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Preface

This book focuses on the behavioral ecology of functional hermaphroditism in fishes.
Behavioral ecology, which examines the survival value of behavior and individual
fitness based on the theory of natural selection, was established in the 1970s (Wilson
1975; Dawkins 1976; Krebs and Davies 1978, 1981). At around the same time, the
evolution of hermaphroditism based on individual fitness was first explained by
Michael T. Ghiselin (1969). Soon after, Robert R. Warner (1975) developed a simple
mathematical model of life history strategy in relation to mating systems, which could
predict the type of sex change (male-to-female or female-to-male) by the type of mating
system of a species. Field research on fish behavioral ecology also started in the 1970s;
e.g., D. Ross Robertson (1972) first confirmed social control of sex change by male-
removal experiments in a haremic coral reef fish. Thereafter, many field studies focused
on the mating systems of hermaphroditic fishes have been conducted primarily on coral
reefs (Nakazono and Kuwamura 1987; Munday et al. 2006; Kuwamura et al. 2020).

Chapter 1 (by Tetsuo Kuwamura) of this book introduces the types and frequen-
cies of hermaphroditism in fishes, phylogeny of hermaphroditic fishes and their
habitats, theories of the evolution of hermaphroditism, types of mating systems,
and examples of social control of sex change. Chapter 2 (by Kota Sawada) describes
simultaneous hermaphroditism in fishes and their mating systems. Chapter 3
(by Tomoki Sunobe) introduces protandrous species that conduct male-to-female sex
change and their mating systems. In Chapter 4 (by Yoichi Sakai), protogynous fishes
that conduct female-to-male sex change and their mating systems are explained.
Lastly, Chapter 5 (by Tatsuru Kadota) introduces species with bidirectional sex
change (or reversed sex change in protogynous species) and their mating systems.

At the end of this book, we add Chapter 6, which provides a database of function-
ally hermaphroditic fish species and their references. Kuwamura et al. (2020) reported
461 species of functionally hermaphroditic fishes. This book adds 21 species and
deletes one species.

Nagoya, Aichi, Japan Tetsuo Kuwamura
On behalf of the authors and editors
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Chapter 1 ®)
Evolution of Hermaphroditism in Fishes: e
Phylogeny and Theory

Tetsuo Kuwamura

Abstract This chapter introduces the main features of functional hermaphroditism
in fishes. It has been reported in 481 fish species belonging to 41 families of
17 teleost orders. Simultaneous hermaphroditism (or synchronous hermaphroditism)
is known in 57 species of 13 families, and among species exhibiting sequential
hermaphroditism, protogyny is much more common (314 species of 20 families)
than protandry (62 species of 14 families) or bidirectional sex change (69 species of
seven families). Recent phylogenetic trees have indicated that simultaneous her-
maphroditism and protandry have evolved several times in not closely related
lineages of Teleostei, whereas protogyny and bidirectional sex change have evolved
only in Percomorphaceae. The evolution of hermaphroditism has been successfully
explained by individual fitness, with two major hypotheses: the low-density model
for simultaneous hermaphroditism and the size-advantage model for sequential
hermaphroditism. The mating system of a species is one of the important drivers
of the evolution of hermaphroditism, and the relationship between mating systems
and hermaphroditism will be focused on in the following chapters. Additionally, sex
change is socially controlled in many fishes, and its physiological mechanisms are
briefly summarized.

Keywords Bidirectional sex change - Low density - Protandry - Protogyny -
Simultaneous hermaphroditism - Size-advantage

This chapter introduces the main features of functional hermaphroditism in fishes,
with discussions of the four types of hermaphroditism and their frequencies, phylo-
genetic relationships and habitats, evolutionary theories, mating systems and social
control, and an overview of physiological mechanisms. The details of each type of
hermaphroditism are described in the following chapters.

T. Kuwamura ()

Faculty of Liberal Arts and Sciences, Chukyo University, and Institute for Research in Social
Science, Advanced Collaborative Research Organization of Chukyo University, Nagoya, Japan
e-mail: kuwamura@]lets.chukyo-u.ac.jp
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2 T. Kuwamura

1.1 Types and Frequencies of Hermaphroditism in Fishes

Both sexual and asexual reproductions are seen in living organisms. Sexual repro-
duction has many associated costs to the individual compared with asexual repro-
duction, but it has evolved in all organisms except viruses because it increases
genetic diversity among offspring which allow them to more successfully adapt to
environmental changes, such as the mutations of parasites (Hamilton et al. 1990;
Lehtonen et al. 2012). Only two sexes, i.e., males that produce a large number of
small sperm and females that produce a small number of large eggs, have evolved in
most organisms. This is because middle-size gametes do not increase individual
fitness (Maynard-Smith 1978). Gonochorism or dioecy, in which an individual can
function as only one of the two sexes, i.e., either male or female, throughout its life,
is common in animals, but rare in plants.

Hermaphroditism is a phenomenon in which an individual can function as both
sexes at the same time (simultaneous hermaphroditism or synchronous hermaphro-
ditism) or at different stages of its life history (sequential hermaphroditism or sex
change) (Avise 2011; Leonard 2019). Simultaneous hermaphroditism is common in
plants such as among bisexual flowers but is rare in animals that can move when in
search of mates. Sequential hermaphroditism is known in some plants and inverte-
brates, but in only 1% of vertebrate species, almost all of which are fishes (Avise
2011; Ashman et al. 2014). Sequential hermaphroditism can further be classified into
three types, i.e., protandry (male-to-female sex change), protogyny (female-to-male
sex change), and bidirectional sex change (or reversed sex change) (Sadovy de
Mitcheson and Liu 2008; Kuwamura et al. 2020; Table 1.1). In most cases of
bidirectional sex change, the reversed sex change occurs in primarily protogynous
species.

Functional hermaphroditism has been studied extensively in fishes. Kuwamura
et al. (2020) provided a list of 461 fish species in which functional hermaphroditism
had been reported. Subsequently, 21 species were added (and one species deleted),
and the current species list is shown in Table 1.2 and Chap. 6. These fishes belong to
41 families of 17 teleost orders. Protogyny is the most frequently observed type
(314 species of 20 families), and the other types are much less common, with
protandry seen in 62 species of 14 families, simultaneous hermaphroditism seen in
57 species of 13 families, and bidirectional sex change seen in 69 species of seven
families (Table 1.3). Both protogyny and bidirectional sex change have been
reported in 21 species (Table 1.2), in which the reversed sex change occurs in

Table 1.1 Types of functional hermaphroditism in fishes

Simultaneous hermaphroditism (synchronous hermaphroditism)

Sequential hermaphroditism

Protandry (male-to-female sex change)

Protogyny (female-to-male sex change)

Bidirectional sex change (reversed sex change in protogynous species: female to male to
female)




1 Evolution of Hermaphroditism in Fishes: Phylogeny and Theory

Table 1.2 List of hermaphroditic fish species and their mating systems. Order and family names
are arranged following Nelson et al. (2016), and genus and species in alphabetical order within each
family and genus, respectively (modified from Table 1 of Kuwamura et al. 2020)

Order Sexual
Family Species pattern Mating system
Anguilliformes
Muraenidae Gymnothorax griseus SH
Muraenidae Gymnothorax pictus SH
Muraenidae Gymnothorax thyrsoideus SH
Muraenidae Rhinomuraena quaesita PA
Clupeiformes
Clupeidae Tenualosa macrura PA
Clupeidae Tenualosa toli PA
Cypriniformes
Cobitidae Cobitis taenia PA, G
Stomiiformes
Gonostomatidae Cyclothone atraria PA
Gonostomatidae Cyclothone microdon PA
Gonostomatidae Gonostoma elongatum PA
Gonostomatidae Sigmops bathyphilum PA
Gonostomatidae Sigmops gracile PA
Aulopiformes
Ipnopidae Bathymicrops brevianalis SH
Ipnopidae Bathymicrops regis SH
Ipnopidae Bathypterois grallator SH
Ipnopidae Bathypterois mediterraneus | SH
Ipnopidae Bathypterois quadrifilis SH, G
Ipnopidae Bathypterois viridensis SH
Ipnopidae Bathytyphlops marionae SH
Ipnopidae Ipnops agassizii SH
Ipnopidae Ipnops meadi SH
Giganturidae Gigantura chuni SH
Giganturidae Gigantura indica SH, G
Bathysauridae Bathysaurus ferox SH
Bathysauridae Bathysaurus mollis SH
Chlorophthalmidae Chlorophthalmus agassizi | SH
Chlorophthalmidae Chlorophthalmus SH
brasiliensis
Chlorophthalmidae Parasudis truculenta SH
Notosudidae Ahliesaurus brevis SH
Scopelarchidae Benthalbella infans SH
Scopelarchidae Scopelarchus guentheri SH
Paralepididae Arctozenus risso SH
Paralepididae Lestidium SH
pseudosphyraenoides

(continued)



Table 1.2 (continued)

T. Kuwamura

Order Sexual

Family Species pattern Mating system

Alepisauridae Omosudis lowii SH

Gobiiformes

Gobiidae Coryphopterus alloides PG

Gobiidae Coryphopterus dicrus PG

Gobiidae Coryphopterus eidolon PG

Gobiidae Coryphopterus PG MTYV polygamy
glaucofraenum

Gobiidae Coryphopterus hyalinus PG

Gobiidae Coryphopterus lipernes PG

Gobiidae Coryphopterus personatus | PG

Gobiidae Coryphopterus thrix PG

Gobiidae Coryphopterus urospilus PG

Gobiidae Eviota epiphanes PG, BS

Gobiidae Fusigobius neophytus PG MTV polygamy

Gobiidae Gobiodon erythrospilus BS SA monogamy

Gobiidae Gobiodon histrio PG, BS SA monogamy

Gobiidae Gobiodon micropus BS SA monogamy

Gobiidae Gobiodon oculolinealus BS SA monogamy

Gobiidae Gobiodon okinawae PG SA monogamy

Gobiidae Gobiodon quinquestrigatus | PG, BS SA monogamy

Gobiidae Lythrypnus dalli PG, BS MTYV polygamy

Gobiidae Lythrypnus nesiotes PG

Gobiidae Lythrypnus phorellus PG

Gobiidae Lythrypnus pulchellus BS

Gobiidae Lythrypnus spilus PG

Gobiidae Lythrypnus zebra BS MTYV polygamy

Gobiidae Paragobiodon PG, BS SA monogamy
echinocephalus

Gobiidae Paragobiodon PG SA monogamy
xanthosomus

Gobiidae Priolepis akihitoi BS SA monogamy

Gobiidae Priolepis borea BS

Gobiidae Priolepis cincta BS SA monogamy

Gobiidae Priolepis eugenius PG, BS

Gobiidae Priolepis fallacincta BS

Gobiidae Priolepis hipoliti PG, BS

Gobiidae Priolepis inhaca BS

Gobiidae Priolepis latifascima BS

Gobiidae Priolepis semidoliata BS SA monogamy

Gobiidae Rhinogobiops nicholsii PG

Gobiidae Trimma annosum BS

Gobiidae Trimma benjamini BS

(continued)
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Table 1.2 (continued)

Order

Sexual
Family Species pattern Mating system
Gobiidae Trimma caesiura BS
Gobiidae Trimma cana BS
Gobiidae Trimma caudomaculatum BS MTYV polygamy
Gobiidae Trimma emeryi BS Harem
Gobiidae Trimma fangi BS
Gobiidae Trimma flammeum BS
Gobiidae Trimma flavatram BS
Gobiidae Trimma fucatum BS
Gobiidae Trimma gigantum BS
Gobiidae Trimma grammistes BS Harem
Gobiidae Trimma hayashii BS Harem
Gobiidae Trimma kudoi BS
Gobiidae Trimma lantana BS
Gobiidae Trimma macrophthalma BS
Gobiidae Trimma maiandros BS
Gobiidae Trimma marinae BS
Gobiidae Trimma milta BS
Gobiidae Trimma nasa BS
Gobiidae Trimma naudei BS
Gobiidae Trimma necopinum BS
Gobiidae Trimma okinawae PG, BS Harem
Gobiidae Trimma preclarum BS
Gobiidae Trimma rubromaculatum BS
Gobiidae Trimma sheppardi BS
Gobiidae Trimma stobbsi BS
Gobiidae Trimma striatum BS
Gobiidae Trimma tauroculum BS
Gobiidae Trimma taylori BS
Gobiidae Trimma unisquamis BS
Gobiidae Trimma yanagitai BS
Uncertain in Ovalentaria
Pomacentridae Amphiprion akallopisos PA NSA monogamy
Pomacentridae Amphiprion bicinctus PA NSA monogamy
Pomacentridae Amphiprion clarkii PA NSA monogamy
Pomacentridae Amphiprion frenatus PA NSA monogamy
Pomacentridae Amphiprion melanopus PA NSA monogamy
Pomacentridae Amphiprion ocellaris PA NSA monogamy
Pomacentridae Amphiprion percula PA NSA monogamy
Pomacentridae Amphiprion perideraion PA NSA monogamy
Pomacentridae Amphiprion polymnus PA NSA monogamy
Pomacentridae Amphiprion sandaracinos | PA NSA monogamy

(continued)
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Order Sexual
Family Species pattern Mating system
Pomacentridae Dascyllus aruanus PG, BS,G | Harem, MTV polygamy
Pomacentridae Dascyllus carneus PG Harem, MTV polygamy
Pomacentridae Dascyllus flavicaudus PG, G Harem, MTV polygamy
Pomacentridae Dascyllus marginatus PG Harem, MTV polygamy
Pomacentridae Dascyllus melanurus PG, G Harem, MTV polygamy
Pomacentridae Dascyllus reticulatus PG, BS,G | Harem, MTV polygamy
Pseudochromidae Anisochromis straussi PG
Pseudochromidae Ogilbyina queenslandiae PG
Pseudochromidae Pseudochromis BS
aldabraensis
Pseudochromidae Pseudochromis BS
cyanotaenia
Pseudochromidae Pseudochromis flavivertex | BS
Pseudochromidae Pictichromis porphyrea BS
Cichliformes
Cichlidae Metriaclima cf. livingstoni | PG MTYV polygamy
Cichlidae Satanoperca jurupari SH
Cyprinodontiformes
Rivulidae Kryptolebias SH, G
hermaphroditus
Rivulidae Kryptolebias marmoratus SH, G
Rivulidae Kryptolebias ocellatus SH, G
Poeciliidae Xiphophorus helleri PG, G
Synbranchiformes
Synbranchidae Monopterus albus PG MTV polygamy
Synbranchidae Monopterus boueti PG
Synbranchidae Ophisternon bengalense PG
Synbranchidae Synbranchus marmoratus PG
Trachiniformes
Pinguipedidae Parapercis clathrata PG
Pinguipedidae Parapercis colias PG
Pinguipedidae Parapercis cylindrica PG Harem
Pinguipedidae Parapercis hexophtalma PG Harem
Pinguipedidae Parapercis nebulosa PG
Pinguipedidae Parapercis snyderi PG Harem
Pinguipedidae Parapercis xanthozona PG
Trichonotidae Trichonotus filamentosus PG
Creediidae Crystallodytes cookei PA
Creediidae Limnichthys fasciatus PA
Creediidae Limnichthys nitidus PA
Labriformes
Labridae Achoerodus gouldii PG

(continued)
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Table 1.2 (continued)

Order Sexual

Family Species pattern Mating system
Labridae Achoerodus viridis PG

Labridae Anampses geographicus PG

Labridae Bodianus axillaris PG

Labridae Bodianus diplotaenia PG MTYV polygamy
Labridae Bodianus eclancheri PG GSP

Labridae Bodianus frenchii PG

Labridae Bodianus mesothorax PG SPA

Labridae Bodianus rufus PG Harem
Labridae Cheilinus chlorurus PG

Labridae Cheilinus fasciatus PG Harem
Labridae Cheilinus trilobatus PG Harem, MTV polygamy
Labridae Cheilinus undulatus PG MTV polygamy
Labridae Choerodon azurio PG

Labridae Choerodon cauteroma PG

Labridae Choerodon cyanodus PG

Labridae Choerodon fasciatus PG

Labridae Choerodon graphicus PG

Labridae Choerodon rubescens PG

Labridae Choerodon schoenleinii PG

Labridae Choerodon venustus PG

Labridae Cirrhilabrus temmincki PG MTYV polygamy
Labridae Clepticus parrae PG SPA

Labridae Coris auricularis PG

Labridae Coris dorsomacula PG Harem
Labridae Coris gaimard PG MTYV polygamy
Labridae Coris julis PG MTYV polygamy
Labridae Coris variegata PG

Labridae Decodon melasma PG

Labridae Epibulus insidiator PG Harem, MTV polygamy
Labridae Gomphosus varius PG MTYV polygamy
Labridae Halichoeres bivittatus PG MTYV polygamy, GSP
Labridae Halichoeres garnoti PG MTYV polygamy
Labridae Halichoeres maculipinna PG MTYV polygamy
Labridae Halichoeres margaritaceus | PG Harem
Labridae Halichoeres marginatus PG MTYV polygamy, GSP
Labridae Halichoeres melanochir PG MTYV polygamy
Labridae Halichoeres melanurus PG MTYV polygamy
Labridae Halichoeres miniatus PG Harem
Labridae Halichoeres nebulosus PG

Labridae Halichoeres pictus PG

Labridae Halichoeres poeyi PG

(continued)
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Order Sexual

Family Species pattern Mating system

Labridae Halichoeres radiatus PG

Labridae Halichoeres scapularis PG

Labridae Halichoeres semicinctus PG MTYV polygamy, GSP

Labridae Halichoeres tenuispinnis PG MTYV polygamy

Labridae Halichoeres trimaculatus PG, BS MTYV polygamy, GSP

Labridae Hemigymnus fasciatus PG

Labridae Hemigymnus melapterus PG

Labridae Hologymnosus annulatus PG

Labridae Iniistius dea PG

Labridae Iniistius geisha PG

Labridae Iniistius pentadactylus PG Harem

Labridae Labrichthys unilineatus PG Harem

Labridae Labroides dimidiatus PG, BS Harem

Labridae Labrus bergylta PG

Labridae Labrus merula PG

Labridae Labrus mixtus PG

Labridae Labrus viridis PG

Labridae Lachnolaimus maximus PG Harem

Labridae Macropharyngodon moyeri | PG Harem

Labridae Notolabrus celidotus PG MTYV polygamy

Labridae Notolabrus gymnogenis PG

Labridae Notolabrus parilus PG

Labridae Notolabrus tetricus PG MTV polygamy

Labridae Ophthalmolepis lineolatus | PG

Labridae Oxycheilinus digramma PG

Labridae Parajulis poecilepterus PG GSP

Labridae Pictilabrus laticlavius PG MTYV polygamy

Labridae Pseudocheilinops ataenia PG

Labridae Pseudocheilinus evanidus | PG

Labridae Pseudocheilinus PG Harem
hexataenia

Labridae Pseudolabrus guentheri PG

Labridae Pseudolabrus rubicundus PG MTV polygamy

Labridae Pseudolabrus sieboldi PG MTYV polygamy

Labridae Pteragogus aurigarius PG MTYV polygamy

Labridae Semicossyphus darwini PG

Labridae Semicossyphus pulcher PG MTYV polygamy

Labridae Semicossyphus reticulatus | PG

Labridae Stethojulis balteata PG

Labridae Stethojulis interrupta PG MTYV polygamy

Labridae Stethojulis strigiventer PG

Labridae Stethojulis trilineata PG MTYV polygamy

(continued)
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Table 1.2 (continued)

Order Sexual

Family Species pattern Mating system

Labridae Suezichthys ornatus PG MTYV polygamy

Labridae Symphodus melanocercus | PG MTYV polygamy

Labridae Symphodus tinca PG, G MTYV polygamy

Labridae Thalassoma bifasciatum PG MTYV polygamy, GSP

Labridae Thalassoma cupido PG MTYV polygamy, GSP

Labridae Thalassoma duperrey PG MTYV polygamy, GSP

Labridae Thalassoma hardwicke PG MTYV polygamy, GSP

Labridae Thalassoma jansenii PG MTV polygamy, GSP

Labridae Thalassoma lucasanum PG MTV polygamy, GSP

Labridae Thalassoma lunare PG MTYV polygamy, GSP

Labridae Thalassoma lutescens PG MTYV polygamy, GSP

Labridae Thalassoma pavo PG MTV polygamy, GSP

Labridae Thalassoma purpureum PG

Labridae Thalassoma PG MTYV polygamy, GSP
quinquevittatum

Labridae Xyrichtys martinicensis PG Harem

Labridae Xyrichtys novacula PG Harem

Odacidae Odax pullus PG

Scaridae Calotomus carolinus PG MTYV polygamy

Scaridae Calotomus japonicus PG MTYV polygamy

Scaridae Calotomus spinidens PG MTV polygamy

Scaridae Cetoscarus bicolor PG

Scaridae Chlorurus sordidus PG MTYV polygamy

Scaridae Chlorurus spilurus PG

Scaridae Cryptotomus roseus PG MTYV polygamy

Scaridae Hipposcarus harid PG

Scaridae Hipposcarus longiceps PG

Scaridae Scarus ferrugineus PG

Scaridae Scarus festivus PG

Scaridae Scarus forsteni PG MTYV polygamy

Scaridae Scarus frenatus PG Harem

Scaridae Scarus ghobban PG

Scaridae Scarus globiceps PG MTV polygamy, GSP

Scaridae Scarus iseri PG Harem, GSP

Scaridae Scarus niger PG MTYV polygamy, GSP

Scaridae Scarus oviceps PG MTYV polygamy

Scaridae Scarus psittacus PG MTV polygamy

Scaridae Scarus rivulatus PG MTYV polygamy

Scaridae Scarus rubroviolaceus PG

Scaridae Scarus russelii PG

Scaridae Scarus scaber PG

Scaridae Scarus schlegeli PG MTYV polygamy

(continued)
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Order Sexual
Family Species pattern Mating system
Scaridae Scarus spinus PG
Scaridae Scarus taeniopterus PG
Scaridae Scarus tricolor PG
Scaridae Scarus vetula PG Harem, MTV polygamy
Scaridae Scarus viridifucatus PG
Scaridae Sparisoma atomarium PG Harem
Scaridae Sparisoma aurofrenatum PG Harem
Scaridae Sparisoma chrysopterum PG MTYV polygamy
Scaridae Sparisoma cretense PG, G Harem
Scaridae Sparisoma radians PG Harem, MTV polygamy,
GSP

Scaridae Sparisoma rubripinne PG MTYV polygamy, GSP
Scaridae Sparisoma viride PG MTYV polygamy
Perciformes
Centropomidae Centropomus parallelus PA, G
Centropomidae Centropomus undecimalis | PA
Latidae Lates calcarifer PA
Polynemidae Eleutheronema PA, G

tetradactylum
Polynemidae Filimanus heptadactyla SH, G
Polynemidae Galeoides decadactylus PA, G
Polynemidae Polydactylus macrochir PA
Polynemidae Polydactylus microstomus | SH, G
Polynemidae Polydactylus quadrifilis PA, G
Terapontidae Bidyanus bidyanus PA
Terapontidae Mesopristes cancellatus PA
Serranidae Cephalopholis argus PG Harem
(Epinephelinae)
Serranidae Cephalopholis boenak PG, BS Harem
(Epinephelinae)
Serranidae Cephalopholis cruentata PG Harem
(Epinephelinae)
Serranidae Cephalopholis PG Harem
(Epinephelinae) cyanostigma
Serranidae Cephalopholis fulva PG Harem
(Epinephelinae)
Serranidae Cephalopholis hemistiktos | PG Harem
(Epinephelinae)
Serranidae Cephalopholis miniata PG Harem
(Epinephelinae)
Serranidae Cephalopholis panamensis | PG Harem
(Epinephelinae)

Cephalopholis taeniops PG

(continued)
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Order Sexual
Family Species pattern Mating system
Serranidae
(Epinephelinae)
Serranidae Cephalopholis urodeta PG
(Epinephelinae)
Serranidae Epinephelus adscensionis PG Harem
(Epinephelinae)
Serranidae Epinephelus aeneus PG
(Epinephelinae)
Serranidae Epinephelus akaara PG, BS
(Epinephelinae)
Serranidae Epinephelus andersoni PG
(Epinephelinae)
Serranidae Epinephelus areolatus PG
(Epinephelinae)
Serranidae Epinephelus bruneus PG, BS
(Epinephelinae)
Serranidae Epinephelus chlorostigma | PG
(Epinephelinae)
Serranidae Epinephelus coioides PG, BS
(Epinephelinae)
Serranidae Epinephelus diacanthus PG
(Epinephelinae)
Serranidae Epinephelus PG
(Epinephelinae) drummondhayi
Serranidae Epinephelus fasciatus PG
(Epinephelinae)
Serranidae Epinephelus fuscoguttatus | PG SPA
(Epinephelinae)
Serranidae Epinephelus guttatus PG SPA
(Epinephelinae)
Serranidae Epinephelus labriformis PG
(Epinephelinae)
Serranidae Epinephelus malabaricus PG
(Epinephelinae)
Serranidae Epinephelus marginatus PG MTV polygamy
(Epinephelinae)
Serranidae Epinephelus merra PG SPA
(Epinephelinae)
Serranidae Epinephelus morio PG
(Epinephelinae)
Serranidae Epinephelus ongus PG SPA
(Epinephelinae)
Serranidae Epinephelus rivulatus PG
(Epinephelinae)

Epinephelus striatus PG, G GSP

(continued)
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Table 1.2 (continued)

T.

Kuwamura

Order

Sexual
Family Species pattern Mating system
Serranidae
(Epinephelinae)
Serranidae Epinephelus tauvina PG
(Epinephelinae)
Serranidae Hyporthodus flavolimbatus | PG
(Epinephelinae)
Serranidae Hyporthodus niveatus PG
(Epinephelinae)
Serranidae Hyporthodus quernus PG
(Epinephelinae)
Serranidae Mycteroperca bonaci PG
(Epinephelinae)
Serranidae Mycteroperca interstitialis | PG
(Epinephelinae)
Serranidae Mycteroperca microlepis PG SPA
(Epinephelinae)
Serranidae Mycteroperca olfax PG SPA
(Epinephelinae)
Serranidae Mpycteroperca phenax PG SPA
(Epinephelinae)
Serranidae Mycteroperca rubra PG SPA
(Epinephelinae)
Serranidae Mycteroperca venenosa PG GSP
(Epinephelinae)
Serranidae Plectropomus laevis PG
(Epinephelinae)
Serranidae Plectropomus leopardus PG SPA
(Epinephelinae)
Serranidae Plectropomus maculatus PG
(Epinephelinae)
Serranidae Bullisichthys caribbaeus SH
(Serraninae)
Serranidae Centropristis striata PG
(Serraninae)
Serranidae Centropristis ocyurus PG
(Serraninae)
Serranidae Chelidoperca hirundinacea | PG
(Serraninae)
Serranidae Diplectrum bivittatum SH
(Serraninae)
Serranidae Diplectrum formosum SH
(Serraninae)
Serranidae Diplectrum macropoma SH
(Serraninae)

(continued)
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Order

Sexual
Family Species pattern Mating system
Serranidae Diplectrum pacificum SH
(Serraninae)
Serranidae Diplectrum rostrum SH
(Serraninae)
Serranidae Hypoplectrus aberrans SH SA monogamy
(Serraninae)
Serranidae Hypoplectrus chlorurus SH SA monogamy
(Serraninae)
Serranidae Hypoplectrus nigricans SH SA monogamy
(Serraninae)
Serranidae Hypoplectrus puella SH SA monogamy
(Serraninae)
Serranidae Hypoplectrus unicolor SH SA monogamy
(Serraninae)
Serranidae Paralabrax PG, G
(Serraninae) maculatofasciatus
Serranidae Serraniculus pumilio SH
(Serraninae)
Serranidae Serranus annularis SH
(Serraninae)
Serranidae Serranus atricauda SH
(Serraninae)
Serranidae Serranus auriga SH
(Serraninae)
Serranidae Serranus baldwini SH Harem
(Serraninae)
Serranidae Serranus cabrilla SH
(Serraninae)
Serranidae Serranus hepatus SH
(Serraninae)
Serranidae Serranus phoebe SH
(Serraninae)
Serranidae Serranus psittacinus SH Harem
(Serraninae)
Serranidae Serranus scriba SH
(Serraninae)
Serranidae Serranus subligarius SH SA monogamy
(Serraninae)
Serranidae Serranus tabacarius SH SA monogamy
(Serraninae)
Serranidae Serranus tigrinus SH SA monogamy
(Serraninae)
Serranidae Serranus tortugarum SH SA monogamy
(Serraninae)
Serranidae Pseudogramma gregoryi SH
(Grammistini)

(continued)
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Table 1.2 (continued)

T. Kuwamura

Order Sexual
Family Species pattern Mating system
Serranidae Rypticus saponaceus PG
(Grammistini)
Serranidae Rypticus subbifrenatus PG
(Grammistini)
Serranidae (Anthiinae) | Anthias anthias PG
Serranidae (Anthiinae) | Anthias nicholsi PG
Serranidae (Anthiinae) | Anthias noeli PG
Serranidae (Anthiinae) | Baldwinella vivanus PG
Serranidae (Anthiinae) | Hemanthias leptus PG
Serranidae (Anthiinae) | Hemanthias peruanus PG
Serranidae (Anthiinae) | Hypoplectrodes huntii PG
Serranidae (Anthiinae) | Hypoplectrodes PG
maccullochi
Serranidae (Anthiinae) | Pronotogrammus PG
martinicensis
Serranidae (Anthiinae) | Pseudanthias conspicuus PG
Serranidae (Anthiinae) | Pseudanthias elongatus PG
Serranidae (Anthiinae) | Pseudanthias pleurotaenia | PG
Serranidae (Anthiinae) | Pseudanthias rubrizonatus | PG
Serranidae (Anthiinae) | Pseudanthias squamipinnis | PG MTYV polygamy
Serranidae (Anthiinae) | Sacura margaritacea PG
Pomacanthidae Apolemichthys PG
trimaculatus
Pomacanthidae Centropyge acanthops PG, BS
Pomacanthidae Centropyge bicolor PG Harem
Pomacanthidae Centropyge ferrugata PG, BS Harem
Pomacanthidae Centropyge fisheri PG, BS
Pomacanthidae Centropyge flavissimus BS Harem
Pomacanthidae Centropyge heraldi PG Harem
Pomacanthidae Centropyge interruptus PG Harem
Pomacanthidae Centropyge multispinus PG
Pomacanthidae Centropyge potteri PG Harem
Pomacanthidae Centropyge tibicen PG Harem
Pomacanthidae Centropyge vrolicki PG Harem
Pomacanthidae Chaetodontoplus PG Harem
septentrionalis
Pomacanthidae Genicanthus bellus PG
Pomacanthidae Genicanthus caudovittatus | PG Harem
Pomacanthidae Genicanthus lamarck PG Harem
Pomacanthidae Genicanthus melanospilos | PG Harem

(continued)
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Order Sexual

Family Species pattern Mating system
Pomacanthidae Genicanthus personatus PG Harem
Pomacanthidae Genicanthus semifasciatus | PG Harem
Pomacanthidae Genicanthus watanabei PG

Pomacanthidae Holacanthus passer PG, G Harem
Pomacanthidae Holacanthus tricolor PG Harem
Pomacanthidae Pomacanthus zonipectus PG

Malacanthidae Malacanthus plumieri PG Harem
Cirrhitidae Amblycirrhitus pinos PG

Cirrhitidae Cirrhitichthys aprinus PG Harem
Cirrhitidae Cirrhitichthys aureus PG, BS

Cirrhitidae Cirrhitichthys falco PG, BS Harem
Cirrhitidae Cirrhitichthys oxycephalus | PG Harem
Cirrhitidae Neocirrhites armatus PG Harem
Eleginopsidae Eleginops maclovinus PA

Scorpaeniformes

Platycephalidae Cociella crocodila PA

Platycephalidae Inegocia japonica PA Random mating
Platycephalidae Kumococius rodericensis PA

Platycephalidae Onigocia macrolepis PA

Platycephalidae Platycephalus sp. PA Random mating
Platycephalidae Suggrundus meerdervoorti | PA

Platycephalidae Thysanophrys celebica PA Random mating
Scorpaenidae Caracanthus unipinna PG Harem
Moroniformes

Moronidae Morone saxatilis PA

Spariformes

Nemipteridae Scolopsis monogramma PG

Nemipteridae Scolopsis taenioptera PG

Lethrinidae Lethrinus atkinsoni PG

Lethrinidae Lethrinus genivittatus PG

Lethrinidae Lethrinus harak PG

Lethrinidae Lethrinus lentjan PG

Lethrinidae Lethrinus miniatus PG

Lethrinidae Lethrinus nebulosus PG, G MTYV polygamy, GSP
Lethrinidae Lethrinus olivaceus PG SPA
Lethrinidae Lethrinus ornatus PG

Lethrinidae Lethrinus ravus PG

Lethrinidae Lethrinus rubrioperculatus | PG

Lethrinidae Lethrinus variegatus PG

Sparidae Acanthopagrus australis PA

Sparidae Acanthopagrus berda PA SPA

(continued)
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Table 1.2 (continued)

T. Kuwamura

Order Sexual
Family Species pattern Mating system
Sparidae Acanthopagrus bifasciatus | PA, G
Sparidae Acanthopagrus latus PA
Sparidae Acanthopagrus morrisoni PA
Sparidae Acanthopagrus pacificus PA
Sparidae Acanthopagrus schlegelii PA
Sparidae Argyrops spinifer PG, G
Sparidae Boops boops PG, G
Sparidae Calamus leucosteus PG
Sparidae Calamus proridens PG
Sparidae Chrysoblephus cristiceps PG
Sparidae Chrysoblephus puniceus PG
Sparidae Chrysoblephus laticeps PG
Sparidae Dentex gibbosus PG
Sparidae Dentex tumifrons PG
Sparidae Diplodus annularis PA, G
Sparidae Diplodus argenteus PA, G
Sparidae Diplodus cadenati PA, G
Sparidae Diplodus capensis PA, G
Sparidae Diplodus kotschyi PA, G
Sparidae Diplodus puntazzo PA, G
Sparidae Diplodus sargus PA, G
Sparidae Diplodus vulgaris PA, G
Sparidae Lithognathus mormyrus PA, G
Sparidae Pachymetopon aeneum PG
Sparidae Pagellus acarne PA, G
Sparidae Pagellus bellottii PG, G
Sparidae Pagellus bogaraveo PA, G
Sparidae Pagellus erythrinus PG
Sparidae Pagrus auriga PG
Sparidae Pagrus caeruleostictus PG
Sparidae Pagrus ehrenbergii PG, G
Sparidae Pagrus major PG, G
Sparidae Pagrus pagrus PG
Sparidae Rhabdosargus sarba PA, G
Sparidae Sarpa salpa PA, G SPA
Sparidae Sparidentex hasta PA
Sparidae Sparus aurata PA GSP
Sparidae Spicara chryselis PG
Sparidae Spicara smaris PG
Sparidae Spicara maena PG
Sparidae Spondyliosoma cantharus | PG MTYV polygamy

(continued)
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Table 1.2 (continued)

Order Sexual

Family Species pattern Mating system

Sparidae Spondyliosoma PG MTYV polygamy
emarginatum

Tetraodontiformes

Balistidae | Sufflamen chrysopterus PG Harem

SH simultaneous hermaphroditism, PA protandry, PG protogyny, BS bidirectional sex change or
reversed sex change in protogynous species, G gonochorism, SA monogamy size-assortative
monogamy, NSA monogamy non-size-assortative monogamy, Harem harem polygyny, MTV
polygamy male-territory-visiting polygamy, GSP group spawning, SPA spawning aggregation
unknown detailed mating system, blank unknown. Facultative monogamy in polygamous species
is not shown. If intraspecific variation has been reported in sexual pattern or mating sytem, two or
more types are shown. Detailed data of each species and references are given in Chap. 6; 26 species
for which functional hermaphroditism is suggested by weak evidence (with a question mark in
Chap. 6) are not included in this table

protogynous species. Pla et al. (2021) provided a list of 370 species of hermaphro-
ditic fishes from 34 families in eight orders based on the dataset of Pla (2019). Since
there are differences in the citation and interpretation of original papers, this book
follows Kuwamura et al. (2020).

Hermaphroditism in teleost fishes is evolutionarily labile, since interspecific
variation in the type of hermaphroditism is common even within a single family.
Three types of hermaphroditism, i.e., protandry, protogyny, and bidirectional sex
change, have been reported in Pomacentridae and simultaneous hermaphroditism,
protogyny, and bidirectional sex change in Serranidae (Table 1.3). Simultaneous
hermaphroditism and protandry have been reported in Muraenidae and
Polynemidae; simultaneous hermaphroditism and protogyny in Cichlidae; protandry
and protogyny in Sparidae; and protogyny and bidirectional sex change in Gobiidae,
Pseudochromidae, Labridae, Pomacanthidae, and Cirrhitidae (Table 1.3).
Gonochoristic species are also found in these families, and phylogenetic studies
have suggested that different types of hermaphroditism have appeared in different
lineages repeatedly (see Mank et al. 2006).

1.2 Phylogeny of Hermaphroditic Fishes and Their Habitat

Recent phylogenetic trees indicate that hermaphrodites are found only among
Teleostei fishes (Kuwamura et al. 2020: Fig. 1.1). Simultaneous hermaphroditism
and protandry have evolved several times in not closely related lineages of Teleostei,
whereas protogyny and bidirectional sex change have evolved only in
Percomorphaceae. Simultaneous hermaphroditism has been reported in four major
lineages: Elopomorpha (1 family), Aulopiformes (8), Ovalentaria (2), and
Eupercaria (2), and protandry in six major lineages: Elopomorpha (1), Clupeiformes
(1), Cypriniformes (1), Stomiatiformes (1), Ovalentaria (1), and Eupercaria
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Fig. 1.1 Phylogeny of fishes and occurrence of hermaphroditism. The phylogenetic tree was

processed from Betancur-R et al. (2017). SH simultaneous hermaphroditism, PA protandry, PG

protogyny, BS bidirectional sex change or reversed sex change in protogynous species (reproduced

from Kuwamura et al. 2020)
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(9) (Fig. 1.1; Table 1.3). Protogyny has evolved in four major lineages: Gobiaria
(1 family), Anabantaria (1), Ovalentaria (4), and Eupercaria of Percomorphaceae
(14), and bidirectional sex change in three of them Gobiaria (1), Ovalentaria (2), and
Eupercaria (4) (Fig. 1.1; Table 1.3).

Within the Percomorphaceae, protogyny and bidirectional sex change are widely
distributed (Fig. 1.2). Protogyny has evolved in 12 (26%) of the 46 lineages of
Percomorphaceae as shown in Fig. 1.2, and bidirectional sex change evolved in six
of them (13%), whereas protandry evolved in five (11%) and simultaneous her-
maphroditism in only three (7%). The abundance and wide distribution of protogyny
in Percomorphaceae may be related to their mating systems which are associated
with small social groups. These are seen especially in coral reef fishes, which will be
described fully in Chap. 4. The predominance of protogyny in hermaphroditic fish
contrasts markedly with the prevalence of simultaneous hermaphroditism observed
in plant and invertebrate hermaphrodites (Avise 2011; Leonard 2019).

Functional hermaphroditism has not been confirmed in any vertebrates outside
the infraclass Teleostei. It has been suggested in some hagfishes (Myxinoidea)
through gonad histology (Gorbman 1990) but has never been confirmed (Adolfi
et al. 2019). Protogynous sex change was suggested in a frog (Tetrapoda) by
behavioral observations in captivity (Grafe and Linsenmair 1989) but has never
been histologically confirmed (Hayes 1998; Leonard 2019). One of the factors
hindering the evolution of functional hermaphroditism in major groups of verte-
brates is thought to be the large anatomical differences between the sexes in these
groups (Warner 1978). For example, sharks and rays (Chondrichthyes) have large
copulatory organs, as do mammals and reptiles (Tetrapoda), and it would be very
costly to maintain both types of organs simultaneously or to change from one type to
the other.

In examining the habitats of extant hermaphroditic fishes, less than 3% (13 spe-
cies) inhabit freshwater (Table 1.3). This is despite the fact that approximately 43%
of all fish species inhabit freshwater (Nelson et al. 2016). Among freshwater species,
simultaneous hermaphroditism is known in Cichlidae (1 species) and Rivulidae (3),
protandry in Cobitidae (1) and Terapontidae (2), protogyny in Cichlidae (1),
Poeciliidae (1), and Synbranchidae (4), and bidirectional sex change is unknown
(Table 1.3). All these families, except for Cobitidae (Cypriniformes), belong to
Percomorphaceae. The lack of hermaphroditism in freshwater fishes has been
suggested to be due to anatomical sex differences (Warner 1978; Sadovy de
Mitcheson and Liu 2008), mating systems (Kuwamura et al. 2020), or evolutionary
history (Pla et al. 2021), but further research will be needed to explain this
incongruity.
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Fig. 1.2 Distribution of hermaphroditism within Percomorphaceae. The phyletic tree was
processed from Hughes et al. (2018). SH simultaneous hermaphroditism, PA protandry, PG
protogyny, BS bidirectional sex change or reversed sex change in protogynous species. The
following families given in Tables 1.2 and 1.3 are classified to the orders in parentheses by
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1.3 Theories for the Evolution of Hermaphroditism

The evolution of hermaphroditism among animals has been successfully explained
by individual fitness, with two major hypotheses: the low-density model for simul-
taneous hermaphroditism and the size-advantage model for sequential hermaphro-
ditism (Ghiselin 1969, 1974).

In low population density conditions, few mating opportunities are expected and
mating success will be much higher in simultaneous hermaphrodites than in
gonochorists if random mating occurs (Tomlinson 1966). This is despite the energy
cost to hermaphrodites of maintaining two reproductive systems (Heath 1977). Self-
fertilization further increases the benefits of simultaneous hermaphroditism in
extreme low-population density environments with little opportunity to find conspe-
cifics (Tomlinson 1966). Simultaneous hermaphroditism could also be favored if the
investment in a sexual function shows diminishing fitness returns because of low
mobility (Ghiselin 1969), restricted mating-group size (Charnov 1982), and/or local
sperm competition (Schirer 2009), thus favoring reallocation of remaining repro-
ductive resources to other sexual functions. A detailed explanation of this concept
will be given in Chap. 2.

The size-advantage (SA) model predicts that the difference in the rate of increase
in male and female fitness associated with body size (the SA) drives the evolution of
sequential hermaphroditism or sex change (Ghiselin 1969, 1974). The occurrence
and direction of sex change are determined by the mating system of each species,
because the relation between reproductive success and body size of males depends
on the mating system whereas reproductive success of females increases with growth
irrespective of the mating system (Warner 1975, 1984: Fig. 1.3). For example, in
species with random mating regardless of male body size (i.e., females do not have
preference for larger males and accept smaller ones), male reproductive success is
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Fig. 1.3 Size-advantage model predicting evolution of sex change in relation to the type of mating
system. (a) Protandry in species with random mating, (b) protogyny in species with polygyny, (c)
gonochorism in species with size-assortative mating (modified from Warner 1984)
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Fig. 1.2 (continued) Betancur-R et al. (2017), which are shown in this figure: Pinguipedidae
(Uranoscopiformes), Trichonotidae (Gobiiformes), Creediidae (Pempheriformes), Platycephalidae
(Perciformes), and Scorpaenidae (Perciformes)
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not related to body size. In these species, male-to-female sex change (protandry) will
be favored because the reproductive success of small males is higher than that of
females of the same size and vice versa in larger sizes (Fig. 1.3a). In contrast, in
species with polygynous mating systems in which large males monopolize access to
females, male reproductive success sharply increases with growth, and female-to-
male sex change (protogyny) will be favored because large females can increase
reproductive success by becoming male (Fig. 1.3b). Contrastingly, in species with
size-assortative mating or group spawning by one female with multiple males (i.e.,
intense scramble-type sperm competition), in which reproductive success of males
and females increases with growth in a similar fashion, gonochorism will evolve
because of the cost of sex change (Fig. 1.3c). Some mating systems with extensive
sperm competition and size-fecundity skew will also reduce or eliminate the SA and
result in a reduction or even an absence of sex change (Mufioz and Warner 2003,
2004).

Large volumes of evidence supporting the SA model have been reported, espe-
cially from coral reef fishes (Nakazono and Kuwamura 1987; Warner 1988; Munday
et al. 2006; Sadovy de Mitcheson and Liu 2008; Kazancioglu and Alonzo 2010;
Erisman et al. 2013; Kuwamura et al. 2020). In contrast, bidirectional sex change has
recently been seen as a tactic to secure mating opportunities when mate-search
(finding an opposite-sex individual) after the loss of partners is difficult or costly
because of low population density (Munday et al. 2010). This type of change has
been suggested to derive from either protogynous ancestors (the low-density hypoth-
esis for the evolution of reversed sex change in protogynous species: Kuwamura
et al. 2011, 2014) or gonochoristic ones (Sunobe et al. 2017). Reversed sex change
has not been reported at all from protandrous fish species (Kuwamura et al. 2020). In
random mating, where the SA model predicts protandry, large females do not
monopolize multiple mates, and smaller females have the opportunity to acquire
mates without sex change (see Chap. 3), whereas in polygynous and protogynous
species, small males have no opportunity to acquire females in the vicinity of larger
males that monopolize access to females, thus necessitating reversed sex change (see
Chaps. 4 and 5). In size-assortative monogamy (size-matched pairings: e.g., the coral
goby Paragobiodon echinocephalus), where the SA model predicts gonochorism,
both sexes seek large mates and undergo bidirectional sex change to avoid the risk of
movement (see Chap. 5), whereas in non-size-assortative monogamy, females accept
smaller males (e.g., the protandrous anemonefishes) and do not undergo reversed sex
change as in random mating (see Chap. 3).

1.4 Mating System and Social Control of Sex Change

Since many studies, both empirical and theoretical, have suggested mating systems
as one of the important drivers of the evolution of hermaphroditism, the relationship
between mating systems and hermaphroditism will be the main focus of this book. In
this book we follow the classification of fish mating systems into seven types by
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Fig. 1.4 Three types of social control of sex change. (a) protogyny in a harem (e.g., Labroides
dimidiatus): (1) death of the male; (2) sex change of the largest female. (b) Protandry in a
monogamous pair (e.g., Amphiprion bicinctus): (1) death of the female; (2) sex change of the
male and maturation of the largest juvenile into a male. (¢) Bidirectional sex change in a size-
assortative monogamy (e.g., Paragobiodon echinocephalus): (1) sex change of the smaller male in
a male-male pair and the larger female in a female-female pair; (2) growth-rate advantage in females

Kuwamura et al. (2020) and show the type of each hermaphroditic species in
Table 1.2.

1. Random mating: Females mate with males regardless of the males’ body size and
without preference for larger males. Pair bonding (i.e., close and lasting associ-
ation between a male and female) does not occur.

2. Non-size-assortative monogamy: Pair bonding of a male and a female occurs, in
which females have no preference for male size and accept smaller males.

3. Size-assortative monogamy: Pair bonding of a male and a female occurs, in which
both prefer larger mates, resulting in pairing of similar-sized mates.

4. Harem polygyny: A large male monopolizes a harem of females with territorial
male-male competition.

5. Male-territory-visiting polygamy: Females visit male territories to mate. Males
may establish small territories during spawning time even within a multi-male
group.

6. Group spawning: Spawning of a single female with multiple males occurs
without continuous bonding, usually in a spawning aggregation.

7. Spawning aggregation: This category is used when spawning aggregation has
been reported, but the detailed mating system is unknown (e.g., neither male
territory nor group spawning has been reported).

Facultative monogamy in polygamous species, which may frequently occur in
low-density conditions (Barlow 1984), is not shown in Table 1.2.

The mating systems and types of hermaphroditism observed in each species fit the
predictions of the SA model in most cases (Kuwamura et al. 2020), and detailed
examples will be presented in the following chapters. In the remainder of this
section, three typical cases are used to explain the relationship between the type of
mating system, social control of sex change, and the SA model (Fig. 1.4).

Social control of sex change was first confirmed by male-removal experiments in
the haremic protogynous wrasse Labroides dimidiatus on a coral reef (Robertson
1972). Only the largest female of a harem can change sex after male-removal, and
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smaller females are inhibited to change sex by the dominant fish (Fig. 1.4a). Within
an hour after the removal of the male, the largest female started male courtship
behavior and conducted pair spawning with a smaller female (Nakashima et al.
2000). Female-female spawning continued for a few weeks until the completion of
gonadal change had occurred. The largest female can increase its fitness or repro-
ductive success by changing sex to fertilize eggs of multiple females of its harem
(Fig. 1.3b). Despite this benefit, it suffers the cost of sex change as it cannot
reproduce during the sex change transition period. In general, an individual should
change sex if it can increase its reproductive value (future expected reproduction) by
doing so (Warner 1988; Munday et al. 2006). Reproductive values are often depen-
dent on the local environment, local population demography, and the individual’s
own status, so labile sex change appears to be common.

In the protandrous anemonefish Amphiprion bicinctus, only the largest male can
change sex after female removal from a monogamous pair, and the smaller fish will
mature as males (Fricke and Fricke 1977: Fig. 1.4b). In monogamous pairs of
anemonefish, the larger partner is female because it can produce more eggs than
the smaller partner. Additionally, the female accepts a smaller male because even
small males can guard eggs attached to the substrate adjacent to its host sea anemone
whose tentacles often cover the egg clutch, thus protecting the eggs from predators.
In such monogamous pairs in which the female is larger than the male, the rate of
increase in male and female fitness with body size is similar to that seen in random
mating fishes as shown in Fig. 1.3a (see Sunobe et al. 2022).

In contrast, monogamous pairs of the coral goby P. echinocephalus are size-
assortative because females prefer large males that can guard a large clutch of eggs
attached on the surface of coral branches (Kuwamura et al. 1994). Large pairs live in
large coral heads, and small pairs in small corals. No SA in fecundity exists in such
size-assortative pairs (Fig. 1.3c), but growth-rate advantage in females will favor
protogyny (Iwasa 1991; Kuwamura et al. 1994). In newly formed pairs, the larger
will become male: if two males meet, the smaller changes sex to female, and if two
females meet, the larger changes sex to male (bidirectional sex change; Nakashima
et al. 1995: Fig. 1.4c). The smaller female will grow faster than the male, which has
less feeding time due to guarding the eggs, and therefore results in a size-assortative
pair (Kuwamura et al. 1994). The reversed sex change (male-to-female) has also
been reported in facultative monogamous pairs of the protogynous L. dimidiatus in
low-density conditions, such as when females were removed from monogamous
pairs. In this case, when two widowed males met, the smaller proceeded to change
sex to female (Kuwamura et al. 2011, 2014).

The degree of social control depends on the type of mating system. This will be
described in detail in the following chapters.
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1.5 Physiological Mechanisms of Sex Change

The physiological mechanisms of sex change are not described in detail in this book,
but are briefly summarized here. The mechanisms of socially cued sex change have
been hypothesized as follows (e.g., in the bluehead wrasse Thalassoma bifasciatum,
Todd et al. 2019). In the brain of the largest female of a social group, after the
perception of a social cue (i.e., absence of a dominant male), cortisol increases
isotocin expression to promote male-typical behaviors that rapidly establish social
dominance. In the gonads, cortisol promotes transition from ovaries to testes via
three pathways: (1) downregulates aromatase (cypl9ala) expression to cease estro-
gen (17B-estradiol: E2) production and to decline feminizing expression, causing
ovarian atresia; (2) upregulates amh expression, which can suppress feminizing
genes and promote oocyte apoptosis while promoting masculinizing expression
and spermatogonial recruitment; and (3) upregulates androgenic genes cypllcl
and hsdl1b2 to increase androgen (11-ketotestosterone: 11-KT) production which
supports testicular development. Epigenetic reprogramming, via changes in sexually
dimorphic DNA methylation, rewrites cellular memory of sexual fate and canalizes
sex-specific expression.

In addition to the hypothalamic-pituitary-interrenal axis mentioned above, the
hypothalamic-pituitary-gonadal axis has been proposed as the major signaling
pathway regulating sex change in hermaphroditic fish (Casas and Saborido-Rey
2021). The hypothalamus released gonadotropin-releasing hormones (GnRH) in
the brain, stimulating the pituitary to synthetize and secrete the two gonadotropins
(GtHs: luteinizing hormone and follicle stimulating hormone) into the blood system.
Subsequently, GtHs regulate the production of sex hormones in the gonad via their
receptors, either follicle cells in the ovaries, or Leydig cells in the testes. However,
despite intense research, significant gaps remain in our knowledge of the perception
of environmental cues and how they are mediated by the social context, the mech-
anisms underlying their integration and processing at the brain level, and the exact
roles of well-known players at the gonadal level (Casas and Saborido-Rey 2021).

1.6 Conclusions

1. Functional hermaphroditism has been reported in 481 fish species belonging to
41 families of 17 teleost orders. Simultaneous hermaphroditism is known in
57 species belonging to 13 families, and among species exhibiting sequential
hermaphroditism, protogyny is much more common (314 species of 20 families)
than protandry (62 species of 14 families) and bidirectional sex change (69 species
of 7 families).

2. Simultaneous hermaphroditism and protandry have evolved several times in not
closely related lineages of Teleostei, whereas protogyny and bidirectional sex
change have evolved widely and only in Percomorphaceae.
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3. The evolution of hermaphroditism has been successfully explained by individual
fitness, with two major hypotheses: the low-density model for simultaneous
hermaphroditism and the size-advantage model for sequential hermaphroditism.

4. Mating system type is one of the important drivers of the evolution of hermaph-
roditism, and the relationship between mating systems and hermaphroditism will
be focused on in the following chapters.

5. Sex change is socially controlled in many fishes, and its physiological mecha-
nisms are briefly summarized.
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Chapter 2 ®)
Simultaneous Hermaphroditism in Fishes <z

Kota Sawada

Abstract Simultaneous hermaphrodites have both male and female sexual func-
tions at the same time. In this chapter, I briefly summarize the theories on the
adaptive significance of simultaneous hermaphroditism and provide a detailed
review of each teleost taxon having this sexual strategy, including Aulopiformes,
Kryptolebias killifishes, Serranidae, and other understudied taxa. In Aulopiformes,
simultaneous hermaphroditism is associated with deep-sea habitats and is most
likely an adaptation to limited mating opportunities. Kryptolebias offer a unique
case of mixed mating, including self-fertilizing hermaphrodites and males. Simulta-
neously hermaphroditic species of Serranidae exhibit diverse sexual and mating
systems, including egg trading and harems. The lack of information on other taxa
hampers any substantial discussion; however, some taxa offer important clues for
understanding the evolution of hermaphroditism. Finally, I conclude with remarks
on the apparent lack of evolutionary lability of simultaneous hermaphroditism and
potential comparative approaches to this issue.

Keywords Androdioecy - Egg trading - Self-fertilization -
Simultaneous hermaphroditism

2.1 What Is Simultaneous Hermaphroditism?

Simultaneous hermaphrodites have both male and female sexual functions at the
same time, in contrast to sequential hermaphrodites, which have only one sexual
function at a time (Ghiselin 1969; Smith 1975; Charnov 1982; Leonard 2018).
Owing to the simultaneous coexistence of male and female functions, some can
reproduce via self-fertilization, whereas others reproduce via outcrossing obligately
or facultatively (mixed mating; Jarne and Charlesworth 1993). Although this sexual
system is observed in a wide range of plants and invertebrates, it is rather rare in
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fishes and has only been reported in Muraenidae, Cichlidae, Rivulidae,
Polynemidae, and several families of Aulopiformes (Kuwamura et al. 2020). Some
fishes morphologically have male and female gonads at the same time, but only one
of them is functional at a time (e.g. St. Mary 1993, 1994; see Chap. 5). Because this
book focuses on functional sexuality, I do not categorize them as simultaneous
hermaphrodites.

Simultaneous hermaphrodites sometimes coexist with other sexual expressions
within a species or population (Weeks 2012), forming androdioecy (simultaneous
hermaphrodites and males) or gynodioecy (hermaphrodites and females).
Androdioecy has evolved several times in various invertebrate taxa (Weeks et al.
2006a), such as barnacles (Sawada et al. 2015; Yusa 2018), and is also found in
teleost fishes (discussed later). In contrast, gynodioecy is much rarer among animals
in general (Weeks 2012) and is absent among teleosts. The only known example of
this system in vertebrates is the Atlantic hagfish Myxine glutinosa (see Powell et al.
2004; Weeks 2012). Trioecy (the coexistence of males, females, and hermaphro-
dites) has been reported in a few species of Polynemidae (Nayak 1959; Kagwade
1967), although the details are not known.

As several androdioecious species are discussed in this chapter, it is worth
clarifying the definition of the term “androdioecy.” In this chapter, androdioecy is
defined as a sexual system in which simultaneous hermaphrodites and males coexist.
Note that this definition includes systems in which males and simultaneous her-
maphrodites are at different stages of a life history trajectory, caused by ontogenetic
transitions from simultaneous hermaphrodites to males, or vice versa. As will be
discussed later, the former transition has been observed in a few teleost taxa. The
latter is relatively common in invertebrates and is often categorized as protandric
simultaneous hermaphroditism. Some authors, including myself, have defined
androdioecy to exclude such cases and have applied the term only when there are
distinct life history trajectories corresponding to males and simultaneous hermaph-
rodites (Pannell 2002; Yusa et al. 2013; Sawada et al. 2015; Pla et al. 2021).
Although I acknowledge the usefulness of this narrower definition in other contexts,
in this chapter, I adopt the broader definition to maintain consistency with the
relevant literature (e.g. Weeks 2012; Erisman et al. 2013; Leonard 2018) and to
avoid confusion regarding killifishes in which both primary and secondary (derived
from hermaphrodites) males can be induced (see Sect. 2.4).

The occurrence of simultaneous hermaphroditism among teleost fishes is sum-
marized in Table 2.1 (extracted and modified from Chap. 6). Functional simulta-
neous hermaphroditism has been confirmed in 57 species of teleosts; however,
inconclusive evidence has been obtained for several other species. Note that I
dismissed a considerable number of species listed as simultaneous hermaphrodites
by Pla et al. (2021) because their references include literature that mentions sexuality
(often for larger taxa rather than each species) but provides no species-level evidence
(several species of Aulopiformes; Smith 1975; Sulak 1995; Ota et al. 2000; Davis
and Fielitz 2010), a species catalogue without any description of the focal species
(Serranus notospilus; Longley and Hildebrand 1941), a paper that only described an
immature specimen of the focal species (Parasudis truculenta; Mead 1960), a
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review discussing functionally sequential hermaphrodites (Priolepis spp.; Cole
2010), or a completely irrelevant paper on a different taxon (Stemonosudis macrura,
Leem et al. 1998).

In this chapter, I first briefly summarize the evolutionary theory of simultaneous
hermaphroditism. Then, I provide reviews of three taxa (deep-sea aulopiforms,
Kryptolebias killifishes, and serranids) that are relatively well studied in relation to
the evolutionary conditions of simultaneous hermaphroditism. I conclude with a
perspective on the evolutionary patterns of this sexual strategy.

2.2 Evolutionary Theory for Simultaneous
Hermaphroditism

Two hypotheses have been widely recognized as explanations for the adaptive
significance of simultaneous hermaphroditism in animals (Sawada and Yamaguchi
2020). The “low-density” hypothesis argues that simultaneous hermaphroditism is
favored under conditions of limited mating opportunity because of low population
density or limited mate-search ability (Tomlinson 1966; Ghiselin 1969; Smith 1975).
When finding a mate is extremely difficult, hermaphrodites are more advantageous
than gonochorists because (1) they can reproduce via self-fertilization without any
mating encounter or (2) they can outcross with every conspecific adult they encoun-
ter, in contrast to gonochorists, who need to find an opposite-sex adult to reproduce.
This hypothesis is often mentioned as an explanation for simultaneous hermaphro-
ditism in deep-sea fishes (Ghiselin 1969; Merrett 1994).

Another hypothesis is called the “diminishing return hypothesis” (Charnov et al.
1976; Charnov 1982), which argues that diminishing fitness returns on investment in
one sexual function favors simultaneous hermaphroditism (Fig. 2.1). For example, if
reproductive success as a female is limited by brooding space, investing all available
resources in female function should be wasteful; thus, it is adaptive to allocate some
resources to male function (Heath 1979; Charnov 1982). The reproductive success of
a male is limited by local sperm competition (Schérer 2009). If the mating group size
is limited, e.g., by low population density or mobility, and thus sperm competition is
weak, excess investment in male function (sperm production) is wasteful because it
causes competition among sibling sperm over a limited number of eggs produced by
individuals in the same group. As a result, allocating resources to both sexual
functions (i.e., simultaneous hermaphroditism) is the optimal strategy. Local egg
competition may also favor simultaneous hermaphroditism when sibling eggs com-
pete, for example, over sperm or brooding spaces (Charnov 1982; Henshaw et al.
2014b). Diminishing fitness return can be caused by other peculiar mechanisms such
as egg trading (see Sect. 2.5).

Although both hypotheses predict the evolution of simultaneous hermaphrodit-
ism under low mate availability or population density, the detailed prediction differs
qualitatively (Charnov et al. 1976; Sawada and Yamaguchi 2020). For example, the
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Fig. 2.1 A schematic drawing of evolutionary conditions favoring gonochorism and simultaneous
hermaphroditism under diminishing return hypothesis (Charnov et al. 1976; Charnov 1982). The
horizontal axis represents the proportion of reproductive resources allocated to male function. The
vertical axis represents reproductive success (RS) as a male (blue), as a female (red), and in total
(green). If the fitness return on each sexual function is increasing (left), total reproductive success is
optimized by allocating all resources to male or female function (i.e., gonochoristic males or
females). In contrast, if the fitness return is diminishing (right), intermediate allocation (i.e.,
simultaneous hermaphroditism) is optimal

low-density hypothesis does not predict hermaphroditism when individuals easily
find a limited number of mates, but find it difficult to obtain additional mates, in
contrast to the diminishing return hypothesis. Such a situation is likely to occur in
sessile and aggregative organisms (Sawada and Yamaguchi 2020).

2.3 Deep-Sea Aulopiforms

It is often mentioned that simultaneous hermaphroditism is common among deep-
sea fishes (Warner 1984; Herring 2001). More than one-third of fish species con-
firmed to be simultaneous hermaphrodites are deep-sea dwellers (Table 2.1). This
proportion is remarkably high, given the scarcity and difficulty of studies on deep-
sea species (cf. only six species, out of approximately 400 species for which
sequential hermaphroditism is confirmed, live in deep sea; Kuwamura et al. 2020).
However, this does not imply that simultaneous hermaphroditism has frequently
evolved in the deep sea because these species represent a single origin of hermaph-
roditism in the order Aulopiformes.

Among the three extant suborders of the order Aulopiformes (Nelson et al. 2016),
only Alepisauroidei (Fig. 2.2) is hermaphroditic, and others (Aulopoidei and
Paraulopoidei) are gonochoristic (Smith 1975; Davis and Fielitz 2010). Although
direct evidence of functional simultaneous hermaphroditism has been obtained from
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Fig. 2.2 Greeneye Chlorophthalmus borealis. Although this species is not listed in Table 2.1 due
to the lack of matured specimens collected, all species in the suborder Alepisauroidei are presumed
to be simultaneous hermaphrodites. (Photos taken by the author at Aquamarine Fukushima,
Fukushima, Japan, and used under the permission from Aquamarine Fukushima)

only 21 species in eight families (Ipnopidae, Giganturidae, Bathysauridae,
Chlorophthalmidae, Notosudidae, Scopelarchidae, Paralepididae, and
Alepisauridae) of Alepisauroidei (Kuwamura et al. 2020), weak evidence is avail-
able for several other species of Alepisauroidei (Gibbs 1960; Merrett 1980; Iwami
and Takahashi 1992), including Evermannellidae (Merrett et al. 1973). It is widely
accepted that all species in this suborder are simultaneous hermaphrodites (Johnson
1982; Davis and Fielitz 2010). There is no evidence of self-fertilization in these
fishes (Davis and Fielitz 2010) although it might be possible morphologically (Mead
et al. 1964; Cabiddu et al. 2010).

Phylogenetic studies have suggested that hermaphroditism evolved only once in
the common ancestor of Alepisauroidei (Baldwin and Johnson 1996) during the
Early Cretaceous, from gonochoristic ancestors (Davis and Fielitz 2010). This is the
oldest known origin of hermaphroditism in vertebrates (Davis and Fielitz 2010).

In the deep sea, population density is generally low because of low productivity
(Herring 2001), although there are some exceptions, such as greeneyes
(Chlorophthalmidae), which are often abundant on continental shelves (Mead et al.
1964) or live in large shoals (Anastasopoulou et al. 2006). In low-density
populations, finding mates is likely to be difficult. Thus, simultaneous hermaphro-
ditism in deep-sea aulopiforms is regarded as evidence for the low-density hypoth-
esis (Mead et al. 1964; Ghiselin 1969; Warner 1984). The lack of hermaphroditism
in shallow-water aulopiforms (Aulopoidei) supports this hypothesis (Erisman et al.
2013). In addition, under conditions of limited mating opportunities owing to low
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density, weak sperm competition also favors hermaphroditism because of
diminishing returns on investment in male function (Charnov et al. 1976). It is
possible that group living is disadvantageous in the deep sea because of low food
availability, preventing the opportunity for multiple matings, even if finding a mate
is possible. In summary, it is plausible that hermaphroditism in this taxon is an
adaptation to deep-sea environments, although the detailed selective pressure is
unclear.

A major bottleneck in understanding the evolution of hermaphroditism in deep-
sea fishes is the difficulty in directly observing mating behavior. However, some
information can be obtained from behavioral observations and other indirect evi-
dence. Kupchik et al. (2018) suggested pair-bonding in telescopefishes Gigantura
indica and G. chuni, based on video observations using remotely operated vehicles
and an excess of even-numbered catch (i.e., records of even-numbered catch were
more frequent than expected from random occurrence). They also mentioned a
similar unpublished observation of barracudinas (Paralepididae). Given the pre-
sumed difficulty of mate acquisition outside a pair, it is plausible that these species
reproduce via monogamous mating between hermaphrodites, although no direct
evidence is available. Another in situ observation of deep-sea aulopiforms is avail-
able for the Japanese greeneyes Chlorophthalmus albatrossis or C. borealis
(Yamauchi 2008; Fig. 2.2), although this may not be informative about their mating
system because unfortunately, no mature individuals were found in these species
(Hirakawa et al. 2008).

Comparative approaches will help us to understand the evolution of simultaneous
hermaphroditism in the deep sea. First, we can compare hermaphroditic and
gonochoristic lineages within Aulopiformes (Erisman et al. 2013). Unfortunately,
the phylogenetic distribution of sexuality within Aulopiformes cannot be subjected
to statistical comparative analyses because of the single evolutionary transition of
sexuality (Davis and Fielitz 2010). Nevertheless, comparisons between hermaphro-
ditic and gonochoristic suborders will be useful in gaining insight. Maile et al.
(2020) estimated that the common ancestor of Aulopiformes was deep-benthic and
that Aulopoidei secondarily invaded shallow seas, whereas Paraulopoidei and
Alepisauroidei remained in deep seas.

Among the Aulopoidei, information on mating systems is available for two
lizardfish species, Synodus dermatogenys and S. ulae. The sand lizardfish
S. dermatogenys forms lek-like aggregations outside their feeding sites and exhibits
group spawning at high density and pair spawning at low density (Donaldson 1990).
Pair spawning and frequent courtship/aggressive behavior have been observed in the
red lizardfish, S. ulae (Zaiser and Moyer 1981). Although no information is available
on the mating systems in Paraulopoidei, it is interesting to note that many species are
sexually dimorphic in fin coloration and/or elongation (Sato and Nakabo 2003),
suggesting some sort of sexual selection. It is also worth noting that they are
gonochoristic despite often being distributed in the deep seas (Sato and Nakabo
2003). As sexual selection should be weak in situations assumed by the low-density
hypothesis (Sekizawa et al. 2019), mating systems may differ greatly between
Paraulopoidei and Alepisauroidei, even though their depth ranges overlap.
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Another comparison can be made between hermaphroditic aulopiforms and other
deep-sea fishes with different adaptations to deep-sea environments (Cocker 1978).
For example, male dwarfism and male-female association, which are adopted by
some anglerfishes and various invertebrates, also provide a way to assure reproduc-
tion under low density (Ghiselin 1969; Pietsch 1976, 2005) or low food availability
(Yamaguchi et al. 2012). Sexually dimorphic bioluminescence can increase the
efficiency of mate searches (Herring 2007). Sexual dimorphism in traits related to
sound communication (otoliths and swimbladders) in deep-sea cusk eels may also
help fish to locate potential partners (Schwarzhans 1994; Haedrich 1996). The
evolutionary conditions for these different strategies to ensure reproduction in the
deep seas have not been fully explored.

2.4 Self-Fertilization and Androdioecy in Killifishes

Mangrove rivulus (Kryptolebias marmoratus; Fig. 2.3) and a few other Kryptolebias
species are simultaneous hermaphrodites and the only known teleosts that routinely
engage in self-fertilization (Avise and Tatarenkov 2012). Additionally, males are
known at least in some species, i.e., they are androdioecious. I first discuss the sexual
system of K. marmoratus, the most extensively studied species in this genus, and
then discuss other hermaphroditic species.

Kryptolebias marmoratus lives within mangroves over a wide range of neotrop-
ical coastlines of the western Atlantic, Caribbean Sea, and Gulf of Mexico (Taylor
2000, 2012). This species is found in unique microhabitats including intermittently
dry pools and crab burrows and feeds on aquatic and terrestrial invertebrates (Taylor
2012). Most individuals are simultaneous hermaphrodites (Fig. 2.3a), can reproduce
via internal self-fertilization (Harrington Jr 1961), and never outcross with other
hermaphrodites (Furness et al. 2015) as far as known. Although Cole and Noakes
(1997) suggested the existence of a female phase because ovarian tissues mature

Fig. 2.3 Mangrove rivulus Kryptolebias marmoratus, an androdioecious species (Table 2.1)
including simultaneous hermaphrodites (a) and males (b), the latter can be distinguished by orange
coloration. (Photos provided by Brooke Fitzwater and Ryan Earley of The University of Alabama)
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earlier than testicular tissues do (i.e., protogynous simultaneous hermaphroditism),
this phase is unlikely to be functional (Gresham et al. 2020). Testicular tissues
occupy only a small portion of the ovotestis (Soto et al. 1992), likely because of
internal self-fertilization and lack of sperm competition.

The males (Fig. 2.3b) of K. marmoratus are derived from two developmental
pathways. Under laboratory conditions, the development of primary males is
induced by rearing embryos at low temperatures such as 18-20 °C (Harrington Jr
1967). However, the temperature range is lower than the temperature that this
species experiences in its natural habitat and is so low that hermaphrodites usually
do not oviposit (Turner et al. 2006), suggesting that these primary males are absent
or rare in nature (Earley et al. 2012). Secondary males, derived from simultaneous
hermaphrodites via the loss of female function, are likely to be ecologically relevant
(Earley et al. 2012). The transition from hermaphrodites to males is induced by
environmental conditions, such as high temperature and short daytime (Earley et al.
2012), but is also observed in common laboratory conditions (Gresham et al. 2020).
The frequency of transition is also genetically controlled, as suggested by the
different frequencies of secondary males among different lineages, even under the
same rearing conditions (Turner et al. 2006; Gresham et al. 2020). Turner et al.
(2006) hypothesized that this variation depends on the degree of heterozygosity.
Both primary and secondary males can be distinguished from hermaphrodites by the
presence of orange pigmentation (Fig. 2.3b), although a small proportion of males
lack this coloration (cryptic male, Marson et al. 2018).

Kryptolebias marmoratus exhibits mixed mating, that is, both self-fertilization
and outcrossing (Mackiewicz et al. 2006¢). Although hermaphrodites usually lay
fertilized eggs via internal self-fertilization, a small number of unfertilized eggs are
also released, offering males the opportunity for siring. The occurrence of
outcrossing between hermaphrodites and males has been demonstrated under labo-
ratory conditions using microsatellite DNA (Mackiewicz et al. 2006a), and popula-
tion genetic studies have supported that outcrossing also occurs in the field (Lubinski
et al. 1995; Mackiewicz et al. 2006b, c). According to Kristensen (1970), hermaph-
rodites oviposit a small number of unfertilized eggs on substrata and males simul-
taneously fertilize them. Taylor (2012) noted an unpublished observation of “many
of the classic killifish courtship/spawning behaviors: recurved bodies coupling
closely and vibrating” between a male and a hermaphrodite.

To understand the reproductive strategies of K. marmoratus, three questions need
to be addressed: why is simultaneous hermaphroditism with selfing adaptive, why do
hermaphrodites occasionally outcross with males, and why do they lose female
function to change into males? The answer to the first question is likely the
low-density hypothesis (Ghiselin 1969). Kryptolebias marmoratus possesses a set
of traits that facilitate frequent colonization (Avise and Tatarenkov 2012). For
example, they can survive and migrate out of water (“emersion”) and exhibit various
morphological and physiological adaptation for emersion, which is triggered by
water quality (hydrogen sulfide concentration) and intraspecific aggression (Taylor
2012). Just after colonization of a novel habitat, population density is extremely low
and mating opportunities are highly limited. As a result, simultaneous
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hermaphroditism with selfing should be adaptive to assure reproduction. Frequent
colonization of novel habitats is suggested to be an evolutionary driver of selfing
hermaphroditism in other animals, such as tadpole shrimps (Baker 1955; Mathers
et al. 2013). Avise and Tatarenkov (2012) tested an alternative hypothesis that
selfing is advantageous because it preserves locally adapted sets of alleles, but
found no support for the hypothesis because locally common multilocus genotypes
predicted from the hypothesis were not detected.

Why do hermaphrodites occasionally outcross with males? Hermaphrodites pre-
fer to associate with males compared to other hermaphrodites (Martin 2007; Ellison
et al. 2013), suggesting that outcrossing is beneficial, at least under some conditions.
One possible benefit is avoidance of inbreeding depression. The male preference for
genetically dissimilar hermaphrodites supports this hypothesis (Ellison et al. 2013).
The lack of such a preference in hermaphrodites may be explained by the rarity of
males (Ellison et al. 2013). Ellison et al. (2011) demonstrated that individuals with
higher genome-wide heterozygosity (i.e., derived from outcrossing) are less suscep-
tible to parasites than those with lower heterozygosity (i.e., derived from selfing),
offering a possible mechanism of inbreeding depression in this species. It is worth
noting that this mechanism can explain why inbreeding depression has not been lost
despite frequent selfing. If inbreeding depression is caused by recessive deleterious
alleles, it will be purged by frequent inbreeding, including selfing. In contrast, if
parasite resistance depends on genome-wide heterozygosity itself, inbreeding
depression persists because inbreeding always increases homozygosity. Hermaph-
rodites have the “best of both worlds” (Ellison et al. 2011), by assuring mating under
low density after colonization via selfing and increasing parasite resistance under
high density (a high risk situation of parasite infection, see Arneberg et al. 1998).

By transitioning to males, hermaphrodites lose all reproductive success via
female function. Therefore, there should be an advantage that complements this
loss of fitness. One possibility is that males can mate with multiple hermaphrodites
and, as a result, achieve high siring success in total. However, no data are available to
test this hypothesis in the field, likely because of the difficulty in observing this fish
in its muddy habitat. Gresham et al. (2020) proposed another hypothesis: loss of
female function leads to a high survival rate, especially under stressful conditions.
They demonstrated that individuals who changed sex to male had a higher survival
rate under harsh conditions (high salinity and low water availability) than those who
retained both sexual functions. Note that mating and survival advantages are not
mutually exclusive and may work together to determine the costs and benefits of
being male.

In summary, K. marmoratus takes advantage of selfing to ensure reproduction
under low population density, likely after colonization. In addition, some hermaph-
rodites lose female function and become males, thereby increasing their survival
under stressful conditions. Outcrossing between males and hermaphrodites increases
heterozygosity and parasite resistance of their offspring. However, this scenario is
still hypothetical and likely to be oversimplified. For example, Gresham et al. (2021)
reported outbreeding depression for several fitness components. How multiple
factors (inbreeding depression, outbreeding depression, and reproductive assurance)
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interact to produce the net fitness payoffs of selfing remains unresolved and may
vary depending on environmental conditions such as population density, environ-
mental stress, and parasites.

The reproductive biology of K. marmoratus exhibits considerable geographical
variation throughout its range. The frequency of males varies from almost absent to
approximately 20% (Turner et al. 1992; Mackiewicz et al. 2006b; Marson et al.
2018) and the frequency of outcrossing varies accordingly (Tatarenkov et al. 2015).
Individuals from the population with the highest male frequency (Twin Cays,
Belize) showed a higher propensity to produce secondary males than those from
other populations, even in the “common garden” (i.e., rearing in the same condition)
experiment (Turner et al. 2006). Yamaguchi and Iwasa (2021) theoretically analyzed
the coupled evolution of male frequency and selfing propensity in androdioecious
species, especially K. marmoratus as a model, and predicted that either populations
with selfing-oriented hermaphrodites and no males or populations with outcross-
oriented hermaphrodites and highly frequent males (>20%) are evolutionarily
stable, depending on the extent of inbreeding depression and mating opportunities.
It would be interesting to examine whether geographic variation in male production
in K. marmoratus reflects the alternative stable states predicted by Yamaguchi and
Iwasa (2021). It is worth noting that populations with low male frequency (<20%)
cannot be stable as isolated populations in their models, and migration from male-
abundant populations to male-absent populations will help explain the low fre-
quency of males commonly observed in the field (Yamaguchi and Iwasa 2021).

According to the nomenclature of Costa (2011), Kryptolebias includes two other
hermaphroditic species, K. ocellatus and K. hermaphroditus. Interestingly, these
three hermaphroditic species have different mating patterns, although they are
closely related (Costa et al. 2010; note that K. caudomarginatus and K. ocellatus
in Costa et al. 2010 correspond to K. ocellatus and K. hermaphroditus in Costa 2011,
respectively). Until recently, K. hermaphroditus was regarded as a purely hermaph-
roditic species (Costa 2011), despite a few unsubstantiated records of males (Costa
2006) and histological observations (atretic follicles in hermaphrodite gonads)
suggesting the possibility of transition into secondary males (Costa et al. 2010).
Berbel-Filho et al. (2016) reported only one male individual, based on external
morphology (i.e., not histologically examined to maintain the integrity of the unique
specimen). Tatarenkov et al. (2011) found only one heterozygous individual, and as
a result, the estimated selfing rate was very high. These findings suggest that
although K. hermaphroditus is androdioecious, males and outcrossings are rare in
this species. In contrast, population genetic studies on K. ocellatus have indicated
that outcrossing is predominant in this species (Tatarenkov et al. 2009; Berbel-Filho
et al. 2020). In addition, males are likely to be more frequent in this species than in
the other two species because equal numbers of males and hermaphrodites were
collected during a field survey (Costa 2006; Costa et al. 2010). Even the function-
ality of hermaphroditism in this species is doubted (Tatarenkov et al. 2009), although
its gonadal structure is similar to that of other hermaphroditic species (Costa 2006).
Whether the species is functionally gonochoristic or retains the ability to self-
fertilize as a last resort to assure reproduction when no males are available is unclear.
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If the former is true, then the species should be removed from the list of functional
hermaphrodites. Either way, it is clear that K. ocellatus is predominantly
outcrossing.

Among the three hermaphroditic species of Kryptolebias, the two species in
which males and outcrossings are rare (K. marmoratus and K. hermaphroditus)
are most closely related and K. ocellatus is located at the basal position (Tatarenkov
et al. 2009; Costa et al. 2010). As a result, simultaneous hermaphroditism (at least
morphologically) was estimated to have evolved once at the common ancestor of
these species, and then the reduction in males and outcrossings occurred at the
common ancestor of K. marmoratus and K. hermaphroditus (Costa et al. 2010).
According to this reconstruction, hermaphroditism in K. ocellatus cannot be
regarded as a vestigial trait inherited from a functionally hermaphroditic ancestor.
A phylogenetic analysis within K. marmoratus suggests that the Belize population,
in which males and outcrossings are more frequent than that in other populations
(Tatarenkov et al. 2015), is not basal and located within the clade of other
populations with few or no males and outcrossings (Weibel et al. 1999). This implies
that males and outcrossings, once reduced in the ancestral species of K. marmoratus
and K. hermaphroditus, secondarily increased in this population. Both between-
species variation within the genus and within-species geographic variation of sexual
and mating systems offer opportunities to understand the evolution of sexual sys-
tems in Kryptolebias.

2.5 Hermaphroditism and Egg Trading in Serranids

The third well-studied group of simultaneous hermaphrodites in fishes is the dwarf
seabass from the family Serranidae (Fig. 2.4). Self-fertilization is thought to be
absent in this family under natural conditions (Fischer 1981; Petersen 2006; Avise
and Mank 2009) despite the gametes being self-compatible under laboratory

Fig. 2.4 Simultaneously hermaphroditic serranid species, butter hamlet Hypoplectrus unicolor (a)
and barred hamlet H. puella (b). Both species mate with egg trading (Table 2.1). (Photos taken by
the author at Sunshine Aquarium, Tokyo, Japan, and used under the permission from Sunshine
Aquarium)
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conditions (Clark 1959; Fischer 1981). In this family, all species in the “Serranus
clade” (Erisman and Hastings 2011), that is, the genera Diplectrum, Hypoplectrus,
Serranus, and Serraniculus, exhibit simultaneous hermaphroditism as far as known,
representing a single origin of this sexual system (Erisman and Hastings 2011;
Erisman et al. 2013). A special type of androdioecy, in which larger individuals
lose female function and become males, has evolved from pure simultaneous
hermaphroditism and is represented by two Serranus species, S. psittacinus, and
S. baldwini (Petersen 2006; Weeks 2012). In addition, simultaneous hermaphrodit-
ism is reported in the pugnose bass Bullisichthys caribbaeus (Smith and Erdman
1973) and the reef bass Pseudogramma gregoryi (Smith and Atz 1969). Although
the former is classified under the subfamily Serraninae, its phylogenetic position is
unknown; hence, its relationship with the Serranus clade remains unclear. The latter
is the only simultaneously hermaphroditic species in the subfamily Epinephelinae
and is estimated to represent another evolutionary transition to simultaneous her-
maphroditism (Smith and Atz 1969; Erisman et al. 2009). Unfortunately, the mating
behavior of these two species is not yet known (Erisman et al. 2009; Erisman and
Hastings 2011). Therefore, I focused on the Serranus clade, especially the genera
Hypoplectrus (Fig. 2.4) and Serranus, which includes species that have been exten-
sively studied both empirically and theoretically.

Unlike deep-sea aulopiforms and highly colonizing rivulus, mating opportunities
are apparently not scarce in the Serranus clade, which lives in shallow coral reefs,
usually at a high density (Fischer 1980). Therefore, the low-density hypothesis
(Ghiselin 1969) cannot explain simultaneous hermaphroditism in this clade (Warner
1984). To explain this using the hypothesis of Charnov et al. (1976), there should be
some factors that cause diminishing fitness returns on investment in one sexual
function, especially in the male function, because in general, it is easier for males to
achieve additional reproductive success by investing more in mate acquisition. The
harlequin bass Serranus tigrinus forms long-term, size-assortative pairs that jointly
defend territories (used for both feeding and spawning) and mates within pairs,
although sometimes a solitary fish participates in a spawning event that results in
group spawning (Pressley 1981). During a spawning bout, each member of a pair
does not always spawn in both sexual roles; that is, sometimes one member plays
only the male role, and the other plays only the female role (Pressley 1981),
indicating a lack of egg trading (see below), at least within a day. In this species,
the need for long-term pair-bonding for territory defense, and probably the limitation
of time available for spawning (spawning only occurs in the late dusk), may inhibit
mate acquisition outside the pair (Fischer 1984a; Warner 1984). Consequently, pure
males cannot achieve a high mating success to complement the loss of female
function. In addition, because hermaphrodites allocate a large fraction of reproduc-
tive resources to female function owing to the lack of sperm competition in monog-
amous systems, it is difficult for pure females to achieve sufficient fecundity to
complement the loss of male function (Fischer 1980; Henshaw et al. 2015).
Although this hypothesis is plausible, it cannot explain why many other fishes
with similar mating systems (monogamy, joint territory defense, and short spawning
time) are not simultaneous hermaphrodites (Warner 1984).
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Egg trading, another possible mechanism that restricts male mating success, has
been observed in all Hypoplectrus species whose mating has been studied and in
three Serranus species (Barlow 1975; Fischer 1984a; Fischer and Petersen 1987;
Petersen 20006). In egg trading, individuals spawn in pairs, divide their clutches into
multiple parcels, and typically take turns playing male and female roles with their
partners multiple times in one spawning bout (Fischer 1980, 1984a; Hart et al. 2016).
If the partner does not reciprocate by releasing eggs, the next spawning is delayed
(Fischer 1980; Petersen 1995). Egg trading has also been observed in the hermaph-
roditic polychaete Ophryotrocha diadema (Picchi and Lorenzi 2018). Through egg
trading, individuals avoid being cheated by individuals who only play the male role,
which is more favorable than a female role because of cheaper physiological costs
(Leonard 1993). This behavior has been studied both as a rare example of direct
reciprocity in animals (Friedman and Hammerstein 1991; Henshaw et al. 2014a;
Pefia et al. 2020) and as a potential mechanism for stabilizing simultaneous her-
maphroditism (Fischer and Petersen 1987; Fischer 1988; Petersen 2006; Henshaw
et al. 2015). Under the prevalence of egg trading, fitness returns to male investment
should diminish, because individuals cannot sire partners’ eggs without offering
their own eggs. Theoretical studies (Fischer 1984b; Henshaw et al. 2015) have
shown that egg trading stabilizes simultaneous hermaphroditism under relatively
high mating opportunities, which otherwise enable the invasion of cheaters (i.e.,
individuals who do not pay the cost of the female role).

The mating systems of egg-trading species are considerably diverse. For example,
the black hamlet Hypoplectrus nigricans and the chalk bass Serranus tortugarum are
serially monogamous; that is, a hermaphrodite typically mates with a single partner
per day and with the same partner on successive days (Fischer and Petersen 1987,
Hart et al. 2016). In contrast, hermaphrodites in the tobbacofish Serranus tabacarius
mate with 3.2 partners per day on average, although they often mate with the same
partner several times (Petersen 1995). The belted sandfish Serranus subligarius also
mates with multiple neighboring individuals (Oliver 1997). In addition, the fre-
quency of streaking varies depending on species (Petersen 2006) and density (Oliver
1997; Hart et al. 2010). However, the effects of mating system diversity on the
evolutionary stability of egg trading and simultaneous hermaphroditism are not fully
understood.

Contrary to the prediction of ideal egg trading, hermaphrodites in these species
often play male and female roles asymmetrically, particularly in relation to body size
(Petersen 2006). In general, larger hermaphrodites play a male role more frequently
(Fischer 1980; Petersen 1995; Oliver 1997). Again, the effect of such asymmetry on
mating roles is not yet understood (Petersen 2006). In the chalk bass, fecundity
correlates strongly between partners partly owing to, but stronger than predicted by,
size-assortative mating (Hart et al. 2016). This resource matching may stabilize
reciprocity even under variations in body size among individuals. Petersen (2006)
also noted that sperm competition caused by streaking, combined with the increased
fecundity of large hermaphrodites, may disfavor a pure male tactic by large individ-
uals in the same manner as a protogynous fish, in which the largest females do not
change sex (Mufioz and Warner 2003). However, it should be noted that intense
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sperm competition may not necessarily disfavor increased male allocation. On the
contrary, increased streaking and extra-pair mating under high population density
leads to increased male allocation in the chalk bass (Hart et al. 2010), as predicted by
the theory of sex allocation under local mate competition (Charnov 1982; Schirer
2009).

The most extreme case of male-biased sex roles by larger individuals occurs in
two haremic Serranus species, the lantern bass S. baldwini (Petersen and Fischer
1986) and the barred serrano S. psittacinus (Hastings and Petersen 1986; Petersen
and Fischer 1996). These species are closely related, suggesting a single origin for
androdioecy in these taxa (Erisman and Hastings 2011). Egg parceling does not
occur in these species (Fischer and Petersen 1987). In the lantern bass, large
individuals lose female function, become secondary males, and defend the harems
of several smaller hermaphrodites. This transition to males is similar to protogynous
sex change explained by the size-advantage hypothesis (Fischer and Petersen 1987);
that is, individuals change sex to male when they are large enough to monopolize
mating with multiple females (or female-role hermaphrodites). Males reduce general
activity and increase aggression toward conspecifics during the reproductive period,
likely to prevent hermaphrodite-hermaphrodite mating, suggesting that they
reallocate resources from female to male function (Petersen and Fischer 1986).
Hermaphrodites spawn daily in the female role with the harem males but rarely
spawn in the male role. It is not clear why smaller individuals have a male function,
despite rarely utilizing it (Petersen and Fischer 1986). Petersen and Fischer (1986)
proposed multiple hypotheses, including (1) simultaneous hermaphroditism enables
faster transition to males, with a shorter delay than a protogynous sex change, and
(2) simultaneous hermaphroditism is adaptive in habitats other than the study area. If
(1) is the primary adaptive significance of simultaneous hermaphroditism, lantern
bass would be functionally close to protogyny. Reducing the temporal cost of sex
change through bisexual gonadal structure has been observed in some gobies that
conduct bidirectional sex change (Yamaguchi and Iwasa 2017). Variation in mating
systems, predicted by (2), has been reported in barred serrano (Petersen 1990a).

The barred serrano S. psittacinus exhibits plastic mating systems that depend on
the population density (Petersen 1990a, 2006). First, under moderate density, a
social group is a harem, similar to the lantern bass. Harem males successfully
monopolized the male role within the harem, and mating between hermaphrodites
was rarely observed. Small hermaphrodites may spawn in the male role via streak-
ing, although this is infrequent (6.6% of spawning events). Sometimes, a hermaph-
rodite, rather than a male, dominates the harem. The dominant hermaphrodites were
smaller than the harem males and spawned in the female role with males in the
adjacent harems. Second, under low density, they reproduce monogamously within
isolated pairs (Petersen 1990a). Each member of a pair spawns daily in both the male
and female roles. This monogamous mating system is similar to that of the harlequin
bass S. tigrinus, although in the harlequin bass, both members do not necessarily
play both sexual roles per day (Pressley 1981). Finally, under high density, a unique
system called a “complex harem” is formed (Petersen 1990a). Within complex
harems, mate monopolization by dominant males is incomplete. Some
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hermaphrodites are “‘subdominant” and mate with the dominant males in the female
role. However, they dominate a “sub-harem” consisting of other hermaphrodites and
mate with the members of the sub-harem in the male role. Members of a sub-harem
mate almost exclusively with a subdominant.

Harems and complex harems in barred serrano represent an example of a
contrasting structure of hermaphroditic society, as compared to sequential hermaph-
rodites who adopt dichotomous tactics (males or females) in terms of sexuality
(Wong et al. 2012; Sawada et al. 2017) depending on social conditions. To under-
stand this unique system, we must explain why male function is maintained by
nondominants and why dominant males tolerate subdominants (Iwasa and
Yamaguchi 2022).

Plasticity in mating systems may help to understand why hermaphrodites main-
tain male function rather than being pure females. The male function of subordinates
in harems and of hermaphrodites other than subdominants in complex harems still
contributes little to reproductive success and is wasteful, at least in the short term.
However, hermaphrodites may achieve male reproductive success when they
become a pair member in isolated pairs or a subdominant in complex harems, in
addition to rare streaking. Given that gonadal allocation to male function is small
(Petersen 1990b), opportunities to effectively utilize male function could favor the
retention of male function among hermaphrodites (Petersen 1990a).

Why do dominant males tolerate the existence of subdominants who take over
their mating success? The key to the answer is that subdominants provide eggs to be
sired by the dominant males (Petersen 1990a). As a result of mating with sub-
dominants, the reproductive success of dominant males positively correlates with
social group size (Petersen 1990a), despite the incomplete monopolization of mating
opportunities in large groups (i.e., complex harems). Therefore, dominant males
achieve higher mating success by accepting subdominants than by evicting them to
monopolize mating. The application of the reproductive skew theory (Nonacs and
Hager 2011) will be useful in facilitating our understanding of the evolutionary
stability of this unique mating system.

The evolutionary conditions for androdioecy and pure simultaneous hermaphro-
ditism in the Serranus clade are unclear. By applying the classical mating system
theory (Emlen and Oring 1977), Petersen and Fischer (1986) hypothesized that high
density and/or predictability of resources (food) enables mate monopolization by
large individuals, leading to haremic systems with androdioecy. The effect of density
is also supported by the within-species density dependence of mating systems in the
barred serrano (Petersen 1990b, 2006). However, there were no consistent differ-
ences in the range of population density between androdioecious and other species of
Serranus and Hypoplectrus, suggesting that density is not the sole factor (Petersen
2006).

In summary, mating systems in hermaphroditic serranids are diverse, and unlike
aulopiforms and killifishes, they are not characterized by limited mating opportuni-
ties owing to colonization or depth. The evolutionary stability of simultaneous
hermaphroditism (including androdioecy) can be explained by monogamous mating
(harlequin bass), egg trading (several Serranus and Hypoplectrus species), and
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plastic mating systems (barred serrano and possibly, lantern bass). However, why
simultaneous hermaphroditism, an uncommon sexual strategy among teleosts, has
evolved in this clade is not known (Warner 1984). Egg trading is a specialized
behavioral trait that makes sense only in simultaneous hermaphrodites and has
arguably evolved after the evolution of this form of sexuality. Monogamy and plastic
systems, including harems, are common mating systems among gonochoristic and
sequentially hermaphroditic fishes. Although Warner (1984) speculated that their
ancestors lived in the deep sea, no evidence has been provided. It would be
interesting to reconstruct the ecology of the ancestral species when simultaneous
hermaphroditism evolved.

2.6 Other Taxa

In addition to the three taxa I have reviewed so far (Aulopiformes, Kryptolebias, and
Serranidae), there are three taxa in which simultaneous hermaphroditism has been
confirmed, and one species in which simultaneous hermaphroditism has been
suggested but not confirmed (Table 2.1). Simultaneous hermaphroditism is con-
firmed or suggested by the histological analysis of gonads, but little is known about
other aspects of mating in three species of moray eels Gymnothorax spp. (Fishelson
1992) and Lord Howe dottyback Pseudoplesiops howensis (Cole and Gill 2000).
The demon eartheater Satanoperca jurupari was described as a simultaneous her-
maphrodite with internal self-fertilization by Matos et al. (2002) based on histolog-
ical analysis, although spawning behavior involving external fertilization by males
and females has been reported for this species (Reid and Atz 1958).

Two species of threadfins (family Polynemidae), the smallmouth threadfin
Polydactylus microstomus and the seven-finger threadfin Filimanus heptadactyla
have been reported to exhibit trioecy (Nayak 1959; Kagwade 1967; Dorairaj 1973),
an extremely rare sexual system among animals (Leonard 2018). The frequency of
hermaphrodites is 35% in P. microstomus (Dorairaj 1973) and approximately 10%
or 17% in F. heptadactyla (Nayak 1959; Kagwade 1967). Hermaphrodites are much
more frequent in these species than in many other trioecious animals, in which
hermaphrodites are exceedingly rare (Weeks 2012). Although hermaphroditic indi-
viduals were reported as transitional state during protandrous sex change among
several threadfin species (Motomura 2004), rather than functional simultaneous
hermaphrodites, hermaphroditic individuals in the seven-finger threadfin are sup-
posed to be functional in both sexes, based on observations of developed and spent
stages of ovotestis (Nayak 1959; Kagwade 1967). Detailed studies on the mating
systems of trioecious threadfins are required to elucidate the evolution of complex
sexual systems.
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2.7 Future Research Directions

This review indicated that simultaneous hermaphroditism in teleost fishes evolved
under different selective backgrounds. Each of the well-studied taxa exhibits mating
systems that are predicted to make this strategy evolutionarily stable, such as limited
mating opportunities owing to depth or colonization, egg-trading, and flexible
haremic systems, although some aspects of the explanations are still more or less
hypothetical. However, it is difficult to attain a unified view of the evolution of
simultaneous hermaphroditism in teleost fishes, which is comparable to the size-
advantage hypothesis for sequential hermaphroditism. In addition, it is difficult to
understand why simultaneous hermaphroditism has not evolved in many other taxa,
even though similar mating systems (except for egg trading and reciprocal mating,
which make sense only in hermaphrodites) are also observed in gonochoristic or
sequentially hermaphroditic taxa (Warner 1984).

The apparent lack of evolutionary lability is one of the problems in applying the
evolutionary ecological approach to simultaneous hermaphroditism in fishes. It is
important to note that the evolution from simultaneous hermaphroditism to
gonochorism or sequential hermaphroditism has never been confirmed, even in the
well-studied taxa including species-rich Alepisauroidei (Davis and Fielitz 2010) and
in the Serranus clade in which mating systems are highly diverse (Erisman and
Hastings 2011), apart from the evolution of androdioecy. In other words, once
simultaneous hermaphroditism has evolved, it is rarely lost. Hermaphroditism has
not been lost even in some androdioecious species, in which the male function of
hermaphrodites is estimated to be used only infrequently, such as the lantern bass
S. baldwini and killifish K. ocellatus.

If we assume that simultaneous hermaphroditism is evolutionarily stable under
such wide ecological conditions that no reverse evolution occurs, the limited number
of evolutionary transitions to simultaneous hermaphroditism cannot be explained.
Similar evolutionary patterns have been observed in several invertebrate taxa,
including broken-back shrimp (Baeza 2013) and clam shrimp (Weeks et al.
2006Db). In a broader context, among animals, many higher taxa exclusively (almost)
exhibit one type of sexual system. This pattern is called “Williams’ paradox” by
Leonard (1990, 2013). Although the taxonomic levels are much lower, the
abovementioned evolutionary patterns can be regarded as examples of this paradox.

Comparing the evolutionary patterns of simultaneous hermaphroditism in fishes
against those of other taxa or traits with different levels of evolutionary lability will
be useful. For example, evolution from androdioecy to gonochorism occurred
repeatedly in thoracican barnacles (Yusa et al. 2012; Lin et al. 2015). In some taxa
where sequential hermaphroditism is common, the evolutionary loss of hermaphro-
ditism is not rare and is often associated with the evolution of mating systems
(Erisman et al. 2009, 2013; Kazancioglu and Alonzo 2010; Sunobe et al. 2017).

In conclusion, this chapter illuminates that simultaneous hermaphroditism, at
least in well-studied taxa, can be understood from the perspective of evolutionary
ecology, particularly in relation to mating systems. However, we are yet to
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understand the evolutionary patterns of this sexual strategy in teleost fishes or
animals in general. In addition to the accumulation of knowledge on each hermaph-
roditic species, comparative analyses to elucidate the determinants of evolutionary
lability could help us answer this question.

2.8 Conclusions

In this chapter, the following topics related to simultaneous hermaphroditism
in fishes were introduced

1. Simultaneous hermaphroditism is rare in fishes and has been reported in 57 spe-
cies of Muraenidae, Cichlidae, Rivulidae, Polynemidae, and several families of
Aulopiformes.

2. Two hypotheses, reproductive assurance under low density and diminishing
fitness returns on investment in one sexual function, are widely recognized as
explanations for the adaptive significance of simultaneous hermaphroditism.

3. To the best of our knowledge, all species in the suborder Alepisauroidei (order
Aulopiformes) are simultaneous hermaphrodites, which is likely an adaptation to
deep seas where population density is usually low.

4. Mangrove rivulus has a mixed mating system in which hermaphrodites self-
fertilize but occasionally outcross with males. This system can be explained by
a combination of reproductive assurance, survival advantage of males, and
inbreeding depression.

5. Simultaneously hermaphroditic species in Serranidae exhibit diverse mating
systems that are not characterized by limited mating opportunities. In two species,
large hermaphrodites become males, and monopolizing harems consist of her-
maphrodites. Although the mechanisms stabilizing hermaphroditism, such as egg
trading, have been well studied, why hermaphroditism has originated in this clade
remains unclear.

6. Little is known about the sexual and mating systems of other teleost taxa that
exhibit simultaneous hermaphroditism.

7. The apparent lack of evolutionary lability is a problem when applying the
evolutionary ecological approach to simultaneous hermaphroditism in fishes. A
comparison of evolutionary patterns with other taxa or traits with different levels
of evolutionary lability would be useful.
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Chapter 3 )
Protandry in Fishes s

Tomoki Sunobe

Abstract Protandry (male-to-female sex change) is known in 62 fish species among
various higher taxa that are not closely related to each other phylogenetically. The
size-advantage model predicts that protandry is favored under random mating. The
mating systems of protandrous fishes have been reported only in the following
species: 10 species of anemonefish (Amphiprion; Pomacentridae) are monogamous,
with females larger than their partners, but it is suggested that pairing occurred
randomly in gonochoristic ancestors; in three species of flatheads (Platycephalidae),
mating occurs randomly, with individuals changing their partners after each
spawning; in the seabream Sparus aurata (Sparidae), a female spawns with one of
several males in a spawning aggregation, which is considered random mating as
there seems to be no competition between the males. These cases suggest that
protandry will evolve if pairing occurs randomly regardless of pair continuity. Partial
protandry, in which protandrous and gonochoristic individuals coexist, is reported
for 28 of these species. Gonochorism is predicted to evolve in the case of mating
with equal reproductive success of females and males at each size according to the
size-advantage model. Fishes exhibiting partial protandry are suggested to have the
opportunity to spawn either by random mating or by the above mating.

Keywords Gonochorism - Group spawning - Mate choice - Monogamy - Population
density - Random mating

3.1 Evolution of Protandry and Types of Sexual Patterns

Protandry (male-to-female sex change) is known among 62 fish species of 14 fam-
ilies (Table 3.1). These species belong to the Anguilliformes (1 species),
Clupeiformes (2), Cypriniformes (1), Stomiiformes (5), and Percomorpha
(Ovalentaria [10], Trachiniformes [3], Perciformes [10], Scorpaeniformes [7],
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Fig. 3.1 Relationship a
between the reproductive
success and body size of
females (solid line) and
males (broken line) in
random mating (a), which
favors protandry, and ERS
mating (b), which favors
gonochorism (modified
from Warner 1975 and
1984)

Reproductive success

Body size

Reproductive success

Body size

Moroniformes [1], and Spariformes [22]). These taxa are not closely related to each
other phylogenetically, whereas all of the protogynous species belong to
Percomorpha (Kuwamura et al. 2020), which indicates that the evolution of
protandry occurred independently in each taxon.

The size-advantage model (SA model) predicts that protandry is favored under
random mating (i.e., lack of female mate choice and/or monopolization of multiple
females by large males) (Warner 1975, 1984; Fig. 3.1a). In this condition, male
reproductive success is equal in all size classes, while that of females increases
linearly with body size. Consequently, at small body sizes, the reproductive success
of males is higher than that of females, and vice versa at large sizes. To maximize
lifetime reproductive success, protandry should be favored.

For protogynous species (female-to-male sex change), many studies have been
conducted on the relationship between the mating system and sex change to test the
SA model (see Chap. 4). Notably, most protogynous fishes inhabit shallow rocky
and coral reefs, where they are easily observed. For protandrous fishes, however,
detailed studies on mating systems in the field are so far limited to 10 species of
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Fig. 3.2 Schematic Type
depiction of the four types of
sexual patterns (I, II, III, and | Immature = G =—Q

IV) in protandrous fishes
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anemonefishes (Amphiprion; Pomacentridae) and three species of flatheads
(Platycephalidae) (Kuwamura et al. 2020), undoubtedly because of the difficulties
in accessing their habitats (deep-sea, turbid estuaries and/or offshore) and/or because
of their nocturnal habits. Although various protandrous species are known among
the seabreams (Sparidae; Kuwamura et al. 2020; Pla et al. 2020; Table 3.1), mating
system has been described only in Sparus aurata through observations during
artificial rearing (Ibarra-Zatarain and Duncan 2015), and spawning behavior of
Rhabdosargus sarba in captivity was briefly reported (Leu 1994).

Protandrous species do not always show a simple sexual pattern of male-to-
female sex change, but in some species, protandry and gonochorism coexist within
a population, which is called “partial protandry” (Gongalves and Erzini 2000;
Mouine et al. 2007; Pajuelo et al. 2008). Four sexual types (allocation of male and
female functions within a population/species) are distinguished in protandrous
species (Fig. 3.2):

Type I: All individuals first mature as male and then change sex to female.

Type II: All individuals first mature as male, and some males then change sex to
female, while others do not.

Type III: Individuals first mature either as male or female, and the males later
change sex to female.

Type IV: Individuals first mature either as male or female, and then some males
change sex to female, while other males do not.

The coexistence of two types of females in types III and IV is sometimes called
“digyny” (Gongalves and Erzini 2000), as the coexistence of two types of males is
called diandry in protogynous fishes (see Chap. 4). All protandrous families contain
species of type I (Table 3.1). The number of fish species known to exhibit type L, II,
I, or IV, respectively, is 37, 7, 10, and 12. In nine species, two types of sexual
patterns, which can also include gonochorism, have been reported from different
populations: types I and II in one species, types I and III in one species, types I and
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IV in one species, types Il and IV in two species, type II and gonochorism in one
species, and type IV and gonochorism in three species (Table 3.1).

Partially protandrous fishes can include gonochoristic individuals within the
population, and in four species all individuals in some populations are gonochoristic.
In general, gonochorism is favored if both sexes show a similar increase of fertility
with size, when males and females form monogamous pairs matched by size or when
males compete with each other to fertilize eggs and thus to produce the most sperm
(Warner 1984). In this chapter, such mating system is called “ERS mating” that
means equal reproductive success of females and males at each size (Fig. 3.1b).
Species with group spawning will be gonochoristic because sperm competition in
mass spawning results in greater reproductive success for larger males. For example,
Bodianus eclancheri and four species of Sparisoma (Labridae), Alphestes afer,
seven species of Cephalopholis, seven species of Epinephelus, four species of
Mpycteroperca, two species of Plectropmus, and Rypticus saponaceus
(Epinephelidae) are gonochoristic with group spawning (Erisman et al. 2013).
Small sneaking males, which invade territories of larger males to fertilize eggs, are
also known to be gonochoristic because the small males will attain equal reproduc-
tive success with the females of the same size. For example, small males of
Symphodus ocellatus (Labridae) and Bathygobius fuscus (Gobiidae) exhibit sneak-
ing, and their sexual pattern is gonochoristic (Warner and Lejeune 1985; Taru et al.
2002).

In hermaphroditic fishes, the mating system of a species may vary between
habitats with different conditions, and the sexual pattern is expected to change
accordingly (Kuwamura et al. 2020). In the coral-dwelling damselfish Dascyllus
aruanus, which exhibits harem polygyny and protogyny, the sexual pattern is
gonochoristic in high-density populations in continuous coral-covered habitats,
where females can move among the corals with low risk of movement, so they are
not monopolized by large males (Kuwamura et al. 2016, 2020). Then, in partially
protandrous species that include both protandrous and gonochoristic individuals, it is
expected that the mating system could change according to the population density,
resulting in alteration of the sexual pattern. Namely, protandry, partial protandry,
and gonochorism will occur under random mating, both random mating and ERS
mating, and ERS mating, respectively.

In the following sections, I describe the mating systems and sexual patterns of
10 species of Amphiprion (Pomacentridae), three species of Platycephalidae, and
two species of Sparidae, for which the reproductive behavior has been reported, and
consider whether the above prediction fits or not.

3.2 Anemonefish (Amphiprion; Pomacentridae)

3.2.1 Mating System and Proximate Cause of Sex Change

Among protandrous fishes, anemonefishes (Amphiprion: Fig. 3.3a) have been stud-
ied in the most detail. Anemonefishes establish a social group in a host sea anemone:
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Fig. 3.3 (a) Spawning of Amphiprion clarkii (photo by T. Hirata); (b) Thysanophrys celebica:
(photo by S. Sakaida); (¢) Rhabdosargus sarba (photo by T. Hirata)
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the largest and the second-largest individuals are female and male, respectively, and
other smaller individuals are nonbreeders (immatures and juveniles). Therefore, their
mating system is non-size-assortative monogamy (the term “size-assortative” is used
in the narrow meaning of “matched by size” in the context of the SA model; Warner
1984), defined as “pair bonding of a male and a female which does not prefer a large
male but accepts a smaller one” (Kuwamura et al. 2020). Females attack smaller
individuals, including males, because there is a social order based on body size
within the group. This seems to prevent males from changing sex. When females
disappear, males change sex and become females, and the third-ranked individuals
obtain breeding status as male (Fricke and Fricke 1977; Moyer and Nakazono 1978;
Fricke 1979; Buston 2003; Hattori 2012). This evidence indicates that the sexual
pattern of anemonefishes is type I. Another requisite for sex change to female is
reaching a certain size in male, for instance, 100 mm in standard length (SL) in
A. bicinctus and 75 mm SL in A. frenatus (Fricke 1983; Hattori 1991). Furthermore,
single males evidently do not change sex: it has been shown in A. bicinctus that
males require smaller subadults to change sex (Fricke 1983).

3.2.2 Why Monogamy?

It has been suggested that monogamy in anemonefishes is the result of resource
limitation (Fricke and Fricke 1977). The host sea anemone provides shelter for
anemonefishes, and eggs are spawned on the substrate near or under the tentacles
of the host (Allen 1972; Moyer and Bell 1976; Ross 1978; Moyer and Steene 1979;
Fautin 1991). Aggressive behavior between homosexuals of different groups is
frequently observed in high-density populations of A. akallopisos and A. clarkii
(Fig. 3.3a: Moyer and Sawyers 1973; Fricke 1979; Moyer 1980; Ochi 1989b),
indicating that there is intrasexual competition. Thus, there will be competition
among females for spawning sites (Ochi 1989a), whereas males will compete for
breeding status because they often attack nonbreeders in the same group (Fricke and
Fricke 1977; Buston 2003).

To test the above hypothesis, rearing experiments were conducted using
A. ocellaris (Sunobe et al. 2022). If females compete each other over spawning
sites, the frequency of aggressive behavior should decrease under conditions with
more spawning sites. When two females were placed in a tank and given one or three
flower pots as spawning nests, the results did not support the prediction as there was
no significant difference in the frequency of attacks. The females seemed to defend
the whole space including all the nest sites. When two males were paired, the larger
of the two changed sex and eventually became a female, resulting in less aggressive
behavior. However, if they were competitive for breeding status, the introduction of
a female into the tank should increase the frequency of conflict. Indeed, the results
showed that the frequency of attacks significantly increased, supporting the hypoth-
esis. These results indicate that individuals of the same sex cannot cohabit in the
same host anemone.
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3.2.3 Non-size Assortative Monogamy and Evolution
of Protandry

Monogamy seems to be the opposite of random mating in appearance. In this
section, I will discuss how protandry have evolved under a monogamous mating
system.

There are two main hypotheses to explain the evolution of protandry in
anemonefishes (Fricke and Fricke 1977; Hattori 2012). Fricke and Fricke (1977)
hypothesized that if the sex ratio of gonochoristic ancestral species was 1:1, homo-
sexual and heterosexual pairings would be formed equally by randomly arriving
juveniles or migrating adults into host anemones. Movement of individuals between
hosts may be limited by a low density of hosts and predation pressure during
migration. Therefore, it would be adaptive for a homosexual pair to be hermaphro-
dites, as one could then change sex to create a heterosexual pair. Among
anemonefishes, smaller males can fertilize and guard the eggs of larger females
because the eggs positioned under the host’s tentacles are protected from egg
predators (Fig. 3.3a), indicating that male size is not associated with reproductive
success. In contrast, large females can produce more eggs than small females. Hence,
non-size-assortative monogamy is established, and protandry should be advanta-
geous to increase the number of fertilized eggs for an individual. Thus, in monog-
amy, the reproductive success of an individual would be maximized if the larger
individual functions as female (Fricke and Fricke 1977).

The above hypothesis assumes random pairing in the gonochoristic ancestral
species, but Hattori (2012) pointed out that random pairing does not occur in the
extant anemonefishes and proposed “the body size composition model.” This model
predicts the size composition based on the number of individuals that the host can
accommodate, and predicts the size differences and size ratios between individuals
of adjacent ranks. Data on A. frenatus, A. ocellaris, and A. perideraion were used to
compare the reproductive success of the largest individuals when the largest indi-
vidual is female and monogamous or when the largest individual is male and
polygynous. The results showed higher reproductive success under the former
scenario. However, the model uses data from extant species, which may not reflect
the size composition or reproductive success of ancestral species. In addition, as
mentioned above, the coexistence of multiple females in one host is not possible and
polygyny cannot occur irrespective of reproductive success.

To investigate the hypothesis of Fricke and Fricke (1977), simulations based on a
mathematical model were performed (Sunobe et al. 2022), assuming the following
preconditions: (1) the ancestral species is gonochoristic; (2) when an individual
invades a host anemone occupied by another individual of the same sex, the larger
one can stay in the host and the smaller one is eliminated; and (3) a pair is formed by
random pairing (no mate choice) after settlement of the opposite sex. The results on
the relationship between male and female reproductive success and body size
corresponded well with the case of random mating in the SA model (Fig. 3.1a).
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Monogamy appears to be very different from random mating, but if there is no mate
choice at pairing, protandry will evolve independently of pair continuity.

3.2.4 Mating System and Sexual Pattern in High-Density
Populations

The higher the density of hosts, the higher the density of resident anemonefish. In the
high-density population of A. clarkii, males and females invade adjacent territories
and temporarily establish bigamy or biandry, though monogamy is common (Ochi
1989a, 1989b; Hattori and Yanagisawa 1991). In A. akallopisos populations
established around large anemone colonies, there are only monogamous pairs,
despite the potential for polygamy (Fricke 1979). These findings indicate that the
mating system of anemonefishes is monogamous in principle.

However, in areas with a dense population of host sea anemones, the sexual
pattern of A. clarkii is type IV (Table 3.1), with a low frequency of sex change.
Immature nonbreeders can establish a pair and occupy their own home ranges on the
outskirts of adult territories. These immature individuals start as male or female
when they can occupy the status of reproduction. The male after mate loss mates
with a solitary female or invades another pair’s territory with no risk of movement,
and size-assortative pairs are formed. (Ochi 1989b; Hattori and Yanagisawa 1991).
Therefore, the reproductive success of both sexes is nearly equal at all sizes, i.e.,
ERS mating, sex change rarely occurs, and gonochorists can exist.

3.3 Flatheads (Platycephalidae)

Protandry is confirmed in seven species of Platycephalidae (Table 3.1). Of these
species, the mating system has been clarified only in three species: Inegocia japon-
ica, Thysanophrys celebica (Fig. 3.3b), and Platycephalus sp. 2 of Nakabo (2013)
(Shinomiya et al. 2003; Sunobe et al. 2016; Hara and Sunobe 2021).

The mating system of I. japonica was the first to be identified among protandrous
fishes other than the anemonefishes (Shinomiya et al. 2003). All small individuals
are male, and large individuals are predominantly female (Table 3.1). In 5 of 8 males
from 116 to 168 mm in total length (TL), protandrous sex change was confirmed.
However, of 16 males (98-256 mm TL) identified in the field, none of the six males
larger than 183 mm TL were observed to change sex. Therefore, there is a possibility
that some males do not change sex throughout their lifetime, indicating that the
sexual type is type II (Table 3.1). The males less than 102 mm TL did not undergo
sex change, suggesting that males must reach at least this size for sex change
(Shinomiya et al. 2003).
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In field observations of I. japonica, the home ranges of individuals of the same or
opposite sex overlapped each other, and there was no aggressive interaction among
them. Only pair spawning occurred. The mating system was random mating as
predicted by the SA model, with the pairs being temporary, and both sexes
established a pair with a different individual at the next spawning. There was no
significant correlation between the sizes of males and females in the mating pairs,
showing non-size-assortative mating (Shinomiya et al. 2003).

The mating system of T. celebica is also random mating, the home ranges of
individuals of the same or opposite sex overlapping each other (Sunobe et al. 2016).
The sexual pattern of this species is type I (Table 3.1). The longevity of T. celebica is
~5 years according to age estimations from scales. In rearing experiments, 1-year-
old males did not change sex, and males did change sex after age 2. In contrast to the
anemonefishes, in which the presence of females prevents sex change of males, the
sex change of T. celebica males occurred even when reared with larger females.
These results suggest that there is no social suppression of sex change based on size
(Sunobe et al. 2016).

The mating system of Platycephalus sp. 2 is regarded as random mating, as in the
two species mentioned above, based on temporal pair bonding, no territoriality, and
non-size-assortative mating (Hara and Sunobe 2021). Even so, the number of
individuals with bisexual gonad was relatively small, accounting for only 2 of
202 individuals. Because some individuals of the population do not change sex,
and sexual type is classified into type IV (Table 3.1). The home ranges overlapped
each other (Fig. 3.4) when they actively moved around. Therefore, other males can
join a pair spawning by sneaking. In an aquarium under high-density conditions,
multiple males followed a ripe female before spawning (Oikawa 1996). Hence, ERS
mating is suggested through sneaking behavior and/or group spawning.

In rearing experiments with Platycephalus sp. 2, the smallest male (age 2 years)
changed sex when kept with the larger and older five males and three females (Hara
and Sunobe 2021). This shows that the larger individuals did not inhibit sex change
of the smaller individual. The growth rate of Platycephalus sp. 2 varied among
individuals up to age 2 years (Masuda et al. 2000; although they identified the
species as P. indicus, it is regarded as Platycephalus sp. 2. by the collecting sites).
Charnov (1982) predicts that a difference of growth rate between sexes favors sex
change. For example, in the size-assortatively monogamous goby Paragobiodon
echinocephalus, because females grow faster than males, the smaller individual in
newly formed same-sex pairs should function as female to increase future reproduc-
tive success of the pair (Kuwamura et al. 1994). In Lates calcarifer (Latidae) there is
a difference of growth rate among immature males, and those males with rapid
growth change sex early during the juvenile phase to mature as female, which are
therefore not derived from a functional male (Roberts et al. 2021). As the size of
these young sex-changers is larger than the old sex-changers in their life time, the
fitness of the former is higher than the latter. Similarly, otolith analysis of
Polydactylus quadrifilis (Polynemidae) suggested that the males that change sex to
female grow faster than the males that do not change sex (Butler et al. 2018).
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Fig. 3.4 Home ranges of
Platycephalus sp. 2 in a
study area of approximately
70 x 50 m on a sandy
bottom at a depth of 20 m in
Ito, Tateyama, Japan,
observed by SCUBA from
June 9 to September

30, 2014 (Hara N and
Sunobe T, unpublished
data). Solid and broken lines
show the home ranges of
females and males,
respectively

Therefore, growth-advantage may facilitate sex change in Platycephalus sp. 2 as
well as these three species.

3.4 Seabreams (Sparidae)

Twenty-two protandrous species are known among the Sparidae (Table 3.1). Their
mating systems are mostly unknown, and spawning behavior has been observed
under rearing conditions only in Sparus aurata (type II) and Rhabdosargus sarba
(type II in Hong Kong; gonochorism in Australia: Fig. 3.3c).

S. aurata is the only sparid species for which the mating system has been reported
(Ibarra-Zatarain and Duncan 2015). In aquaria, the individuals first formed aggre-
gations near the bottom. Next, males became slightly darkened and rubbed and
nudged the genital pore of females. There was no aggressive interaction among any
individuals, whether between the same or different sex. After courtship at the
bottom, the female dramatically increased its swimming speed and released eggs.
According to the video attached to the research paper, one to four males participated
in the spawning (Ibarra-Zatarain and Duncan 2015). These results show that the
mating system of S. aurata includes both random mating and ERS mating.



78 T. Sunobe

In natural spawning of R. sarba in captivity, a female was followed by three or
four males, and then the female and one of the males paired and spawned near the
surface (Leu 1994); however, further details on the mating system are unknown
because of the fragmentary observations. If there is no competition among males,
mating will be random.

3.5 Plasticity of Sexual Patterns in the Protandrous Fishes

The diverse sexual patterns of protandrous fishes (Fig. 3.2) may be due to the
occurrence of both random mating and ERS mating, resulting in the occurrence of
both protandry and gonochorism, as depicted in Fig. 3.1. As predicted (see Sect.
3.1), if the density is low, there will be more protandrous individuals because there
will be more opportunities for pair spawning, while at high density, there will be
more gonochoristic individuals participating in ERS mating.

Among species exhibiting partial protandry, the mating system has been observed
only in A. clarkii, Platycephalus sp. 2, and S. aurata, as mentioned above. In
A. clarkii, there may be a tendency toward gonochorism under high-density condi-
tions, because males after the mate loss can establish a new pair with a female in
another host anemone. As a result, ERS mating occurs (see Sect. 3.2). In
Platycephalus sp. 2, although group spawning has not been observed, there is a
possibility of reproduction through group spawning (see Sect. 3.3). In S. aurata,
both random pairing and group spawning took place in the same tank (see Sect. 3.4).

Although their spawning behavior and mating systems are unknown, different
sexual patterns in populations of a species from different regions have also been
reported in one species of tropical shad (Clupeidae), one loach (Cobitidae), and five
sparids (Sparidae). These are: Tenualosa macrura (types 1 and III), Cobitis taenia
(type IV and gonochorism), Diplodus annularis (type IV and gonochorism),
D. capensis (type IV and gonochorism), D. sargus (type Il and 1V), Pagellus
bogaraveo (types III and IV), and R. sarba (type II and gonochorism) (Table 3.1).

Even among individuals of a species within one region, fishing pressure has
caused changes in the sexual pattern. Polydactylus macrochir (Polynemidae) is a
large-sized species and commercially important in southern and eastern Australia.
During the period 1986 to 1990, the females dominated the larger size classes and
the males dominated the small ones, thus revealing type I (Moore et al. 2017). After a
reduction of large individuals by overfishing of the larger and older females in the
period 2007 to 2009, the sizes of males and females were mostly overlapped. These
results indicate that some small males change sex, and some males do not change
sex, showing transition to type II. Overfishing may have induced this transformation
of sexual pattern (Moore et al. 2017). When the number of females declined from
fishing, competition among males would have increased. Then, some males may
have changed sex earlier to increase their future reproductive success.

The frequency of gonochoristic individuals within populations seems to increase
in the order of types I, II, III, and IV. This may be attributable to a decrease in the



3 Protandry in Fishes 79

frequency of random mating and an increase in that of ERS mating under higher
population densities. Further comparative studies are needed to clarify the relation-
ships among population densities, mating systems, and sexual types among regions.

3.6 Conclusions

1. Protandrous fishes include at least 62 species representing 14 families. In 37 of
these species, all males change sex to females, but in 28 species some males do
not change sex and/or primary females appear (partial protandry). Nine species
exhibit different sexual types in different populations, and some are gonochorists.
Information on the mating system is limited to 10 species of anemonefish
(Amphiprion; Pomacentridae), three species of flatheads (Platycephalidae), and
one species of sparid (Sparidae).

2. The size-advantage model predicts that protandry is favored under random
mating (i.e., lack of female mate choice and/or monopolization of multiple
females by large males) and gonochorism under ERS mating with equal repro-
ductive success of females and males at each size.

3. In anemonefishes, eggs laid beneath the tentacles of the host sea anemone are
guarded from egg predators; thus, even small males can complete egg guarding.
Accordingly, there is no female mate choice, and protandry is favored. In areas
with a high density of anemones, the density of Amphiprion clarkii is also high,
and ERS mating occurs, resulting in a low frequency of sex change and a high
number of gonochorists.

4. Three species of Platycephalidae are known to spawn in pairs. Mating occurs
randomly and with a different mate each time the individual spawns. In
Platycephalus sp. 2, males that do not change sex and primary females are
expected to emerge.

5. In Sparus aurata (Sparidae), all individuals mature first as male, and thereafter
some change sex to female, while others do not. This species exhibits pair
spawning between a female and one of several males in a spawning aggregation.
Formation of a pair may be established randomly. However, group spawning
(ERS mating) is also possible.

6. Partial protandry is found in various protandrous species, and in some species all
individuals are gonochorists in some populations. As background to this plastic-
ity in sexual pattern, protandrous fishes may adopt random mating and/or ERS
mating according to the given population density.
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Chapter 4 )
Protogyny in Fishes s

Yoichi Sakai

Abstract Of approximately 480 hermaphroditic fish species, over 300 have been
confirmed to undergo protogynous (female-to-male) sex changes. The occurrence of
protogyny is strongly related to polygynous mating systems and follows the predic-
tion of the size-advantage model based on the concept of life history strategies that
maximize lifetime reproductive success. Sex change in females often occurs in a
situation where females become dominant after the disappearance of dominant males
in the local group. However, females are also observed to change their sex even in
the presence of a dominant male (i.e., bachelor sex change and harem-fission sex
change). Female tactics associated with sex change, for example, intergroup move-
ment to improve the social condition and fast growth at the expense of spawning, are
also known. This chapter introduces the results of widely studied protogynous sex
changes in fish hermaphroditism and focuses on functional contexts and individual-
level social mechanisms.

Keywords Bachelor sex change - Diandry and monandry - Harem-fission sex
change - Mating systems - Sex change process - Social control

4.1 History of the Study of Protogynous Sex Change in Fish
Biology

As mentioned in the previous chapter (see Chap. 1), sequential hermaphroditism (sex
change) is a widely documented phenomenon in fishes, including in 41 families of
teleost orders (Kuwamura et al. 2020). Of the approximately 480 hermaphroditic fish
species, at least 314 species from 20 families of teleost orders have been confirmed
to undergo protogynous sex changes (Table 4.1). This is the highest among the four
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Table 4.1 Number of protogynous species and methodology of confirmation in each fish family

Methodology
Number of Aquarium Field surveys and/or

Order-family species Histology | experiment experiments in nature
Gobiiformes

Gobiidae 24 18 12 8
Uncertain orders in Ovalentaria

Pomacentridae 6 6 1 2

2 2 0 1

Pseudochromidae
Cichliformes

Cichlidae L1 |0 1 L0
Cyprinodontiformes

Pocciliidae | 1 L1 1 0
Synbranchiformes

Synbranchidae | 4 | 4 | 1 | 0
Trachiniformes

Pinguipedidae 7 7 2 2

Trichonotidae 1 1 0 0
Labriformes

Labridae 99 94 9 9

Odacidae 1 1 0 0

Scaridae 36 36 0 1
Perciformes

Serranidae 66 65 7 2

Pomacanthidae | 22 9 11 6

Malacanthidae 1 1 0 1

Cirrhitidae 6 6 1 1
Scorpaeniformes

Scorpaenidae 1 1 0 0
Spariformes

Nemipteridae 2 2 0 0

Lethrinidae 11 11 0 0

Sparidae 22 19 0 0
Tetraodontiformes

Balistidae 1 1 0 1
Total 314 285 46 34

Order and family names are arranged following Nelson et al. (2016)

The numbers of species in each family and methodology are summed up from data in Chap. 6. The
number of species for which there is a report of female pre-maturity even in one population, even if
there are different opinions, were counted

Species in which only bidirectional sex change has been reported and those with weak evidence of
protogyny are excluded



4 Protogyny in Fishes 89

types of hermaphroditism (i.e., simultaneous, protandry, protogyny, and bidirec-
tional; Kuwamura et al. 2020).

Atz (1964) initially summarized the documentation of hermaphroditism, mainly
from anatomical and histological approaches in various taxa, representing the first
step toward an integrated view of hermaphroditism in fish biology. Protogyny
(female-to-male sex change) was recorded in at least 26 species including serranids,
sparids, and labrids (Atz 1964). Similar to many other biological fields related to
natural history, studies on sex change in fish have gradually increased since the
1960s. In a review by Reinboth (1970), 41 fish species were reported to be
protogynous, including 16 from Serranidae, 3 from Sparidae, 12 from Labridae,
and 3 from Scaridae. These four families are still recognized as the main groups
displaying protogyny and constitute approximately 71% of all the 314 protogynous
fish species (223 species; Table 4.1). In addition, these families include valuable
fisheries resources, permitting scientists to obtain specimens via fishery activities for
histological analysis. The gonad histology and size distribution pattern analyses
remain the basic approaches to identifying the occurrence of sex change. Of the
314 species, 285 (91%) were confirmed to be protogynous by sampling analysis and
gonad histology (Table 4.1).

After diving, including SCUBA, became popular in the 1960s, field researchers
conducting underwater observations or experimental surveys have studied reef fishes
that are not major targets of fisheries. In a review of hermaphroditism in fishes by
Yogo (1987), protogyny was recorded in approximately 180 species, including
41 serranids, 84 labrids, and 33 scarids. The number of confirmed species has
increased since the review by Reinboth (1970), based on the studies of reef fishes
in diving surveys.

Underwater surveys are useful for understanding the processes and patterns of
protogynous sex change at the individual level. In addition to providing a detailed
understanding of the reproductive styles in fisheries resources, the methodology was
synchronized with biology to reveal the adaptive significance of behavioral and
ecological traits. A detailed understanding of the animal group, social structure, and
mating patterns is a key concept in behavioral ecology studies. Long-term individual
discrimination methodologies are adopted to reveal life history strategies or tactics,
including sex change patterns. The best-known examples of protogynous fish,
including the bluestreak cleaner wrasse Labroides dimidiatus in the Indo-Pacific
reefs and the bluehead wrasse Thalassoma bifasciatum in the Caribbean reefs, are
model animals for various topics in behavioral ecology. In addition, various wrasses,
parrotfishes, gobies, Dascyllus damselfishes, Parapercis sandperches, and serranids,
including Pseudanthias squamipinnis (formerly Anthias squamipinnis), Centropyge
angelfishes, and cirrhitid hawkfishes, provided outstanding field data that signifi-
cantly contributed to the nature of sex change as a mating strategy. Many researchers
have ever conducted field studies on shallow reefs and confirmed functional
protogynous sex changes in 34 fish species via observational surveys (Table 4.1).
Thus, the phenomenon of sex change has been a central topic of reproduction and
sexuality in reef fish since the 1970s.
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The establishment of an underwater diving system has enabled observational
researchers to collect live specimens from reefs in good condition for rearing in
aquarium experiments (e.g., Suzuki et al. 1979; Hioki et al. 1982; Ross et al. 1983;
Sunobe and Nakazono 1993). Aquarium experiments are useful for understanding
the individual abilities of sex changes, revealing hermaphroditic sexualities, by
controlling rearing conditions in terms of social combinations in simple cohabitated
environments. This approach overcomes the difficulty in observing deep water or
cryptic habitat (e.g., inside small holes or crevasses) fishes. However, the mainte-
nance of reproductively active conditions in individual experimental fish is impor-
tant for confirming sexual patterns. Demersal egg spawners, such as gobiid fishes,
are one of the groups successfully used in rearing experiments; protogynous sexu-
ality has been confirmed in 12 gobiid species in aquarium studies. Rearing experi-
mental methods have often been applied to pelagic egg spawners such as labrids
(9 species), serranids (7 species), and pomacanthid angelfishes (11 species). Overall,
46 fish species have been confirmed to be protogynous in aquarium experiments
(Table 4.1).

4.2 Mating Systems of Protogynous Fishes

Protogyny occurs in various fish groups. Data on the mating systems of up to
131 protogynous fish species were obtained through observational field surveys
(Table 4.2). The extensive data on mating systems indicated that protogynous
sexuality was strongly related to polygynous mating systems (Robertson and Warner
1978; Warner and Robertson 1978; Kuwamura 1984; Warner 1984, 1988, 1991;
Kuwamura et al. 2020). A recent phylogenetic approach revealed that the mating
system was an important driver of evolutionary transition in sex allocation in labrid
fishes (Hodge et al. 2020).

Mating systems in fishes can be classified using a combination of spatial relation-
ships of individuals and their mating relationships within local populations
(Kuwamura 1984, 1997). Males of various reef fishes often establish territories to
protect females and/or their resources. Harem polygyny occurs when male territories
almost completely encompass several female home ranges (or territories) to maintain
a stable mating relationship with cohabiting females (Robertson 1972; Kuwamura
1984, 1997). The other major pattern of the polygynous mating system is called the
male territory-visiting polygamy (MTV polygamy; Kuwamura 1997). Males estab-
lish mating territories as spawning sites and females visit the site during the mating
period and have opportunities for mate choice. Males exhibiting preferable charac-
teristics have opportunities for polygynous mating. MTV polygamy is called as
lek-like polygamy in some labrids (Moyer and Yogo 1982; Moyer 1991). These two
polygynous mating systems are widely known in reef fishes. Both harem polygyny
and MTV polygamy were confirmed in 60 protogynous fish species, respectively
(Table 4.2). The detailed characteristics and examples of each type are presented
below.
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4 Protogyny in Fishes 101
4.2.1 Harem Polygyny

The cohabitation of multiple females within male territories and the establishment of
stable mating relationships are the characteristics of harem polygyny. Large males
maintain stable territories encompassing female home ranges or female territories
and monopolize mating opportunities with cohabiting females. Pair spawning
between territorial males and cohabiting females is the main form of mating in
haremic fishes. Commonly, the largest individuals in each harem group function as
males and the other smaller individuals function as females.

In Parapercis sandperches, pomacanthid angelfishes, and cirrhitid hawkfishes, all
protogynous species ever examined their mating systems showed harem polygyny.
Many harem species are also known in the Labridae (17 of 53 protogynous species
whose mating system is known), Scaridae (7 of 22), and Serranidae (6 of 17)
(Table 4.2). Harem polygyny is also confirmed in Gobiidae, Malacanthidae,
Scorpaenidae, and Balistidae (Table 4.2) with one protogynous species record in
each family.

In terms of spatial relationships among females, three types of group structures
are distinguished in harem polygyny (Kuwamura 1984; Sakai and Kohda 1997).

4.2.1.1 Cohabiting Female-Type Harem

In the cohabiting female-type harem, the home ranges of females overlapped with
each other (Fig. 4.1). This harem is recorded from Bodianus rufus and L. dimidiatus,
Centropyge angelfishes, and Holacanthus tricolor (a total of nine species;
Table 4.2). Frequent social interactions among harem members have been reported
in this type of harem. Males repeatedly conduct patrols within their territories and
have social contacts with females. The females meet with each other during the
daytime and interact socially. The dominance order among harem members is based
on body size (Kuwamura 1984; Sakai and Kohda 1997). Females of different body
sizes cohabit, usually exhibiting a dominant linear relationship among harem mem-
bers (linear-type harem; Fig. 4.1). Social interaction among cohabiting harem
members is an important characteristic related to the mechanism of sex change in
these fishes (see Sect. 4.5, Social control of sex change).

However, even in this type of harem, females of similar body sizes become
mutually exclusive regarding their territories. Individuals with different body sizes
overlap in their home ranges, whereas those with similar body sizes become
territorial. Consequently, male territories are sometimes divided into two female
subgroups (Robertson 1974; Kuwamura 1984; Hoffman 1985; Hourigan 1986;
Sakai and Kohda 1997; Munday et al. 2009). The harem structure with female
territoriality is found in harems of the cleaner wrasse L. dimidiatus (Kuwamura
1984) and Centropyge and Holacanthus angelfishes (Hourigan and Kelley 1985;
Sakai and Kohda 1997) and is described as a branching-type harem (Fig. 4.1), related
to the variation in the timing of sex change (see Sect. 4.6, Harem-fission sex change).
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4 Protogyny in Fishes 103

4.2.1.2 Territorial Female-Type Harem

In this type, females maintained individual territories and divided the dominant male
territory (Fig. 4.2), as confirmed in Parapercis sandperches, Halichoeres, Iniistius
and Xyrichtys wrasses, the serranid Cephalopholis miniata, Malacanthus sand
tilefish, cirrhitid hawkfish, and the triggerfish Sufflamen chrysopterus (a total of
14 species; Table 4.2). Exclusive territorialities among harem females are caused by
the protection of shelter resources in open habitats (Clark 1983; Baird 1988), mating
resources (Ishihara and Kuwamura 1996; Seki et al. 2009), and food resources
(Shpigel and Fishelson 1991; Kadota et al. 2011). In contrast to the cohabiting
female-type harem, social interactions among females occur infrequently, but dom-
inant males often interact with females during territory patrols and courtship.

4.2.1.3 Aggregating Female-Type Harem

This is often seen in fish gregariously hovering in the water column to feed on
zooplankton (Shapiro 1981; Moyer 1984; Yogo 1985; Sakanoue and Sakai 2019).
No territorial relationship was found among the gregarious females, and a size-
related spatial relationship was not found in the harem. This harem type was
recorded in the coral-dwelling Dascyllus damselfishes, a serranid P. squamipinnis,
and Genicanthus angelfishes (11 species; Table 4.2). The lack of apparent exclusive
relationships among females in this harem is similar to that in cohabiting female-type
harems. Females stably spawn with territorial males in each aggregating female-type
harem, similar to the other two types of harems.

All the 11 protogynous species maintaining aggregating female-type harems
showed a multi-male harem structure, where two or more territorial males dominated
a female harem. The single male harem of the planktivorous serranid
P. squamipinnis swimming in the water column includes up to nine females (Shapiro

Female A (8.0)

Sm Male

Female D (6.8)
Female B

Female B (7.4)

Male A (8.8)

Fig. 4.2 Typical example of the spatial relationship of the territorial female-type harem. Male
territories (thick lines) and female territories (thin lines) of two harems of the hawkfish
Cirrhitichthys falco on the reefs of Kuchierabu-jima Island, southern Japan (/eft; redrawn from
Kadota et al. 2011). Each male territory encompasses two female territories. Total lengths (cm) are
given in parentheses. A schematic model of two female territories within a male territory is also
shown (right; redrawn from Kuwamura 1984) (photo Tatsuru Kadota)
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Male A

Female B

Fig. 4.3 Typical example of the spatial relationship of the aggregating female-type harem. Harem
groups of the coral-dwelling damselfish Dascyllus reticulatus are formed on shelter corals. Single
male harems often occur on corals with wide gaps between long branches (a), while multi-male
groups often occur on corals with narrow gaps between fine short branches (b). A schematic model
of a multi-male group is also shown (right); females often swim together and their home ranges
(thin lines) overlap within male territories (thick lines) (photo Rei Sakanoue)

1977; Yogo 1985). In contrast, in the case of a harem with more individuals, multiple
males cohabit, for example, a multi-male harem of P. squamipinnis included
15 males and 72 females (Yogo 1985). The females’ home ranges overlap with
multiple male home ranges providing opportunities to change spawning partners
within a harem, suggesting the possibility of promiscuous mating. Thus, increased
harem size often leads to multiple male groups.

High-density multi-male groups of the coral-dwelling Dascyllus damselfish often
occur in high coral cover habitats (Fricke 1980; Shpigel and Fishelson 1986).
However, multi-male harem groups sometimes occur, even in habitats with low
coral cover (Asoh 2004). In Dascyllus reticulatus, the group structure strongly
depends on the shelter spaces in the coral branches; single males tend to monopolize
harems of large females in corals with long branches (Fig. 4.3a) ,providing wide
shelter spaces suitable for large individuals, whereas relatively small adults inhabit
corals with short branches providing narrow spaces in high density (short-branch
groups; Fig. 4.3b). Multi-male group composition often occurs in short-branch
groups even in the low coral cover habitats (Sakanoue and Sakai 2019).

The presence of multiple males within a harem group indicates the occurrence of
sex change by a female in the presence of a dominant male. The process and social
context of sex change in this harem type will be described later (Sect. 4.6).

4.2.2 Male Territory-Visiting Polygamy

In Labridae and Scaridae, MTV polygamy is the most frequent form of mating
system (37 of 53 protogynous wrasses and 18 of 22 protogynous parrotfishes;
Table 4.2). Phylogenetic analyses have found that the ancestral mating systems of
labrid fish most likely belong to MTV polygamy (Hodge et al. 2020). These two
families occupy 92% of the 60 MTV polygamy records. These labrids and scarids
are fast swimmers; most are pelagic egg spawners, and hence use offshore spawning
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Female B

5.6
66 Female A

Female B

= Female C
| —

Female D

Fig. 4.4 Typical example of the spatial relationship of the male territory-visiting (MTV) polyg-
amy. Home ranges of females (thin lines) and territories of nest-holding males (thick lines) of
Fusigobius neophytus on the reefs of Kuchierabu-jima Island, southern Japan (left; redrawn from
Tsuboi and Sakai 2016). Some females overlap their home ranges with multiple male territories.
Total lengths (cm) are given in parentheses. A schematic model indicates mating relationships in
MTYV polygamy, in which females can change male mating territories for spawning (right; redrawn
from Kuwamura 1997) (photo Miyuki Tsuboi)

sites for dispersing eggs and transporting them offshore (Colin and Bell 1991;
Kuwamura et al. 2009). MTV polygamy has been found even in fishes showing
paternal care for demersal eggs within their mating territories: Symphodus wrasses,
Coryphopterus, Fusigobius, Lythrypnus gobies, and the synbranchid Monopterus
albus (Table 4.2; Fig. 4.4).

In fish with MTV polygamy, territorial males frequently develop bright body
coloration to attract females, similar to leks in birds. In contrast, territorial males with
harem mating systems maintain large body sizes for resource and female defense,
but do not generally show sexual dichromatism or dimorphism. These differences in
male characteristics are consistent with the theory of sexual selection.

In MTV polygamy, the primary mating form involves pair spawning between
territorial males and visiting females. Large individuals within a local population
tend to become territorial males. It is well known that some territorial males often
have the opportunity to spawn with many females (Warner 1984, 2001). In addition,
alternative mating tactics such as sneaking, streaking, and group spawning are often
observed in smaller males because of a relatively loose monopoly on mating
opportunities with females by territorial males (Warner 1984, 2001; see Sect. 4.3).
Some smaller males have pair spawning opportunities with females moving toward
the male territorial spawning sites; this interception is called sneaking. The release of
sperm by smaller males simultaneously with territorial males, coinciding with male-
female pair spawning is called streaking.

In addition, small males often form groups to spawn with females (i.e., group
spawning). The group spawning was exclusively confirmed in pelagic egg spawners
and reported in at least 27 protogynous fish species (Table 4.2). Nearly all these
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cases are observed in labrids (17 species) and scarids (9 species). Of the 27 group
spawning species, 93% (25 species) maintained MTV polygamy (Table 4.2). At
spawning sites in MTV polygamy, group spawning is observed along with pair
spawning, as females are ready to spawn together. In the high-density population site
of the bluehead wrasse T. bifasciatum, the group-spawning males drive out territorial
males from spawning sites, where females prefer to spawn and get frequent mating
opportunities (Warner 1984, 2001).

Some labrids and scarids are reported to exhibit different mating systems among
populations, including harem polygyny or MTV polygamy (two Cheilinus species,
Epibulus insidiator, Halichoeres melanurus, two species of Scarus, and Sparisoma
radians; Table 4.2). Although the mechanism promoting variation in mating sys-
tem has not been revealed in many labroid fishes, one comparative field study on
H. melanurus provides insight into this issue. The wrasse maintains reproduction by
MTYV polygamy, where females actively change their mates over a long mating trip
visiting different males (Kuwamura et al. 2000). However, under high predation
risks, females repeatedly spawn with nearby males, resulting in a mating system
similar to that of harem polygyny (Karino et al. 2000). Under social or environmen-
tal conditions restricting female mate choice, mating based on MTV polygamy may
flexibly shift to a harem-like group structure.

4.2.3 Monogamy

In protogynous gobies, the monogamous mating system is confirmed in coral-
dwelling Gobiodon and Paragobiodon species (5 species; Table 4.2). In these
monogamous gobies, males play an important role in egg guarding by covering
the eggs spawned on the surface of coral branches (Kuwamura et al. 1994;
Nakashima et al. 1996; Munday et al. 1998). The largest individuals function as
males at the beginning of pair formation within local groups. These goby species are
observed to form pairs of size-matched individuals. It has been reported that sex
differences in growth (Kuwamura et al. 1994) and growth regulation between pairs
(Munday et al. 2006a) are mechanisms that drive size-matched pairs. Details are
described in the following chapter (Chap. 5).

The protogynous serranid Cephalopholis hemistiktos is reported to maintain a
monogamous mating system with small territorial home ranges in small patch reef
habitats isolated from sandy beds (Shpigel and Fishelson 1991). It is suggested that
poor food availability in habitat restricts group size and forces monogamy in
serranids. However, an exceptional example of a harem group comprising one
male and two females has been observed (Shpigel and Fishelson 1991), suggesting
the potential ability to establish harem polygyny when they settle in prey-rich
habitats. Further field examination of mating systems of C. hemistiktos is expected
to reveal whether it is obligately monogamous or facultatively monogamous and
potentially harem polygynous, depending on the habitat conditions.
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4.2.4 Spawning Aggregation

Spawning aggregation is reported in at least 164 species of coral reef fishes in
26 families (Claydon 2004) and occurs in the middle of the reproductive process
just before spawning. It involves long-distance migration to offshore areas suitable
for spawning and is often observed in those with a habit of spawning at limited and
specific times (Robertson 1983; Claydon 2004). Spawning aggregation was
recorded in 16 protogynous fishes, including 11 serranids in Cephalopholis,
Epinephelus, Mycteroperca, and Plectropomus (Table 4.2). In addition, four
protogynous labrids and one protogynous scarid species have also been recorded
with spawning aggregation (Table 4.2). However, spawning aggregations cannot be
considered under a comparable independent mating-system category.

Owing to the considerable difficulties in conducting field observation in offshore
waters where spawning aggregations often occur, detailed individual-level data on
mating behaviors are limited. Harem mating systems or MTV polygamy with
records of spawning aggregation habits have been reported in two labrids (Cheilinus
fasciatus and Cheilinus undulatus), a scarid Scarus iseri, and two protogynous
serranids (Cephalopholis fulva and Epinephelus adscensionis) (Table 4.2). How-
ever, in most cases, whether the territorial structures of harems and MTV polygamy
are formed in areas where individuals aggregate to spawn remains to be elucidated.
Six serranids, namely, C. fulva, Epinephelus guttatus, Epinephelus ongus,
Moycteroperca microlepis, Mycteroperca phenax, and Plectropomus leopardus per-
form pair spawning ascents (Erisman et al. 2009; Nanami et al. 2013), implying the
broad occurrence of male territoriality to secure mating partners at the spawning sites
where females form aggregates. In contrast, group spawning in S. iseri occurs
following spawning aggregation (Colin 1978). Further research on spawning aggre-
gates is needed to obtain data on spawning territoriality and mate fidelity (stable or
promiscuous) with notes on their spawning forms, which clarify their actual status as
mating systems.

4.3 Monandry and Diandry

Two types of males are known in protogynous fishes: primary males and secondary
males derived from females (Reinboth 1970). The coexistence of small males and
large territorial males within a local population occurs in several protogynous fishes.
Histological approaches have revealed that small males not derived from sex
changes in females occur in several protogynous fishes. The non-sex-changing
males, called primary males, differ from males derived from sex change (secondary
males) in terms of gonadal maturation or development. No remnants of the ovarian
structure or ovarian cells were histologically verified in or around the testicular
structure of primary males (Reinboth 1970; Sadovy and Shapiro 1987). Diandry is
defined by the coexistence of two types of males in a population or species; in
monandry, all males are derived from the sex change of females.
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Table 4.3 Relationship between occurrence pattern of male types and mating systems of
protogynous fishes

Occurrence pattern of Size assortative Harem polygyny MTV polygamy
male types monogamy (n = 6) (n=>51) (n=>52)
Monandry (n = 71) 6 46 19

Diandry (n = 32) 0 3 29

Unknown (n = 6) 0 2 4

Number of species summarized from Table 4.2, excluding species with more than one mating
system records and those only with spawning aggregation

Monandry was confirmed in 89 protogynous species and diandry in 37 including
various labrids and scarids (Table 4.2). The occurrence of both or only one of these
types of males is related to the mating system of fish. The following discussion
focuses on protogynous species with only one known mating system (i.e., monog-
amy, harem polygyny and MTV polygamy) for comparison, with the exception of
species that exclusively exhibit spawning aggregation.

In total, 71 and 32 protogynous fish species are identified as monandrous and
diandrous, respectively (Table 4.3). Monandry is broadly confirmed in fish
maintaining stable mating relationships, that is, harem polygyny and monogamy.
In all, 46 of the 51 species of harem fish (90%), and all 6 monogamous protogynous
fishes are monandrous (Table 4.3). Territorial males monopolize mating in harems or
secure mating opportunities within monogamous pairs in monandric fishes. Thus,
pair spawning between territorial males and females is the primary form of mating.
In most cases, sneaking or streaking is rare because of the strong territorial domi-
nance of males (but see Ohnishi et al. 1997; Mufioz and Warner 2003a).

Some MTV polygamous fish species are monandric (19 species; Table 4.3).
However, the number of monandric species with MTV polygamy may be
overestimated, because the frequency of primary males within a population varies
with population density in various diandric MTV polygamous fishes (Warner 1984).
Therefore, reports of monandry in MTV polygamous fishes should be carefully
re-examined for the possibility of the occurrence of primary males, depending on
the population density.

Of the 32 diandric species 91% (29 species) exhibited MTV polygamy in their
mating system (Table 4.3). Many diandrous wrasses and parrotfishes possess high
free-swimming abilities and produce pelagic eggs in the water column. Diandric
sexuality has also been confirmed in demersal egg spawners, i.e., a goby Fusigobius
neophytus (Tsuboi and Sakai 2016) and some haremic Dascyllus damselfish (Cole
2002; Asoh and Yoshikawa 2003; Table 4.2).

Primary males of diandric labrids and scarids develop large testes even when they
are small, providing an advantage during streaking or group spawning (Robertson
and Warner 1978; Warner and Robertson 1978; Warner 1984, 2001). Primary males
often maintain female-like body coloration and behave stealthily to sneak or streak,
while avoiding attacks from territorial males performing courtship displays to
approaching females for pair spawning. Sex-changing females and primary males
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of diandric labroid fishes can become territorial males after growth and exhibit
secondary body coloration.

The occurrence of small males due to small female sex change (see Sect. 4.7) or
immature female sex change (i.e., prematurational sex change) is not defined as
diandry, as long as ovary-related tissues are histologically present. In the case of the
monandric labrid Notolabrus celidotus (formerly Pseudolabrus celidotus), small
males derived from protogynous sex change of immature females (prematurational
sex change) coexist with large sex-changing males within a population showing
MTV polygamy (Jones 1981). In addition, the occurrence of males via
prematurational sex change has also been detected in Bodianus eclancheri
(Labridae), Sparisoma cretense (Scaridae), Lethrinus nebulosus (Lethrinidae), and
Pagrus ehrenbergii (Sparidae) (Chap. 6). Furthermore, the prematurational sex
change may also occur in at least three labrids: Cirrhilabrus temmincki, Labrus
bergylta, and Labrus mixtus; a serranid Paralabrax maculatofasciatus; a nemipterid
Scolopsis monogramma; a lethrinid Lethrinus atkinsoni; and a sparid Pagrus
pagrus.

The origin and sexuality of primary males in diandric fish have long been
discussed. It has long been believed that primary males are gonochoric without
sexual plasticity. However, primary males of the genera Halichoeres and Parajulis
have recently been shown to have the ability to change sex to females (Kuwamura
et al. 2007; Miyake et al. 2008). In addition, juveniles of the famous diandric wrasse,
T. bifasciatum, have been confirmed to become primary males or females, depending
on social conditions, for example, conspecific densities (Munday et al. 2006c¢). Since
plastic sexuality has been confirmed in the primary males of some diandric wrasses,
it may not be necessary to distinguish between males by prematurational sex change
and those by direct maturation to primary males. Research to elucidate the details of
the social and environmental conditions under which prematurational sex change
occurs is expected to provide an integrated understanding of the mechanisms of
small male emergence in protogynous fishes.

4.4 Adaptive Significance of Protogyny Explained by
the Size-Advantage Model

Protogyny is recorded mainly in fishes that maintain harem polygyny or MTV
polygamy, where large dominant males can obtain polygynous mating opportunities.
This condition coincides with the prediction of the adaptive significance of
protogynous sexuality using the size-advantage model (SA model; see Chap. 1).
The SA model predicts that protogynous (female to male) sex change will be
selectively favored in fishes with polygynous mating systems, where large males
monopolize mating to the detriment of small ones (Warner 1975, 1984, 1988).
Small young males generally have poor mating opportunities in polygynous
mating groups dominated by large territorial males. In contrast, females maintain
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mating opportunities, even when their body size is small. In this social context, it is
predicted that individuals can maximize their lifetime reproductive success by
maturing as females first and changing sex into males after growing larger. For
many protogynous fishes that maintain harem polygyny or MTV polygamy, it has
been widely confirmed that large territorial males obtain high reproductive success
via multiple spawning opportunities in local groups. Therefore, the prediction of the
SA model fits well with the social and mating conditions of the polygynous mating
groups.

The emergence of primary males in situations that favor protogyny, in which
large males dominate reproduction, is also theoretically well explained. Warner’s
(1975) SA model shows that the characteristics of the mating system, such as mate
choice by females and the degree of monopoly of reproductive opportunities by
males, determine the direction and frequency of the sex change phenomenon. In the
bluehead wrasses 7. bifasciatum, the number of individuals living in a patch reef
varies greatly depending on its size. On large reefs harboring large populations of the
wrasse, large numbers of small primary males that do not have a territory group
together to interfere with the spawning of territorial males and then conduct group
spawning at females’ favorite spawning sites (Warner 1984). This shows that in a
population where it is difficult for territorial males to monopolize reproduction, the
proportion of primary males will be high. This is consistent with the predictions of
the SA model. Based on this concept, Charnov (1982) also successfully accounted
for variation among populations in the proportion of primary male bluehead wrasses
in field data using an ESS model that predicts an optimal value for the proportion of
primary males occurring under the influence of the reproductive success of territorial
males. In other words, the frequency of the occurrence of primary males may mutate
depending on the advantage of primary males in terms of their mating tactics in the
local habitat.

It has been hypothesized that sexual differences in life history traits, such as
mortality or growth rates, may also favor the evolution of protogynous sex change
(Charnov 1982; Warner 1988; Iwasa 1991). In general, individuals maximize fitness
by first maturing with lower mortality or higher growth rate and later changing into
the other sex. For the coral-dwelling goby Paragobiodon echinocephalus with a
size-assortative monogamous mating system, where size-fecundity relationships are
equal in both sexes, the adaptive significance of protogynous sexuality (despite the
ability to reverse sex change; Table 4.4, see Sect. 4.5) is explained by the growth rate
advantage: females grow faster than males in each pair (Kuwamura et al. 1994).
Because the reproductive success of a monogamous pair of P. echinocephalus is
limited by the body size of the smaller mate, regardless of sex and male body size,
which strongly determines reproductive success in the parental care role, a smaller
individual will become a female in the newly formed pair, and adult females will
undergo sex changes in males when they form new pairs (Kuwamura et al. 1994). In
the case of another coral-dependent monogamous goby, Gobiodon histrio, the effect
of sex-specific growth differences on sex change is limited (Munday 2002; Munday
et al. 2006a).
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In a monandric scarid, S. radians, in addition to pair spawning by territorial
brightly colored males (terminal phase: TP) with drab-colored females (initial phase:
IP), non-territorial bachelor IP-colored secondary males derived from females con-
duct streaking and group spawning (Muifioz and Warner 2003a, 2004). By incorpo-
rating sperm competition within local groups (i.e., possibilities of paternity loss
suffered from streaking) and size-fecundity skew (i.e., future expected fecundity of
the other females remaining in the harem), the SA model was extended to predict that
large females maintaining high fecundity do not always undergo sex change (Mufioz
and Warner 2003b) with a field test of the hypothesis using the parrotfish S. radians
harem (Mufioz and Warner 2004). The new version of the SA model may explain
variations in the timing of sex change among populations or species, especially in
MTYV polygamous fishes, which sometimes show intense sperm competition.

In addition, an ESS model incorporating sex-specific growth rates and the effect
of female nutritional status on the clutch size as life history parameters predicts that
well-nourished females achieve high reproductive success as they change sex on
attaining a larger size than poorly nourished ones (Yamaguchi et al. 2013). In some
situations, well-nourished females no longer change sex (i.e., lifelong females). This
notional approach also explains tactical variations in the size and timing of
protogynous sex change (Sect. 4.7).

The foregoing reports reveal the adaptive significance of protogynous sexuality in
fishes explained through the maximization of lifetime reproductive success.

4.5 Social Control of Sex Change: Broad Occurrence
of Takeover Sex Change

Experimental manipulations and underwater observational surveys have signifi-
cantly contributed to studies on the processes, patterns, and conditions of
protogynous sex change. In various haremic protogynous fishes, the male body
size varies among local groups (Warner 1988). Furthermore, males are always the
largest in each local group, and thus the most dominant in size-based dominance
order within a group (Robertson 1972; Moyer and Nakazono 1978; Kuwamura
1984; Sakai and Kohda 1997; Kadota et al. 2011). Therefore, the timing of
protogynous sex changes is determined by the relative body size and dominance in
groups, rather than the absolute body size. Even in MTV polygamous fishes, similar
relative body size-based dominance order and size-based sexuality have been con-
firmed (Warner and Swearer 1991; Sakai et al. 2002, 2007). If females begin sex
change at a fixed body size or a certain age, then local group member composition
related to body size would not be observed in nature.

As protogynous sex change is mediated by relative size and dominance, females
may not change sex unless they become relatively larger than their group members,
even when they attain the absolute size at which many other females change sex. As
a result, females do not often undergo sex changes in natural conditions, as revealed
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by many demographic studies. For example, in the haremic angelfish Centropyge
ferrugata on the reefs of Okinawa, southern Japan, 9 of 31 females underwent
protogynous sex changes in a 3-year-long demographic survey (Sakai 1997). In
the case of cleaner wrasse L. dimidiatus, 8 of 31 females showed sex changes in a
3-year-long survey on the reefs of southern Japan (Sakai et al. 2001). Kadota et al.
(2012) observed protogynous sex changes in 3 Cirrhitichthys falco females in a
3-year survey of the population, including 11 females on the reefs of southern Japan.
Aldenhoven (1984) conducted demographic surveys in four populations of
Centropyge bicolor on reefs of Great Barrier Reef to follow 36 harems (2-3 females
in each harem) for 2.5 years and confirmed sex reversal of 1 or 2 individuals in most
populations, although there was an exceptional population with frequent sex changes
(20 sex changes; Aldenhoven 1984) (see Sect. 4.6, Bachelor sex change). These
findings suggest that females change sex in situations that make them dominant in
the local group, many cases, the disappearance of dominant males.

Robertson (1972) first highlighted the importance of social interactions in the sex
change of protogynous fish. He conducted experiments on males removed from
harems and showed that the loss of the dominant male is an important social factor
that promotes female sex change. In a 2.5-year demographic survey, Robertson
(1974) found that females of the cleaner wrasse L. dimidiatus often showed sex
changes in harems where the dominant males disappeared. In each cohabiting
female-type harem (Table 4.2), a dominance order based on relative body size
through behavioral interactions was found (Robertson 1974; Kuwamura 1984;
Sakai and Kohda 1997). The dominance rank affects the timing of sex change by
females adopting a conditional strategy, “if dominant, be a male; if not, be a female.”
The importance of social status within a local group, affecting the start or delay of
sex change, is often called the “social control of sex change” (Robertson 1972).

After discovering the social control of sex change, male removal from a polyg-
ynous group or female-only cohabitation is often used to confirm protogynous sex
change in field or aquarium experiments using various fishes. In fish whose sex
change patterns have been surveyed in nature, the most common example is that of
the largest female changing sex after the disappearance of the dominant male to take
over the harem, called takeover sex change (Sakai 1997). Eleven protogynous
species are known to undergo takeover sex change in nature (Table 4.4). In addition,
male removal experiments in fields or male-loss conditions in aquariums showed
takeover sex changes by females in a total of 57 species (25 and 41 species,
respectively; Table 4.4). In total, 60 protogynous fish species were confirmed to
undergo sex change by females after the loss of males, implying the broad occur-
rence of social control of sex change.

The rationale behind this observation is that if females started sex changes when
the male was present, they would be chased out of the group by the territorial male
(but see Sects. 4.6 and 4.7). If females do not conduct sex change even after the
disappearance of the dominant male, the harem would be taken over by another male
that has intruded into the territory or group members would leave the territory to
search for new mates. In either case, the future reproductive success of females is
considerably lower than that of individuals undergoing takeover sex change
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Table 4.4 A list of fishes that have been confirmed to conduct protogynous sex change under the
male-loss conditions by rearing experiment in aquarium (A) or field experiment (F), with notes on
takeover sex change after the male disappearance observed in natural conditions

Takeover sex
change
Order/family/ Mating observed in
species system | Experiments | nature References
Gobiiformes
Gobiidae
Coryphopterus A Cole and Shapiro (1990)
dicrus
Coryphopterus | MTV A Cole and Shapiro (1992)
glaucofraenum
Coryphopterus A Cole and Shapiro (1990)
hyalinus
Coryphopterus A Cole and Shapiro (1990)
lipernes
Coryphopterus A Cole and Robertson (1988)
personatus
Eviota A Cole (1990)
epiphanes
Fusigobius MTV X Tsuboi and Sakai (2016)
neophytus
Gobiodon MG F* Munday et al. (1998)
histrio
Gobiodon A? Cole and Hoese (2001)
okinawae
Gobiodon MG F, A? Nakashima et al. (1996)
quinquestrigatus
Lythrypnus MTV F (artificial Reavis and Grober (1999),
dalli habitat), A* Black et al. (2005) and
Lorenzi et al. (2006)
Paragobiodon | MG F, A* x* Kuwamura et al. (1994),
echinocephalus Nakashima et al. (1995) and
Lassig (1977)
Paragobiodon | MG F Lassig (1977)
xanthosomus
Rhinogobiops A Cole (1983)
nicholsi
Trimma ND F, A* x?* Sunobe and Nakazono (1990,
okinawae harem 1993) and Manabe et al.
(2007b)
Uncertain orders in Ovalentaria
Pomacentridae
Dascyllus AF F Kuwamura et al. (2016a) and
aruanus harem, Asoh (2003)
MTV

(continued)
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Table 4.4 (continued)
Takeover sex
change
Order/family/ Mating observed in
species system | Experiments | nature References
Dascyllus AF A x?* Tanaka (1999), Asoh (2005b)
reticulatus harem, and Sakanoue and Sakai
MTV (2022)
Cichliformes
Cichlidae
Metriaclima A Stauffer Jr and Ruffing (2008)
cf. livingstoni
Cyprinodontiformes
Poeciliidae
Xiphophorus A Lodi (1980)
helleri
Trachiniformes
Pinguipedidae
Parapercis TF F X Stroud (1982)
cylindrica harem
Parapercis TF F, A X Nakazono et al. (1985) and
snyderi harem Ohnishi (1998)
Labriformes
Labridae
Bodianus rufus | CF F Hoffman (1983, 1985) and
harem Hoffman et al. (1985)
Choerodon A Sato et al. (2018)
schoenleinii
Halichoeres ND F Sakai et al. (2002)
melanurus harem,
MTV
Halichoeres TF F Munday et al. (2009)
miniatus harem
Iniistius TF F, A Nemtzov (1985)
pentadactylus harem
Labroides CF F, A® X Robertson (1972), Kuwamura
dimidiatus harem et al. (2002, 2011) and Sakai
et al. (2001)
ND F Moyer (1991)
Macropharyngodon | harem
moyeri
Parajulis MTV A Sakai et al. (2007)
poecilopterus
Pteragogus MTV A Shimizu et al. (2022)
aurigarius
Thalassoma MTV F Warner and Swearer (1991)
bifasciatum and Hoffman et al. (1985)

(continued)
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Takeover sex

change
Order/family/ Mating observed in
species system | Experiments | nature References
Thalassoma MTV A Ross et al. (1983)
duperrey
Thalassoma MTV A Warner (1982)
lucasanum
Scaridae
Sparisoma ND F Muiioz and Warner (2003a,
radians harem, 2004)
MTV
Perciformes
Serranidae
Cephalopholis A Liu and Sadovy (2004)
boenak
Epinephelus A Kline et al. (2011)
adscensionis
Epinephelus A* Okumura (2001)
akaara
Epinephelus A? Quinitio et al. (1997), Chen
coioides et al. (2019, 2020, 2021)
Epinephelus F Mackie (2003)
rivulatus
Pseudoanthias A Hioki et al. (2001)
pleurotaenia
Pseudoanthias | AF F, A X Fishelson (1970), Yogo
squamipinnis harem (1985), Shapiro (1981) and
Shapiro and Boulon Jr (1982)
Pomacanthidae
Apolemichthys A? Hioki and Suzuki (1995)
trimaculatus
Centropyge CF A Hioki and Suzuki (1996)
acanthops harem
Centropyge CF X Aldenhoven (1984, 1986)
bicolor harem
Centropyge CF F*, A? X Sakai (1997), Sakai et al.
ferrugata harem (2003a) and Kuwamura et al.
(2011)
Centropyge A? Hioki and Suzuki (1996)
fisheri
Centropyge A Hioki (2002)
heraldi
Centropyge CF F Moyer and Nakazono (1978)
interruptus harem
Centropyge CF F (artificial Lutnesky (1994, 1996)
potteri harem | habitat)

(continued)
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Table 4.4 (continued)

Takeover sex
change
Order/family/ Mating observed in
species system | Experiments | nature References
Centropyge CF F Sakai et al. (2003b)
vrolikii harem
Genicanthus A Hioki et al. (1995)
bellus
Genicanthus AF A Suzuki et al. (1979)
lamarck harem
Genicanthus AF A Hioki et al. (1982)
melanospilos harem
Genicanthus A Carlson (1982)
persomatus
Genicanthus AF A Suzuki et al. (1979)
semifasciatus harem
Genicanthus A Hioki et al. (1995)
watanabei
Malacanthidae
Malacanthus TF F Baird (1988)
plumieri harem
Cirrhitidae
Cirrhitichthys A? Kobayashi and Suzuki (1992)
aureus
Cirrhitichthys TF X Kadota et al. (2012)
falco harem
Tetraodontiformes
Balistidae
Sufflamen TF F Takamoto et al. (2003)
chrysopterus harem

MG size-assortative monogamy, M7V male territory-visiting polygamy, CF harem cohabiting
female-type harem, TF harem territorial female-type harem, AF harem aggregating female-type
harem, and ND harem harem types unidentified (see Table 4.2)

X indicates that there are reported cases

“Reversed sex change (male to female) was also confirmed

immediately after male loss. Thus, regardless of the mating system, subordinate
females broadly adopt takeover sex change as a life history tactic for protogynous
fish (Table 4.4).

The SA model was mathematically formulated as a life history strategy model to
explain the adaptive significance of the direction and timing of sex change, viewed
as an evolutionary response to demographic parameters of the entire population
(Warner 1975, 1984). The social control of sex change is an individual-level
mechanism that drives variations in the timing of sex change within and between
species. However, the SA model can also be applied at the scale of the local mating
group and explain the advantage of sex change based on the reproductive values of
individuals as males or females relative to the size of the other individuals in the
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mating group (Munday et al. 2006b). Thus, the validity of the SA model as a theory
to explain the advantage of sex change remains unchanged, even in fishes that
demonstrate socially controlled sex changes. However, empirical studies of fishes
that exhibit social control of sex change have revealed variations in the timing of sex
change within species. How they relate to the reproductive, social, and environmen-
tal conditions of local groups will be discussed in the next section.

4.6 Alternative Examples of Protogynous Sex Change

Mating systems of protogynous fishes, including harem polygyny and MTV polyg-
amy, where large territorial males monopolize mating opportunities, may favor the
evolution of the conditional strategy “if dominant, be male.” However, to achieve a
dominant status, females sometimes adopt sex changes without waiting for the
disappearance of males. In other words, females do not always wait until they
become dominant (i.e., the largest) in the original local group because of the
disappearance of males. Although sex change after the male loss has already been
observed in a wide range of protogynous fish species, it is emphasized that sex
change starts earlier than the timing of male loss, the pattern initially referred to as
“early sex change” (Moyer and Zaiser 1984).

In protogynous fishes demonstrating socially controlled sex change (i.e., takeover
sex change after male loss), females of 18 species changed sex even in the presence
of the dominant male (Table 4.5). In addition, three haremic species without any
observation records of takeover sex change (C. tibicen, H. tricolor, and Xyrichtys
martinicensis; Table 4.5) have records of sex change in male presence. With the
empirical data accumulation, it became clear that the early sex change initially
mentioned by Moyer and Zaiser (1984) could be divided into two major processes:
bachelor sex change and harem-fission sex change. For two gobies Rhinogobiops
nicholsi and F. neophytus and a wrasse Choerodon schoenleinii, detail processes of
the sex change under the male presence were unrevealed. For the remaining 15 spe-
cies, either or both patterns of bachelor sex change or harem-fission sex change have
been identified (Table 4.5). This view of the phenotypic flexibility of sex change is
an alternative life history tactic determined by field studies, in which identified
individuals were observed continuously over time. In addition, tactical behaviors
of females that may favor the acquisition of sex change opportunities through group
migration and fast growth has also been reported. Three perspectives on alternative
tactics (i.e., bachelor sex change, harem-fission sex change, and female tactics
toward the faster acquisition of sex change) are introduced below.
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4.6.1 Bachelor Sex Change

One of the processes of protogynous sex change demonstrated in the presence of a
male is becoming a bachelor male. A female leaves the male’s territory and changes
sex to become a bachelor male that will spend a reproductively inactive period
(Aldenhoven 1984, 1986; Moyer and Zaiser 1984; Hoffman et al. 1985; Moyer
1987; Warner 1988). This is called “bachelor sex change” as described by Sakai
(1997). Bachelor sex changers have been reported in the haremic goby Trimma
okinawae, the damselfish D. reticulatus, the sandperch Parapercis snyderi, the
temperate wrasse N. celidotus, the bluehead wrasse T. bifasciatum, the bucktooth
parrotfish Scarus radians, and three Centropyge angelfishes (C. bicolor,
C. interruptus, and C. tibicen) (9 species; Table 4.5).

Bachelor sex change was found earlier in harem species of Centropyge
angelfishes, and its advantages have been discussed (Moyer and Zaiser 1984;
Aldenhoven 1984, 1986). Bachelor sex changers were subsequently identified in
harem fish species of various taxa (Table 4.5). Sex-changing females undergoing a
period similar to bachelor males have also been confirmed in MTV polygamous
wrasses and parrotfishes, under the effective social control of sex change (Table 4.5).
In the case of the MTV polygamous labrids N. celidotus and T. bifasciatum, and a
scarid S. radians, females would abandon their home ranges and become
nonterritorial males before reaching territorial male status (Jones 1981; Warner
1984; Hoffman et al. 1985; Muiioz and Warner 2003a).

Since bachelor sex changers could have continued to breed as females if they had
not changed sex, they would have incurred significant opportunity costs if the period
of bachelorhood until taking over the harem was long. However, the cost can be
compensated by high reproductive success after taking over the harem (Aldenhoven
1984, 1986; Moyer and Zaiser 1984; Warner 1991). To acquire a reproductive
position, a sex-changing individual must (1) wait for the territorial male to disappear,
(2) wait for a new female (or juvenile) to settle in its home range, or (3) deprive the
territorial male of some of its females (Moyer 1987). The last option is often adopted
as another type of sex change tactic, called “harem-fission sex change,” described
later. Of these, the first tactic appears to be the most successful for bachelor males. In
this case, bachelor males have to enter the group earlier than the completion of
takeover sex change by the group’s largest female after the territorial male’s
disappearance to mate with the females. In C. bicolor, seven cases were identified
in which bachelor males took over a harem that lost its male (Aldenhoven 1984).

Moyer and Zaiser (1984) observed bachelor sex changers wandering over a wide
area as a floater to visit several harems in two Centropyge angelfish harems,
suggesting that they assess the surrounding group conditions to find harems without
males where they could take over. It is believed that it is not easy for a bachelor male
to displace a larger territorial male. The floating behavior of bachelor males is
important in detecting the loss of territorial males (Moyer and Zaiser 1984; Moyer
1987). However, reports on the behavioral patterns of bachelor sex changers are very
limited.
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A 2.5-year demographic study by Aldenhoven (1984) in four populations of
C. bicolor confirmed the frequent occurrence of bachelor males in a population
exhibiting high mortality and high harem density. For population conditions pro-
moting bachelor sex changers, high mortality rates in both territorial males and
reproductively active females may increase the chances of group takeover by
bachelor males having low mortality rates. The annual mortality rate of males in
the population with frequent bachelor sex change was 2—13 times higher than that in
populations where only takeover sex change was observed (Aldenhoven 1984,
1986). High harem density also favors the occurrence of bachelor sex changers,
because the conditions of many harems could be easily assessed (Aldenhoven 1984,
1986; Warner 1988, 1991). In a population where 19 bachelor males appeared, each
harem was in close proximity to an average of 4.1 harems (Aldenhoven 1984).

In contrast, Moyer and Zaiser (1984) and Moyer (1987) suggested the advantages
of low-density conditions for obtaining females from male territories. Although
subsequent studies have confirmed that harems with increased size are more likely
to experience sex change and group splitting by sex changers when the male is
present (Lutnesky 1994; Sakai 1997), these processes are distinct from bachelor sex
change (for details, see Sect. 4.7, the harem-fission sex change). Moyer’s view as a
pioneer of field observations of various sex change patterns appears to be based on
sex change in the presence of males being lumped together as early sex change. Field
experiments that followed bachelor males (not bachelor sex changers but widowed
after mate loss) under low-density conditions have confirmed cases of pairing with
other males, resulting in reversed sex change to females, although they sometimes
acquire females (Kuwamura et al. 2002, 2011; Kadota et al. 2012). Hence, it is
probable that low density is not an effective condition for bachelor sex changers.

A high growth rate is an important characteristic of bachelor sex changers in
Centropyge angelfish harems (Moyer and Zaiser 1984), which would be advanta-
geous in dominating the harem of females and obtaining preferred mating territories
through competition among males. In the case of the MTV polygamous wrasse
T. bifasciatum, sex changers spend considerable time as nonterritorial bachelor
males (Hoffman et al. 1985), and nonterritorial males exhibit 1.5 times higher
growth than females (Warner 1984). Large body size is generally crucial to dominate
the harem of females and maintain mating territories in polygynous fishes (Warner
and Schultz 1992; Kuwamura et al. 2000). Bachelor sex changers grow at the
expense of their current reproductive opportunities to achieve a faster male repro-
ductive status (Moyer and Zaiser 1984; Moyer 1987; Warner 1988).

Similarly, many small females left the harem and proceeded to change sex to
bachelor males in the late breeding season in territorial female-type harems of the
sandperch P. snyderi, where females maintain exclusive territories (Nakazono et al.
1985; Ohnishi 1998). This might be called “synchronized bachelor sex change.”
Bachelor sandperch males achieve high growth during the nonbreeding season and
become territorial in the next breeding season (Ohnishi 1998). The body size of
sex-changing females of P. snyderi was within 86% of the male body size,
suggesting that the relative size threshold between dominant males and females
may affect the start of synchronous sex change in females in the presence of males
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(Ohnishi 1998). Thus, high growth is a key characteristic for acquiring territorial
male status.

Bachelor sex changers may obtain growth or survivorship advantages during their
nonbreeding status, potentially increasing their possibility of taking over a harem.
Using field observations and mathematical models, Aldenhoven (1986) showed that
even in populations with high harem density and survival advantages of bachelor
males, not all females undergo a bachelor sex change. It is expected that the
respective advantages of takeover and bachelor sex changes are strongly influenced
by each other’s frequency (frequency-dependent selection). However, no other study
has been able to make a similar tactical assessment and evaluation of bachelor sex
changers.

Moreover, the social conditions of females promoting bachelor sex change
remain uncertain due to the lack of observational studies on individual bachelor
sex changers. In an observational field survey of a population of 7. okinawae,
sex-changing females that moved out of the harems where dominant males were
present became bachelor males in the vacant space (Manabe et al. 2007b). In
addition, it is common for a female of similar size to a female that underwent a
bachelor sex change to be present in the original harem. Although changes in social
relationships between a dominant male and females within the local group are
involved in the occurrence of female sex change in the presence of males (see the
harem-fission sex change section), competitive and exclusive relationships between
females in the harem over sex change opportunities may be involved in triggering
bachelor sex change.

A new form of bachelor sex change was recently detected in the female
aggregation-type harems of the coral-dwelling damselfish D. reticulatus. Some
subordinate females undergo gonadal sex changes in the presence of larger males
or females, and the sex changers become bachelor males that do not show any sexual
behaviors and continue to stay in the original harem, called “cryptic bachelor sex
change” (Sakanoue and Sakai 2022). Cryptic bachelor males do not engage in
wandering behaviors as reported in some Centropyge angelfishes (Moyer and Zaiser
1984) or leave the original groups (i.e., male territories) as seen in 7. bifasciatum
(Hoffman et al. 1985) and P. snyderi (Ohnishi 1998). Sakanoue and Sakai (2022)
found a growth rate advantage of the sex changers over females, which is similar to a
possible advantage in bachelor sex changers of other fishes. A fast growth condition
during the bachelor male phase may help conduct intergroup movements to obtain
mating opportunities. It was confirmed that some bachelor sex changers subse-
quently obtained mating opportunities as territorial males or reproductively active
females (via reverse sex change) after their harem changes.

Yamaguchi et al. (2013) theoretically tested the hypothesis that variation in
female fecundity caused sex change in less fertile females using the ESS model
and predicted that less fertile females, even if they are not the largest, may change
sex earlier than well-nourished females. The nutritional status of females, measured
as the body width relative to its length, affects the number of eggs laid in the
protogynous triggerfish S. chrysopterus on which this ESS model is based
(Yamaguchi et al. 2013). In the case of D. reticulatus, female individuals were



124 Y. Sakai

confirmed to have poor mating opportunities before conducting a bachelor sex
change (Sakanoue and Sakai 2022). Regardless of the differences in the causes of
low spawning success in females, the hypothesis may be applicable for explaining
the cases of small bachelor sex changers. Low spawning frequency has also been
reported in bachelor sex change in larger females (Moyer and Zaiser 1984; Moyer
1987). Hamaguchi et al. (2002), using a different ESS model approach, predicted
from field data on a Centropyge angelfish that large females would adjust their
spawning frequency lower in response to social and environmental conditions and,
in some circumstances, a complete cessation of spawning would occur like bachelor
sex changers. Though there is a process difference of females lowering their
reproductive success between the two theories, it may be noteworthy as a female
trait related to the onset of sex change. Field studies are needed to examine whether
current spawning success affects the timing of sex changes in females.

4.6.2 Harem-Fission Sex Change

Another example of protogynous sex change in the presence of a dominant male
(i.e., early sex change) goes that females begin to change sex while in a male’s
territory and acquire a portion of the harem immediately after completion of the sex
change. This sex change process is called “harem-fission sex change” and has been
reported in 12 harem species, including cohabiting female-type (L. dimidiatus,
C. bicolor, C. ferrugata, C. potteri, C. tibicen, and H. tricolor), territorial female-
type (Parapercis cylindrica, Xyrichtys martinicensis, and Cirrhitichthys falco),
aggregating female-type (D. reticulatus and P. squamipinnis), and unknown type
(Macropharyngodon moyeri) types (Table 4.5). For aggregating female-type
harems, harem-fission sex change is not the result of harem-fission but because of
living in a multi-male harem (see below). Data on the social change process of the
harem-fission sex change are more detailed than for bachelor sex change because the
process proceeds without the sex-changing individual leaving the group.

In cohabiting female-type harem, harem-fission sex change was observed in
harem groups with a considerable female-biased sex ratio or large male territory
where males could not frequently interact with females (Robertson 1974;
Aldenhoven 1984; Sakai 1997). The harem-fission sex change in territorial
female-type and aggregating female-type harems has also been observed in group
situations with large harem sizes or a high number (Shapiro 1981; Stroud 1982;
Victor 1987; Moyer 1991; Kadota et al. 2012; Sakanoue and Sakai 2022). Such
harems are formed when a territorial male disappears and adjacent harem males
quickly invade the territory to dominate over both harems, where some females set
up their home ranges at an extreme distance from other harem females (Moyer and
Zaiser 1984; Moyer JT personal communication) or when females become overly
settled within male territories (Robertson 1974; Stroud 1982; Victor 1987; Sakai
1997). Females have been observed to change sex in the presence of males and set up
new territories to incorporate solitary females that grew from juveniles near a harem
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group (Aldenhoven 1984). This is also considered to be a similar social situation, in
which the number of females increased in a harem.

As seen in the case of takeover sex change, insufficient social interactions
between sexes are thought to be an important trigger for inducing protogynous sex
change in dominant male presence. Lutnesky (1994) experimentally promoted sex
change in female Centropyge potteri in the presence of a dominant male in a large
cage (3 X 34 m), including 1 male and 15 females. The males did not maintain
frequent social interactions with all females because of low-density conditions with
widespread distribution of females within the tank. In contrast, no females
underwent sex changes in a small cage (3 m x 4 m), including a harem with the
same number of fish at high density. In a tank experiment on the wrasse Choerodon
schoenleinii, rearing conditions with a larger number of females (one male and five
to six females) promoted protogynous sex change in the presence of the male (Sato
et al. 2018). This indicates that a decrease in the interaction with the dominant male
is important for the initiation of sex change in the females of both species.

In the case of harem-fission sex change in C. ferrugata in nature, it has been
observed that when a male begins to dominate the large harem after the conjunction
of two harems, it actively engages in social and courtship behaviors toward new
females. This results in a decrease in the frequency of social and courtship behaviors
toward the largest female of the original harem. They then cease to spawn and starts
an aggressive struggle with the males (Sakai 1997). Similarly, during harem-fission
sex change in H. tricolor, a female that subsequently underwent sex change was
observed to hide most of the time to avoid social contact with the dominant male
(Hourigan and Kelley 1985).

In aggregating female-type harems of the anthias serranid P. squamipinnis,
females in large groups undergo sex changes in the presence of dominant males,
resulting in the formation of multi-male harem groups, as mentioned above. Sex
changers become reproductive males, obtain mating opportunities, and subse-
quently, turn into single-male groups (Shapiro 1984; Yogo 1985). This situation is
identical to the harem-fission sex change regarding the immediate acquisition of
mating status in males. Females that subsequently engaged in sex change were
observed to hide behind rocky shelters during the mating period and did not
spawn (Yogo 1985). Although the detailed conditions of social interactions between
females and males are unknown, the attitude of avoiding sexual behaviors from
males appears similar to that of harem-fission sex changers in harem angelfish. In
addition, the sex ratio threshold hypothesis has been proposed to explain the natural
occurrence of sex changers in the harems of P. squamipinnis exceeding a certain sex
ratio (Shapiro and Lubbock 1980).

In the case of high-density aggregating female-type harems of D. reticulatus,
harem-fission sex changes were observed in females that did not have spawning
opportunities within the local group (Sakanoue and Sakai 2022). These conditions
are similar to those promoting harem-fission sex changers in cohabiting female-type
harems in terms of the difficulties of males providing adequate social contact with
too many females.
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Thus, the social conditions in which harem-fission sex change occurs are
suggested to have extensive similarities with takeover sex change, in which the
dominant male disappears from the harems. Therefore, this type of protogynous sex
change in the presence of males can be considered to occur in a condition-dependent
manner in fish species, where social control of sex change is normally effective.

4.6.3 Females’ Tactics for Faster Acquisition of Sex Change
Opportunity

Some protogynous fishes show tactics for the faster acquisition of sex change. It is
generally considered that the females that stably settle in male territories in the
cohabiting female-type harem fishes can secure the possibility of future sex change
via maintaining their social ranks in the local group (Robertson 1974; Moyer and
Nakazono 1978; Kuwamura 1984). However, in populations where harems are
closely adjacent, females of the cleaner wrasse L. dimidiatus may move out of the
original harem to a site where they can improve their social rank, which is considered
a tactic for faster sex change (Sakai et al. 2001). A total of 24 inter-harem moves by
15 females were identified through a 2.5-year survey. This indicated that subordinate
females tended to move to harems where they were higher in rank, whereas
dominant females moved to harems where there were no individuals close in size
to their body sizes (Sakai et al. 2001). Similar intergroup moving tactics by females
have been reported in 7. okinawae goby harems (Manabe et al. 2007a). Therefore,
females do not just wait for an opportunity to change their sex after the loss of
dominant individuals.

Yet another example of female refusal to spawn has been reported as a tactic for
faster sex change. In harems of the cleaner wrasse, L. dimidiatus, and Centropyge
angelfishes, females of the same size class are territorially exclusive of each other
(Fig. 4.1). This territoriality among females is thought to occur because individuals
of similar sizes are rivals to future opportunities for sex change. Furthermore, in the
case of C. ferrugata, it has been reported that females inhabiting close to similar-
sized individuals tend to spawn less frequently. Such females with low spawning
frequencies grow faster, suggesting that they invest more energy in growth for faster
sex change (Sakai 1997; Hamaguchi et al. 2002). This tactic is observed in large
harems resulting from the merger of adjacent harems and is considered a preliminary
stage of harem-fission sex change.

The rapid growth of females during sex change has been reported in various fish
species (Ohnishi 1998; Walker and McCormick 2004; Walker and Ryen 2007;
Munday et al. 2009; Sakanoue and Sakai 2022). Fast growth may have resulted
from the cessation of spawning, in addition to being released from social control by
dominant individuals. To acquire mating territory and females, sex-changing indi-
viduals need to grow larger. Earlier growth competition for future sex change
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opportunities among females should be considered, especially in harem fish with a
strong social hierarchy among females.

4.7 Individual-Level Process of Takeover Sex Change After
Male Loss

During takeover sex change in protogynous fishes, females are unable to produce
gametes and switch over from ovarian to testicular structures. This means that they
cannot produce offspring during gonadal sex change. Loss of reproductive oppor-
tunity is considered an obligatory cost for sex change. In addition, they switch to
sexual behaviors typical of males, including territorial defense and courtship (i.e.,
behavioral sex change). Furthermore, some species require the development of
secondary morphological characteristics in males to obtain mating opportunities
(Hoffman et al. 1985; Muifioz and Warner 2003a).

Once the males disappear or are removed from the mating group, gonadal sex
change usually lasts from 1 to 4 weeks (Table 4.6). Two types of developmental
patterns of the testis are known: inside (undelimited type) and outside (delimited
type) the ovary (Sadovy and Shapiro 1987). Species with delimited gonads usually
change their sex for a shorter duration (Yamaguchi and Iwasa 2017). Observational
surveys of gonadal sex change duration in pelagic spawners have provided fairly
accurate values because reproductive behaviors are displayed daily, and the com-
pletion of gonadal sex change is directly judged by the fertilization of daily spawned
eggs (Nakashima et al. 2000; Sakai et al. 2003b; Table 4.6).

Some demersal egg spawners, such as F. neophytus, Dascyllus aruanus, and
S. chrysopterus, have considerably long gonadal sex change durations (Table 4.6). In
addition, sexual behaviors seemed to occur close to the day of the completion of
gonadal sex change in the cases of Gobiodon quinquestrigatus, T. okinawae, and
D. reticulatus, suggesting no precedence of behavioral sex change (Table 4.6).
These tendencies, which are different from those of pelagic egg spawners, are
partially due to the mating habits exhibiting spawning rhythms following lunar
cycles (i.e., tidal conditions), resulting in potential difficulties in confirming the
exact timing of the start of behavioral sex change and the completion of gonadal sex
change in demersal egg spawners with the cyclic spawning interval.

It has been confirmed that some protogynous sex changers start to exhibit male-
type sexual behaviors and spawning behaviors with females before the completion
of gonadal sex change, especially in daily pelagic egg spawners (Fig. 4.5; Table 4.6),
resulting in unfertilized spawned eggs. The adaptive significance of the faster
precedence of behavioral sex change before the completion of gonadal sex change
can be explained as a tactic for future mate acquisition (Nakashima et al. 2000). The
female also responds to egg release in the usual spawning form with a sex-changing
individual if the sexual behavior of the individual is complete (Godwin et al. 1996;
Nakashima et al. 2000). If sex changers (i.e., the largest females) do not engage in
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Table 4.6 Duration period needed for protogynous sex change after the male disappearance

Behavioral sex change

Courtship | Spawning | Gonadal | Body
(male (male sex coloration
Family/species role) role) change change References
Demersal egg spawners
Gobiidae
Coryphopterus 10-20 Cole and Shapiro
glaucofraenum days (1992)
Coryphopterus 15 days Cole and Shapiro
hyalinus (1990)
Coryphopterus 21 days Cole and Shapiro
lipernes (1990)
Coryphopterus 9-20 Cole and Robertson
personatus days (1988)
Fusigobius <62-70 Tsuboi and Sakai
neophytus days (2016)
Gobiodon <28 Munday et al.
histrio days (1998)
Gobiodon <1 month | 1 month 1 month Nakashima et al.
quinquestrigatus (1996)
Lythrypnus 571 = Reavis and Grober
dalli 1.70 days (1999)
Paragobiodon 24 days Nakashima et al.
echinocephalus (1995)
Trimma 7 days 12 days 6-14 Sunobe and
okinawae days Nakazono (1993)
Pomacentridae
Dascyllus <50-60 Coates (1982) and
aruanus days Kuwamura et al.
(2016a)
Dascyllus <10 days | 10 days <19 Tanaka (1999) and
reticulatus days Sakanoue and
Sakai (2022)
Balistidae
Sufflamen 71 days <90-94 | 9-19 days | Takamoto et al.
chrysopterus days (2003)
Pelagic egg spawners
Pinguipedidae
Parapercis 5-11 days 20-31 17-24 Stroud (1982)
cylindrica days days
Parapercis 23 days 10-13 Nakazono et al.
snyderi days (1985)
Labridae
Bodianus rufus 0-10 days | 7-10 Hoffman et al.
days (1985)
Halichoeres 0 day 0 day 2-3 Sakai et al. (2002)
melanurus weeks

(continued)
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Table 4.6 (continued)
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Behavioral sex change
Courtship | Spawning | Gonadal | Body
(male (male sex coloration
Family/species role) role) change change References
Iniistius 14 days 14 days Nemtzov (1985)
pentadactylus
Labroides 0 day 0 day 14-18 Robertson (1972)
dimidiatus days and Nakashima
et al. (2000)
<23 days <23 Moyer (1991)
Macropharyngodon days
moyeri
Parajulis 2-11 days 2 weeks | 2—6 weeks | Sakai et al. (2007)
poecilopterus and Miyake et al.
(2012)
Thalassoma 0 day 0 day 8-28 828 days | Warner and
bifasciatum days Swearer (1991)
Thalassoma 2-6 2-6 weeks | Warner (1982)
lucasanum weeks
Scaridae
Sparisoma 7-12 days | 12-18 7-11 days | Mufioz and Warner
radians days (2003a)
Serranidae
Epinephelus 214-298 Quinitio et al.
coioides days (1997)
Epinephelus 20-27 Mackie (2003)
rivulatus days
Pseudoanthias | 2—7 days 24 26-53 Fishelson (1970)
squamipinnis weeks days and Shapiro (1981)
Pseudoanthias | 4 days 9 days 18 days Hioki et al. (2001)
pleurotaenia
Pomacanthidae
Apolemichthys 11 days 25 days Hioki and Suzuki
trimaculatus (1995)
Centropyge 4 days 6 days 8 days Hioki and Suzuki
acanthops (1996)
Centropyge 3 days <20 Aldenhoven (1984)
bicolor days
Centropyge 2 days 3 days 6 days Hioki and Suzuki
fisheri (1996)
Centropyge 1-7 days 20-39 12 days Moyer and
interruptus days Nakazono (1978)
Centropyge 0 day 1-3 days 10-16 Sakai et al. (2003b)
vrolikii days
Genicanthus 4 days 31-38 days |31-38 38 days Hioki et al. (1995)
bellus days
11 days 11 days 11 days 13 days Suzuki et al. (1979)

(continued)



130 Y. Sakai

Table 4.6 (continued)

Behavioral sex change
Courtship | Spawning | Gonadal | Body
(male (male sex coloration
Family/species role) role) change change References
Genicanthus
lamarck
Genicanthus 8-19 days | 19 days 12-19 Hioki et al. (1982)
melanospilos days
Genicanthus 15 days 25 days Hioki et al. (1995)
watanabei

Days, weeks or months from experimental male removal or natural male disappearance from mating
groups to the start of behavioral sex change including courtship and spawning as males, to the
completion of gonadal sex change (sperm release), and the completion of sexual body color
transformation are shown

In behavioral sex change, 0 day means that the behavioral expression was confirmed on the day
when the male was removed

Fig. 4.5 Spawning behaviors by a pair consisting of a sex-changing female and a smaller female in
haremic fishes. The largest females of Labroides dimidiatus (a; above of ascending pair) and
Centropyge vrolikii (b; below of ascending pair) started male sexual behaviors and spawned with
subordinate females in the process of gonadal sex change after the dominant male removal (photos
Tetsuo Kuwamura)

any sexual behavior toward smaller females in the local group during gonadal sex
change, then the smaller females will leave the group to look for new mates. Though
harem fishes usually maintain stable mating relationships, females may move to
other harems (Sakai et al. 2001; Manabe et al. 2007a), or females that are not given
the opportunity to spawn may change sex (Moyer and Zaiser 1984; Sakai 1997,
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Sakanoue and Sakai 2022). The immediate start of behavioral sex change during
gonadal sex change is suggested to play a role in securing mates and smooth
takeover of the harem (Nakashima et al. 2000; Sakai et al. 2002, 2003b).

During the male removal experiment in the cleaner wrasse L. dimidiatus and the
haremic angelfish C. vrolikii, ripened females with swollen abdomens quickly
initiated male sexual behaviors and spawned in the male role with smaller females
of the harem (Nakashima et al. 2000; Sakai et al. 2003b; Fig. 4.5). It was also
confirmed that large females of the bluehead wrasse T. bifasciatum, whose gonadal
tissues had been surgically removed, exhibited male sexual behaviors just after male
removal (Godwin et al. 1996). In addition, Nakashima et al. (2000) found that
females initiating male sexual behaviors on the day of male removal resumed
female-type sexual behaviors immediately after the original dominant males
returned to the harem. Therefore, sexual behavior can change within an hour or a
few hours. These results suggest that gonadal females can immediately initiate male
sexual behaviors. This implies an important role for the brain and neuroendocrine
mechanisms in promoting behavioral sex changes. Casas and Saborido-Rey (2021)
reviewed environmental cues and endocrinological mechanisms of sex change.

The succession of a sex-changing female to a position after the disappearance of
the dominant male (i.e., the effectiveness of takeover sex change) will depend on the
mating system and social/environmental conditions. In cases where sex changers
have to spend time acquiring mating territories because of competition among males
or developing secondary male morphological characteristics to attract females,
delays in the start of sexual behaviors by sex changers have been reported. In the
case of sex-changing females of the bucktooth parrotfish S. radians, the appearance
of male coloration is followed by the development of male behavior, which is fully
expressed approximately 20 days after the disappearance of the male (Mufioz and
Warner 2003a). In the case of the bluehead wrasse T. bifasciatum, males initially
spent an average of 81 days as non-territorial individuals after changing sex and
required more than 32 days to attain territorial status as terminal-phase males
(Hoffman et al. 1985). Male removal experiments to induce sexual change have
confirmed that the larger the female in Halichoeres melanurus, the more is it likely to
develop male sexual behavior (Sakai et al. 2002). This suggests that the social status
of female individuals, which is related to the ease of acquiring mating territory,
determines whether they should exhibit an early onset of sexual behavior.

Recent studies on social cognitive abilities of cleaner wrasse L. dimidiatus have
confirmed their ability to perceive and recognize a reflected mirror image as self
(mirror self-recognition; Kohda et al. 2019, 2022) and their capability of transitive
inference, that is, logical prediction from previous information (Hotta et al. 2020).
These abilities may contribute to the mechanism of stable maintenance of dominant
relationships among harem members, as well as the detection of changes in the social
situation of nearby harems, affecting the social control of sex change and the
variation in sex change patterns.
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4.8 Future Research Directions

The foregoing results presented on the nature of sex change in various protogynous
fishes were achieved through the excellent observation skills and persistent efforts of
researchers in the empirical and theoretical fields. Field surveys have provided many
insights, and various approaches have been developed, such as empirical studies
using captive and field experiments and the construction of theoretical systems using
mathematical models. We expect that research on fish under natural conditions will
continue to contribute to scientific knowledge in the future. Especially, research to
confirm the relationship between sex change and mating systems in these fish species
is required.

In this chapter, the fish species identified as protogynous were determined based
on Kuwamura et al. (2020). However, even among those identified as bidirectional
sex changers, many species, such as Gobiodon and Trimma gobies, often show
protogynous sex changes. It has been confirmed that social dominance influences the
switch in these sex changers (Sunobe and Nakazono 1993; Nakashima et al. 1996;
Munday 2002), and the phenomenon can be understood as an extension of the sex
change strategies introduced in this chapter. In addition, it has become clear that
many protogynous fishes can reverse sex change in at least 16 species, including
Gobiodon, Lythrypnus, Paragobiodon, Trimma gobies, Dascyllus damselfishes,
Labroides labrid, Epinephelus serranids, Apolemichthys and Centropyge
angelfishes, and Cirrhitichthys hawkfishes (Table 4.4). By comparing this with the
information on mating systems and life histories accumulated in protogynous fishes,
it may be possible to understand the advantages of bidirectional sex change in fish
(see Chap. 5 for details).

4.9 Conclusions

In this chapter, the following topics related to protogynous fishes were introduced

1. Numerous protogynous fishes (at least 314 species from 20 families) have been
reported through histology, aquarium experiments, and field studies. They form
the core of the scientific knowledge related to sex change.

2. The mating system has been documented in 131 protogynous fishes, many of
which are polygynous, including harem polygyny (60 species) and MTV polyg-
amy (60 species). This is consistent with the predictions of the SA model, in
which the sex-change advantage is explained by sexual differences in the changed
characteristics of reproductive success with growth.

3. Histological studies and field surveys have confirmed that two male patterns,
monandry (only males derived from females by sex change: secondary males;
89 species) and diandry (coexistence of secondary males and non-sex-changing
males called primary males; 37 species), emerge in response to harem polygyny
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and MTYV polygamy, respectively, and have been linked to the diversity of male
mating tactics and the strength of female mate choice. Primary males are also
thought to have sexual plasticity as they undergo sex change.

4. Manipulation experiments (57 species) and field observations (11 species) have
confirmed that sex changes frequently occur after the loss of the dominant male
(a total of 60 species).

5. Field studies and rearing experiments focusing on how sex change occurs have
confirmed cases of females changing sex in the presence of males in
18 protogynous species. These include bachelor sex changes, in which a female
abandons reproductive function and becomes a bachelor male (9 species), and
harem-fission sex changes, in which a sex-changing female takes over part of the
original harem (12 species). These tactics are considered to be advantageous for
future reproductive success.

6. Studies on the process of protogynous sex change have confirmed that behavioral
sex change (i.e., male sexual behavior) often occurs earlier than gonadal change,
especially in harem fish. Interspecific differences in the onset of behavioral sex
change can be explained in terms of the immediate availability of females and the
maintenance of mating territories.

7. It has been observed that protogynous fish (at least 16 species) can revert to
females after a sex change (see Chap. 5 for details), indicating potential sexual
plasticity.
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Chapter 5 )
Bidirectional Sex Change in Fishes s

Tatsuru Kadota

Abstract This chapter explains the distribution of bidirectional sex change among
teleost fishes, the social context of bidirectional sex change in each mating system,
and the adaptive significance. Of a total of 481 hermaphroditic fish species, 69 spe-
cies have been confirmed to perform bidirectional sex change. Their mating systems
are size-assortative monogamy, harem polygyny, or male-territory-visiting (MTV)
polygamy. In size-assortative monogamous fish, bidirectional sex change occurs
when a new same-sex pair is formed after movements between social groups
following mate loss. Widowed individuals tend to prefer pairing with a nearby
individual of the same sex rather than moving a longer distance to pair with an
individual of the opposite sex. Therefore, bidirectional sex change can increase the
reproductive value by reducing the risk of movement to seek a new mate. In haremic
and MTV polygamous fish, the size-advantage model predicts protogyny (female-to-
male sex change), but reversed (male-to-female) sex change occurs in some specific
social situations. In haremic fish, males change back to females when they move to a
mating group dominated by a larger male after all females have disappeared from
their mating group. The widowed males need not conduct reversed sex change if
new females or juveniles immigrate to their mating group or when they can take a
female from a neighboring harem. Thus, the widowed males use reversed sex change
as a last resort when they cannot gain new mating opportunities in any other way.
Such a social context is predicted to be more likely to occur in low-density
populations because the number of females in mating groups tends to become
small and immigrations rarely occur. Some field studies have supported this
low-density hypothesis for reversed sex change. In MTV polygamous fish, a small
male, which has performed alternative mating tactics like group spawning, changes
sex to perform pair spawning with a larger male. This sex change would be derived
from the decrease in advantage of alternative tactics owing to decreased population
density.
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5.1 New Prospects Opened by the Discovery
of Bidirectional Sex Change

Sex change (sequential hermaphroditism) is a life-history strategy and usually occurs
in one direction in a species: either protogyny (i.e., female to male) or protandry (i.e.,
male to female). The adaptive significance of these sex-change patterns is explained
by the size-advantage (SA) model (Ghiselin 1969; Warner 1975; see Chap. 1). The
SA model predicts that protogyny will evolve in polygynous mating systems, while
protandry will evolve in random mating. To test this hypothesis, many field studies
on mating systems and sex change were conducted in the 1980s and 1990s. As a
result, a good relationship between the type of mating system and the direction of sex
change was confirmed in many reef fishes (Warner 1984; Nakazono and Kuwamura
1987; Kuwamura et al. 2020; see Chaps. 3 and 4). However, a few research teams
working in the early 1990s discovered bidirectional sex change: the occurrence of
both female-to-male and male-to-female in a species. The discovery that individuals
of some fish species can change sex more than once is impactful because many
ichthyologists had supposed that there were physiological constraints or no selective
advantage in reverting to the original sex (Munday et al. 2010).

Japanese ichthyologists have greatly contributed to the progress of research on
bidirectional sex change (Kuwamura and Nakashima 1998). Tanaka et al. (1990)
were the first to report (although only briefly described) the occurrence of bidirec-
tional sex change, in a protogynous grouper, Epinephelus akaara (Fig. 5.1a), held in
aquaria. Subsequently, Kobayashi and Suzuki (1992) and Sunobe and Nakazono
(1993) confirmed the ability of Cirrhitichthys aureus (Fig. 5.1b) and Trimma
okinawae, respectively, to undergo bidirectional sex change, through aquarium
experiments in which two or more individuals of the same sex were held in a tank.
Bidirectional sex change in a natural population was first reported by Kuwamura
et al. (1994a) from observations of Paragobiodon echinocephalus, a monogamous
goby that lives among the branches of corals. Following that study, many other
monogamous gobies with similar ecology were confirmed to exhibit bidirectional
sex change by field and aquarium experiments (Nakashima et al. 1996; Munday
2002). For haremic fishes, Manabe et al. (2007a) reported bidirectional sex change in
T. okinawae under natural conditions. In Labroides dimidiatus, another haremic fish
well-known for undergoing protogynous sex change once in its lifetime (Robertson
1972), Kuwamura et al. (2011, 2014) succeeded to induce male-to-female sex
change by female-removal experiments in the field. Male-to-female sex change is
termed “reversed sex change” because the predominant pattern of sex change is
protogyny. Reversed sex change has now been confirmed in many polygynous and
protogynous fishes, either under natural conditions or by field/aquarium experiments
(e.g., Kadota et al. 2012; Kuwamura et al. 2016a, 2020; Fukuda et al. 2017; Sunobe
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Fig. 5.1 Epinephelus akaara (a) and Cirrhitichthys aureus (b) are the first and second species in
which bidirectional sex change has been confirmed in aquarium

et al. 2017). Furthermore, reversed sex change in male-territory-visiting polygamy
(MTV polygamy) has been reported in a diandric protogynous wrasse, Halichoeres
trimaculatus, through field observations and aquarium experiments (Kuwamura
et al. 2007). Nonetheless, the existence of bidirectional sex change and reversed
sex change seem to conflict with predictions of the SA model. Thus, solving the
discrepancy has become a critical challenge in studies on sex change in fishes.
This chapter reviews the distribution of bidirectional sex change among teleost
fishes and evaluates the relation between bidirectional sex change and the mating
system or predominant sexual pattern in a species. Next, it gives a brief overview of
aquarium experiments on bidirectional sex change conducted especially to investi-
gate proximate mechanisms controlling sex change and the time required for sex
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change. Finally, the chapter discusses the social context of bidirectional sex change
in each mating system and considers its adaptive significance. A review by Munday
et al. (2010) covered the adaptive significance of bidirectional sex change, possible
proximate mechanisms, and inherent physiological changes. However, since that
review, numerous studies on bidirectional sex change have advanced our knowl-
edge, especially as regards polygynous and protogynous fishes; therefore, those
studies are emphasized here.

5.2 Distribution of Bidirectional Sex Change Among
Teleost Fishes

To date, the ability to undergo bidirectional sex change has been confirmed in
7 families, 15 genera, and 69 species of teleosts (14% of 481 hermaphroditic
species). Bidirectional sex change is most abundant in the Gobiidae (51 species),
followed by in the Pomacanthidae (4 species) and Pseudochromidae (4 species). All
these families belong to the clade Percomorpha (Kuwamura et al. 2020; see Chap. 1).
The percentage of species confirmed to exhibit bidirectional sex change is relatively
high in the families Cirrhitidae (6%), Pomacanthidae (4%), and Gobiidae (4%).
However, the number of species and the percentage in each family represent lower
limits because the sexual patterns of all species have not been investigated.

From investigations in the field and/or aquaria, the mating system has been
reported for just 24 species or less than 35% of species known to exhibit bidirec-
tional sex change (Table 5.1). Size-assortative monogamy is known in nine species,
harem polygyny in nine species, and MTV polygamy in three species. In addition,
two species (Dascyllus aruanus and D. reticulatus) and one species (Halichoeres
trimaculatus) change the mating system between harem polygyny and MTV polyg-
amy and between MTV polygamy and group spawning, respectively. Size-
assortative monogamy is reported only in the Gobiidae, while harem polygyny
and MTV polygamy are reported in various families (harem polygyny, Gobiidae,
Pomacentridae, Labridae, Serranidae, Pomacanthidae, and Cirrhitidae; MTV polyg-
amy, Gobiidae, Pomacentridae, and Labridae; Table 5.1). Harem polygyny is the
most prevalent mating system (46% of 24 spp.; Table 5.1). In these mating systems,
protogyny will be favored according to the SA model (Ghiselin 1969; Warner 1975)
or the growth-rate-advantage model (Iwasa 1991). As predicted by these models (see
Chap. 1), all species whose sexual patterns are confirmed are protogynous.

The evolution of bidirectional sex change could be prevented by distinct
sex-based differences, such as body coloration and general morphology (except
urogenital papilla), because those differences would increase the morphological
changes necessary to shift from one sexual phenotype to the other. Of 69 species
in which bidirectional sex change is confirmed, 62 species lack distinct sex-based
differences. In contrast, bidirectional sex change is reported in at least five sexually
dimorphic species; three species exhibit sexual differences in body color (e.g.,
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Pseudochromis cyanotaenia), and two species in dorsal fin length (e.g., Lythrypnus
pulchellus) (Table 5.1). Thus, at a minimum, dichromatism and minor dimorphism
(such as fin length) would not always play a critical role in preventing the evolution
of bidirectional sex change. In addition, body size would not become a critical factor
for the deterrence. Most species (84%) exhibiting bidirectional sex change achieve
sizes smaller than 10 cm in total length (TL) (e.g., Gobiidae), although bidirectional
sex change was recently confirmed in Epinephelus bruneus and E. coioides which
can attain more than 1 m TL (Table 5.1). The number of fish species confirmed to
undergo bidirectional sex change is increasing, and future research will no doubt
confirm bidirectional sex change in other protogynous species of Percomorpha.

5.3 Bidirectional Sex Change Recorded in Aquaria

Aquarium experiments have been important to the study of bidirectional sex change,
especially research in the 1990s—2000s. In these experiments, two or more individ-
uals of the same sex are housed together, and any change in behavior and/or in the
gonad is observed. These experiments have confirmed bidirectional sex change in
34 species (Table 5.1), which accounts for 49% of all species so far reported to
exhibit bidirectional sex change.

Aquarium experiments (and some field studies) have also revealed that bidirec-
tional sex change can be socially controlled (see Chap. 1). For instance, Sunobe and
Nakazono (1993) reared multiple females of Trimma okinawae in a tank and then
moved any sex-changed individuals to another tank where a larger male was kept. As
a result, the largest female that had changed sex to male while in the first tank
changed sex back to female and spawned with the larger male in the second tank.
Furthermore, Kuwamura et al. (2002) confirmed that the smaller individuals of
Labroides dimidiatus behaved as female and released eggs in tanks where two
males were kept. These studies show that individuals would change sex as a
consequence of their position in a social hierarchy based on relative body size. Of
32 species exhibiting bidirectional sex change, the same rule of larger individuals
being males and smaller individuals being females is known for at least 27 species
(Table 5.2). However, this rule does not apply to Trimma kudoi: in this species, the
smaller female in groups of two females, and the middle-sized female in groups of
three females, change sex to male (Manabe et al. 2008). Furthermore, larger males
change sex to female in groups of two males. A new version of the SA model
(Muiioz and Warner 2003, 2004; see Chap. 4) predicts that the largest female does
not necessary change sex to male if the largest female’s fecundity is markedly higher
than the combined fecundity of all other females in the group (meaning her expected
reproductive success after sex change). The patterns of sex change observed in
T. kudoi could be explained by the new version of the SA model if the mating
system and the social conditions associated with the sex change were clarified
(Manabe et al. 2008).
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Furthermore, aquarium experiments (and a few field studies) have revealed the
time required for bidirectional sex change (Ts). Although Ts varies with species, Ts
for male-to-female sex change (median 23.5 days, range 5-81 days, n = 21 species)
tends to be longer than Ts for female-to-male sex change (median 14.5 days, range
3-35, n = 22 species; Mann—Whitney U test, P < 0.05). Of the 18 species for which
aquarium experiments and/or field studies confirmed the Ts for both directions,
15 species required longer Ts for male-to-female sex change (Table 5.2). When
looking at variation among species, species of Trimma, Priolepis, and Lythrypnus
have a shorter Ts in male-to-female sex change (median 18.1 days, range 8-67,
n = 14) compared with other species (64.0 days, range 5-81, n = 7, Mann—Whitney
U test, P < 0.05), although no significant difference in Ts for female-to-male sex
change was detected between the former group (median 12.8 days, range 3-35,
n = 14) and the others (median 16 days, range 628, n = 8; Mann—Whitney U test,
P > 0.05). These differences in Ts are suggested to be affected by gonad types
(Munday et al. 2010). Trimma, Priolepis, and Lythrypnus retain the gonad of a
delimited type (Table 5.2), wherein ovarian and testis tissues are separated by a thin
cellular wall. The ovarian and testis tissues proliferate or regress, depending on the
functional sex of the individual. The delimited type of gonad, which retains a
regressed gonad region of either male or female tissue, is considered an adaptation
to reduce the amount of gonad to be newly produced, hence shortening the Ts. Body
size or metabolic rate has recently been suggested to also affect Ts (Tokunaga et al.
2022); however, it is unknown which factor most strongly affects the Ts because of
multicollinearity between gonad type and body mass in the species for which Ts has
been confirmed. Additional sex-change experiments, particularly with small-sized
species having non-delimited gonads or with large-sized species having delimited
gonads, are required to fill these data gaps and so inform our understanding of how
Ts is determined in fishes.

Aquarium experiments have helped to reveal a species’ ability to undergo
bidirectional sex change, including the proximate cues and the time required for
the sex change. However, the adaptive significance of bidirectional sex change
cannot be wholly understood based on aquarium experiments only, since the
frequency and process of bidirectional sex change by fish in aquaria will not
necessarily reflect those under natural conditions. For instance, subordinate
males might be obligated to change sex when held in an aquarium because these
males cannot escape interference by the dominant males, whereas subordinate
males could adopt alternative tactics under natural conditions. Munday et al.
(2010) state the need to prioritize studies of bidirectional sex change under natural
conditions in the field, to document the occurrence of this sexual pattern and better
understand its adaptive significance. Therefore, we need to observe the process of
bidirectional sex change under natural conditions to discern especially the social
context.
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Fig. 5.2 Paragobiodon
echinocephalus: a
monogamous fish with
bidirectional sex change
(photo by T. Kuwamura)

5.4 Bidirectional Sex Change in Monogamous Fish

Bidirectional sex change in monogamy has been revealed in detail in Paragobiodon
echinocephalus (Fig. 5.2; Kuwamura et al. 1994a), a goby that lives among branches
of the coral Stylophora pistillata. Although two or more fish often inhabit a large
coral, only the largest two fish in the coral consistently breed monogamously.
Though the size of mature individuals is about 2—4 cm TL, the sizes of a male and
female in a breeding pair are approximately the same (i.e., size-assortative monog-
amy). Pairs usually spawn in the afternoon, and the eggs hatch around sunset about
5 days afterward (at a water temperature of 25 °C). Until hatching, the male guards
the eggs against predators such as crabs cohabiting the host coral.

Kuwamura et al. (1994a) investigated P. echinocephalus associated with corals
within a 20 m x 20 m area on the fringing reef of Sesoko Island, Okinawa, Japan, for
3 years, and confirmed 48 cases of female-to-male sex change and 24 cases of male-
to-female sex change under natural conditions. Of these transitions, the social
context was revealed in 24 cases of the former and 10 cases of the latter. Both
directions of sex change occurred when a new same-sex pair formed by movement
between host corals after mate loss. The larger individual changed sex in most
female—female pairs, whereas the smaller individual underwent sex change in most
male—male pairs. In addition, female-to-male sex change occurred when a female—
juvenile pair formed. In all cases, the sex change resulted in the formation of pairs
consisting of a larger male and a smaller female. The reproductive success of
P. echinocephalus pairs is limited by the smaller individual because the female’s
fecundity is limited by her body size and the male can guard no more than one clutch
spawned by the female of similar body size (Kuwamura et al. 1993). In addition,
females grow much faster than their mates in the nonbreeding season (growth-rate
advantage) (Kuwamura et al. 1994a). Thus, the smaller individual in new pairs ought
to be female to catch up with body size of the larger individual and increase the
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Fig. 5.3 Sex change and movements of Paragobiodon echinocephalus between host corals in a
field experiment. The symbols represent nine males and nine females that belonged to pairs from
which one partner was removed. The arrows connect the new pairs formed by the end of the
experiment. The direction of the arrow indicates which individual left its host coral (base of the
arrow) to form the new pair (end of the arrow). Filled symbols represent the original sex of
individuals that changed sex after the formation of a new pair. P unmanipulated pairs, / immature
fish, four of which (encircled 1) later matured and bred with the unmated fish. A male and a female
(symbols with broken arrows) came from outside the experimental area and bred with the exper-
imental fish. (Modified from Nakashima et al. 1995)
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reproductive success after their own or their partner’s sex change. Bidirectional sex
change is also confirmed under social conditions similar to that of P. echinocephalus
in other size-assortatively monogamous gobies, such as Gobiodon spp. (Nakashima
et al. 1996; Munday et al. 1998).

Nakashima et al. (1995) conducted a field experiment to reveal the adaptive
significance of bidirectional sex change in P. echinocephalus (Fig. 5.3). The
researchers removed either males or females in existing pairs, creating two adjoining
areas inhabited by only males and only females. Thus, the “widowed” individuals,
which had lost their immediate mating opportunity, were forced to choose to pair
with an opposite-sex individual following long-distance movement or else to pair
with a same-sex individual after short-distance movement. As a result, five of nine
bachelor females and four of nine bachelor males changed sex after pairing with
nearby same-sex individuals. Because predation risk is relatively high for small coral
reef fishes, individuals would be particularly vulnerable to predation during move-
ments outside the host coral. In addition, nearly all suitable host coral colonies were
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occupied by a P. echinocephalus breeding pair, with very few single mature
individuals in the population (Kuwamura et al. 1994b). Therefore, bidirectional
sex change enables this goby species to pair with close-neighboring individuals
regardless of their sex when individuals lose their mating opportunities, which
would increase their reproductive value (i.e., the expected future reproductive
success, taking into account the effects of growth and mortality: Munday et al.
2006) by reducing the risk of movement to seek a new mate (risk-of-movement
hypothesis: Nakashima et al. 1995). The same advantage of bidirectional sex change
(decreased risk of movement to seek a mate) was also shown by field experiments in
another size-assortatively monogamous goby inhabiting corals, Gobiodon histrio
(Munday et al. 1998). Bidirectional sex change with the same suggested advantage
was further observed in a size-assortatively monogamous goby inhabiting rocky
reefs, Priolepis akihitoi (Manabe et al. 2013; Fukuda and Sunobe 2020).

Which factors (growth-rate advantage for females during the non-breeding season
or risk of movement to seek a mate) are more strongly attributed to bidirectional sex
change in coral-dwelling gobies? A field experiment to answer this question has
been conducted in G. histrio. Munday (2002) created four social conditions:
(1) female—female pairs; (2) male-male pairs; (3) heterosexual pairs where the
male is larger than the female; (4) heterosexual pairs where the female is larger
than the male. If the growth-rate advantage is the primary factor driving bidirectional
sex change, the larger individual, smaller individual, and both individuals are
predicted to change sex in the first, second, and fourth social conditions, respec-
tively. In addition, neither individual should change sex in the third social condition.
However, only the first three (1-3) of the predicted outcomes were observed in the
experiment. Even in field studies in P. echinocephalus, simultaneous sex change of
both mates did not occur when a larger female and a smaller male formed a new pair
or when a female became larger than her mate (Kuwamura et al. 1994a). These
studies show the risk of moving among spatially isolated habitat patches and the low
probability of finding a mate have been more important than sex-specific differences
in growth rates to the evolution of bidirectional sex change in coral-dwelling gobies.
In short, risk-of-movement hypothesis can explain why bidirectional sex change
occurs in the coral-dwelling gobies, whereas growth-rate advantage can explain
which individual should change sex in homosexual pairs.

5.5 Reversed Sex Change in Haremic Fish

5.5.1 Social Conditions and Adaptive Significance
of Bidirectional Sex Change in Haremic Fish

Bidirectional sex change in polygynous fish under natural conditions was first
confirmed in Trimma okinawae (Fig. 5.4a; Manabe et al. 2007a). This small goby
(<30 mm standard length) inhabits cave ceilings, rock slopes, holes, or the underside
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Fig. 5.4 Haremic fishes with reversed sex change; Trimma okinawae (a) (photo by T. Sunobe),
Cirrhitichthys falco (b), and Dascyllus reticulatus (c)
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of table corals, where they feed on planktonic copepods. The mating system of this
species is polygyny, consisting of a single dominant male and one to six females. In
this system, the larger males tend to have larger mating groups. Males maintain a
spawning site within their territories, and females visit there to spawn in the
morning. After spawning, males stay within the spawning site and guard the eggs,
while females return to their respective home ranges (Sunobe and Nakazono 1990).
As predicted by the SA model, protogyny would be favored in T. okinawae because
the mating system of this species is polygyny, where larger males monopolize the
mating opportunities, like in other haremic protogynous fishes.

Manabe et al. (2007a) conducted scuba observations of 7. okinawae at Kago-
shima Prefecture, Japan, for 16 months. They set two study areas along a cliff face at
a depth of 4—7 m and investigated changes in spatial distribution and sex. As a result,
22 instances of female-to-male sex change and three instances of male-to-female sex
change were observed. Of these instances, the social context was revealed in
14 instances of the former, and in all three instances of the latter. The most typical
pattern of female-to-male sex change involved the largest female in a mating group
changing sex after the disappearance of males. Sex change under this social context
is called “takeover sex change,” and it has been confirmed in a range of haremic
protogynous fishes, including Labroides dimidiatus and Centropyge ferrugata (see
Chap. 4).

Manabe et al. (2007a) reported that all three observed instances of male-to-female
sex change occurred in widowed males. In the first case (Fig. 5.5a), a male became
widowed after the only female in his group disappeared, and 7 days after the mate
loss, the male moved to a neighboring polygynous group whose male was larger than
it and the widowed male then changed sex. In the second case (Fig. 5.5b), a female
became solitary by moving from a harem to a vacant site and thereafter changed sex;
later, it returned to the original group and changed back to female. In the third case
(Fig. 5.5¢), a female changed sex to become a solitary male after all members of her
group disappeared. Thereafter, that solitary male changed sex back to female
following the immigration of a larger male and two females.

Male-to-female sex change in 7. okinawae appears to be consistent with the SA
model (Manabe et al. 2007a; Munday et al. 2010). This model predicts that an
individual should change sex when the reproductive value of the other sex exceeds
that of its present sex. Given this, it is thought that bidirectional sex change will
likewise be favored if the reproductive value between the sexes changes more than
once during a lifetime (Fig. 5.6; Nakashima et al. 1995). In T. okinawae, male
reproductive success is generally higher than that of a female when the body size is
larger, because of polygynous mating whereby larger males monopolize mating
opportunities to the detriment of smaller ones (Fig. 5.6). However, the reproductive
success of a male decreases to zero if it immigrates into a mating group with a larger
male after the loss of its mate or if a larger male immigrates into its mating group. In
those situations, the larger dominant male would exclude the smaller male from
reproducing as a male in the new group, but the smaller male could reproduce as a
female. In other words, reproductive success as a female is expected to be greater
than that as a male. Thus, reversed sex change would be one tactic used by widowed
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males to improve their mating success. Recently, reversed sex change was likewise
observed in a similar social context in the closely related Trimma grammistes
(Fukuda et al. 2017).

Can reversed-sex-changed individuals really acquire mating opportunities? In
Trimma, it is difficult to directly observe spawning behavior because the species
spawn in holes on rocky reefs, but sex in these species can be determined by the
shape of the urogenital papilla. Thus, whether the reversed-sex-changed individuals
get mating opportunities was not exactly confirmed in 7. okinawae and
T. grammistes (Manabe et al. 2007a; Fukuda et al. 2017). Nonetheless, the question
can be answered by studies of fish that produce pelagic eggs, which allows confir-
mation of functional sex by collection of gametes in the water (Shapiro et al. 1994).
Hawkfish are pelagic spawners that inhabit coral and rocky reefs, and at least two
species, Cirrhitichthys aureus and C. falco, were shown to undergo bidirectional sex
change, in aquarium experiments and field observations, respectively (Kobayashi
and Suzuki 1992; Kadota et al. 2012).

Cirrhitichthys falco is one of the smallest cirrhitids (max. 6 cm SL) and is widely
distributed on coral reefs in the Pacific Ocean, from the Philippines to Hawaii. The
mating system of this species is harem polygyny, consisting of a single dominant
male and one to seven females (Donaldson 1987). Females maintain territories



5 Bidirectional Sex Change in Fishes 165

Fig. 5.6 Conditions for the
evolution of reversed sex Group 1
change, associated with

relationships between body
size (or age) and 8|
reproductive success in

males and females. Groups

1 and 2 show the Q il
relationship before and after = 7
movements, respectively; if _= -
a male moves to a new
group dominated by a larger move
male, its reproductive b
success will be improved by etween groups
changing sex back to
female. (Modified from » | CGrouP 2
Nakashima et al. 1995) g

Q

5

@ &

]

>

=

Qo

2 o

A

-

Q. s

Q i

o _ -

o
Size (age)

against adjacent females for food resources (Kadota et al. 2011). Males often visit
female territories to court, and spawning occurs after sunset (Donaldson 1987;
Kadota et al. 2011). Kadota et al. (2012) conducted a 3-year demographic survey
of a population of C. falco at Kuchierabu Island, southern Japan, and observed
reversed sex change in two instances. In both cases, all the females disappeared from
the harem and the neighboring males expanded their territories to encompass the
territories of the widowed males, which changed sex (Fig. 5.7). The sex changers
spawned with the neighboring males, with the release of eggs being confirmed by
egg collection. The sex changers spawned almost every day, and their frequency of
spawning was not significantly different from that of other females. Field experi-
ments have also confirmed eggs produced by a reversed sex changer in other pelagic
spawners (e.g., L. dimidiatus and C. ferrugata: Kuwamura et al. 2011, 2014). Thus,
reversed sex change was confirmed under natural conditions as a tactic to improve
reproductive success for widowed males, as predicted by the SA model (Fig. 5.6).
The risk-of-movement hypothesis would apply to small haremic fish as well. In
C. falco, the reversed sex changers did not alter the location of their territories to any
large degree after the sex change (Fig. 5.8; Kadota et al. 2012). This means that
reversed-sex-changed individuals can acquire mating opportunities without any
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Fig. 5.7 Reversed sex change in Cirrhitichthys falco observed on a reef. Thick, thin, and broken
lines represent male territories, female territories, and juvenile home ranges, respectively. The
shading represents the territory of sex changers. The total length (mm) of each individual is given
in parentheses. ND no data. (Modified from Kadota et al. 2012)
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Fig. 5.8 Position of territories before and after reversed sex change in Cirrhitichthys falco, as
observed on a reef. Panels (a) and (b) represent the individuals shown in Fig. 5.7a and b,
respectively. Thick and thin lines represent territories before (when male) and after (female) sex
change, respectively. (Modified from Kadota et al. 2012)
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a) L. dimidiatus 2009 b) L. dimidiatus 2010

c) C. ferrugata 2009 d) C. ferrugata 2010
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i

Fig. 5.9 Original sites and the emigration of widowed males in female-removal experiments on
coral reefs; site names are designated with capital letters; arrows indicate the movements of the
males in the field experiments. Labroides dimidiatus in 2009 (a) and 2010 (b); Centropyge
ferrugata in 2009 (c) and 2010 (d). (Modified from Kuwamura et al. 2011)

movements. Kuwamura et al. (2011) conducted female removal experiments in
L. dimidiatus and C. ferrugata and revealed the process of pair formations between
widowed males. Four and two male-male pairs in the field experiments were
confirmed in L. dimidiatus and C. ferrugata, respectively. These new male—male
pairs were formed with the nearest or second-nearest male in both species (Fig. 5.9).
These studies indicate that, in haremic fish, the risk of predation that is associated
with searching for a new mate of the opposite sex is reduced by changing sex.
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5.5.2 Low-Density Hypothesis for Reversed Sex Change

Reversed sex change has been identified in at least 11 haremic fishes including fish
whose mating system changes between harem polygyny and MTV polygamy.
However, the reversed sex change was confirmed under natural conditions in only
four of the species: T. okinawae, T. grammistes, Dascyllus reticulatus, and C. falco.
In the other species, reversed sex change was recorded based on field/aquarium
experiments or histological evaluation of the gonads. Considering the numerous
field studies that have been conducted on sex change in haremic protogynous fish
(see Chap. 4), reversed sex change seems to have been too rarely confirmed. In fact,
although reversed sex change was shown through field/aquarium experiments, it was
never observed under natural conditions in some species for which long-term field
experiments have been conducted—such as in field studies of L. dimidiatus
conducted for approximately 2 years at Heron Island, Great Barrier Reef (Robertson
1972), and at Funakoshi Canal, Shikoku Island, Japan (Sakai et al. 2001), and for
5 years at Shirahama, Honshu Island, Japan (Kuwamura 1984).

The rare occurrence of reversed sex change could be attributable to the densities
of studied populations (Kuwamura et al. 2002). Because these population densities
are often relatively high, with the number of females in a harem therefore compar-
atively large, then widowed males would rarely occur, and reversed sex change
would consequently not be present to observe. However, facultative monogamy may
occur in low-density populations of haremic species (Moyer et al. 1983; Barlow
1984; Petersen 2006). Thus, it is predicted that reversed sex change would happen in
low-density populations because widowed males are likely to occur (i.e.,
low-density hypothesis for reversed sex change: Kuwamura et al. 2002, 2011,
2014). In addition, the theoretical model indicates that not only risk of movement
but also the number of females in harems (population density) will influence
decision-making by widowed males in favor of reversed sex change, because the
benefit of being male is reduced under small harem size (Sawada et al. 2017).

Of the four studies where reversed sex change was confirmed in the wild, at least
that of C. falco supports the low-density hypothesis. In the study site at Kuchierabu
Island, which is located near the northern distributional limit of C. falco, recruit-
ments of small individuals including juveniles were not abundant (Kadota et al.
2012). Furthermore, the mean number of females within harems was maintained at
around just 2.2 individuals, as harem-fission sex change (see Chap. 4) occurred when
the number increased to 4 or more females. A survey of the mating system of this
species in several locations in the Pacific (e.g., Guam, Miyake-jima, Lizard Island)
reported the mean number of females in a harem at 2.9 individuals (Donaldson
1987); thus, the number recorded at Kuchierabu Island is smaller than that at other
areas studied. In addition, the harem sizes of C. falco appear to be somewhat smaller
in comparison to other haremic and protogynous fish in which reversed sex change
has not been observed in nature despite long-term studies. For example, the mean
harem size was 2.5-6.0 in L. dimidiatus (Robertson 1974; Kuwamura 1984; Sakai
et al. 2001) and 2.3-3.0 in Centropyge angelfishes (Moyer and Nakazono 1978;
Aldenhoven 1986; Sakai and Kohda 1997).
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The low-density hypothesis for the reversed sex change in protogynous species
predicts the following process of how reversed sex change occurs (Kuwamura et al.
2014): (1) females will sometimes disappear from monogamous pairs, and males
will become single; (2) widowed males will wait or move to search for a new mate if
no migration of females into their territories occurs, whereas they need not move if
migration occurs; (3) moving males will choose a new mate from among the nearest
individuals, whether male or females because of the cost or risk of father movement;
and (4) when two males form a pair, the smaller will change sex to female according
to the rule of social control. To confirm these predictions, Kuwamura et al. (2014)
repeatedly removed some or all females from the harems in the study area and
created 48 pairs and 56 widowed males in L. dimidiatus. The disappearance of
females from monogamous pairs was observed, and the disappearance rates did not
differ between sexes in the monogamous pairs. In addition, the widowed males
moved to form pairs with nearby single fish only when no immigration occurred.
Afterward, when two males formed a pair, the smaller changed sex to female. This
process supports the predictions of the low-density hypothesis for reversed sex
change.

Another interesting field experiment supporting the low-density hypothesis is that
of Dascyllus aruanus (Kuwamura et al. 2016a). This coral-dwelling damselfish
exhibits protogynous sex change in harems on isolated corals, as the SA model
predicts. In contrast, sex change rarely occurs (i.e., gonochorism) in high-density
populations inhabiting continuous coral-covered habitat (Cole 2002; Asoh 2003;
Kuwamura et al. 2016a), where females can choose mates with low risk of move-
ment. So far, reversed sex change has been confirmed by mate-removal experiments
on isolated coral heads under low-density conditions only (Kuwamura et al. 2016a).

Furthermore, these studies indicate reversed sex change is unlikely to be the best
tactic for widowed males to regain mating opportunities. In field experiments
involving L. dimidiatus (Kuwamura et al. 2014), of 56 widowed males that were
created by female removals, 36 males did not move when females and/or juveniles
immigrated into their territories (Fig. 5.10); moreover, 13 males did not move
despite no such immigration occurring. Only six males moved or expanded their
territories when no immigration occurred; of these six, three males behaved as
females, and two of them completed sex change. In the study of C. falco, a dominant
male was observed to experience widowed status twice, in addition to the cases
mentioned above (Kadota et al. 2012). This male regained mating opportunities
following the immigration of a female into his territory or by taking a female from a
neighboring harem. These studies show that widowed males use reversed sex change
as a last resort when they cannot gain new mating opportunities by the immigration
of females into their territories or by winning new females from another male’s
harem.

Not all instances of reserved sex change in 7. okinawae appear to correspond to
the low-density hypothesis for reversed sex change. Of the three instances (Manabe
et al. 2007a), a male changed sex to female after mate loss (Fig. 5.4a), while another
male changed sex after undergoing early sex change (Fig. 5.4b). In the third case, it
was not understandable why the widowed female changed to male (Fig. 5.4c). The
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Fig. 5.10 Summary of female-removal experiments on a coral reef to create low-density conditions
for the haremic Labroides dimidiatus. Numbers in parentheses indicate the number of cases
observed. (Drawn from the data of Kuwamura et al. 2014)

first case corresponds to the low-density hypothesis, but the second case does not.
Some studies have suggested early sex change is favored in populations character-
ized by a large harem size and high density (see Chap. 4). This social condition
favoring early sex change would be opposed to that favoring reversed sex change.
Therefore, the case of reversed sex change in males derived from early sex change
can be explained by the low-density hypothesis if the population density drastically
changes from high to low.

Ecological conditions driving bidirectional sex change might differ somewhat
between small haremic gobies like Trimma and other haremic fishes. Ts (time
required for sex change; Table 5.2) is considerably shorter in Trimma compared
with in labroids and pomacanthids, and the relatively short time means higher sexual
flexibility in Trimma. Sexual flexibility is suggested to be affected by reliability in
male reproduction by a comparative study between the gobies Lythrypnus dalli and
L. zebra (St. Mary 1996). Lythrypnus zebra, which has a shorter Ts, has shorter nest
longevities of the males than those of L. dalli, although reproduction as a male is
equally advantageous relative to adopting the female role in both species (i.e., the
rates of spawning by males to females are similar). Thus, reversed sex change in
small haremic gobies with the gonad of delimited type might be a tactic more
adapted in response to greater temporal fluctuations in population densities, while
in other protogynous fishes with the gonad of non-delimited type, the reversed sex
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change would be a tactic for low-density populations with more peripherally dis-
tributed individuals. Interestingly, reversed sex change in Trimma is suggested to
evolve from gonochoristic ancestors through evolution of bidirectional sex change in
monogamous species (Sunobe et al. 2017), while reversed sex change in the other
groups is suggested to evolve from protogynous ancestors (Kuwamura et al. 2014,
2016a), which can reflect difference of primary factor driving bidirectional sex
change.

Recently, a new pattern of reversed sex change was reported in D. reticulatus
(Fig. 5.4c; Sakanoue and Sakai 2022). The mating system of this damselfish is MTV
polygamy in short-branching corals (short-branch group) but becomes haremic in
long-branching corals (long-branch group) (Sakanoue and Sakai 2019). Sakanoue
and Sakai (2022) suggest that moving from a short-branching coral to a long-
branching coral would be a particularly important life-history strategy in this dam-
selfish because the spawning frequency of females utilizing the long-branch coral
group is approximately three-times as high as females using the short-branch coral
group. Moreover, the species’ survival rate tends to be higher when occupying a
coral of the long-branch group as opposed to the short-branch group. Interestingly, a
female could conduct cryptic bachelor sex change, promoting her rapid growth (see
Chap. 4), when in a short-branch coral, and then acquired mating status as a female
again in a long-branch coral via the sequential processes of group migration and
reversed sex change. This reversed sex change is beyond what could be predicated
by the low-density hypothesis and indicates the possible existence of a greater
variety of reversed sex change patterns than we have previously expected.

In general, reversed sex change occur in low-density condition in haremic fish
and risk-of-movement to seek a new mate is important in the evolution. These points
are very similar to bidirectional sex change in monogamous fish. However, haremic
fish tend to avoid conducting reversed sex change as much as possible (i.e., widowed
males use reversed sex change as a last resort when they cannot gain new mating
opportunities in any other way). Furthermore, some social conditions of reversed sex
change in haremic fish have not been observed in monogamous fish. Males derived
from early sex change or cryptic bachelor sex change have been observed to change
back to female only in haremic fish. Although we have not known enough about
these new types of reversed sex change, these differences could be derived by the
difference between mating systems because male reproductive success relative to
female in haremic fish is considerably higher and more variable than that in
monogamous fish.

5.6 Bidirectional Sex Change in Male-Territory-Visiting
(MTYV) Polygamy

Bidirectional sex change in MTV polygamy has been reported in the threespot
wrasse Halichoeres trimaculatus (Fig. 5.11; Kuwamura et al. 2007). Two types of
males have been identified among many hermaphroditic labrids, including
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Fig. 5.11 Halichoeres trimaculatus: a MTV polygamous fish with bidirectional sex change (photo
by T. Kuwamura). Its body coloration changes from initial phase (a) to terminal phase (b) with the
increase of body size. Group spawning (c) is one of alternative tactics in H. trimaculatus

H. trimaculatus, wherein primary males function as male for their entire lives, and
secondary males derive from females through sex change (diandry; Suzuki et al.
2008, 2010; Kuwamura et al. 2016b). In this species, coloration of the small primary
male is similar to that of females (i.e., drab; initial phase or IP; Fig. 5.11a), whereas
large males, either primary or secondary, assume bright coloration (terminal phase or
TP; Fig. 5.11b). Small IP males are non-territorial and participate in group spawning
involving multiple IP males and a single female (Fig. 5.11c), streaking by rushing
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into a spawning pair at the moment of gamete release or sneaking (pair spawning)
with a female around the territories of TP males. Large TP males establish mating
territories and pair-spawn with visiting females.

Mark-recapture research on H. trimaculatus was conducted on the fringing reef of
Sesoko Island for 18 months, and sex change of a primary IP male was observed
(Kuwamura et al. 2007). This male performed group spawning, streaking, and
sneaking during summer in the first year. In the next spring, however, the shape of
its urogenital papilla changed to female, and the fish performed pair spawning with a
TP male. A gamete cloud was visible at the spawning rush and the abdomen of the IP
fish became slender, indicating it had completed the male-to-female sex change.
Furthermore, five and one instances of sex change to females were confirmed by
aquarium experiments in IP and TP males, respectively (Kuwamura et al. 2007).

Sex change of an IP male is suggested to be affected by population density
(Kuwamura et al. 2007). Generally, in the major mating sites on larger reefs,
group spawning is predominant by mating groups composed of multiple IP and
TP males, because TP males cannot drive out IP males that invade their territories. In
contrast, on smaller reefs, pair spawning by TP males becomes predominant, as IP
males have few mating opportunities. The proportion of IP males is reported to
increase with the local population size or reef size (Warner and Hoffman 1980;
Suzuki et al. 2010). Kuwamura et al. (2007) infer the population density would have
decreased because the mortality of the studied fish was extremely high before sex
change of the IP male. This may have resulted in large territorial TP males success-
fully excluding small IP males from mating. The IP male can change sex to female
due to a loss of mating opportunities as a male. Reversed sex change would be a
tactic to adapt to changing reproductive success of alternative tactics according to
population density.

5.7 Future Research Directions

Reversed sex change has been reported in species with size-assortative monogamy,
harem polygyny, and MTV polygamy. In these mating systems, protogyny is
predicted to be favored by the SA model or the growth-rate advantage model. In
monogamous fishes and haremic fishes, widowed males change back to female to
regain mating opportunities and increase reproductive value through decreasing the
risk of movement to seek new mates. In the monogamous gobies, nearly all suitable
coral colonies are occupied by a breeding pair and there are few single mature
individuals (Kuwamura et al. 1994b; Nakashima et al. 1995; Munday 2002). This
situation indicates that mating opportunities for widowed individuals are consider-
ably restricted, which would be similar to the situation in a low-density population of
haremic species. Even in haremic fish, reversed sex change would occur in
low-density populations where facultative monogamy is likely to occur (Kuwamura
et al. 2002, 2014; Kadota et al. 2012; Sawada et al. 2017). Furthermore, low-density
condition can drive male-to-female sex change of primary male in MTV polygamous
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fish by decreasing reproductive success of alternative tactics (Kuwamura et al.
2007). The low-density conditions, where few mating opportunities are expected
and simultaneous hermaphrodites are favored (see Chap. 2), would also influence
sexual flexibility in sequential hermaphroditism (Kuwamura et al. 2020). The list of
species in which reversed sex change can occur has been growing as a result of
aquarium and field experiments. However, evidence of reversed sex change under
natural conditions has been limited to the Gobiidae (Kuwamura et al. 1994a; Manabe
et al. 2007a; Fukuda et al. 2017), Pomacentridae (Sakanoue and Sakai 2022), and
Cirrhitidae (Kadota et al. 2012). Field studies of species under low-density condi-
tions can be expected to recognize sexual flexibility in sequential hermaphroditism
and reveal the missing link between simultaneous hermaphrodites and sequential
hermaphrodites.

The process and advantage of reversed sex change in teleosts has been studied by
focusing on changes in the social condition to which the sex changer belonged.
However, to clarify the relationship between reversed sex change and other mating
tactics, it will be necessary to direct our attention to the social conditions of new
groups to which sex changers move and to their surroundings (e.g., number of
females in new groups, distance between the groups). Although reversed sex change
is a tactic to regain mating opportunity when males have lost all their mates,
widowed males do not always change back to female (Kadota et al. 2012;
Kuwamura et al. 2014). In addition, the variation in time required for widowed
males to form new pairs with other males is reported to be considerably large in
Labroides dimidiatus and Centropyge ferrugata (Kuwamura et al. 2011). These
studies suggest that the loss of mating opportunities for males is not the only factor
driving reversed sex change but that other factors must be considered. Furthermore,
males derived from early sex change or cryptic bachelor sex change have been
confirmed to conduct reversed sex change (Manabe et al. 2007a; Sakanoue and Sakai
2022). The study of reversed sex change now merits elucidation of the decision-
making of widowed males. Aquarium experiments using small gobies such as
Trimma could be effective in clarifying this, as a first step. In Trimma and related
genera, the Ts for male-to-female sex change is considerably shorter when compared
with that of other fish with non-delimited gonads. In addition, these gobies display
various patterns of the mating system and sexual pattern (Sunobe et al. 2017).
Furthermore, not only reversed sex change after the disappearance of all females
in a mating group but also early sex changers were observed under natural conditions
(Manabe et al. 2007a).

In MTV polygamy, a small male, which had performed alternative mating tactics
like group spawning, changed sex and performed pair spawning with a TP male.
This sex change would be derived from a decreased advantage of alternative tactics
because of a decrease in the population density (Kuwamura et al. 2007). Notably, a
similar explanation of reversed sex change could also be applied to larger-sized fish
like groupers, to which the risk-of-movement hypothesis would not apply. Continu-
ing research on this topic is expected because the number of reports on reversed sex
change in MTV polygamy is currently limited.
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5.8 Conclusions

This chapter introduced the following topics related to bidirectional sex change
in fish

1.

The ability to undergo bidirectional sex change has been confirmed in 7 families,
15 genera, and 69 species (14% of 481 hermaphroditic species), through aquar-
ium experiments, field studies, and histological analyses. Confirmations of bidi-
rectional sex change are most abundant in the Gobiidae (51 species), followed by
in the Pomacanthidae (4 species) and Pseudochromidae (4 species). All these
families belong to the clade Percomorpha.

. Aquarium experiments have revealed that bidirectional sex change is socially

controlled. In many of these experiments in which two or more individuals of the
same sex are held in a tank, larger females change sex to males while smaller
males change back to females, according to their position in a social hierarchy
based on relative body size.

. In size-assortative monogamous fish, bidirectional sex change occurs when new

same-sex pairs are formed after movements between social groups following
mate loss. Widowed individuals tend to prefer pairing with a nearby individual of
the same-sex rather than undertaking long-distance movement to pair with an
opposite-sex individual. The ability of bidirectional sex change would increase
their reproductive value by reducing the risk of movement to seek a new mate.

. In haremic fish, in which protogyny is predicted by the SA model, males change

back to females when all females disappear from the mating group, and they then
move to a mating group dominated by a larger male. However, widowed males do
not conduct reversed sex change when females or juveniles immigrate into their
mating group or when they can take a female from a neighboring harem. Thus,
widowed males use reversed sex change as a last resort when they cannot gain
new mating opportunities in any other way, which is more likely to occur in
low-density populations, because the number of females in a mating group tends
to become small and immigrations rarely occur, as shown by some field studies.

. In MTV polygamous fish, a small male, which has performed alternative mating

tactics like group spawning, changes sex to perform pair spawning with a TP
male. This may have resulted in large territorial TP males successfully excluding
small TP males from mating owing to the decrease in population density.
Reversed sex change would be a tactic to adapt to changing reproductive success
of alternative tactics according to the population density.

. The low-density conditions, where few mating opportunities are expected and

simultaneous hermaphrodites are favored would also influence sexual flexibility
in sequential hermaphroditism. However, research observations of reversed sex
change under natural conditions are limited to the Gobiidae, Pomacentridae, and
Cirrhitidae. Field studies of populations under low-density conditions are
expected to recognize sexual flexibility in sequential hermaphroditism and to
inform the link between simultaneous hermaphrodites and sequential
hermaphrodites.
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and Tatsuru Kadota

Abstract This chapter provides a database of hermaphroditic fishes and references.
The database includes, for each species, the type of hermaphroditism, method of
confirmation (evidence), mating system, habitat, references, and remarks.
Kuwamura et al. (2020) reported 461 species as functional hermaphroditic fishes;
21 species were added, and one species was deleted in this database.

Keywords Bidirectional sex change - Functional hermaphroditism - Protandry -
Protogyny - Reversed sex change - Simultaneous hermaphroditism - Teleost fish
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As explained in Kuwamura et al. (2020), we searched original papers on hermaph-
roditic fish species using references of review papers (e.g., Nakazono and
Kuwamura 1987; Devlin and Nagahama 2002; Sadovy de Mitcheson and Liu
2008) and by Internet searches (mainly by Google Scholar) entering keywords
such as hermaphroditism, sex change, protogyny, and protandry, along with names
of known hermaphroditic taxa (orders/families/genera). For each species, the type of
hermaphroditism, method of confirmation (evidence), mating system, habitat, refer-
ences, and remarks were recorded.

A database of hermaphroditic fish species is presented in Appendix. Order and
family names are arranged following Nelson et al. (2016) and genus and species in
alphabetical order within each family and genus, respectively. Species name and
habitat are based on FishBase (https://www.fishbase.in). When a different genus or
species name was used in the reference, it is shown in the Remarks. To determine if
hermaphroditism was confirmed or not in each species, we applied the criteria for
functional hermaphroditism following Sadovy and Shapiro (1987) and Sadovy de
Mitcheson and Liu (2008), i.e., detailed gonadal histological series ideally illustrated
with photomicrographs that show various stages of sexual transition (as examples),
simultaneous occurrence of mature testicular and ovarian tissues in gonads, or field
or aquarium observations of gamete release and/or sexual characteristics (e.g., shape
of urogenital papilla) in identified individuals. Moreover, histological observation on
transition of gonad-associated structures could be used to determine the occurrence
of sex change (Cole and Shapiro 1990; Sunobe et al. 2017), and microscopic or
macroscopic observation of eggs and sperm is also useful to confirm sexual matu-
ration. For species for which functional hermaphroditism has been suggested by
weak evidence, the type of hermaphroditism is marked with a question mark and the
rationale is noted in the Remarks. The database has been modified from Table S1 of
Kuwamura et al. (2020) by adding 23 species (2 with question marks) and deleting
1 species.

Appendix Database of Hermaphroditic Fish Species

(Modified from Table S1 of Kuwamura et al. 2020)


https://www.fishbase.in
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