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Abstract In today’s clinical diagnosis of dental patients, skeletal maturity assess-
ment is a unique bio-marker. The bone age assessment (BAA) method is use to iden-
tify endocrinological as well as growth abnormalities by contrasting the patient’s 
bone age and actual age. A number of approaches for determining skeletal maturity 
have been devised; however, the two most significant approaches that employ left 
hand and wrist radiographs are the Tanner-Whitehouse and Greulich-Pyle methods 
as mentioned in. While these approaches are well known, they are exceedingly time-
consuming and need a skilled radiologist who would have to assess the bone age 
using a hand atlas as a guideline every time. In our paper, we use convolutional neural 
networks (CNNs) to successfully predict the maturity of bone age from hand X-ray 
images of patients aged 4–17 years old. The examination effort of radiologists, for 
example, is a restriction of manual clinical processes. Since the manual methods are 
subjected to observer variability, developing computer-aided and automated systems 
for bone age evaluation is advantageous. We compare the existing deep convolu-
tional neural networks (DCNNs) like VGG16, VGG19, inception models to our own 
custom regression model in this paper. 

6.1 Introduction 

Medical image analysis is an important component of a diverse variety of diag-
nostic choices in the healthcare system [1]. In recent decades, digital patient infor-
mation preservation has allowed machine learning and computer vision to help 
in the diagnosis and identification of the most serious illnesses. Currently, the 
majority of healthcare systems rely on radiologists to assess various types of medical 
imaging. The major issue is the radiologist’s limitations in terms of speed and lack of 
knowledge, resulting in an incorrect diagnosis. Furthermore, financial expenditures 
become a matter of concern for radiologist training or outsourcing. Following these
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factors, implementing a trustworthy, precise, scalable, and efficient machine learning 
technique might considerably enhance radiological image processing [2]. 

Traditional machine learning approaches, as illustrated in [3], do not give adequate 
results when dealing with medical imaging, according to experts, as the data must 
be optimized by a domain expert prior to the deployment of a problem-solving 
algorithm. However, deep learning, a relatively emerging niche of artificial neural 
networks, provides for learning as well as the identification of eminent features 
from an adequate training data set by utilizing the network’s increased layers. Deep 
learning, which includes a multilayered network known as CNN, offers a wide range 
of applications in evaluating complicated patterns in raw radiological images. Deep 
CNN (DCNN) frequently necessitates a large amount of terminal resources, there-
fore, the graphical processing unit (GPU) becomes a handy tool for its execution [4– 
6]. Furthermore, because of the large number of parameters in the model, effective 
DCNN training could not be done with a small data set. 

Physicians and endocrinologists frequently analyse chronological age and skeletal 
age as it aids in identification of various disorders which can result in defective 
development, especially in newborns. The use of bone age assessment (BAA) could 
be beneficial in the case of predicting the period during which a child will grow, 
the age when they will reach puberty, and even the maximum height. It is used to 
track the growth of children undergoing treatment for conditions that impair the 
same. Following the above assessment of bone age is also very useful for identifying 
people who do not have proper identification. 

6.2 Methodology 

The appearance of hand bone radiograph pictures is determined by a variety of 
factors. In this section, we describe our method for estimating bone age. 

6.2.1 Data Set Selection 

Although the bulk of studies on this topic used data from the GP digitized atlas of 
radiographs, the publicly available data set from Kaggle designed for the bone age 
prediction challenge was used largely because it included up-to-date radiographs. The 
Radiological Society of North America (RSNA) collected the data, which comprised 
of approx. 12,000 radiographs of the hand up to the wrist. Each individual radiograph 
in the collection is labelled with proper bone age by a skilled radiologist. The bones 
range in age from 1 to 228 months. The data set collection comprises approx. 5000 
female and 6500 male radiographs.
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6.2.2 Data Pre-processing 

Despite a large number of samples available, the resolution, orientation, brightness, 
and contrast among many radiographs vary significantly. In addition, different factors 
such as timepieces, plaster casts, and surgical screws, as well as the L or R alphabet, 
are visible (left or right-hand label). Several images feature left and right hands, as 
well as hands containing missing fingers. This imbalanced data distribution makes the 
data pre-processing complex and conventional approaches, such as image segmen-
tation, would not yield suitable results A sample image of data pre-processing result 
is shown in Fig. 6.1. 

6.2.2.1 Frequency Check and Data Augmentation 

Certain age groups in the original data set had far fewer images than others. Excess 
images were removed to achieve uniformity, and ages with fewer images (e.g. 4, 
16, 17) were augmented [7]. The augmentation process included brightening and 
zooming. Overfitting may occur due to a lack of training data, which relates to the 
poor performance of the network on test data despite acceptable training results. 
Successful regression needs data augmentation, which is performed by randomly 
brightening and zooming pictures. 

6.2.2.2 Background Noise Removal 

Background noise was removed using the following steps:

● Binary thresholding with a threshold value of 20. Python’s OpenCV module was 
used for this purpose.

Fig. 6.1 Before and after pre-processing 
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● Finding contours—which detects colour changes in images and marks them as 
contours. Placing these contours on plain black image yields new images with 
less background noise [7]. 

6.2.2.3 CLAHE 

Contrast Limited Adaptive Histogram Equalization (CLAHE) technique employs 
adaptive histogram equalization (AHE). Due to the black and grey backgrounds of 
some of the radiographs, normal AHE has a typical problem of producing too much 
noise in areas that are quite uniform. To prevent this noise, we use CLAHE, which 
extends standard AHE by preventing over amplification of certain locations as shown 
in [8]. Python OpenCV package includes this function. Due to the considerable range 
in brightness and contrast in the radiographs, we applied CLAHE to the training and 
testing sets to see if it had any positive influence on the model. 

6.3 Custom Model 

6.3.1 Model Architecture 

The convolutional layer, pooling layer, dropout layer, and dense layer are the layers 
in our convolutional neural network. The estimated bone age predicted by the model 
is the final output. A comprehensive explanation of the layers can be seen in [9]. 
Refer to Fig. 6.2 for the architecture.

6.3.2 Approaches 

6.3.2.1 Classification 

Our first approach was classification. Each image was assigned to one of the 11 
classes (as shown in Table 6.1). When the images were classified, the number of 
images in each class varied greatly. As discussed earlier, data augmentation was 
carried out as part of the process of equalizing the number of images in each class. 
We obtained 2000 images per class after augmentation. As a result, a new data set 
was created. A custom model was trained on these 22,000 images, yielding a 53.12% 
accuracy (refer Figs. 6.2, 6.3 and 6.4).
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Fig. 6.2 Loss for 
classification

Table 6.1 Segregating into 
classes 

Class name Age (in years) 

c00 4 and below 

c01 5 and  6  

c02 7 

c03 8 

c04 9 

c05 10 

c06 11 

c07 12 

c08 13 

c09 14 

c10 15 and above

6.3.2.2 Regression 

Regression was our second approach. Regression was a method of predicting a contin-
uous quantity, in which the model predicts a discrete value, but the discrete value 
in the form of an integer quantity, and the final output of which is the bone age. 
In this method, 5413 images from the original data set were chosen at random. 
After pre-processing, the new data set contained 6044 images (5413 images from 
the original data set + 631 images obtained from augmentation), yielding approxi-
mately 450 images for each age. The custom model was trained on the data set with 
an 85/15 training/validation split. MAPE, MSE, and MAE are evaluation metrics
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Fig. 6.3 Accuracy for classification 

Fig. 6.4 Model architecture

used to predict bone age. This is the approach we have used for our final bone age 
prediction and in the rest of the paper. 

6.4 Experiments 

In this section, we test the custom model with various loss functions and compare 
the custom model with DCNNs such as VGG16, VGG19, and Inception v3 [10]. 

6.4.1 Loss Functions 

As we know, the loss function measures how accurately a model will predict the 
expected outcome. The loss function outputs the loss, which is a measure of how
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Fig. 6.5 Actual age versus 
predicted age plot with MAE 
as loss function 

Table 6.2 Metric values for 
each loss function on the 
custom model 

Loss functions Custom model 

MAE MAPE MSE 

MAE 20.24 17.61 629.87 

MSE 17.31 18.62 548.90 

Huber 13.89 13.16 349.52 

accurately the model predicts final bone age. The selection of an efficient loss function 
was important for training our custom model. 

6.4.1.1 MAE 

MAE will never be negative because we are always considering the absolute value of 
the errors. MAE will be less beneficial if we are concerned about our model’s outlier 
predictions. The large errors caused by outliers are weighted the same as the smaller 
errors. As a result, we get a few catastrophic predictions (refer Fig. 6.5). The metric 
values for this loss function on the custom models are presented in Table 6.2. 

6.4.1.2 MSE 

To compute the MSE, the difference is squared among the model’s predictions and 
true values and finally averaged over the whole data set. Since the errors are always
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Fig. 6.6 Actual age versus predicted age plot with MSE as loss function 

squared, MSE will never be negative (Fig. 6.6). The metric values for this loss 
function on the custom models are presented in Table 6.2. 

6.4.1.3 Huber 

The best of both worlds, MSE and MAE are offered by Huber Loss which acts by 
balancing the MSE and MAE together. The Huber loss function was proved to give 
the best results for our custom model. When compared Huber loss function with 
other loss functions such as MAE and MSE, Huber loss function proved to be more 
effective (refer Fig. 6.7). The Metric values for this loss function on the custom 
models are presented in Table 6.2.

6.4.2 Comparing with Pre-trained Models 

6.4.2.1 VGG16 

VGG16 is a CNN model which consists of 16 layers. It was trained on the ImageNet 
data set comprising 14 million images divided over 1000 classes. The model achieved 
an accuracy of 92.7% for the top-5 test set. Figure 6.8 is the scatter plot obtained 
after applying VGG16. Using this model, we achieved an MAE of 16.77 (refer Table 
6.2).



6 Skeletal Bone Age Determination Using Deep Learning 57

Fig. 6.7 Actual age versus predicted age plot with Huber as loss function

Fig. 6.8 Actual age versus predicted age plot for VGG16
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Fig. 6.9 Actual age versus predicted age plot for VGG19 

6.4.2.2 VGG19 

VGG19 is a CNN model which consists of 19 layers, and it is a variant of VGG. 
Figure 6.9 is the scatter plot obtained after applying VGG19. We achieved an MAE 
value of 14.80 with VGG19 (refer Table 6.2). 

6.4.2.3 Inception V3 

Inception is a CNN model developed by Google. Inception v3 is Google Inception’s 
third version. Figure 6.10 is the scatter plot obtained after applying Inception v3. 
Using this model, we achieved an MAE of 35.66 (refer Table 6.3).

6.5 Conclusion 

Bone age has already been utilized as a diagnostic and therapeutic indication. More-
over, bone age may be used to predict pubertal peak height velocity and menarche 
timing. In this study, we created a unique DNN model for determining bone age 
automatically. In summary, we used a set of X-ray pictures to perform classification 
and regression to estimate bone age. Using 6044 pictures, the MAE value for bone 
ages using our own model was 13.89, VGG-16 was 16.769, VGG-19 was 14.80, and 
Inception v3 was 35.66.
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Fig. 6.10 Actual age versus predicted age plot for Inception v3 

Table 6.3 Comparison of 
metrics between our model 
and various state-of-the-art 
models 

Models MAE MSE MAPE 

Inception v3 35.66 1706.74 27.80 

VGG16 16.77 460.69 13.65 

VGG19 14.80 355.1 13.00 

Our custom model 13.89 349.52 13.16
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