social
relationships between a dominant male and females within the local group are
involved in the occurrence of female sex change in the presence of males (see the
harem-fission sex change section), competitive and exclusive relationships between
females in the harem over sex change opportunities may be involved in triggering
bachelor sex change.

A new form of bachelor sex change was recently detected in the female
aggregation-type harems of the coral-dwelling damselfish D. reticulatus. Some
subordinate females undergo gonadal sex changes in the presence of larger males
or females, and the sex changers become bachelor males that do not show any sexual
behaviors and continue to stay in the original harem, called “cryptic bachelor sex
change” (Sakanoue and Sakai 2022). Cryptic bachelor males do not engage in
wandering behaviors as reported in some Centropyge angelfishes (Moyer and Zaiser
1984) or leave the original groups (i.e., male territories) as seen in 7. bifasciatum
(Hoffman et al. 1985) and P. snyderi (Ohnishi 1998). Sakanoue and Sakai (2022)
found a growth rate advantage of the sex changers over females, which is similar to a
possible advantage in bachelor sex changers of other fishes. A fast growth condition
during the bachelor male phase may help conduct intergroup movements to obtain
mating opportunities. It was confirmed that some bachelor sex changers subse-
quently obtained mating opportunities as territorial males or reproductively active
females (via reverse sex change) after their harem changes.

Yamaguchi et al. (2013) theoretically tested the hypothesis that variation in
female fecundity caused sex change in less fertile females using the ESS model
and predicted that less fertile females, even if they are not the largest, may change
sex earlier than well-nourished females. The nutritional status of females, measured
as the body width relative to its length, affects the number of eggs laid in the
protogynous triggerfish S. chrysopterus on which this ESS model is based
(Yamaguchi et al. 2013). In the case of D. reticulatus, female individuals were
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confirmed to have poor mating opportunities before conducting a bachelor sex
change (Sakanoue and Sakai 2022). Regardless of the differences in the causes of
low spawning success in females, the hypothesis may be applicable for explaining
the cases of small bachelor sex changers. Low spawning frequency has also been
reported in bachelor sex change in larger females (Moyer and Zaiser 1984; Moyer
1987). Hamaguchi et al. (2002), using a different ESS model approach, predicted
from field data on a Centropyge angelfish that large females would adjust their
spawning frequency lower in response to social and environmental conditions and,
in some circumstances, a complete cessation of spawning would occur like bachelor
sex changers. Though there is a process difference of females lowering their
reproductive success between the two theories, it may be noteworthy as a female
trait related to the onset of sex change. Field studies are needed to examine whether
current spawning success affects the timing of sex changes in females.

4.6.2 Harem-Fission Sex Change

Another example of protogynous sex change in the presence of a dominant male
(i.e., early sex change) goes that females begin to change sex while in a male’s
territory and acquire a portion of the harem immediately after completion of the sex
change. This sex change process is called “harem-fission sex change” and has been
reported in 12 harem species, including cohabiting female-type (L. dimidiatus,
C. bicolor, C. ferrugata, C. potteri, C. tibicen, and H. tricolor), territorial female-
type (Parapercis cylindrica, Xyrichtys martinicensis, and Cirrhitichthys falco),
aggregating female-type (D. reticulatus and P. squamipinnis), and unknown type
(Macropharyngodon moyeri) types (Table 4.5). For aggregating female-type
harems, harem-fission sex change is not the result of harem-fission but because of
living in a multi-male harem (see below). Data on the social change process of the
harem-fission sex change are more detailed than for bachelor sex change because the
process proceeds without the sex-changing individual leaving the group.

In cohabiting female-type harem, harem-fission sex change was observed in
harem groups with a considerable female-biased sex ratio or large male territory
where males could not frequently interact with females (Robertson 1974;
Aldenhoven 1984; Sakai 1997). The harem-fission sex change in territorial
female-type and aggregating female-type harems has also been observed in group
situations with large harem sizes or a high number (Shapiro 1981; Stroud 1982;
Victor 1987; Moyer 1991; Kadota et al. 2012; Sakanoue and Sakai 2022). Such
harems are formed when a territorial male disappears and adjacent harem males
quickly invade the territory to dominate over both harems, where some females set
up their home ranges at an extreme distance from other harem females (Moyer and
Zaiser 1984; Moyer JT personal communication) or when females become overly
settled within male territories (Robertson 1974; Stroud 1982; Victor 1987; Sakai
1997). Females have been observed to change sex in the presence of males and set up
new territories to incorporate solitary females that grew from juveniles near a harem
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group (Aldenhoven 1984). This is also considered to be a similar social situation, in
which the number of females increased in a harem.

As seen in the case of takeover sex change, insufficient social interactions
between sexes are thought to be an important trigger for inducing protogynous sex
change in dominant male presence. Lutnesky (1994) experimentally promoted sex
change in female Centropyge potteri in the presence of a dominant male in a large
cage (3 X 34 m), including 1 male and 15 females. The males did not maintain
frequent social interactions with all females because of low-density conditions with
widespread distribution of females within the tank. In contrast, no females
underwent sex changes in a small cage (3 m x 4 m), including a harem with the
same number of fish at high density. In a tank experiment on the wrasse Choerodon
schoenleinii, rearing conditions with a larger number of females (one male and five
to six females) promoted protogynous sex change in the presence of the male (Sato
et al. 2018). This indicates that a decrease in the interaction with the dominant male
is important for the initiation of sex change in the females of both species.

In the case of harem-fission sex change in C. ferrugata in nature, it has been
observed that when a male begins to dominate the large harem after the conjunction
of two harems, it actively engages in social and courtship behaviors toward new
females. This results in a decrease in the frequency of social and courtship behaviors
toward the largest female of the original harem. They then cease to spawn and starts
an aggressive struggle with the males (Sakai 1997). Similarly, during harem-fission
sex change in H. tricolor, a female that subsequently underwent sex change was
observed to hide most of the time to avoid social contact with the dominant male
(Hourigan and Kelley 1985).

In aggregating female-type harems of the anthias serranid P. squamipinnis,
females in large groups undergo sex changes in the presence of dominant males,
resulting in the formation of multi-male harem groups, as mentioned above. Sex
changers become reproductive males, obtain mating opportunities, and subse-
quently, turn into single-male groups (Shapiro 1984; Yogo 1985). This situation is
identical to the harem-fission sex change regarding the immediate acquisition of
mating status in males. Females that subsequently engaged in sex change were
observed to hide behind rocky shelters during the mating period and did not
spawn (Yogo 1985). Although the detailed conditions of social interactions between
females and males are unknown, the attitude of avoiding sexual behaviors from
males appears similar to that of harem-fission sex changers in harem angelfish. In
addition, the sex ratio threshold hypothesis has been proposed to explain the natural
occurrence of sex changers in the harems of P. squamipinnis exceeding a certain sex
ratio (Shapiro and Lubbock 1980).

In the case of high-density aggregating female-type harems of D. reticulatus,
harem-fission sex changes were observed in females that did not have spawning
opportunities within the local group (Sakanoue and Sakai 2022). These conditions
are similar to those promoting harem-fission sex changers in cohabiting female-type
harems in terms of the difficulties of males providing adequate social contact with
too many females.
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Thus, the social conditions in which harem-fission sex change occurs are
suggested to have extensive similarities with takeover sex change, in which the
dominant male disappears from the harems. Therefore, this type of protogynous sex
change in the presence of males can be considered to occur in a condition-dependent
manner in fish species, where social control of sex change is normally effective.

4.6.3 Females’ Tactics for Faster Acquisition of Sex Change
Opportunity

Some protogynous fishes show tactics for the faster acquisition of sex change. It is
generally considered that the females that stably settle in male territories in the
cohabiting female-type harem fishes can secure the possibility of future sex change
via maintaining their social ranks in the local group (Robertson 1974; Moyer and
Nakazono 1978; Kuwamura 1984). However, in populations where harems are
closely adjacent, females of the cleaner wrasse L. dimidiatus may move out of the
original harem to a site where they can improve their social rank, which is considered
a tactic for faster sex change (Sakai et al. 2001). A total of 24 inter-harem moves by
15 females were identified through a 2.5-year survey. This indicated that subordinate
females tended to move to harems where they were higher in rank, whereas
dominant females moved to harems where there were no individuals close in size
to their body sizes (Sakai et al. 2001). Similar intergroup moving tactics by females
have been reported in 7. okinawae goby harems (Manabe et al. 2007a). Therefore,
females do not just wait for an opportunity to change their sex after the loss of
dominant individuals.

Yet another example of female refusal to spawn has been reported as a tactic for
faster sex change. In harems of the cleaner wrasse, L. dimidiatus, and Centropyge
angelfishes, females of the same size class are territorially exclusive of each other
(Fig. 4.1). This territoriality among females is thought to occur because individuals
of similar sizes are rivals to future opportunities for sex change. Furthermore, in the
case of C. ferrugata, it has been reported that females inhabiting close to similar-
sized individuals tend to spawn less frequently. Such females with low spawning
frequencies grow faster, suggesting that they invest more energy in growth for faster
sex change (Sakai 1997; Hamaguchi et al. 2002). This tactic is observed in large
harems resulting from the merger of adjacent harems and is considered a preliminary
stage of harem-fission sex change.

The rapid growth of females during sex change has been reported in various fish
species (Ohnishi 1998; Walker and McCormick 2004; Walker and Ryen 2007;
Munday et al. 2009; Sakanoue and Sakai 2022). Fast growth may have resulted
from the cessation of spawning, in addition to being released from social control by
dominant individuals. To acquire mating territory and females, sex-changing indi-
viduals need to grow larger. Earlier growth competition for future sex change
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opportunities among females should be considered, especially in harem fish with a
strong social hierarchy among females.

4.7 Individual-Level Process of Takeover Sex Change After
Male Loss

During takeover sex change in protogynous fishes, females are unable to produce
gametes and switch over from ovarian to testicular structures. This means that they
cannot produce offspring during gonadal sex change. Loss of reproductive oppor-
tunity is considered an obligatory cost for sex change. In addition, they switch to
sexual behaviors typical of males, including territorial defense and courtship (i.e.,
behavioral sex change). Furthermore, some species require the development of
secondary morphological characteristics in males to obtain mating opportunities
(Hoffman et al. 1985; Mufioz and Warner 2003a).

Once the males disappear or are removed from the mating group, gonadal sex
change usually lasts from 1 to 4 weeks (Table 4.6). Two types of developmental
patterns of the testis are known: inside (undelimited type) and outside (delimited
type) the ovary (Sadovy and Shapiro 1987). Species with delimited gonads usually
change their sex for a shorter duration (Yamaguchi and Iwasa 2017). Observational
surveys of gonadal sex change duration in pelagic spawners have provided fairly
accurate values because reproductive behaviors are displayed daily, and the com-
pletion of gonadal sex change is directly judged by the fertilization of daily spawned
eggs (Nakashima et al. 2000; Sakai et al. 2003b; Table 4.6).

Some demersal egg spawners, such as F. neophytus, Dascyllus aruanus, and
S. chrysopterus, have considerably long gonadal sex change durations (Table 4.6). In
addition, sexual behaviors seemed to occur close to the day of the completion of
gonadal sex change in the cases of Gobiodon quinquestrigatus, T. okinawae, and
D. reticulatus, suggesting no precedence of behavioral sex change (Table 4.6).
These tendencies, which are different from those of pelagic egg spawners, are
partially due to the mating habits exhibiting spawning rhythms following lunar
cycles (i.e., tidal conditions), resulting in potential difficulties in confirming the
exact timing of the start of behavioral sex change and the completion of gonadal sex
change in demersal egg spawners with the cyclic spawning interval.

It has been confirmed that some protogynous sex changers start to exhibit male-
type sexual behaviors and spawning behaviors with females before the completion
of gonadal sex change, especially in daily pelagic egg spawners (Fig. 4.5; Table 4.6),
resulting in unfertilized spawned eggs. The adaptive significance of the faster
precedence of behavioral sex change before the completion of gonadal sex change
can be explained as a tactic for future mate acquisition (Nakashima et al. 2000). The
female also responds to egg release in the usual spawning form with a sex-changing
individual if the sexual behavior of the individual is complete (Godwin et al. 1996;
Nakashima et al. 2000). If sex changers (i.e., the largest females) do not engage in
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Table 4.6 Duration period needed for protogynous sex change after the male disappearance

Behavioral sex change

Courtship | Spawning | Gonadal | Body
(male (male sex coloration
Family/species role) role) change change References
Demersal egg spawners
Gobiidae
Coryphopterus 10-20 Cole and Shapiro
glaucofraenum days (1992)
Coryphopterus 15 days Cole and Shapiro
hyalinus (1990)
Coryphopterus 21 days Cole and Shapiro
lipernes (1990)
Coryphopterus 9-20 Cole and Robertson
personatus days (1988)
Fusigobius <62-70 Tsuboi and Sakai
neophytus days (2016)
Gobiodon <28 Munday et al.
histrio days (1998)
Gobiodon <1 month | 1 month 1 month Nakashima et al.
quinquestrigatus (1996)
Lythrypnus 571 = Reavis and Grober
dalli 1.70 days (1999)
Paragobiodon 24 days Nakashima et al.
echinocephalus (1995)
Trimma 7 days 12 days 6-14 Sunobe and
okinawae days Nakazono (1993)
Pomacentridae
Dascyllus <50-60 Coates (1982) and
aruanus days Kuwamura et al.
(2016a)
Dascyllus <10 days | 10 days <19 Tanaka (1999) and
reticulatus days Sakanoue and
Sakai (2022)
Balistidae
Sufflamen 71 days <90-94 | 9-19 days | Takamoto et al.
chrysopterus days (2003)
Pelagic egg spawners
Pinguipedidae
Parapercis 5-11 days 20-31 1724 Stroud (1982)
cylindrica days days
Parapercis 23 days 10-13 Nakazono et al.
snyderi days (1985)
Labridae
Bodianus rufus 0-10 days | 7-10 Hoffman et al.
days (1985)
Halichoeres 0 day 0 day 2-3 Sakai et al. (2002)
melanurus weeks

(continued)
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Table 4.6 (continued)
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Behavioral sex change
Courtship | Spawning | Gonadal | Body
(male (male sex coloration
Family/species role) role) change change References
Iniistius 14 days 14 days Nemtzov (1985)
pentadactylus
Labroides 0 day 0 day 14-18 Robertson (1972)
dimidiatus days and Nakashima
et al. (2000)
<23 days <23 Moyer (1991)
Macropharyngodon days
moyeri
Parajulis 2-11 days 2 weeks | 2—6 weeks | Sakai et al. (2007)
poecilopterus and Miyake et al.
(2012)
Thalassoma 0 day 0 day 8-28 828 days | Warner and
bifasciatum days Swearer (1991)
Thalassoma 2-6 2-6 weeks | Warner (1982)
lucasanum weeks
Scaridae
Sparisoma 7-12 days | 12-18 7-11 days | Mufioz and Warner
radians days (2003a)
Serranidae
Epinephelus 214-298 Quinitio et al.
coioides days (1997)
Epinephelus 20-27 Mackie (2003)
rivulatus days
Pseudoanthias | 2-7 days 24 26-53 Fishelson (1970)
squamipinnis weeks days and Shapiro (1981)
Pseudoanthias | 4 days 9 days 18 days Hioki et al. (2001)
pleurotaenia
Pomacanthidae
Apolemichthys 11 days 25 days Hioki and Suzuki
trimaculatus (1995)
Centropyge 4 days 6 days 8 days Hioki and Suzuki
acanthops (1996)
Centropyge 3 days <20 Aldenhoven (1984)
bicolor days
Centropyge 2 days 3 days 6 days Hioki and Suzuki
fisheri (1996)
Centropyge 1-7 days 20-39 12 days Moyer and
interruptus days Nakazono (1978)
Centropyge 0 day 1-3 days 10-16 Sakai et al. (2003b)
vrolikii days
Genicanthus 4 days 31-38 days |31-38 38 days Hioki et al. (1995)
bellus days
11 days 11 days 11 days 13 days Suzuki et al. (1979)

(continued)
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Table 4.6 (continued)

Behavioral sex change
Courtship | Spawning | Gonadal | Body
(male (male sex coloration
Family/species role) role) change change References
Genicanthus
lamarck
Genicanthus 8-19 days | 19 days 12-19 Hioki et al. (1982)
melanospilos days
Genicanthus 15 days 25 days Hioki et al. (1995)
watanabei

Days, weeks or months from experimental male removal or natural male disappearance from mating
groups to the start of behavioral sex change including courtship and spawning as males, to the
completion of gonadal sex change (sperm release), and the completion of sexual body color
transformation are shown

In behavioral sex change, 0 day means that the behavioral expression was confirmed on the day
when the male was removed

Fig. 4.5 Spawning behaviors by a pair consisting of a sex-changing female and a smaller female in
haremic fishes. The largest females of Labroides dimidiatus (a; above of ascending pair) and
Centropyge vrolikii (b; below of ascending pair) started male sexual behaviors and spawned with
subordinate females in the process of gonadal sex change after the dominant male removal (photos
Tetsuo Kuwamura)

any sexual behavior toward smaller females in the local group during gonadal sex
change, then the smaller females will leave the group to look for new mates. Though
harem fishes usually maintain stable mating relationships, females may move to
other harems (Sakai et al. 2001; Manabe et al. 2007a), or females that are not given
the opportunity to spawn may change sex (Moyer and Zaiser 1984; Sakai 1997,
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Sakanoue and Sakai 2022). The immediate start of behavioral sex change during
gonadal sex change is suggested to play a role in securing mates and smooth
takeover of the harem (Nakashima et al. 2000; Sakai et al. 2002, 2003b).

During the male removal experiment in the cleaner wrasse L. dimidiatus and the
haremic angelfish C. vrolikii, ripened females with swollen abdomens quickly
initiated male sexual behaviors and spawned in the male role with smaller females
of the harem (Nakashima et al. 2000; Sakai et al. 2003b; Fig. 4.5). It was also
confirmed that large females of the bluehead wrasse T. bifasciatum, whose gonadal
tissues had been surgically removed, exhibited male sexual behaviors just after male
removal (Godwin et al. 1996). In addition, Nakashima et al. (2000) found that
females initiating male sexual behaviors on the day of male removal resumed
female-type sexual behaviors immediately after the original dominant males
returned to the harem. Therefore, sexual behavior can change within an hour or a
few hours. These results suggest that gonadal females can immediately initiate male
sexual behaviors. This implies an important role for the brain and neuroendocrine
mechanisms in promoting behavioral sex changes. Casas and Saborido-Rey (2021)
reviewed environmental cues and endocrinological mechanisms of sex change.

The succession of a sex-changing female to a position after the disappearance of
the dominant male (i.e., the effectiveness of takeover sex change) will depend on the
mating system and social/environmental conditions. In cases where sex changers
have to spend time acquiring mating territories because of competition among males
or developing secondary male morphological characteristics to attract females,
delays in the start of sexual behaviors by sex changers have been reported. In the
case of sex-changing females of the bucktooth parrotfish S. radians, the appearance
of male coloration is followed by the development of male behavior, which is fully
expressed approximately 20 days after the disappearance of the male (Mufioz and
Warner 2003a). In the case of the bluehead wrasse T. bifasciatum, males initially
spent an average of 81 days as non-territorial individuals after changing sex and
required more than 32 days to attain territorial status as terminal-phase males
(Hoffman et al. 1985). Male removal experiments to induce sexual change have
confirmed that the larger the female in Halichoeres melanurus, the more is it likely to
develop male sexual behavior (Sakai et al. 2002). This suggests that the social status
of female individuals, which is related to the ease of acquiring mating territory,
determines whether they should exhibit an early onset of sexual behavior.

Recent studies on social cognitive abilities of cleaner wrasse L. dimidiatus have
confirmed their ability to perceive and recognize a reflected mirror image as self
(mirror self-recognition; Kohda et al. 2019, 2022) and their capability of transitive
inference, that is, logical prediction from previous information (Hotta et al. 2020).
These abilities may contribute to the mechanism of stable maintenance of dominant
relationships among harem members, as well as the detection of changes in the social
situation of nearby harems, affecting the social control of sex change and the
variation in sex change patterns.
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4.8 Future Research Directions

The foregoing results presented on the nature of sex change in various protogynous
fishes were achieved through the excellent observation skills and persistent efforts of
researchers in the empirical and theoretical fields. Field surveys have provided many
insights, and various approaches have been developed, such as empirical studies
using captive and field experiments and the construction of theoretical systems using
mathematical models. We expect that research on fish under natural conditions will
continue to contribute to scientific knowledge in the future. Especially, research to
confirm the relationship between sex change and mating systems in these fish species
is required.

In this chapter, the fish species identified as protogynous were determined based
on Kuwamura et al. (2020). However, even among those identified as bidirectional
sex changers, many species, such as Gobiodon and Trimma gobies, often show
protogynous sex changes. It has been confirmed that social dominance influences the
switch in these sex changers (Sunobe and Nakazono 1993; Nakashima et al. 1996;
Munday 2002), and the phenomenon can be understood as an extension of the sex
change strategies introduced in this chapter. In addition, it has become clear that
many protogynous fishes can reverse sex change in at least 16 species, including
Gobiodon, Lythrypnus, Paragobiodon, Trimma gobies, Dascyllus damselfishes,
Labroides labrid, Epinephelus serranids, Apolemichthys and Centropyge
angelfishes, and Cirrhitichthys hawkfishes (Table 4.4). By comparing this with the
information on mating systems and life histories accumulated in protogynous fishes,
it may be possible to understand the advantages of bidirectional sex change in fish
(see Chap. 5 for details).

4.9 Conclusions

In this chapter, the following topics related to protogynous fishes were introduced

1. Numerous protogynous fishes (at least 314 species from 20 families) have been
reported through histology, aquarium experiments, and field studies. They form
the core of the scientific knowledge related to sex change.

2. The mating system has been documented in 131 protogynous fishes, many of
which are polygynous, including harem polygyny (60 species) and MTV polyg-
amy (60 species). This is consistent with the predictions of the SA model, in
which the sex-change advantage is explained by sexual differences in the changed
characteristics of reproductive success with growth.

3. Histological studies and field surveys have confirmed that two male patterns,
monandry (only males derived from females by sex change: secondary males;
89 species) and diandry (coexistence of secondary males and non-sex-changing
males called primary males; 37 species), emerge in response to harem polygyny
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and MTYV polygamy, respectively, and have been linked to the diversity of male
mating tactics and the strength of female mate choice. Primary males are also
thought to have sexual plasticity as they undergo sex change.

4. Manipulation experiments (57 species) and field observations (11 species) have
confirmed that sex changes frequently occur after the loss of the dominant male
(a total of 60 species).

5. Field studies and rearing experiments focusing on how sex change occurs have
confirmed cases of females changing sex in the presence of males in
18 protogynous species. These include bachelor sex changes, in which a female
abandons reproductive function and becomes a bachelor male (9 species), and
harem-fission sex changes, in which a sex-changing female takes over part of the
original harem (12 species). These tactics are considered to be advantageous for
future reproductive success.

6. Studies on the process of protogynous sex change have confirmed that behavioral
sex change (i.e., male sexual behavior) often occurs earlier than gonadal change,
especially in harem fish. Interspecific differences in the onset of behavioral sex
change can be explained in terms of the immediate availability of females and the
maintenance of mating territories.

7. It has been observed that protogynous fish (at least 16 species) can revert to
females after a sex change (see Chap. 5 for details), indicating potential sexual
plasticity.
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