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Abstract The healing response in self-healing materials is regulated by the rates 
of three distinct stages: actuation, transport, and repair. The healing efficiency is 
dictated by delicately balancing the rate of damage versus the rate of healing. The 
material damage rate is determined by the frequency of strain rate, loading, and 
stress amplitude. However, by changing the reaction kinetics through temperature 
or concentration the healing rate can be designed to specific damage modes. 
Vitrimers are a particular subcategory of intrinsic self-healing materials that flow at 
temperatures higher than the topology freezing temperature and show thermoset-like 
behavior at low temperatures. Vitrimer chemistry is an excellent way to combine 
the favorable mechanical properties of covalently crosslinked thermosets with 
full recyclability and create intrinsic self-healing materials without needing a 
healing agent. Recently, several theoretical frameworks, coarse-grained particle 
dynamics simulations, and finite element analysis (FEA) have been used to probe the 
thermodynamics, dynamics, rheology, and mechanics of these transient networks. 
Particle-based dynamic simulations have successfully produced key features of 
vitrimers, rubbery plateau, and terminal modulus behaviors. On a continuum level, 
constitutive equations have been developed to study the effect of the kinetics of 
the bond exchange on the macroscopic material response. In this chapter, the 
recent advances in the modeling aspect of vitrimers ranging from particles-based 
simulation techniques to FEA are reviewed. 
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1 Introduction 

The aim of self-healing process is to achieve equilibrium in the material by carefully 
adjusting the rate of healing and the rate of damage [1]. Self-healing materials are 
usually classified into three main categories: capsule based, vascular, and intrinsic 
[2]. This classification is based on the mechanism used to isolate the healing func-
tionality of the material. According to the type of sequestration used, it is possible to 
control how many times the material can be healed, the damaged volume available 
for healing, and the kinetics of the recovery rate. 

Capsule-based self-healing materials sequester the healing agent in discrete 
capsules. When the induced damage ruptures these capsules, the release and reac-
tion of the healing agent initiate the self-healing process [3]. In vascular self-healing 
materials, the self-healing materials are stored in capillaries. These networks may 
be interconnected in one, two, or three dimensions until damage triggers the self-
healing process [3]. After the rupture of the capillaries and subsequent release of the 
healing agent, the material can be replenished with the healing agent, thus allowing 
for multiple local healing events to occur. 

There is no healing agent in intrinsic self-healing materials, but they possess self-
healing functionalities directly embedded in their chemical structure. These func-
tionalities are usually initiated by damage or an external stimulus. For polymeric 
materials, this self-healing process can be achieved by phenomena such as reversible 
polymerization, hydrogen bonding, ionic interactions, and reversible bond exchange 
reactions [3]. Each of these reactions is reversible, and thus, multiple healing events 
can occur for intrinsic self-healing materials [1]. 

Generally, polymers are divided into thermoplastics, in which polymer chains are 
not chemically attached, and thermosets, in which chains are permanently crosslinked 
[4–9]. Thermoplastic materials show flow behavior similar to a viscoelastic liquid 
when heated [8, 10, 11] that allowing these materials to be re-processable [12]. 
However, the molecular topology changes directly result in weak solvent resistance 
and poor mechanical properties [5, 13]. The diffusion of polymer chains in thermoset 
materials is suppressed since the network is crosslinked [14], thus making the ther-
mosets suitable for applications that require strong mechanical properties such as 
coatings, electronics, and structural applications [12, 15]. However, as thermosets 
present a theoretically infinite rubbery plateau when heated above the glass transition 
temperature (Tg) due to the connectivity of the network; thus these materials cannot 
be reprocessed after they are crosslinked [16]. Considering the latter limitation, i.e., 
difficulty in reprocessing thermosets, these materials provide a significant challenge 
for recycling polymers (see Fig. 1) [16–18].

Several attempts have been made to implement non-covalent bonds as crosslinkers 
in thermoset, including hydrogen bonds [19, 20], π–π stacking [21], and metal– 
ligand bonds. However, due to the weaker energy of the non-covalent bond 
interactions [22], these materials show poor mechanical properties compared to 
commercially available thermosets. A more promising approach introduces dynamic 
covalent bonding into thermosetting materials, creating what is commonly known
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Fig. 1 Cumulative global plastic production from 1950 to 2015. Inset: Global plastic waste disposal 
from 1980 to 2015. As it emerges from the data, as of 2015, only, ~ 19% of the total plastic produced 
is recycled successfully [18]. The data in the figure are obtained from Geyer, Jambeck, Lavender 
Law; Production, use, and the fate of all plastics ever made; Sci. Adv.; 2017; American Association 
for the Advancement of Science

as covalent adaptive networks (CANs) [4–6, 23]. Depending on the chemistry of the 
bond exchange mechanism, CANs can be further classified as either associative or 
dissociative [24, 25]. Associative CANs rely on associative exchange mechanisms 
in which the original crosslink is only broken when a new covalent bond to another 
position has been formed [4–6, 25–28]. As a result, upon heating, there is no depoly-
merization and the crosslink density of these networks also remains constant [29, 
30]. Despite displaying promising rheological properties, the timescale associated 
with the bond exchange reaction of these systems remains restricted due to the 
radical nature of the catalyst used [25]. 

In 2011, Leibler and coworkers [27] proposed a unique approach to associa-
tive CANs by adding a suitable transesterification catalyst to an epoxy/acid or 
epoxy/anhydride polyester-based network. These materials are named vitrimers, and 
they show a gradual decrease in the viscosity of the system upon heating following 
an Arrhenius law with an activation energy of ~ 80 k J/mol K, similar to inorganic 
materials such as silica [4, 31, 32]. This characteristic viscosity behavior enables 
vitrimers to be processed in wide temperature ranges without any potential loss in 
network integrity [6]. Also, unlike dissociative CANs, vitrimers show solvent resis-
tance [25]. Additionally, rheology and birefringence experiments show that these 
networks can rapidly relax stress and display great malleability [5, 27, 33, 34], weld-
ability [25, 26], and shape memory [35–37]. Leibler and coworkers proposed a new 
class chemical route using the metathesis of dioxaborolanes to create vitrimers using 
polymethyl methacrylate, polystyrene, and high-density polyethylene as backbone 
chains of the network. These vitrimers can be processed several times via extrusion or 
injection molding [6]. Hence, there is a possibility for repair assembly and alloying 
incompatible polymers, and most importantly, providing new routes for recycling 
thermosetting plastics.
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Two transition temperatures describe the thermodynamics and kinetics of 
vitrimers [6, 28, 38–40]: (1) the glass transition temperature, Tg, which is common 
in amorphous polymeric materials [11] and (2) the topology freezing temperature, 
Tv, which shows the transition from viscoelastic solid to viscous liquid behavior 
and often appears at a temperature above the Tg. At this temperature, the timescale 
of the topological change becomes slow upon cooling, and the network rearrange-
ment becomes sluggish. In experiments, this transition is selected at a temperature 
where the value of shear viscosity reaches 1012 Pa·s [4, 11, 41]. Different factors, 
such as the chemistry of the monomer and crosslinker, number density of crosslinker, 
loading of catalyst, quenching rate, and the density of exchangeable bonds, dictate the 
viscoelastic properties of vitrimers [4]. Ideally, these materials should be designed 
such that they behave like a thermoset network in practical applications and flow 
like a viscous liquid during processing at high temperatures without loss of network 
integrity. It has been suggested that it might be possible to determine the Tv from 
volumetric data similar to the glass transition, but as of now, due to the instru-
ment limitations, the detection of Tv from direct experimental measurements is a 
challenging task [5]. 

Atomistically detailed molecular dynamics (MD) simulations have been success-
fully used to study the bonds exchange reactions at the interface during stretching 
and welding processes in polymeric materials. However, the high computational 
cost of all-atom simulations poses a serious limitation on the choice of the system 
size and on the time scale accessible, making it challenging to capture the complex 
dynamics of associative CANs such as vitrimers accurately. A possible way to extend 
the molecular modeling time scale and bridge it with experimental procedures is to 
apply coarse-graining. This technique allows representing a system by a reduced 
(in comparison with an all-atoms simulation) number of degrees of freedom. The 
simulation of a coarse-grained (CG) system is less computationally expensive than 
the same system in all-atom representations due to reduced degrees of freedom and 
elimination of the fine interaction details. This results in an increase of orders of 
magnitude in the simulated time and length scales. In the case of vitrimers, there 
is an urgent need to predict their viscoelastic properties and dynamics in a relevant 
timescale to experiments [28]. 

Continuum models also show quantitative agreement between the stress–strain 
behavior and stress relaxation modulus and experimental results [42]. Recently, a 
patchy particle model implementing a three-body potential similar to the Stillinger– 
Weber force field was proposed to investigate the dynamics of the vitrimers [40]. This 
model was used to study the phase separation [40], self and collective dynamics of 
the vitrimer system formed using the patchy colloidal particles [40, 43–46]. A recent 
study [47] on aging dissociating polymers based on a coarse-grained bead-spring 
method and Langevin dynamics concluded that the aging is due to the dissociation 
of small clusters of sticky monomers and transformation of the small clusters to 
a large one. In our recent study [48, 49], we have combined molecular dynamics 
(MD) and Monte Carlo (MC) simulations to predict the dynamics and rheology of a 
model vitrimer and compared its properties with a permanently crosslinked one. Our
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results show that a simple bond exchange protocol accompanied with an appropriate 
coarse-graining level generates the essential characteristics of vitrimers. 

In this chapter, we review the available simulation methods and summarize 
the results on the mechanical and rheological properties of these novel polymeric 
systems. We close this chapter with a summary of the models and an outlook on the 
computational techniques. 

2 Simulation and Modeling Techniques and Theoretical 
Frameworks 

2.1 Particle-Based Models 

Generally, in these types of simulations, a collection of a few atoms is considered 
one particle, or bead, with an appropriate nonbonded and bonded energy that governs 
the force field between all the beads in the system tuned to capture roughly the effect 
of polymer chemistry. The trajectories of particles are predicted using appropriate 
equations of motion, and using the principles of statistical mechanics, the properties 
of the system are predicted as a function of the simulation time. 

2.1.1 Patchy Particles and Three-Body Potential 

Using a coarse-grained model, Smallenburg et al. [50] studied the phase behavior of 
vitrimers in a solvent phase. The study used event-driven molecular dynamic simu-
lations (EDMD) and Wertheim’s theory for free energy calculations for simulating 
vitrimers [51]. The model system presented a mixture of two types of patchy parti-
cles, namely particles A and B with f A = 4 and f B = 2, where f denotes the number of 
attractive patches on the particle surface arranged in tetrahedral and polar geometries, 
respectively. The particles were designed based on the Kern-Frenkel model [52]. The 
size of the patches was defined based on their opening angle θm with cos θm = 0.8. 
The patches can only be involved in one bond at a time, and that is, multiple bonding 
partners are available. This type of associative bond exchange in the system satisfies 
the requirement for a vitrimer network. The interactions in the model system were 
considered as a combination of the repulsive potential between beads of diameter σ 
with a mass of  m and attractive interaction between the surface particle patches. The 
bonding between patches could not exceed the maximum bond length of 1.2σ with 
the condition that the vector linking the centers of any two particles passes through at 
least one patch on each particle. The rate of bond switching was controlled according 
to the system by varying the temperature and/or the catalyst load. Using the auto-
correlation of the off-diagonal elements of the stress tensor, the dimensionless shear 
viscosity ηβσ 3

√  
τ , where β = 1

√  
kB T , with kB is the Boltzmann constant, and τ is
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Fig. 2 Dimensionless shear viscosity βησ 3
√  

τ as a function of the average time interval between 
bond switching events. The dashed line indicates an Arrhenius fit (slope = 1). The viscosities were 
calculated at the composition of x = 0.25 (where x is the ratio of the number of patches of A to the 
total number of patches (A + B)), and number density of ρσ 3 = 0.35, where  σ is the diameter of 
the particle, well away from the area where phase separation occurs. τ is the units of time and is 
defined as τ ≡ 

√  
βmσ 2, where  m is the mass of particle and β = 1

√  
kB T , with kB is the Boltzmann 

constant. The figure is obtained from Smallenburg, Leibler, Sciortino; Patchy Particle Model for 
Vitrimers; Phys. Rev. Lett.; 2013; American Physical Society 

the units of time and is defined as τ ≡ √  
βmσ 2, was obtained at different average 

times between bond switching events, as seen in Fig. 2 (note that the frequency of 
the bond exchange γ scales with exp

(−εa
√  
kB T

)
, where εa is the activation energy). 

At small time intervals, when bond switching occurs fast, the viscosity of the system 
is constant, while at (γ τ  )−1 � 1, a linear relationship with (γ τ  )−1 is seen for the 
viscosity, and consequently, an Arrhenius-like behavior of the viscosity is observed. 

Another type of coarse-grained simulation for polymers often is performed 
using the bead-spring model [53], where beads interact using a Weeks-Chandler-
Anderson (WCA) potential [54]. The monomer bond exchange was implemented 
using the WCA potential for nonbonded particles, the harmonic potential for bonded 
particles, and a three-body potential based on the Stillinger–Weber potential. The 
dynamics of the transient networks are predicted as a function of time. A similar 
method incorporating a three-body potential based on the Stillinger–Weber potential 
[55] was proposed to study the self and collective dynamics of vitrimers [46]. These 
two types of dynamics were quantified using the intermediate scattering functions 
(ISFs), and a two-step relaxation was observed for the self and collective part of the 
ISF. 

Eight-arm star-shaped polymers with carboxyl and hydroxyl end groups, respec-
tively, were simulated using the latter method [56]. The underlying idea behind 
the three-body potential is based on the addition of a repulsive potential based on 
interactions three-body interactions between i-j and i-k particles. It also involves a 
parameter λ used to interpolate between a bong swapping and permanently connected 
systems. When the value of λ >>  1, a system with an infinitely long bond lifetime 
is simulated. When λ = 1, the additional potential energy gain associated with the
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formation of the double bond is compensated by the value of the three-body potential. 
The systems were divided into a defect free mixture (DFM), which was a mixture 
of star polymers with either only groups A or B as the end groups, and a defect 
allowing mixture (DAM), which consisted of star polymers with seven arms ending 
with group A and one with group B. After forming bonds in the DAM, the A-type 
ends were free to initiate bond swapping. Both systems were equilibrated in periodic 
cubic boxes with a packing fraction of 0.3. For the stress relaxation calculations, the 
Green–Kubo method [57] was used in a constant number of particles, volume, and 
temperature (NVT) ensemble to calculate the stress σ(t) autocorrelation function. 

In Fig. 3a and b, the stress relaxation of DFM and DAM systems as a function of 
the time at different energy barrier values is plotted. For times shorter than that elastic 
plateau timescale, the chain motion dominates stress relaxation. When the energy 
barrier of the bond swap is high, the topology of the network remains unchanged, and 
the elastic plateau extends beyond the time scale for simulation. However, for the case 
with no energy barrier, which enables bond swapping, there is a second relaxation 
observed, as shown in Fig. 3. This is a characteristic feature of transient networks 
such as vitrimers. The stress relaxation time in this scenario was about 20 μs. In the 
case of DAM, the solid plateau is achieved by the fixed network, while the transient 
networks result in stress relaxation over shorter timescales. The stress relaxation was 
10 times faster with the stress relaxation time of 2 μs which essentially shows the 
DAM networks behave like a viscous liquid. In the inset of Fig. 3b, the comparison 
between the stress relaxation modulus in these two networks is presented, and as 
seen, the improved stress relaxation is a result of the defects when the number of the 
bond swaps was the same for both. It was indicated that a defect loop was formed 
every time an intra-star bond was experiencing stress which led to dissipation, and 
given that the swap rates were the same for both networks, it was concluded that the 
defect loops acted like highways for stress relaxation. It was further hypothesized that 
these loop defects could be used to speed up the stress relaxation process, enhance 
properties of self-healing, and make the material more malleable and recyclable.

2.1.2 Hybrid Molecular Dynamics–Monte Carlo Technique 

Recently, we proposed a hybrid molecular dynamics–Monte Carlo (MD–MC) 
method to describe the dynamics and linear rheology of vitrimers at different temper-
atures [49, 58]. Pant and Theodorou devised an algorithm based on the connectivity-
altering atomistic Monte Carlo (MC) approach to accelerate the equilibrium of 
condensed phases of long-chain systems with a range of chain architectures [58, 
59]. Following their work, similar MD–MC algorithms have been implemented to 
examine materials with reversible bonds, such as thermoreversible gels, supramolec-
ular polymer, and telechelic polymers [47, 60–62]. Based on those methods, it is 
proposed an adaptation of the MD–MC algorithm that can be used for reproducing 
the bond exchange reactions in associative CANs, specifically in vitrimers.
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Fig. 3 a Stress relaxation for DFM for a range of energy barrier values. b Comparison between the 
DAM and DFM stress relaxation values. The figure is obtained from Ciarella, Sciortino, Ellenbroek; 
Dynamics of Vitrimers: Defects as a Highway to Stress Relaxation; Phys. Rev. Lett.; 2018; American 
Physical Society

To explain how the algorithm works, let us suppose we have a system consisting 
of a few polymers chains such as the one depicted in Fig. 4. These polymers are made 
of n monomers units, but only one terminal monomer can react to form additional 
bonds with other chains. At t = t0, two polymer chains are covalently bonded with 
each other. At every user-defined time step, each reactive monomer is sampled to 
find a possible new monomer for the bond exchange. Assuming that (i, j) and (k,l) 
are two exchangeable bonds pairs, for a monomer found at a distance r defined by 
the user, the energy change ΔŨExchange:

ΔŨExchange = α
(
ŨNew(i, l) + ŨNew( j, k) − ŨOld(i, j ) − ŨOld(k, l)

)
, (1)
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Fig. 4 Mixture of 10-mer chains (blue) with crosslinkers (orange) before a and after b crosslinking 
the network (yellow correspond to the reacted beads). c Bond exchange reaction schematic. Red and 
green colors are used to represent the exchangeable bonds. d Probability of an exchange reaction 

PMC

(
T̃
)
as a function of temperature T̃ in vitrimers. The red line in the inset shows the exponential 

fit to the data. The figure is obtained from Perego, Khabaz; Volumetric and Rheological Properties 
of Vitrimers: A Hybrid Molecular Dynamics and Monte Carlo Simulation Study; Macromolecules; 
2020; American Chemical Society 

can be computed. If ΔŨExchange ≤ 0, the new configuration will be accepted, and if
ΔŨExchange > 0, the move is accepted based on the Boltzmann acceptance criterion 
[63, 64]. The α parameter is a dimensionless factor that is introduced to mimic the 
effect of a bond exchange reaction assisted by a catalyst. The polymer network is 
simulated using the well-established CG framework introduced by Kramer and Grest, 
in which the polymer chains are modeled as spherical beads connected by springs 
[53]. Within an atomistic model, each bead corresponds to multiple monomer units. 
All units are normalized in terms of reduced Lennard–Jones (LJ) parameters: length 
= σ , energy = ∈, and time = (mσ 2/∈)1/2 with the bead mass of m. The nonbonded 
interaction is calculated using a shifted and truncated Lennard–Jones (LJ) potential 
defined as: 

ŨLJ(r̃ ) = 

⎧ 
⎨ 

⎩ 
4

[
(
1 
r̃

)12 − ( 1 r̃
)6 −

(
1 
r̃c

)12 +
(

1 
r̃c

)6]
for r̃c ≤ 2.5 

0 for  r̃c > 2.5 
, (2) 

where r represents the distance between two beads and rc represents the cut-off 
distance. Throughout the simulation, the chain structure is maintained numerically 
such that the nearest-neighbor beads along the chain are permanently bonded. These 
permanent bonds are anharmonic, finitely extensible, nonlinear, and described by an
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elastic (FENE) potential: 

ŨBond(r̃ ) = −  
K 

2 
r̃2 0 ln

[

1 −
(
r̃ 

r̃0

)2
]

, (3) 

An appropriate choice of parameter consists of setting Rmax = 1.5σ , and k = 
30∈/σ as it avoids the possibility of chains passing through one another [64–66]. 

The initial crosslink network is constructed using a tetrafunctional crosslinker 
consisting of five beads with the four end beads being reactive and a linear molecule 
with two reactive terminal beads. Reactions are only allowed between the reactive 
beads. The simulated annealing polymerization technique [67, 68] is used to connect 
the tetrafunctional molecules with the linear ones and build the final crosslinked struc-
ture. In Fig. 4a–c, the simulation box before and after reaction and the schematics of 
the monomer and crosslinker are shown, respectively. The relaxation and quenching 
simulations from a high temperature of 2.0 to 0.1 were performed in an isothermal– 
isobaric ensemble with a pressure of zero. The probability of the bond exchange 

between the crosslinker junctions PMC

(
T̃
)
is determined and plotted in Fig. 4d 

at each temperature. As seen in the figure, PMC

(
T̃
)
follows an Arrhenius-like 

temperature dependence. 
The volumetric properties of the model thermoset and vitrimer networks were 

quantified by determining the specific volume, coefficient of thermal expansion, and 
glass transition temperature. In Fig. 5a, the specific volume of the model systems 
is plotted as a function of temperature. Both thermoset and vitrimer systems show 
similar T̃g values, which are expected since the bond exchanges become relevant 
only at high temperatures (see Fig. 4d for the probability of the bond exchange). At 
temperatures higher than T̃g , the specific volume of vitrimer becomes larger than 
that of thermoset that is more visible in the dimensionless excess volume Ṽ E =(
Ṽvitrimer − Ṽthermoset

)√
Ṽthermoset in the inset of Fig. 5a. We plot the coefficient of 

thermal expansion α̃ ·
(
α̃ = (∂V√  ∂T

)
p

√
V
)
in Fig. 5b for these two systems. 

Both thermoset and vitrimer networks show a discontinuous behavior for α̃ at T̃g . 
At T̃ > T̃g the thermoset shows a constant value of α̃; on the other hand, a local 
minimum point at T̃ � 0.87 for the values of α̃ is seen in the model vitrimer.

The dynamics of the crosslinkers in the model systems were determined by calcu-
lating the mean squared displacement (MSD)

〈
Δr̃2

(
t̃
)〉
at different temperatures. As 

seen in Fig. 6a, at temperatures below the glass transition temperature, both systems 
show similar mobility. As the temperature steadily increases and exceeds the T̃g , 
the vitrimer shows higher mobility. At higher temperatures (see Fig. 6c and d), the 
crosslinkers show a nearly diffusive behavior, while the motion of the crosslinker in 
the thermoset network is impeded due to the existence of permanent bonds.

Using the hybrid MD–MC method [58], the rheology of the networks can also be 
determined. We refer readers to our study on the volumetric, dynamics, and rheology 
of the vitrimers for detailed discussion. Here, we focus on the primary outcomes of
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Fig. 5 a The specific volume Ṽ and b thermal expansion coefficient α̃ as a function of reduced 
temperature T̃ for both thermoset and vitrimer. Inset in a: The rescaled excess volume Ṽ E =(
Ṽvitrimer − Ṽthermoset

)√
Ṽthermoset as a function of the temperature. At every temperature, the uncer-

tainty for each data point is about 0.1% of the magnitude of the specific volume (smaller than symbol 
size). The intersection of the fitted lines (dashed lines in a) in the rubbery and glassy regions corre-
sponds to the glass transition temperature T̃g of the system. The figure is obtained from Perego, 
Khabaz; Volumetric and Rheological Properties of Vitrimers: A Hybrid Molecular Dynamics and 
Monte Carlo Simulation Study; Macromolecules; 2020; American Chemical Society

the rheological simulations that are (1) applicability of the time–temperature super-
position (TTS) principle to extend the simulation timescale and (2) Arrhenius-like 
temperature dependence of the viscosity of vitrimer. The linear viscoelastic moduli 
of the thermoset and vitrimer were determined using the NEMD method [69] by  
incorporating the SLLOD equations of motion [70] at different frequencies and 
temperatures. The TTS principle is used to collapse data onto master curves at a 
reference temperature of T̃0 = 0.6. In Fig.  7a, the elastic modulus of the thermoset 
network is plotted against the oscillation frequency. The thermoset network exhibits 
a rubbery modulus at low frequencies and a glassy response after a Rouse-like tran-
sition regime. The vitrimer model essentially behaves the same way as the thermoset 
at intermediate and high frequencies, given that the deformation rate is larger than 
the bond exchange rate, as seen in Fig. 7b. On the other hand, at lower frequen-
cies, the elastic modulus of the vitrimer appears to show a liquid-like behavior (or 
so-called terminal regime). The latter observation is due to the fast timescale of the 
bond exchange in that deformation regime, which corresponds to long times. Both
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Fig. 6 Mean-squared displacement (MSD)
〈
Δr̃2

(
t̃
)〉
of the crosslinking beads (reactive beads that 

can participate in the exchangeable reaction) in thermoset and vitrimer at a T̃ = 0.3, b T̃ = 0.55, 
c T̃ = 1.0, and  d T̃ = 1.5. The diffusive motion is shown by the dashed line, which has a 
slope of unity on the log–log scale. The figure is obtained from Perego, Khabaz; Volumetric and 
Rheological Properties of Vitrimers: A Hybrid Molecular Dynamics and Monte Carlo Simulation 
Study; Macromolecules; 2020; American Chemical Society

viscous moduli of thermoset and vitrimer show the same behavior (see Fig. 7c and 
d). We expect to observe the difference in the viscous moduli at lower frequencies 
which are not accessible in the current simulations. Note that the shift factors used to 
collapse rheological data follow Williams-Landel-Ferry (WLF) equation for the ther-
moset network, while this temperature dependence for the vitrimer model becomes 
more complex (see Fig. 8). The temperature dependence of the shift factor follows 
a combination of the WLF equation at low temperatures and Arrhenius behavior at 
high temperatures in model vitrimer. The intersecting temperature between these two 
regimes corresponds to a temperature of 0.85, which is very close to the temperature 
that coefficient of thermal expansion shows a local minimum. In addition, the zero-
shear viscosity of the vitrimer model shows an Arrhenius-like form which validates 
the model consistency with the temperature dependence of shift factors.
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Fig. 7 Universal curves of rescaled a–b elastic G̃
'
p and c–d loss G̃ ''

p moduli as a function of the 
reduced frequency ω̃p in the model thermoset (left panel) and vitrimer (right panel). The reference 
temperature in both sets of master curves is T̃0 = 0.6. The figure is obtained from Perego, Khabaz; 
Volumetric and Rheological Properties of Vitrimers: A Hybrid Molecular Dynamics and Monte 
Carlo Simulation Study; Macromolecules; 2020; American Chemical Society

The nonlinear mechanics of vitrimers have also been studied using the hybrid 
MD–MC method [49] when the exchange reaction rate was adjusted by introducing 
a constant parameter α in the MC step to adjust the downhill moves energy barrier. 
The model system was constructed using a tetrafunctional crosslinker and 5-mer 
monomer chain. The mobility of the vitrimer network showed an inverse relationship 
with the α value, i.e., smaller values of α led to more frequent bond exchanges in 
the system, and crosslinker particles could move large distances. Using the NEMD 
technique, the stress–strain curves of the vitrimer models with different exchange 
rates under uniaxial deformation were determined at three different temperatures 
(Fig. 9a–f). Note that the stress–strain curves are plotted until the failure point. When 
the temperature is below the T̃g , the thermoset and vitrimer networks with varying 
values of α show similar behavior at low strain values. On the other hand, when 
the strain becomes larger, and the response of the networks to the strain becomes 
nonlinear, vitrimers with slower bond exchanges show a closer stress–strain behavior 
to the thermoset one. At higher temperatures, we also see the same behavior with a 
difference that the magnitude of the stress decreases at the failure point. In all cases,
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Fig. 8 Horizontal shift factors aT used in collapsing the moduli data in Fig. 7 for the thermoset 
and vitrimer as a function of the temperature. Inset: Arrhenius plot of the shift factors obtained at 
T > Tv . The WLF and Arrhenius fit to the data are shown by blue and dashed red lines, respectively. 
The figure is obtained from Perego, Khabaz; Volumetric and Rheological Properties of Vitrimers: A 
Hybrid Molecular Dynamics and Monte Carlo Simulation Study; Macromolecules; 2020; American 
Chemical Society

vitrimers outperform thermoset networks in the failure strain. This strain increases 
by decreasing the value α.

2.2 Continuum Models 

2.2.1 Constitutive Equations 

On a continuum level, most of the current models are built on the approach pioneered 
by Terentjev and coworkers, where they developed a set of microscopic constitutive 
equations to describe transient polymer networks (such as vitrimers and other self-
healing materials) undergoing small deformations in stress relaxation, creep, and 
uniaxial deformation experiments [71, 72]. In their approach, the energy of the system 
is described by treating the polymers as Gaussian chains (i.e., Neo-Hookean model) 
[73]. Here, we briefly review the main features of the constitutive equations, and the 
reader is referred to ref. [73–75] for detailed derivations. 

Breaking and Reforming of Cross-links: Microscopically, the rate of crosslinks 
breakage can be described using the local force acting on the chain. Assuming a 
potential energy well with a characteristic energy barrier, in which the crosslink is 
held, one can derive an equation for a total number of crosslinked chains at a given 
time Nc(t):



Modeling and Simulation of Vitrimers 223

Fig. 9 Stress-strain curves at different temperatures of the simulated thermoset and vitrimer system 
for various values of α. d–f are zoomed-in graphs of a–c, respectively, used to show the initial linear 
response of the four networks. The strain rate used for all the simulations was ˜̇ε = 10−1. The figure 
is obtained from Perego, Khabaz; Effect of bond exchange rate on dynamics and mechanics of 
vitrimers; J. Poly. Sci.; 2021; Wiley

Nc(t) = Nc(0) exp 

⎛ 

⎝− 
t∫
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β(t '; 0)dt '
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t∫

0 

Nb(t
') exp 

⎛ 

⎝− 
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t '
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⎠ρdt ', 
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where β is the equilibrium Kramers rate [74], ρ the effective rate or re-crosslinking, 
and Nb(t) is the number of un-cross linked chains at a given time. The first term 
of Eq. (1) indicates the crosslinked chains from t ' =  0 as a function of time. The 
re-crosslinking of the chains, from the original chains and other chains broken at 
different times during the same period, is represented by the second term. As Nb(t) = 
Ntot− Nc(t), Eq.  (4) can be seen as an integral equation that helps to determine Nc(t) 
at a particular dynamic deformation state. 

Macroscopic Elastic Energy: The structure of the deformation energy can be char-
acterized macroscopically by adopting Gaussian chains approximation (e.g., using 
rubber elasticity theory) [75]. For a permanently crosslinked rubbery network, the 
system’s energy density while being deformed is described as:
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Frub(t; 0) = 
1 

2 
G
(
tr
[
ET (t; 0)E(t; 0)]− 3

)
, (5) 

where G represents the shear modulus and E(t; 0) is the affine deformation tensor 
at time t to t = 0, which is the reference state. 

However, for a transient network undergoing deformation, there are numerous 
contributions to the average elastic-free energy due to the dynamics of the crosslinks. 
Thus, the elastic free energy density F(t; t0) with regards to the reference state t0 is 
determined by the deformation tensor E(t; t0) defined as: 

E(t; t0) = E(t; 0) · E−1 (t0; 0), (6) 

The energy density can then be written as: 

Ftr.n.(t) = exp 
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The second term is computed using the dynamically changing strain tensor defined 
in Eq. (6) is used to calculate the neo-Hookean free energy density. 

Contrary to a permanent rubbery network where the reference state is at t = 
0, in a transient network, the reference can only be locally specified for different 
chains, depending on their time of crosslinking. Tracking the real-reference state 
thus becomes a difficult task, and it is appropriate to describe an effective shear 
modulus G∗ as the following ratio: 

G∗(t) = 2Ftr.n(t) 
tr
[
ET(t; 0) · E(t0; 0)

]− 3 
(8) 

Elastic Stress Tensor: In transient networks, the stress is defined by both the elastic 
and viscous stresses (σela+σvis). As the origins of σvis are very complex (e.g., dangling 
chains, nonaffine movement of crosslinks and the dynamics of entanglements), it is 
convenient to express this term as: 

σvis = η( ̇γ )  · γ̇ , (9) 

with the viscosity tensor η defined as a function of the strain rate tensor γ̇ . 
To account for the material incompressibility, it is possible to work with the Gibbs 

free energy of the system as: 

g(t) = Ftr.n.(t) − p · det E. (10)
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By defining the elastic stress, σ ela ij , as a function of g(t) (e.g., σ ela ij (t) = σ g(t) 
δEij(t;0) ), the 

expression for the stress tensor can be obtained: 

σ ela ij (t) = exp 

⎛ 

⎝− 
t∫
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β(t '; 0)dt '
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⎠GEij(t; 0) 

+ 
t∫

0

∫
ρ 
Nb(t ') 
Nc(0) 

exp 

⎛ 

⎝− 
t∫

t '
β(t '', t ')dt ''

⎞ 

⎠GEjk(t; t ')E−1 
jk (t '; 0)dt '
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ji . (11) 

Equation (11) provides the constitutive equation of the model and can be used to 
study how a transient network responds to an imposed uniaxial stretch. Figure 10a 
shows a schematic of a polymer sheet undergoing uniaxial stretching. By defining 
the length (L), width (W ), and thickness (T ) elongation ratios as λL , λW , and λT , 
respectively, the deformation can be described using the following relationships: 
L = λL L0, W = λW W0, and T = λT HT . Due to the incompressibility of the 
system, one can write λL = λ making λW together with λT equal to 1/

√
λ. 

The deformation tensor at a time t for a particular crosslink formed a time t ' can 
be obtained through Eq. (6): 

E(t; t ') = 
λ(t) 
λ(t ') eLeL + 

√  
λ(t ') 
λ(t) 

(eW eW + eT eT ), (12) 

with eL , eW , and eT as the unit vectors in three orthogonal directions. The average 
end-to-end distance 〈r〉 (Fig. 9b) that indicates the deformation occurring at a time 
t with respect to a reference time τ can then be calculated using:

Fig. 10 a Illustration of a polymeric sheet undergoing uniaxial stretched deformation. b schematic 
of a sample of polymer chains in the network undergoing the same deformation, with r as the 
end-to-end distance and θ as the angle between the end-to-end vector and the stretch direction. The 
figure is obtained from Meng, Pritchard, Terentjev; Stress Relaxation, Dynamics, and Plasticity of 
Transient Polymer Networks; Macromolecules; 2016; American Chemical Society 



226 A. Perego et al.

〈
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with r0 ∼ √
Nsb being the network mesh size in its reference state. The transient 

network’s elastic free energy can be expressed as: 

Ftr.n.(t) = exp 
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Similarly, using Eq. (8) and dividing both the terms of Eq. (14) by the characteristic 
new-Hookean strain, we can obtain the effective shear modulus: 

G∗(t) = G exp 

⎛ 

⎝− 
t∫

0 

β
(
t '; 0)dt '

⎞ 

⎠ 

+ G 
t∫

0 

ρ 
Nb(t ') 
N0 

exp 

⎛ 

⎝− 
t∫

t '
β
(
t ''; t ')dt ''

⎞ 

⎠ 

×
(

λ(t)2/λ(t ')2 + 2λ(t ')/λ(t) − 3 
λ(t)2 + 2/λ(t) − 3

)
dt '. (15) 

Using Eq. (11), it is possible to calculate the transverse diagonal components of 
the stress, thus obtaining: 

σL (λ, t) = G exp 
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Thus, to calculate this dynamic stress under uniaxial deformation, one must first 
solve Eq. (4) to determine Nb(t) and subsequently compute the time-integrals of 
Eq. (16). 

Stress-relaxation: The simplest way to test model accuracy is to compute the stress 
relaxation behavior of the transient network when a uniaxial stepwise deformation λ 
is applied at t = 0. In this scenario, λ(t) = λ(t ') makes the second term of Eq. (15) 
equal to zero. The tensile stress can be easily computed along the stretching direction
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from Eq. (16), thus obtaining: 

σL = Geβ(λ)t

(
λ − 

1 

λ2

)
. (17) 

Equation (17) shows how the stress relaxes following a stretched exponential 
form with the characteristic relaxation time defined as τ = 1/β(λ) [76, 77]. Using 
Eq. (13) to calculate the average end-to-end chain length, we can write the explicit 
form of β(λ) as: 

β(λ) = ω0 exp 
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⎝κro 
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Equation (19) indicates that c0(λ) increases monotonically with the stretching 
ratio λ. At lower limits (small strain) c0 ≈ ω0 exp

(
3/

√
(Ns)

)
while at upper limit 

(high strain) c0 ≈ ω0 exp
(
3λ/2 

√
(Ns)

)
. The theoretical normalized shear modulus 

G(t)/Gmax (Fig. 11)of two vitrimer systems shows an excellent agreement with the 
experimental data obtained by Montarnal et al. [5] and rom Hillmyer et al. [33]. 

Fig. 11 Normalized shear modulus G(t)/Gmax as a function of relaxation time at different temper-
atures. The solid lines are the predicted values from the model, and the markers are the experimental 
data from a Montarnal et al. [5] (epoxy vitrimer) and b from Hillmyer et al. [33] (polylactide 
vitrimer). The figure is obtained from Meng, Pritchard, Terentjev; Stress Relaxation, Dynamics, 
and Plasticity of Transient Polymer Networks; Macromolecules; 2016; American Chemical Society
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The takeaway message is that stress relaxation in transient networks decays in 
a stretched exponential manner. In contrast to ordinary rubbers which relax under 
stress, this behavior, due to the permanent nature of the crosslinks, displays a long-
time power-law/logarithmic tail. 

The authors further demonstrate the accuracy of the proposed model by 
performing a strain-ramp simulation on the system. The results show remarkable 
agreement with the experimental values obtained for various vitrimer systems. The 
proposed theoretical framework highlighted that the material response is strongly 
influenced by the crosslinker exchange kinetics. However, the model was built using 
several approximations. For example, the nonaffine displacement of the system is 
not considered in the development of the theory. This is particularly crucial when 
the entangled chain mobility is significant. Additionally, the neo-Hookean model 
is only valid for deformation below 100% strain. When dealing with larger defor-
mations, different elastic models should be implemented. Despite these limitations, 
the proposed model provided an excellent picture of the dynamics and relaxation in 
vitrimers and laid the foundation for developing subsequent continuum models for 
transient networks. 

2.2.2 FEA Implementation 

Continuing within the scope of continuum mechanics, Qi and coworkers developed 
a model which successfully accounts for the coupling between the macroscopic and 
microscopic properties of the network (e.g. bond exchange reactions) [77]. Their 
basic approach was built based on the idea developed by Tobolsky et al. [77, 79] 
in which, during the loading history, the polymer network is broken down into two 
groups of chains, each one reforming at a different period. 

The model requires the following fields variables to be solved for: temperature 
T , the chain composition as a function of time COR(t) and Δ(τ, t), the Lagrangian 
multiplier p (used to reinforce isothermal incompressibility), as well as the displace-
ment vector u ≡ x − X which describes the deformed position. These five coupled 
equations that connect these five variables are as follows: 

1. Energy balance:

[
γ + 

S:F 

3

(
αv + 

dαv 

dT 
T

)]
. 
T =

(
1 − 

αvT 

3

)
S: 

. 
F 

− ∇x · Q + � − 
αvT 

3 

. 
S :F, (20) 

where γ is the specific heat per unit volume, S is the first Piola–Kirchhoff 
(nominal), stress tensor, F is the deformation gradient, αv is the thermal expan-
sion coefficient, T is the temperature, Q is the heat flux vector, and � is the rate 
of eternal heat supply per unit volume. The dot on top of the variables denotes the 
material time derivative. The x in the subscript of the gradient operator denoted 
the gradient being taken with respect to the reference configuration.
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2. Linear momentum balance 

∇x · ST + b = 0, (21) 

where b is the body force vector per unit volume. 
3. Incompressibility constraint 

det(Ft ) = Jt =
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t

)3 = exp 

⎛ 

⎝ 
T∫

T0 

αv

(
T̃
)
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⎠, (22) 

where Fa 
t is the thermal component of F at the deformation time t . 

4. Constitutive equation for the normal stress tensor 
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and 

I (t) ≡ tr
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, H (t, τ  )  ≡ tr
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Here, Fe t is the mechanical component of F at the deformation time t ; C0 is 
the original (before deformation) molar density of all the polymer chains; N is 
a material parameter that indicates the length of the chain between crosslinkers. 
L−1 is the inverse Langevin function. 

5. Kinetic equations for heat flux and exchange reaction rate 

Q = −Kt det(F)(FT F)−1∇x T , (25) 

rdtdv = −  ̇CORdtdV ⇒ ĊOR = −Jr  = −k exp

(
− 

Ea 

RT

)
COR, (26)
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∂Δ(τ, t) 
∂t

= −k exp

(
− 

Ea 

RT

)
Δ(τ, t), (τ ≤ t). (27) 

Here, Kt is the thermal conductivity; k is a kinetic coefficient (always positive), and 
Ea is the activation energy of the bond exchange reaction. Initials and boundaries 
conditions (B.C.) are also necessary to solve these field equations. 

The model includes six materials parameters: γ (specific heat), Kb (thermal 
conductivity), C0 (original chain density), N (Arruda-Boyce chain segment number), 
Ea (activation energy), and k (bond exchange rate coefficient). Considering 
isothermal conditions, one can disregard the thermal parameters γ and Kt from 
the model, while all other parameters are accessible through stress-relaxation 
experiments. 

To validate the model, it is important to consider the case of the uniaxial extension 
during an isothermal process. Due to isothermal conditions and using the initial B.C., 
Eq. (26) can be solved for the evolution of the chain composition, to obtain: 

COR = C0 exp

(
−k exp
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RT

)
t

)
, (28) 

Likewise, Eq. (29) is solved to yield:

Δ(τ, t) = k exp
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RT

)
C0 exp

(
−k exp
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RT

)
(t − τ )

)
, (τ ≤ t). (29) 

The associative nature of the bond exchange in transient networks enables the total 
chain density of the system to be calculated by adding the original with the reformed 
chains together (at any time t the total chain density is equal to C0). Additionally, by 
considering isothermal conditions Fa = 1 → Fe = F. The unit vector e1 denotes 
the direction of stretching for the sample. λ, λ1/2, and λ1/2 are the three principal 
stresses. To obtain S11 (tensile stress along e1), it is useful to introduce first the 
following notation: 

λt ≡ λ(t) and λτ ≡ λ(τ ). (30) 

We can then write Eq. (25) as:  

I (t) = λ2 
t + 2/λt , and H (τ, t) = (λt /λτ )

2 + 2λτ /λt . (31) 

Finally, substituting Eq. (30) and Eq. (31) into Eq. (23), we obtain: 
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S11 represents the applied tensile force per unit cross-sectional area A0 of the unde-
formed stress (nominal tensile stress), and it can be used to study the material response 
for various deformation cases (such as stress relaxation, tensile tests, and creep). 

Stress Relaxation 

During a stress relaxation experiment, at t = 0+, a constant stretch ratio λC is applied. 
Therefore, λt = λτ = λC transforming the tensile stress S11 in: 

S11(t) =
(
λC − λ−2 

C

)
�
(
λ2 
C + 2/λC

)
exp

(
−k exp

(
− 

Ea 

RT

)
t

)
(33) 

As seen in the theory developed by Meng et al. [71], the stress decays exponentially 

with time (e.g., S11(t) 
S11(t=0+) = exp

(
− t tr
)
) where tR = 1 

k exp
( Ea 
RT

)
is the characteristic 

relaxation time. Equation (33) it is also consistent with the observations of Leibler 
and coworkers, where they illustrate how the kinetics of bond exchange reaction 
influences tR [78]. 

Figure 12a shows the agreement between the tensile stress values calculated by 
solving Eq. (33) and the experimental data obtained using an epoxy-acid vitrimer 
network catalyzed with 5 mol% zinc acetate [5]. Solving for the relaxation time tR 
and plotting as a function of inverse temperature (Fig. 12b) allows calculating the 
activation energy of the system. The model predicts a value of Ea = 81.1 kJ mol−1 

which is in agreement with the value of 80 kJ mol−1 reported in Montarnal et al. [5]. 

Fig. 12 a Stress relaxation curves at different temperatures. The solid lines are the values predicted 
by the model, while the symbols are the experimental data extracted from Montarnal et al. [5] b 
Relaxation time tR as a function of inverse temperature. The solid line is the fit according to the 
model, and the symbols are the values obtained from the fitting of the experimental data [5]. The 
figure is obtained from Long, Qi, Dunn; Modeling the mechanics of covalently adaptable polymer 
networks with temperature-dependent bond exchange reactions; Soft Matter; 2013; Royal Society 
of Chemistry
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FEM implementation–Modeling thermoforming processes: The notable feature of 
this model is that it can be implemented into three-dimensional finite element code 
(e.g., ABAQUS [80]) using a user material subroutine (UMAT). One of the tech-
nologically remarkable properties of vitrimers is their ability to be easily reshaped 
through thermoforming processes. Thus, the capability to model these types of defor-
mation events is essential from a processing perspective. The following three steps 
are typical in the thermoforming process: 

1. The material undergoes a prescribed deformation at a low temperature (e.g., 
25°C). 

2. The prescribed deformation is maintained, while the sample is heated over a 
time period. During this step, the network topology of vitrimers is re-arranged 
because of the activation of the bond exchange reactions. 

3. The sample is cooled, and the applied deformation is released. As the vitrimer 
undergoes stress relaxation during Step 2, the original shape of the sample will 
not recover. 

Twisting a strip: This simulation is inspired by the experiment used by Montarnal 
et al. [5] to illustrate the stress relaxation event in vitrimers. A twist angle of 5π 
is applied to a sample with dimensions 12 × 1 × 0.1 cm. Figure 13 shows results 
obtained at T = 523 K using two processing times (ta = 10 and ta = 100 s). During 
the stress relaxation (Step 2), the extent of stress relaxation depends substantially 
on ta consequently affecting the final shape of the material. At ta = 10 s, as only a 
modest amount of stress is relaxed, the sample virtually returns to its original shape. 
In contrast, at ta = 100 s, more stress is relaxed producing the shape memory in the 
material. These observations are also consistent with the experiments of Montarnal 
et al. [5] Generally, upon increasing temperature, less processing time is necessary 
to increase the rate of stress relaxation. To explore this effect more quantitatively, 
a fixity parameter can be introduced as the ratio of the deformation obtained after 
thermoforming and the given initially prescribed deformation (for more details, see 
Long et al. [42]).

Although this model shows remarkable agreement with stress-relaxation exper-
iments, it still lacks the ability to capture some important features observed in 
vitrimers. For example, the model shows a shortcoming to describe the network’s 
hysteresis accurately and creep compliance behavior. Furthermore, this continuum 
model does not account for heat conduction and thermal expansions events observed 
during thermo-mechanical tests. This is particularly crucial if local heat is used to 
process the material [77]. 

To account for some of the shortcomings of the model presented by Qi and 
coworkers, such as the inability to study surface welding on the material, a more 
robust multiscale modeling framework was developed in 2016 by Yu et al. [81]. In 
this theoretical model, the dependency of interfacial kinetics of vitrimers was studied 
under various mechanical and thermal fields. Their approach was firstly to model the 
kinetics of the bond exchange reaction at the macromolecular scale. This model was 
used to capture the effect of bond exchange on the evolution of the chain density at 
the interface.
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Fig. 13 FEM simulation of the thermoforming process in vitrimer network. The temperature used is 
523 K. Two processing times are shown: 10 and 100 s. The figure is obtained from Long, Qi, Dunn; 
Modeling the mechanics of covalently adaptable polymer networks with temperature-dependent 
bond exchange reactions; Soft Matter; 2013; Royal Society of Chemistry

In later studies, a cohesive zone approach was incorporated with the model to 
predict the behavior of epoxy vitrimers undergoing interfacial welding and failure. 
Using this multiscale model, the chain density and fracture energy of the material 
can be obtained and later be used as input parameters for the FEM simulations. 
The proposed multiscale model can also be used to analyze more complex welding 
problems like polymer reprocessing with irregular shape and particle size [82]. 

2.2.3 Outlook 

Although the mentioned models successfully account for the kinetics of the bonds 
exchange reactions of vitrimers, they all still rely on elastic models on the continuum 
level such as neo-Hookean and Arruda–Boyce. Consequently, they cannot provide 
a direct comparison between the macroscopic mechanics of the network and the 
single-chain physics of the polymer. As a result, using those models to describe 
more complex molecular phenomena like entanglement and chain diffusion becomes 
fundamentally challenging. In addition, both models require a large number of 
materials parameters and variables to be successfully implemented computation-
ally. To address these limitations, Vernerey et al. [83] introduced a statistically based 
continuum theory for transient networks polymers. In their framework, the polymer 
physical state is characterized by a statistical distribution of the length and direc-
tion of the end-to-end chains. Both macroscopic deformations and molecular-level 
events can be used to alter this distribution. Using a so-called distribution tensor, it is 
possible to relate the chain distribution to stress, strain, and entropy of the network.
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This model provides an extension of the classic rubber elasticity theory. It is usable in 
the range of inelastic deformation, and it can be extended to account for large-chain 
deformations. 

3 Conclusions 

Vitrimers provide a practical route for synthesizing intrinsic self-healing materials 
and reprocessing thermosets. Particle-based simulations techniques mainly utilize 
patchy particles [50], three-body potential [80], and hybrid MD–MC methods to 
describe the bond swap between the crosslinkers. The patchy particles model success-
fully predicts the Arrhenius-like behavior zero shear viscosity of vitrimers that has 
been observed in experiments. Using the three-body potential for bond swapping, 
it was shown that the stress relaxation modulus of transient networks exhibits a 
secondary relaxation due to the change in the network topology [46]. Recently [48], 
we employed a hybrid MD–MC technique to simulate and predict the dynamics of 
a model vitrimer and evaluate its thermodynamics and rheological properties. Our 
simulations showed that the topology freezing temperature, which marks the transi-
tion from the rubbery to the viscoelastic fluid regime in vitrimers, can be detected 
from volumetric and rheological data. The onset of the network rearrangement was 
related to the lifetime of the exchangeable bonds, which determines the rheology 
of the network. The current simulation frameworks [48, 49, 56, 80] provide an 
excellent opportunity to study the linear and nonlinear rheology and mechanics of 
vitrimers with different topologies. One can adjust the bond exchange rate and control 
the competition between self-healing ability in the rubber and the damage caused 
by external stimuli and design the final rubber product with superior mechanical 
strength, re-processability, and self-healing property. 

On a continuum level, different network models have been developed to study 
transient polymer networks such as vitrimers undergoing small to large deforma-
tions. By treating the polymer chains as neo-Hookian chains and starting from the 
classic theory of rubber elasticity, it is possible to derive constitutive equations that 
accurately predict the stress relaxation behavior of these networks [71]. Consis-
tent with experimental observations [5], these models show that stress relaxation in 
vitrimers decays in a stretched exponential manner contrary to the long-time power-
law/logarithmic tail observed in permanently crosslinked networks [4]. Additionally, 
energy balances can be incorporated to account for the coupling between the macro-
scopic thermo-mechanics and microscopic bond exchange reactions of vitrimers 
[77]. Continuum models can also be implemented in commercially available FEA 
software to simulate processes such as thermoforming and polymer welding [77]. 

Considering the current developments in the field of vitrimers, it is of interest 
to investigate the rheology and mechanics of vitrimers as a function of network 
topology, the energy barrier of the bond exchange and chemistry of the network, 
and identify the underlying mechanism of macroscopic flow behavior, fracture,
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and fatigue at different service conditions in these networks, which combines 
recyclability and self-healing ability with maximum solvent resistance. 
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