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1 Introduction 

Feasible or implementable maneuver design and evaluation is an indispensable area 
of research in the aerospace control fraternity. Literature rarely emphasizes the feasi-
bility of the chosen desired trajectory or path. Among the ones that contemplate 
feasibility, optimization is the most prevalent approach, with one being an opportune 
byproduct of the other [1]. Optimization-based control design like model predictive 
control (MPC) when implemented on real-time systems requires strictly guaran-
teed convergence and heavy computational resources mainly for high-performance 
aerospace applications. Besides, such integration of optimization and control ques-
tions the reliability of controls in real-time implementation with modeled and 
unmodeled uncertainties, process, measurement noise, etc. [1]. 

Most practical applications merely need a feasible solution rather than an optimal 
one. The recent introduction of computational guidance and control [1, 2] further 
provokes the importance of an alternate methodology to obtain feasible solutions. 
But there are very few non-optimal feasible maneuver design techniques discussed 
in the literature. Trajectory generation based on analytically solving trim solutions 
is proposed in [3]. Besides being cumbersome, this method does not give explicit 
solutions and does not contemplate on stability. In [4], appropriate control inputs 
pertaining to the reference trajectory are obtained by solving the system’s dynamical 
equations. This is just a validation procedure and relies on trial-and-error for obtaining 
a feasible reference trajectory. 

Maneuver design based on bifurcation analysis has been attempted in [5] using  
continuation algorithm, AUTO2000. This work generates feasible solutions and uses 
two trim points between which state variables are switched, to achieve the maneuver.
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This method does not perceive trajectory design as a whole and continuation algo-
rithms using AUTO2000 are highly dependent on the initial conditions and are 
computationally demanding. This significantly limits the applicability of this method-
ology. But with the recent development of MATLAB® embedded continuation algo-
rithms like MATCONT [6], a direct continuation methodology for constrained system 
analysis has been proposed which significantly overcomes the complexity of the 
continuation procedure [7]. 

This work uses the bifurcation-based continuation technique to compute feasible 
solutions for different maneuvers regarded for autonomous operations of strato-
spheric airship. The computed solutions take into account the complete dynamics 
of the considered airship model with its state and control constraints. Some of the 
challenging aspects of stratospheric airship like ascending, descending, and hovering 
with a minimal lateral excursion are interpreted and validated. 

The paper is structured as follows. Section 2 presents the mathematical modeling 
of the considered six degrees-of-freedom stratospheric airship model. Section 3 elab-
orates the numerical description of bifurcation analysis for multi-input multi-output 
dynamical systems. Maneuver design for various flight conditions like a level straight, 
level turn, hover, ascend, and descend is discussed in Sect. 4. Simulation for the vali-
dation of formulated maneuvers is carried out in Sect. 5. Section 6 concludes the 
paper. 

2 6-DoF Aircraft Equations of Motion 

This work considers an airship at an operational altitude of 21 km. Such airships 
are called high altitude or stratospheric airships as they operate in the stratospheric 
regime of the atmosphere. Airships in this regime face minimal intrusions from 
other aerial vehicles and provide better remote sensing due to their proximity to the 
ground. Reusability along with its greener, cheaper and quieter operations, makes 
stratospheric airship an effective platform for surveillance, atmospheric measure-
ments, disaster management, and space tourism. Though real-time implementation 
of low altitude airships is uncomplicated, mainly in ascend and descend phases, 
stratospheric airships have strategic advantages like low magnitude wind speed as 
inferred from the global atmospheric wind profile [8] and extensive geographic area 
coverage, which serves enormous applications. 

The considered airship is Gertler shaped with a hull filled with helium gas and 
ballonets filled with air to regulate the internal pressure of airship. A cruciform 
tail configuration at the rear serves as the control actuator for the airship. The fin 
deflections of four arms are characterized as elevator (δe), aileron (δa), and rudder 
(δr ) angles as illustrated in Fig. 1 for the ease of incorporation in aerodynamic model 
of the airship. Resultant of fin deflections that generates pitch, yaw, and roll forces 
and moments are defined as elevator (δe), aileron (δa), and rudder (δr ) angles as 
tabulated in Eqs. (1)–(3),
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Fig. 1 Rear view of tail 
configuration 

Port Starboard 

δe = 
δ1 + δ2 − δ3 − δ4 

4 
(1) 

δr = 
−δ1 + δ2 + δ3 − δ4 

4 
(2) 

δa = 
δ1 + δ2 + δ3 + δ4 

4 
(3) 

Structural analysis, stability, and control derivatives and inertial values of the 
airship were extensively evaluated in [9]. Six degrees-of-freedom modeling of airship 
should consider inertial, aerodynamic, gravitational, buoyant, and propulsive forces. 
In this work, equations of motion of airship are derived with components along the 
wind axes frame with origin, o at the center of volume (CV). Airship equations 
of motions are similar to that of aircraft except for the influence of buoyant force 
on translational and rotational dynamic equations. Buoyant force along with virtual 
mass and inertia terms has a significant influence on the dynamic equations, whereas 
translational and rotational kinematic equations are the same as that of aircraft, as 
tabulated in Eqs. (4)–(9) [10] 

ẋE = V cos α cos β(cos ψ cos θ ) 
+ V sin β(cos ψ sin θ sin φ − sin ψ cos φ) 
+ V sin α cos β(cos ψ sin θ cos φ + sin ψ sin φ) (4) 

ẏE = V cos α cos β(sin ψ cos θ ) 
+ V sin β(sin ψ sin θ sin φ + cos ψ cos φ) 
+ V sin α cos β(sin ψ sin θ cos φ − cos ψ sin φ) (5) 

żE = V cos α cos β(− sin θ ) + V sin β(cos θ sin φ) 
+ V sin α cos β(cos θ cos φ) (6) 

φ̇ = p + q sin φ tan θ + r cos φ tan θ (7)
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θ̇ = q cos φ − r sin φ (8) 

ψ̇ = sec θ (q sin φ + r cos φ) (9) 

2.1 Buoyant and Gravitational Terms 

The buoyant force acts along −ZE axis, whereas gravitational force acts along 
+ZE axis. On using the transformation matrix as contemplated in [10], buoyant 
and gravitational forces

(
Fbg

)
are transformed from inertial axes system to wind 

axes system. 

Fbg = 

⎡ 

⎣ 
0 
0 

mg − B 

⎤ 

⎦ 

E 

= 

⎡ 

⎣ 
−(mg − B) sin γ 

(mg − B) cos γ sin μ 
(mg − B) cos γ cos μ 

⎤ 

⎦ 

W 

(10) 

Moment generated on the airship due to buoyant and gravitational terms
(
Mbg

)

is illustrated in [8]. 

Mbg = 

⎡ 

⎣ 
−(mgaz + Bbz) sin φ cos θ 

−(mgaz + Bbz) sin θ − (mgax + Bbx ) cos φ cos θ 
(mgax + Bbx ) sin φ cos θ 

⎤ 

⎦ (11) 

2.2 Aerodynamic and Control Terms 

Aerodynamic and control force and moment act along the stability axes of the system. 
Thus on transforming it in wind axis frame, aerodynamic force (Fa) is given by 

Fa = 

⎡ 

⎣ 
−D 
Y 

−L 

⎤ 

⎦ 

S 

= 
1 

2 
ρV 2 S 

⎡ 

⎣ 
−CD cos β + CY sin β 
CD sin β + CY cos β 

−CL 

⎤ 

⎦ 

W 

(12) 

Similarly, aerodynamic moment vector (Ma) is given by 

Ma = 

⎡ 

⎣ 
L 
M 
N 

⎤ 

⎦ = 
1 

2 
ρV 2 S 

⎡ 

⎣ 
bCl 

cCm 

bCn 

⎤ 

⎦ (13)
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2.3 Propulsive Terms 

The propulsive system consists of a symmetric pair of thrusters on the aft of CV. The 
thruster on the port and starboard sides of airship is represented by Tp and Ts, and 
they are inclined at an angle ζp and ζs, respectively. In this work, it is assumed that the 
direction of tilt angles and magnitude of thrust along both port and starboard sides 
are identical. The coordinates of both thrusters are

(
dx , dy, dz

)
as shown in Fig. 2. 

The propulsive force along body axes frame is 

Fp = 

⎡ 

⎣ 
Ts cos ζs + Tp cos ζp 

0 
−(

Ts sin ζs + Tp sin ζp
)

⎤ 

⎦ 

B 

= 

⎡ 

⎣

(
Ts + Tp

)
cos ζ 

0 
−(

Ts + Tp
)
sin ζ 

⎤ 

⎦ 

B 

(14) 

On transforming the force from body to wind axes system, Eq. (14) becomes 

Fp = 

⎡ 

⎣

(
Ts + Tp

)
cos ζ cos α cos β − (

Ts + Tp
)
sin ζ sin α cos β 

−(
Ts + Tp

)
cos ζ cos α sin β + (

Ts + Tp
)
sin ζ sin α sin β 

−(
Ts + Tp

)
cos ζ sin α − (

Ts + Tp
)
sin ζ cos α 

⎤ 

⎦ 

W 

(15) 

Similarly, moment due to propulsive system
(
Mp

)
is given by

Fig. 2 Geometry of propulsive system 
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Mp = 

⎡ 

⎣

(
Tp sin ζp − Ts sin ζs

)
dy 

Tp(dz cos ζp − dx sin ζp) + Ts(dz cos ζs − dx sin ζs)(
Tp cos ζp − Ts cos ζs

)
dy 

⎤ 

⎦ 

= 

⎡ 

⎣

(
Tp − Ts

)
sin ζ dy(

Tp + Ts
)
(dz cos ζ − dx sin ζ )(

Tp − Ts
)
cos ζ dy 

⎤ 

⎦ (16) 

Assumptions that are incorporated based on design aspects of the airship are 

(1) Symmetric about xz plane with both center of buoyancy (CB) and center of 
gravity (CG) in that plane, i.e., ay = by = 0. 

(2) CV coincides with CB, i.e., ax = az = 0 and CB is above CV, i.e.,bx = 0. 
(3) Thrusters are assumed to be positioned below CV, therefore, dx = 0. 
(4) This work also assumes non-differential thrust and angle, i.e., Ts = Tp = T /2 

and ζs = ζp = ζ . 
(5) Neutral buoyancy is considered throughout the entire flight regime. 
(6) Airship is considered an open system, with mass remaining constant and volume 

varying with the inflation and deflation of ballonets. 

Based on these assumptions and the derived terms, Newton’s second law of motion 
is applied to each degree-of-freedom [8]. Translational and rotational dynamic 
equations are subsequently arrived at and are presented in Eqs. (17)–(22). 

ṗ =
(
Jy − Jz 

Jx

)
qr +

(
Jxz  
Jx

)
pq −

(
Bbz 
Jx

)
sin φ cos θ + 

1 

2Jx 
ρV 2 SbCl (17) 

q̇ =
(
Jz − Jx 

Jy

)
pr +

(
Jxz  
Jy

)(
r2 − p2

)

−
(
Bbz 
Jy

)
sin θ +

(
T 

Jy

)
dz cos ζ + 

1 

2Jy 
ρV 2 ScCm (18) 

ṙ =
(
Jx − Jy 

Jz

)
pq −

(
Jxz  
Jz

)
qr + 

1 

2Jz 
ρV 2 SbCn (19) 

V̇ = 
1 

mx 
(T cos β(cos ζ cos α − sin ζ sin α) 

− 
1 

2 
ρV 2 S(CD cos β − CY sin β) − (mg − B) sin γ

)
(20) 

α̇ = q − 
1 

cos β 
{(p cos α + r sin α) sin β 

+ 
1 

Vmz 
(T cos ζ sin α + T sin ζ cos α 

+ 
1 

2 
ρV 2 SCL − (mg − B) cos μ cos γ

)}
(21)
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β̇ = (p sin α − r cos α) + 1 

Vmy 
(−T sin β(cos ζ cos α − sin ζ sin α) 

+ 
1 

2 
ρV 2 S(CY cos β + CD sin β) + (mg − B) sin μ cos γ

)
(22) 

3 Direct Continuation Methodology for Constrained 
Dynamical Systems 

The dynamics of most real-world systems could be captured by a set of ordinary 
nonlinear first order differential equations of form 

ẋ = f (x, u) (23) 

where x ∈ Rn is the state vector of n variables and u ∈ Rm is the control vector of m 
variables. For a six degrees-of-freedom aerial vehicles, state and control vectors are 
given by x = [V, α, β,  p, q, r, φ, θ ]T ∈ R8 and u = [η, δe, δa, δr ]T ∈ R4, respec-
tively. Dynamical stability evaluation of such a multi-input multi-output system 
using time simulation is ineffective. It would involve numerous combinations of 
control parameters with an infinite loop of initial condition dependency. Numerical 
continuation-based bifurcation methodology is an effective alternative to analyze 
such systems. This approach computes a series of steady states called equilibrium 
or trim solutions by simultaneously solving the algebraic equations for each control 
parameter by setting ẋ = 0 in Eq. (23). Stability of the system at each trim solution is 
also interpreted by calculating eigenvalues from its corresponding Jacobian matrix. 
Thus, characterizing the system locally gives a picture of global dynamics of the 
system. 

The continuation approach solves Eq. (23) as a function of a single control param-
eter called continuation parameter, while retaining all other control parameters at a 
fixed value. The remaining control parameters called free variables could be tactically 
used to satisfy a set of constraints that defines a flight condition or maneuver. This 
is illustrated in Eq. (24), where s ∈ u is the continuation parameter and p ∈ u ∈ R3 

are free variables. 

ẋ = f (x, s, p) (24) 

This results in control schedules with respect to continuation parameter to satisfy 
the imposed constraints. It also helps in gauging the achievability of imposed 
constraints with the available control effort. It is notable that the number of constraint 
equations should not exceed m − 1 and free variables should have a significant 
influence on the constraint variables. Such constrained system analysis helps in the 
performance evaluation of maneuvers and in feasible maneuver design [11, 12]. A
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recent development of direct continuation methodology for constrained system anal-
ysis [7] using MATCONT toolbox in MATLAB® substantially reduces the compu-
tational complexity and initial condition dependency. Thus, this methodology has 
been utilized to extend the capabilities of bifurcation-based continuation technique 
to trajectory design, feasibility evaluation, and optimization. 

4 Maneuver Design with Feasibility Evaluation 

This section evaluates different maneuvers for the autonomous operation of airship. 
At the operational altitude, airships may need to follow a straight level flight or exhibit 
turn maneuvers. Gauging the performance of turn maneuvers also helps in serving 
some of the major functionalities of airship like station-keeping. Besides analyzing 
the performance of airship at its pressure altitude, it is also important to assess its 
behavior during ascend and descend phases which are the challenging aspects of 
stratospheric airship platform. This section, therefore, evaluates the performance of 
airship in level, turn, ascend, and descend maneuvers. This section assumes neutral 
buoyancy and zero tilt angle for thrusters in level flight conditions. 

4.1 Straight and Level Flight Maneuver 

This section generates successive trim solutions for straight and level flight condition. 
These trims correspond to airship flying in straight line at pressure altitude with 
zero sideslip and wings level conditions. These conditions transcribe as constraint 
equations specified in Eq. (25). 

γ = 0; β = 0;φ = 0 (25) 

These three constraints are satisfied by freeing three control variables. Control 
variables to be freed should be appropriately chosen such that they have substantial 
effect on constraints. In this case, η, δr , and δa are freed to satisfy constraints on γ,  β, 
and φ, respectively. In the bifurcation plots in Fig. 3, solid lines represent stable trim 
solutions and dotted lines correspond to unstable trim solutions. Thus, it could be 
inferred that Hopf bifurcation occurs at the state and control trim vectors specified 
in Eqs. (26) and (27), respectively, with velocity in m/s and angles in degrees. The  
instability is caused due to divergence of pendulum mode at higher velocities. 

x = [15.7686, − 0.3912, 0, 0, 0, 0, 0, − 0.3912]T (26) 

η = 0.2307, δe = 1.0657, δa = 0, δr = 0 (27)
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Fig. 3 Bifurcation plots for straight and level flight maneuver 

Airship is an underactuated system with eight state variables and four control 
variables. Thus, choosing a stable trim as a maneuver design criterion helps in main-
taining the integrity of the system even in the presence of parametric and nonpara-
metric uncertainties. These set of trim solutions also help in selecting an optimal 
maneuver considering the complete dynamics of the system. For example, from the 
bifurcation plots, minimum energy straight and level flight maneuver corresponds to 
η = 0.128 and δe = 7.5◦, whereas minimum time straight and level flight maneuver 
corresponds to η = 0.23 and δe = 1.05◦. Thus, based on the applicability desired 
maneuver could be chosen from a set of stable trim solutions. 

4.2 Level Turn Maneuver 

Most of the studies on aircraft turn performance consider zero-sideslip bank-to-
turn maneuvers. But in contrary, attainable bank angle computed from standard 
bifurcation analysis for maximum aileron deflection is only about ±5◦, whereas skid 
angle for maximum rudder deflection is ±30◦ which makes skid-to-turn an effective 
alternative for airships. The inherent limitation of roll in airship is also evident from 
[13] where roll angle is limited to ±5◦ and [14] ignores roll from airship equations 
of motion. This is typically attributed to the dependency of airship on buoyancy 
for lifting as dynamic lift force is less. In addition, location of center of buoyancy 
is above the center of gravity which nullifies the moment about the roll axis [14]. 
This ascribes as an advantage on the functionality of airship, as payload for various 
applications is usually earth-pointing. Thus, this paper deals with level skid-to-turn 
maneuver design and evaluation for airship. On corollary, performance evaluation of
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turn maneuvers also results in an effective hover control strategy. Most applications 
of airship demand hovering at a stationary position coordinate. Airship is neutrally 
stable at hover condition, thereby making hover stabilization an important aspect of 
its control design. 

The constraint equations for the evaluation of turn maneuvers are chosen 
prudently, such that the constraints are achievable by the available control capa-
bilities. As sideslip angle corresponding to maximum rudder deflection is ±30◦, 
sideslip angle of −25◦ with zero flight path and roll angle are considered for illustra-
tion. This choice of higher sideslip angle could help in characterizing the performance 
of airship by evaluating its maximum possible turn rate and minimum possible turn 
radius. Thus 

γ = 0; β = −25◦;φ = 0 (28) 

As in straight and level flight maneuver, η, δr , and δa are freed to satisfy constraints 
on γ,  β, and φ, respectively. As inferred from the bifurcation plots in Fig. 4, Hopf 
bifurcation occurs at the state and control trim vectors specified in Eqs. (29) and (30), 
respectively, with velocity in m/s and angles in degrees. But this trim corresponds to 
enforced throttle ratio of 1.2253, which an airship is incapable of achieving as the 
required thrust is more than the maximum available thrust. The onset of this instability 
is characterized by the pendulum mode becoming unstable at higher velocities. 

x = [16.5822, − 1.6291, − 25, 0.0320, 0, 1.1248, 0, − 1.6291]T (29) 

η = 1.2253, δe = 5.4214, δa = −3.3578, δr = −19.5993 (30)

In Fig. 5, turn rate (ω) is computed by solving rotational kinematic equation of 
yaw rate

(
ψ̇

)
[Eq. (9)] and turn radius (R) is obtained by dividing velocity of the 

airship by turn rate, i.e., R = V /ω. On thorough perusal of Figs. 4 and 5, it could 
be inferred that the maximum possible fastest turn and minimum possible tightest 
turn corresponds to elevator deflection of about 20◦, with consideration on state 
and control limitations (δr reaches its saturation limit nearly after δe = 20◦). Thus, 
maximum turn rate and minimum turn radius are approximately 1◦/s and 730 m, 
respectively. It is also noteworthy that the tightest turn demands comparatively a 
higher thrust.

4.3 Ascend and Descend Maneuvers 

This section formulates feasible ascend and descend trajectories, emphasizing lateral 
excursions minimization with considerations on state and control constraints. The 
buoyant force experienced by the airship is given by
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Fig. 4 Bifurcation plots for level turn maneuver
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Fig. 5 Performance of level turn maneuver
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B = U (h)ρ(h) (31) 

where U is the volume of the body and ρ is the mean density of air surrounding the 
body. The envelope of airship could handle only small differential pressure. Internal 
pressure is regulated using ballonet system to maintain zero static lift, i.e., B = W 
throughout the flight regime. Airship is considered an open system with ballonets 
open to the atmosphere. Thus, change in ballonet’s volume during ascend and descend 
changes the volume of the system with the mass of airship remaining constant. 

Airship employing thrust vectoring exhibit enhanced ascend and descend perfor-
mance. Thus, the vector angle for ascend is taken as 45◦, based on exhaustive flight 
testing performed on the Airship Industries Skyship 500/600 series [8]. To achieve a 
minimum time ascend, maximum flight path angle and maximum available power, 
Pm is utilized. With the assumption that the propeller and motor efficiency is 1, 
maximum available thrust, Tm is given by 

Tm = Pm/V (32) 

The constraints for minimum time ascend is given by 

γ = 10◦; β = 0; φ = 0; η = 1; ζ = 45◦ (33) 

During ascend, ρ has a nonlinear variation with respect to the body’s altitude. This 
variation affects the dynamic pressure of airship which in turn affects the aerodynamic 
forces and moments. Thus, change in ρ is adapted by inducing it in control vector 
and using it as a continuation parameter. For the constraints specified in Eq. (33), 
δe, δa , and δr are freed. Since, constraints on lateral directional variables are zero, 
trim values of lateral directional controls, δa and δr are zero, thus, p and r are as well 
zero. Elevator control schedule with maximum available thrust and longitudinal state 
variables are plotted in Fig. 6. It could be inferred that the Hopf bifurcation occurs at 
the state and control trim vectors specified in Eqs. (34) and (35), respectively, with 
density in kg/m3 , velocity in m/s, and angles in degrees. 

x = [16.6446, 1.3431, 0, 0, 0, 0, 0, 11.3926]T (34) 

η = 1, ζ  = 45, δe = −12.3505, δa = 0, δr = 0, ρ  = 0.1557 (35)

This minimal time ascend maneuver demands a substantial lateral air space of 
around 100 km, which is difficult to ensure in the air traffic zone. The lateral excur-
sion is largely reduced by imparting a skid angle, which results in a helical ascend 
trajectory with radius of helix corresponding to the induced skid angle. A larger skid 
angle reduces the radius of turn but it must be ensured that the proposed skid angle is 
achievable by the available control efforts. For helical ascend maneuver, constraints 
are chosen as
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Fig. 6 Response for minimal time ascend

γ = 10◦; β = 5◦; φ = 0; η = 1; ζ = 45◦ (36) 

Control schedules and the response of state variables for the considered helical 
ascend are plotted in Figs. 7 and 8. Hopf bifurcation occurs at the state and control 
trim vectors specified in Eqs. (37) and (38), respectively, with density in kg/m3 , 
velocity in m/s, and angles in degrees. 

x = [16.0369, 1.4108, 5, 0.0652, 0, − 0.3203, 0, 11.4991]T (37) 

η = 1, ζ  = 45, δe = −13.7454, δa = 0.4804, δr = 7.0004, ρ  = 0.1550 (38)

Both minimal time and helical ascend maneuvers with ζ = 45◦ and η = 1 
become unstable at a density of around 0.15. This corresponds to an altitude of about 
16,670 m, which is conveniently above the air traffic zone and other intrusions. 
Velocity also shoots up to its maximum allowable value. This demands a change 
in approach to ensure the stability of airship after the airship reaches an altitude of 
16,670 m. 

Minimal lateral excursion need not be considered a hard constraint above an alti-
tude of 16,670 m, aiding zero skid angle consideration. Exerting maximum available 
thrust during ascend increases the velocity of airship as inferred from Figs. 6 and 8. 
This calls for curbing the velocity below its maximum value to ensure safety. Thus, a 
constraint in velocity of 13.5m/s  is considered with γ = 3◦. The tilt angle is brought 
back to zero. This results in the constraint equations given by
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Fig. 7 Control schedule for helical ascend 
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Fig. 8 Response of state variables for helical ascend

V = 13.5m/s; γ = 3◦;β = 0; φ = 0; ζ = 0 (39) 

η and δe are freed to achieve constraints on V and γ with the maximum available 
thrust taken to be 6000 N. It is also evident that δa and δr are zero to achieve zero 
skid and roll angle. Response of non-zero state and control variables with respect to
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Fig. 9 Response for longitudinal only maneuver with constraints on V and γ 

the specified set of constraints is depicted in Fig. 9. From the plots, it is inferred that 
the flight path angle is maintained at 3◦ and the commanded velocity is unachievable 
for densities above 0.45 kg/m3 , as throttle ratio shoots above 1. Thus, for velocity 
constraint maneuver during ascend, velocity should be judiciously chosen through 
thorough perusal on velocity profile corresponding to maximum available thrust in 
Fig. 6. This maneuver could be used in the final neck of ascend, beyond the air traffic 
prone zone of the lower stratosphere. 

The same approach could be carried out for descend maneuvers design. While 
descending, constrained longitudinal only maneuver with V = 13.5m/s  and γ = 
−3◦ is used till an altitude of 16 km. After which, a helical descend maneuver with 
γ = −10◦ is employed. A narrow regime of stability in ascend and descend maneuver 
design emphasizes the importance of the proposed maneuver design approach. A 
randomly chosen maneuver might not work under the state and control constraints 
of airship. This explains scant attention on ascend and descend in the literature 
pertaining to the control of stratospheric airship. 

5 Validation 

This section illustrates the feasibility of proposed maneuvers with control schedules 
in open-loop. It also helps in analyzing the performance of computational bifurcation 
methodology in maneuver design and optimization approaches.
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5.1 Level Performance Analysis 

A scenario of executing the tightest possible turn from a steady level flight condition 
is considered. A feasible state and control trim corresponding to a stable straight 
and level condition is chosen from Fig. 3 and is tabulated in Eqs. (40) and (41), 
respectively, with velocity in m/s and angles in degrees. 

x = [14.6671, − 0.4810, 0, 0, 0, 0, 0, − 0.4810]T (40) 

η = 0.1913, δe = 1.3145, δa = 0, δr = 0 (41) 

Airship is simulated with controls in Eq. (41) for  500 s. After which it is  
commanded to execute the minimum radius turn maneuver. From Fig. 4, state and 
control trim corresponding to a stable and achievable minimum radius of turn is 
chosen and is given in Eqs. (42) and (43), respectively, with velocity in m/s and 
angles in degrees. 

x = [12.7204, − 4.7627, − 25, 0.0812, 0, 0.9750, 0, − 4.7627]T (42) 

η = 0.8216, δe = 18.0558, δa = −15.9716, δr = −27.6369 (43) 

Response of airship during the execution of proposed maneuver is plotted in 
Figs. 10 and 11. For the initial 500 s, airship travels with the velocity of about 
14.6m/s  covering a distance of 7300 m. Airship is then commanded to execute level 
turn maneuver with minimum possible turn radius. It is inferred from Fig. 10 that the 
radius of turn is approximately 740 m, which matches with the turn radius computed 
and plotted in Fig. 5. In order to maintain zero flight path angle, η is freed as discussed 
in Sect. 4. But controlling γ demands controlling both α and θ , i.e., two state vari-
ables are controlled using a single control input. Such issues of underactuation are 
effectively handled by this maneuver design approach. 

This illustration also helps in analyzing the hover capabilities of airship. Hover 
of airship at the pressure altitude is a neutrally stable flight condition [15]. Thus,
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Fig. 10 Position trajectories for the considered maneuver
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Fig. 11 Response of state variables for the considered maneuvers

maintaining its position coordinates amidst strong gust becomes a challenging task 
in autonomous airship maneuvering. Few works demonstrate the challenges faced 
by airship during hover in turbulent atmospheric environments and infer that signif-
icant thrust and control power are required to station-keep [16, 17], with the risk on 
system’s integrity at worst case scenarios. In such situations, the proposed tightest 
turn maneuver could be commanded with the backing of robust controller to achieve 
it. This causes airship to suffer only a minor change from the station-kept position 
coordinates. If the thrust demand shoots up further, skid angle could be considerably 
reduced and maneuver is appropriately redesigned while ensuring the safety and 
integrity of the airship. 

5.2 Ascend Maneuver Evaluation 

The feasibility of proposed ascend maneuvers with control schedules in open-loop 
is evaluated. The proposed helical and longitudinal only ascend maneuvers are eval-
uated using the simulation framework portrayed in Fig. 12. Based on the altitude 
of airship (h = −zE ), ρ is calculated using curve fitting of atmospheric density 
and altitude data. From sea level corresponding to ρ = 1.2256 kg/m3 , through 
h = 16,670 m corresponding to ρ = 0.15, control schedules of helical ascend 
with respect to their corresponding densities (plotted in Fig. 7) are fed to airship 
model with η = 1 and ζ = 45◦. Subsequently, control schedules corresponding to 
longitudinal only ascend (plotted in Fig. 9) with V = 13.5m/s  and γ = 3◦ are fed, 
with Tm = 6000 N and δa, δr , ζ  = 0, till the airship reaches its operational altitude
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Fig. 12 Simulation framework for ascend maneuver validation
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Fig. 13 Position trajectories for the proposed ascend maneuver 

corresponding to density of around 0.075 kg/m3 . The response of state variables 
x = [V , α, β,  p, q, r, φ, θ, ψ,  xE , yE , zE ]T is recorded and fed back to determine 
corresponding density and control profile. 

Position trajectories and state response of the implemented ascend maneuver are 
plotted in Figs. 13 and 14. It is evident that the helical ascend with γ = 10◦ is carried 
out till an altitude of 16,500 m. During this phase, β is maintained at 5◦ to limit 
lateral excursion to a maximum of 5000 m, as inferred from Figs. 13 and 14. This is  
beneficial while climbing through air traffic and tropospheric interferences. Beyond 
this altitude, longitudinal only maneuver with constraints on V and γ is executed. 
The feasibility of the proposed ascend maneuver is thus successfully validated.

6 Conclusions 

Autonomous maneuvering of aerial vehicles has gained predominant interest in the 
recent past. In that regard, one of the prime realms that receive scant emphasis is 
maneuver design. This work establishes an effective maneuver design technique 
using bifurcation-based continuation approach. This methodology takes into consid-
eration the dynamics of the system with state and control constraints and generates a 
series of feasible solutions. A few major challenges in airship autonomy like stability
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Fig. 14 Response of state variables for the proposed ascend maneuvers

during hover, ascend, and descend phases are addressed. The proposed maneuvers 
are then validated using an open-loop formulation with computed control profiles 
from bifurcation analysis. The flexibility to choose from a family of feasible solutions 
with different constraint sets makes this a unique platform for maneuver design. The 
reliability of controllers in uncertain environments could be greatly enhanced with 
the knowledge of feasible solutions, especially for underactuated systems. 
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