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Nomenclature 

a Distance along balloon center line from nose to reference point, m 
A Aspect ratio 
B Buoyancy force, N 
c Mean aerodynamic chord of tail, m 
CDc Tether cable drag coefficient 
CD, CL Drag and lift and coefficients, respectively 
Cm Pitching moment coefficient 
dc Tether cable diameter, m 
Dmax, L Maximum diameter and length of the aerostat, m 
FX , FZ External forces acting on balloon parallel to x- and z-axes respec-

tively, N 
hbr or Hbr Component of distance from RP to COB, +ve for COB below RP, 

m 
hcg or Hcg Component of distance from RP to COM of balloon, positive for 

COM below RP, m 
hsr or Hsr Component of distance from RP to COM of balloon structure, +ve 

for COM below RP, m 
Ix , Iy, Iz Rolling, pitching and yawing moments of inertia, respectively, about 

balloon COM, kg-m2 

Ixy, Ixz, Iyz Products of inertia in XY-, XZ- and YZ-plane respectively, kg-m2 

kxx  , kyy, ikzz Tether force per unit displacement in x-, y- and z-axis, respectively, 
at BCP, N/m
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kxz, kzx Tether x-force per unit of z-displacement at BCP and vice versa, N/m 
kxθ , kzθ Tether x- and y-force per unit of pitch displacement respectively 

N/rad 
kyϕ , kyψ Tether y-force per unit of roll and yaw displacement, respectively, 

N/rad 
kθx, kθz Tether pitching moment per unit of x- and y-displacement, N-m/m 
kθθ  , kϕϕ , kψψ Total tether pitch, roll and yaw moment per unit of pitch, roll and 

yaw displacement, respectively, about COM, N-m/rad 
kθθD, kθθT Kθθ  Due to displacement and rotation of balloon relative to steady 

tension vector at BCP, N-m/rad 
kϕy, kψy Tether rolling and yawing moment per unit of y-displacement, Nm/m 
kϕψ , kψϕ Tether rolling moment per unit of yaw displacement and vice versa, 

N-m/rad 
l Tether cable length, m 
lbr or Lbr Component of distance from RP to COB, positive for COB ahead of 

RP, m 
lcg or Lcg Component of distance from RP to COM of balloon, positive for 

COM forward of RP, m 
lsr or Lsr Component of distance from RP to COM of balloon structure, 

positive for COM aft of RP, m 
ltr or Ltr Component of distance from RP to BCP, positive for BCP forward 

of RP, m 
LPHT Distance of CG from MAC of PHT of balloon, m 
ma Apparent mass of air associated with accelerations of balloon, kg 
mg Mass of inflation gas, kg 
ms Balloon structural mass (including bridle, test instr. and payload), 

kg 
mT Combined mass of balloon structure and inflation gas, mg + ms, kg 
n Cable drag per unit length for cable normal to the wind, N/m 
Sref, Sexposed Reference area (πDmax 

2/4) and exposed planform area of aerostat, 
m2 

ttr or Ttr Component of distance from RP to BCP, positive for BCP below RP, 
m 

t Time in seconds 
T, T 0, T 1 Tether cable tension, tension at lower and upper ends, respectively, 

N 
u, w Perturbation velocities of balloon COM along X- and Z-axes, 

respectively, m/s 
V∞ Steady wind velocity, m/s 
Vn Component of wind velocity normal to cable, V∞ sin γ, m/s  
Ws Structural weight of balloon (including bridle, payload and test 

instrument), N 
wc Tether cable weight per unit length, N/m 
xt , zt Distance parallel to X- and& Z-axis from RP to COM, +ve for COM 

forward and below RP, respectively
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x1, z1 Coordinates of balloon COM with respect to tether cable anchor 
point, m 

α Perturbation angle of attack, rad 
p Downwash angle, rad
 Ʌ Tail sweep angle, rad 
γ 0, γ 1 Angle between horizontal and tether cable at lower and upper end, 

respectively, rad 
ε Angle between principal X-axis of balloon and stability axis, rad 
η Real part of characteristic root of stab. equation, damping, s−1 

θ Pitch angle, rad 
λ Characteristic root of stability equations (η ± iω) and taper ratio 
ρ Atmospheric density, kg/m3 

ω Imaginary part of characteristic root of stability equations, 
frequency, rad/s 

Subscripts 

A, B, C, G Aerodynamic, buoyancy, tether cable and gravity force terms, 
respectively. 

t Equilibrium trim condition 
0, 1 Lower and upper end of tether cable 
α, α̇ With respect to α and α̇c/2V∞, respectively 
q, r With respect to qc/2 V∞ 

Abbreviations 

BCP, RP Bridle confluence point and reference point 
CG, COB Center of gravity and center of Buoyancy 
COM, SCM Balloon center of mass and balloon structural center of mass 
PHT Projected horizontal tail 
MAC Mean aerodynamic chord 

1 Introduction 

The paper presents a systematic approach for longitudinal stability analysis and 
parametric study on longitudinal stability boundaries of an aerostat tethered from 
an earth-fixed anchor point and flying in steady wind conditions. Pant et al. [1–3] 
have reported good amount of research work on sizing, design and fabrication of



4 R. Kumar and A. K. Ghosh

Aerostats. Rajani et al. [4, 5] have analyzed dynamic stability of a tethered aero-
stat. Worth noting work has been reported in the reports available on analytical and 
experimental determination of stability parameters along with trend study of balloon 
tethered in wind [6–8]. Authors [9, 10] have analyzed stability along with para-
metric trend study of a tethered aerostat. The contributions in the area of stability 
analysis of aerostat [11–14] and tether cable stability and dynamics [15–17] have also  
been reported earlier. Few references [18–20] have been used for determining some 
stability parameters. The paper presents mathematical modeling [8] (Sect. 2), estima-
tion of stability characteristics (Sect. 3) and parametric trend study (Sect. 4) showing 
the effect of various geometrical parameters on longitudinal stability boundaries of 
a tethered aerostat. 

2 Mathematical Modeling 

The stability analysis of an aerostat tethered from an earth-fixed anchor point has been 
carried out under steady wind conditions. The formulations given by Redd et al. [8] 
have been used for mathematical modeling of the considered aerostat (Fig. 1) tethered 
in the steady wind conditions. 

Figure 2 presents the geometrical parameters and various forces and moments 
acting on tethered aerostat. The use of theoretical formulations [8] based on consid-
ered aerostat configuration was made for the calculation of stability derivatives and 
analysis.

Figure 3 shows the coordinate system along with forces and moments used for 
the derivation of equations of motion of the tethered aerostat. Figure 3 also shows 
tether cable forces at the lower and upper end along with related angles.

Table 1 presents the geometric, mass, inertia and aerodynamic characteristics of 
the considered aerostat used to carry out the stability analysis. Some dimensional 
parameters were given, while the others were calculated for the given configuration 
of the tethered aerostat based on the theoretical formulations [8, 19, 20].

Fig. 1 Dimensions of the aerostat and fin 
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Fig. 2 Geometry of the balloon system [8]

Fig. 3 Coordinate system and forces acting on tethered aerostat [8]
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Table 1 Characteristics of the considered aerostat 

Parameter (units) Value Parameter (units) Value Parameter (units) Value 

Ltr (m) 5.98 ρa (kg-m−3) 1.09 bVT (m) 8.1415 

Ttr (m) 10.9 ρhe (kg-m−3) 0.1759 bPVT (m) 5.7572 

Lcg (m) −1.92 mT (kg) 1406 bPHT (m) 11.5145 

Hcg (m) 0.68 mhe (kg) 355.85 SVT (m2) 44.729 

Lbr (m) 0.31 ms (kg) 1050.15 SPVT (m2) 31.63 

Hbr (m) 0.0 mx,a (kg) 488.25 SPHT (m2) 63.26 

Lsr (m) −3.6 my,a (kg) 2283.6 Sref (m2) 96.769 

Hsr (m) 2.4 mz,a (kg) 2283.6 AVT 1.482 

l (m) 1000 Ixx (kg-m2) 15,081.44 APVT 1.048 

dc (m) 0.017 Iyy (kg-m2) 150,814.4 APHT 2.096 

Dmax (m) 11.1 Izz (kg-m2) 150,814.4 LVT (m) 4.2387 

L (m) 33.85 B (N) 18,354.51 LPVT (m) 1.4795 

ct (m) 3.144 wc (N/m) 2.943 LPHT (m) 9.4407 

cr (m) 7.844 CDc 1.17 

c (m) 5.829 λ 0.4 

The motion of the tethered aerostat consists of small perturbations about steady 
flight reference conditions. A linearized analysis similar to that of a rigid airplane has 
been used during the mathematical modeling while taking into account the following 
considerations. 

1. The equations of motion are referred to center of mass of the balloon. 
2. The balloon is symmetric laterally and has yaw, roll and side slip angles equal 

to zero in the reference steady-state trimmed condition (ψ t , ϕt , β t = 0). 
3. The balloon and bridle form a rigid system. 
4. The tether cable is flexible, but inextensible and contributes static forces at the 

bridle confluence point (BCP). 
5. The cable weight and drag normal to the cable are needed only for determining 

the static cable forces, equilibrium shape of the cable and the cable derivatives. 

Four different sources of external forces and moments such as aerodynamic, 
buoyant, tether cable and gravity act on a tethered aerostat. Therefore, the equations 
of motion of a tethered aerostat can be written as [8]. 

FX, A + FX,C + FX,B + FX,G = mx,o ẍe (1a) 

FZ , A + FZ ,C + FZ ,B + FZ ,G = mz,oz̈e (1b) 

MY, A + MY,C + MY,B + MY,G = I y  θ̈ (1c)
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The terms mx,o, my,o and mz,o are total aerostat masses in x-, y- and z-directions, 
respectively, and can be expressed as: 

mx,o = ms + mg + ma1 (2a) 

mz,o = ms + mg + ma3 (2b) 

The terms ms, and mg are the structural mass of aerostat and mass of the gas 
inside the aerostat. The terms ma1 and ma3 are apparent masses associated with 
accelerations in x- and z-directions, respectively. The apparent masses which depend 
upon the equilibrium trim angle of attack (αt) are given by the following equations 
[8]. 

ma1 = mx,acos
2 αt + mz,asin

2 αt , (3a) 

ma3 = mx,asin
2 αt + mz,acos

2 αt (3b) 

The terms mx,a and mz,a are the apparent masses of the balloon accelerating along 
the Xb- and Zb-axes. The mass moments of inertia which depend upon the orientation 
of the balloon are expressed by the following equations [8]. 

Ix = Ixxcos2 ε + Izzsin2 ε (4a) 

Iy = Iyy (4b) 

Iz = Ixxsin2 ε + Izzcos2 ε (4c) 

Ixz  = 1/2(Ixx−Izz)sin
2 ε (4d) 

The terms Ixx, Iyy and Izz are the mass moments of inertia about the principal axes, 
and ε is the angle between the principal X-axis and the stability X-axis. In the present 
analysis, Xb-, Yb- and Zb-axes are considered to be principal axes; hence, ε = αt . 

2.1 Aerodynamic Forces and Moments 

The aerodynamic forces and moments at trim conditions in non-dimensional form 
while neglecting higher order perturbation terms are represented by the following 
relationships [8].
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FX, A = −  
[( 

ρV∞S 

2 

)(
2CD + CDu 

)
ẋe 

] 
− 

[( 
ρV∞S 

2 

)(
CDα − CL 

)] 
że 

− 
[( 

ρV 2∞S 

2 

)(
CDα − CL 

)] 
θ − 

( 
ρV 2∞S 

2 

) 
CD (5a) 

FZ , A = −  
[( 

ρV∞S 

2 

)(
2CL + CLu 

)] 
ẋe − 

[( 
ρ Sc 
4 

) 
CL α̇ 

] 
z̈e 

− 
[( 

ρV∞S 

2 

)(
CLα + CD 

)] 
że − 

[
ρV∞Sc 

4 

(
CL α̇ + CLq 

)] 
θ̇ 

− 
[ 
ρV 2∞S 

2 

(
CLα + CD 

)] 
θ + 

ρV 2∞S 

2 
CL (5b) 

MY, A = 
[ 
ρV∞Sc 

2 

(
2Cm + Cmu 

)] 
ẋe + 

[ 
ρS(c)2 

4 
Cm α̇ 

] 
z̈e + 

( 
ρV∞Sc 

2 
Cmα 

) 
że 

+ 
ρV∞S(c)2 

4 

(
Cm α̇ + Cmq 

)
θ̇ + 

( 
ρV 2∞Sc 

2 
Cmα 

) 
θ + 

ρV 2∞Sc 

2 
Cm (5c) 

2.2 Tether Cable Forces and Moments 

The tether cable forces and moments are expressed as [16]: 

FX,C = −kxx  xe − kxzze − (kxθ + T1 sin γ1)θ + T1 cos γ1 (6a) 

FZ ,C = −kzx  xe − kzzze +
(
T1 cos γ1 + kyθ 

)
θ + T1 sin γ1 (6b) 

MY,C = −kθ x xe − kθ z ze − kθθ  θ − hk1 T1 sin γ1 + hk2 T1 cos γ1 (6c) 

where 

hk1 = 
(
ltr  − lcg 

) 
cos αt +

(
ttr  − hcg 

) 
sin αt 

hk2 = 
(
ttr  − hcg 

) 
cos αt −

(
ltr  − lcg 

)
sin αt , 

kxθ = hk2kxx  − hk1kx2, kzθ = hk2kzx  − hk1kzz 

kθ x = hk2kxx  − hk1kzx  , kθ z = hk2kxz  − hk1kzz
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kθθ  = kθθD + kθθT 

kθθD = h2 k2 kxx  − hk2hk1 (kxz  + kzx  ) + h2 k1 kzz 

kθθT = hk2 (T1 sin γ1) + hk1 (T1 cos γ1) 

kyϕ = −hk2kyy, kyψ = hk1kyy, kϕy = kyϕ 

kϕϕ = h2 k2 kyy, kψψ  = h2 k1 kyy  

kϕψ = −hk1hk2kyy, kψ y = kyψ , kψϕ  = kϕψ 

2.3 Buoyancy Forces and Moments 

The expressions for the buoyancy forces and moments about the center of mass in the 
stability axis system can be expressed assuming small perturbation angles as [16]: 

FX,B = Bθ (7a) 

FZ ,B = −B (7b) 

MY,B = B
[(
lbr − lcg 

)
cos αt −

(
hcg − hbr 

)
sin αt 

] 
− B

[(
hcg − hbr 

) 
cos αt +

(
lbr − lcg 

) 
sin αt 

]
θ (7c) 

2.4 Gravity Forces and Moments 

The component due to structural weight of balloon is considered during the formu-
lation of equations of motion for gravity forces. The effects of apparent mass and 
lifting gas are already included in the coefficients of the acceleration and buoyancy 
terms, respectively. The forces and moments due to gravity for small perturbation 
angles are determined by [8]: 

FX,G = −Wsθ (8a)
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FZ ,G = −Ws (8b) 

MY,G = WS 
[(
lsr + lcg 

) 
cos αt −

(
hsr − hcg 

) 
sin αt 

] 
− WS 

[(
hsr − hcg 

) 
cos αt +

(
lsr + lcg 

) 
sin αt 

]
θ (8c) 

3 Estimation of the Stability Characteristics 

After the mathematical modeling, the stability characteristics (roots/eigen values) of 
the considered aerostat can be estimated by executing the following steps: 

1. Calculate the trim angle of attack. 
2. Obtain the aerodynamic parameters dependent on trim angle of attack for the 

steady-state trim condition. 
3. Calculate the value of tensions in the cable at the upper and lower ends. 
4. Use the value of tensions to obtain tether cable derivatives. 
5. Obtain the stability equations by putting the equilibrium part of the balloon’s 

equations of motion to zero. 
6. Convert the above stability equations in the matrix form and obtain the roots/eigen 

values by using the results obtained in the steps 1 to 4. 

3.1 Balloon Equations of Motion 

After combining all the expressions for each of the external forces and moments 
(such as aerodynamic, buoyancy, cable-tether and gravity), the following resulting 
equations of motion (16) about the balloon COM can be obtained. 

X-Force 

mx ẍe + 
[ 
ρV∞S 

2 

(
2CD + CDu 

)] 
ẋe + kxx  xe + 

[ 
ρV∞S 

2 

(
CDα − CL 

)] 
że + kxzze 

+ 
[ 
kxθ + 

ρV 2∞S 

2 

(
CDα − CL 

) − (B − Ws) + T1 sin γ1 
] 
θ + 

ρV 2∞S 

2 
CD 

− T1 cos γ1 = 0 (9a)  

Z-Force 

mzz̈e + 
ρV∞S 

2 

(
2CL + CLu 

)
ẋe + kzx  xe + 

ρV∞S 

2 

(
CLα + CD 

)
że + kzzze 

+ 
ρV∞Sc 

4 

(
CL α̇ + CLq 

)
θ̇ + 

( 
kzθ + 

ρV 2∞S 

2 

(
CLα + CD 

) − T1 cos γ1 
) 

θ
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+ 
ρV 2∞S 

2 
CL + B + WS − T1 sin γ1 = 0 (9b) 

Pitching Moment 

− 
[ 
ρV∞Sc 

2 

(
2Cm + Cmu 

)] 
ẋe + kθ x xe − 

[
ρSc2 

4 
Cm α̇ 

] 
z̈e 

− 
( 

ρV∞Sc 

2 
Cmα 

) 
że + kθ z ze + Iy θ̈ − 

[ 
ρV∞Sc2 

4 

(
Cm α̇ + Cmq 

)] 
θ̇ 

+ 
( 
kθθ  + Ms1 − 

ρV 2∞Sc 

2 
Cmα 

) 
θ − 

ρV 2∞Sc 

2 
Cm + hk1 T1 sin γ1 

− hk2 T1 cos γ1 − Ms2 = 0 (9c) 

Ms1 = 
[(
lbr − lcg 

)
B + (

lsr + lcg 
)
Ws 

] 
sin αt 

+ 
[(
hcg − hbr 

)
B + (

hsr − hcg 
)
Ws 

] 
cos αt 

Ms2 = 
[(
lbr − lcg 

)
B + (

lsr + lcg 
)
Ws 

] 
cos αt 

− 
[(
hcg − hbr 

)
B + (

hsr − hcg 
)
Ws 

] 
sin αt 

mx = mx,o and mz = mz,o + 
ρ Sc 
4 

CL α̇ 

3.2 Equilibrium Trim Conditions 

In the mathematical model used for calculating the stability characteristic, it is seen 
that all the aerodynamic parameters are dependent on the angle of attack and it is 
required to calculate the angle of attack at which the steady-state trimmed condition 
for the balloon is achieved, this angle of attack is called the trim angle of attack. The 
steady-state trimmed conditions can be obtained by setting the perturbation quantities 
of Eq. (9a–9c) equal to zero. 

ρV 2∞S 

2 
CD − T1 cos γ1 = 0 (10a) 

ρV 2∞S 

2 
CL + B − Ws − T1 sin γ1 = 0 (10b) 

− 
ρV 2∞Sτ 

2 
Cm + hk1 T1 sin γ1 − hk2 T1 cos γ1 − Ms2 = 0 (10c)
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Substitute Eq. (10a–10b) into Eq. (10c) to eliminate the cable tension and angle 
to obtain the following trim equation: 

hk1 

( 
ρV 2∞S 

2 
CL + B − Ws 

) 
− hk2 

( 
ρV 2∞S 

2 
CD 

) 
− 

ρV 2∞Sτ 
2 

Cm − Ms2 = 0 (11) 

Equation (11) can be solved by Newton iterations to find the equilibrium trim angle 
of attack (αt) for various wind velocities, provided the aerodynamic coefficients CL, 
CD and Cm are known functions. The calculated αt can be used to solve the Eq. (10a– 
10c) to find and followed by the evaluation of α-dependent stability coefficients. 

3.3 Formulations for Calculation of Stability Derivatives 

The expressions for the longitudinal stability coefficient/derivatives calculated in the 
previous step are based on the theoretical formulation corresponding to CG location. 
The derivative based on the aerostat configuration has been calculated for projected 
horizontal (PHT). Lift curve slope expression given in Eq. (12) uses the values of 
constants of the respective tail (PHT). 

CLαt 
= (2π A)( 

2 + 
/
4 + A2β2 

η2 

(
1 + tan2  Ʌ

β2 

))∗ 
Sexposed 
Sref 

(12) 

where CLαt 
is the lift curve slope of the tail. 

Longitudinal Derivatives (PHT). 

CL = 0.0061 + 1.2α + CLαt 
α + ηCDc 

SP 
Sref 

α2 

CLα = 1.2 + CLαt 
+ 2ηCDc 

SP 
Sref 

α 

CL α̇ = CLq 

d ∈ 
dα 

CLq = 2CLαt 

LPHT 

D 

CD = 0.0396 + 
C2 

L 

πeA 

CDα = 2 
CL 

πeA  
CLα
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Cm = −0.02 + 0.04832α + ηCLαt 

( 
1 − 

de 

dα 

)
LPHT 

D 
α 

Cmα = 0.048326 + ηCLαt 

( 
1 − 

de 

dα 

) 
LPHT 

D 
α 

Cmq = −2CLαt 

( 
LPHT 

D 

)2 

Cm α̇ = Cmq τ 
d ∈ 
dα 

where τ = 
( Vt 
V 

)2 
. 

3.4 Equilibrium Cable Shape 

The forces acting on tether cable of length, l (Fig. 4) are the tension, cable weight 
and drag normal to the cable. Drag along the cable has been neglected. The normal 
drag force per unit length depends on the component of wind velocity normal to the 
cable Vn, the drag cable coefficient CDc and cable diameter dc and can be expressed 
as [8]: 

n = CDcdc 
1 

2 
ρV 2 n (13)

Tension (T 1) at upper end of the cable using tension[
dT 
T = −  p q 

( 
d f 

q+p− f + d f 
q−p+ f 

)] 
is given by 

T1 = Tτ 1/τ (14) 

where τ (γ ) = 
(
q+p−cos γ 
q−p+cos γ 

) p 
q 
, p = wc 

2n , q = 
√
1 + ( p)2 , f = cosγ . 

For the known parameters such as l 
(
dl = 

( 
T1 
nτ1 

)
τ 

(sin2γ +2 p cos γ ) dγ 
)
, n, wc, T 1 and 

γ1, the following expressions can be used to determine the coordinates T 1 and γ 1 at 
upper end and T 0 and γ 0 at the lower end. 

λ0 = λ1 − 
nτ1l 

T1 
and T0 = T1τ 0/τ 1 (15) 

x̃1 = 
T1 
nτ1 

γ1 ∫
γ0 

τ cos γ(
sin2 γ + 2 p cos γ 

) dγ where dσ= τ cos γ(
sin2 γ + 2 p cos γ 

) dγ (16)
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Fig. 4 Forces acting on the tether cable [8]

z̃1 = 
T1 − T0 

wc 
where dz̃ = dl sin γ = 

dT 

wc 
(17) 

where λ(γ ) = 
γ 
∫
0 

τ (γ ) 
(sin2γ +2 p cos γ ) dγ λ0 = λ(γ0) and λ1 = λ(γ1). 

3.5 Cable Force Derivatives 

Consider cable in its equilibrium position. If upper end is slowly displaced in the 
x̃ z̃—plane from its original position x̃1, ̃z1 to a new position the resultant x- and 
z-force increments are 

dFx = kxxdx̃ + kxzdz̃ (18a) 

dFz = kzxdx̃ + kzzdz̃ (18b) 

The cable derivatives (spring constants) kxx  , kxz, kzx  and kzz for the longitudinal 
case can be expressed as [8]:
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kxx  = 
1 

δ 
[
T1 cos γ1(sin γ1 − sin γ0) + n(z1 − l sin  γ0)sin3 γ1 

]
(19a) 

kxz  = 
1 

δ 
[
T1 cos γ1(cos γ0 − cos γ1) + n(l cos γ0 − x̃1)sin

3 γ1 
]

(19b) 

kzx  = 
1 

δ 
[
T1 sin γ1(sin γ1 − sin γ0) −

(
wc + nsin2 γ1 cos γ1 

)
(z̃1 − lsinγ0 

]
(19c) 

kzz = 
1 

δ 
[
T1 sin γ1(cos γ0 − cos γ1) −

(
wc + nsin2 γ1 cos γ1 

)
(l cos γ0 − x̃1)

] 
(19d) 

where δ = x1(sin γ1 − sin γ0) + z1(cos γ0 − cos γ1) − l sin(γ1 − γ0). 
The single lateral cable derivative determined by considering a small force dFY 

to act in the y-direction on the upper end of the cable is given by the following 
expression. 

dFY = kyydy (20) 

where kyy  = n
√

τ1(sin2γ1+2 p cos γ1) 
∫γ1 

γ0 

/
τ (γ ) 

(sin2 γ +2 p cos γ) dγ 
. 

3.6 Stability Equations (Longitudinal) 

The stability equations are obtained by setting the equilibrium trim portions of the 
equations of motion (Eq. 10a–10f) equal to zero. The following working forms of 
the stability equations [3] written about the balloon center of mass are obtained. 

X-Force. 

mx ẍe + 
[ 
ρV∞S 

2 

(
2CD + CDu 

)] 
ẋe + kxx  xe + 

[
ρV∞S 

2 

(
CDα − CL 

)] 
że 

+ kxzze + 
[ 
kxθ + 

ρV 2∞SCDα 

2 

] 
θ = 0 (21a) 

Z-Force. 

mzz̈e + 
ρV∞S 

2 

(
2CL + CLu 

)
ẋe + kzx  xe + 

ρV∞S 

2 

(
CLα + CD 

)
że 

+ kzzze + 
ρV∞Sc 

4 

(
CL α̇ + CLq 

)
θ̇ + 

( 
kzθ + 

ρV 2∞SCLα 

2 

) 
θ = 0 (21b) 

Pitching Moment.
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− 
[ 
ρV∞Sc 

2 

(
2Cm + Cmu 

)] 
ẋe + kθ x xe − 

[ 
ρSc2 

4 
Cm α̇ 

] 
z̈e − 

( 
ρV∞Sc 

2 
Cmα 

) 
że + kθ z ze 

+ Iy θ̈ − 
[ 
ρV∞Sc2 

4 

(
Cm α̇ + Cmq 

)] 
θ̇ 

+ 
( 
kθθ  + Ms1 − 

ρV 2∞Sc 

2 
Cmα 

) 
θ = 0 (21c) 

Using the mathematical model, the stability equations can be written in the state 
space form as given below: 

dx 

dt 
= Ax + Bu (22) 

where A is the characteristic matrix and B is the input matrix. 
Since no control input is being used, the matrix A gives the characteristics of 

the aerostat system. The equation for longitudinal and lateral stability case can be 
expressed in the following matrix form, respectively. 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎣ 

u̇ 
ẇ 
q̇ 
θ̇ 
ẋ 
ż 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎦ 

= A 

⎡ 

⎢⎢⎢⎢⎢⎢⎢⎣ 

u 
w 
q 
θ 
x 
z 

⎤ 

⎥⎥⎥⎥⎥⎥⎥⎦ 

(23) 

The roots of characteristic equation obtained by computing stability matrix A for 
longitudinal and lateral case give an insight into the stability of the system. 

4 Effect of Geometrical Parameters on Longitudinal 
Stability Boundaries 

The computed values of longitudinal frequencies (ω) and damping rates (η) for  the  
considered aerostat have been plotted as a function of wind velocity in Fig. 5a, b and 
in root locus form in Fig. 5c. Figure 5a, b indicates that the considered aerostat has 
three oscillatory modes of motion for the given range of the wind velocities. It can 
be observed from Fig. 5b that the aerostat was longitudinally stable except below 
wind velocity of 2 m/s at which one of the roots becomes positive. This fact is also 
evident from the negative slope of the plot between pitching moment coefficient and 
angle of attack as shown in Fig. 5d. It could also be observed from Fig. 5b that mode 
2 splits into two real non-oscillatory modes above wind velocity of 19 m/s and again 
merged into one at 35 m/s.
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Fig. 5 a Variation of ω with 
V for longitudinal case. b 
Variation of η with V for 
longitudinal case. c ω versus 
η (Root locus plot for 
longitudinal case). d Cm 
versus α for longitudinal case
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Next, geometrical parameters were varied to see the effect on longitudinal stability 
boundaries of the considered aerostat. The results showing the effect of different 
parameters on the stability boundaries for a range of speed have been presented in the 
graphical form. Figures 6, 7, 8, 9, 10, 11, 12 and 13 show that the aerostat is unstable 
below the speed of 2 m/sec and in the region bounded by the two curved/straight 
boundaries. The unstable region increases or decreases with increase or decrease in 
the values of most of the dimensional parameters of the considered aerostat. Very 
little or negligible effect on stability boundaries was observed for some parameters. 

It can be observed from Figs. 6, 7, 8, 9, 10, 11, 12 and 13 that the parameters 
such as Ltr , Ttr , Lbr , Lsr , C.G. (moment arm), l, dc, wc affect the stability boundaries 
strongly while the parameters such as Lcg, Hcg, Hbr and Hsr have very little or 
negligible effect on the stability characteristics/boundaries of the aerostat. It can be 
observed that the decrease in Ltr (the horizontal component of distance between RP 
and BCP) decreases the unstable region while decrease in Ttr (the vertical component 
of distance between RP and BCP) increases the unstable region (Fig. 6a, b). The 
change in horizontal (Lcg) or vertical (Hcg) component of distance from RP to COM 
has very little or negligible effect on the stability boundaries (Fig. 7a, b). Increase 
in the value of horizontal component of distance from RP to COB (Lbr) and COM

Fig. 6 a Effect of Ltr on longitudinal stability boundary b Effect of Ttr on longitudinal stability 
boundary
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Fig. 7 a Effect of Lcg on longitudinal stability boundary b Effect of Hcg on longitudinal stability 
boundary

of structure (Lsr) decreases the unstable regions while the vertical components (Hbr 

and Hsr) have negligible effect (Figs. 8a, b and 9a, b). 
Reduction in tether cable length (l), cable diameter (dc) and cable weight (wc) 

leads to the reduction in the unstable region (Figs. 10, 11 and 12). Increase in the 
horizontal tail moment arm reduces the unstable region (Fig. 13). 

5 Conclusion 

Longitudinal stability analysis and effect of variation of geometrical parameters on 
longitudinal stability boundaries for a balloon tethered in a steady wind has been 
presented. Equations of motion of the considered aerostat included aerodynamic, 
tether cable, buoyancy and gravity forces along with aerodynamic apparent mass and 
structural mass terms. After mathematical modeling, the roots of the characteristic 
stability equation were computed and plotted for various steady-wind conditions. It 
was observed from graphical presentations that the considered aerostat was stable 
longitudinally. Later on, parametric trend study was carried out to show the influ-
ence of various dimensional and aerodynamic parameters of aerostat on longitudinal 
stability boundaries for a wide range of steady-wind speeds. The study suggests that
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Fig. 8 a Effect of Lbr on longitudinal stability boundary b Effect of Hbr on longitudinal stability 
boundary 

Fig. 9 a Effect of Lsr on longitudinal stability boundary b Effect of Hsr on longitudinal stability 
boundary
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Fig. 9 (continued) 

Fig. 10 Effect of cable length (m) on longitudinal stability 

Fig. 11 Effect of cable diameter (dc) on longitudinal stability boundary

the judicious and feasible choice of various geometrical parameters can be utilized 
to design a new tethered aerostat which can remain stable for a wide range of wind 
speeds. The limitation of the stability analysis carried out was that the downwash 
has been neglected and provides the basis for the future scope.
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Fig. 12 Effect of cable weight (wc) on longitudinal stability boundary 

Fig. 13 Effect of moment arm (PHT) on longitudinal stability boundary
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