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Abstract In this chapter, modeling, simulation, and machine learning methodolo-
gies are discussed to design and predict the thermal conductivity of epoxy materials. 
Although epoxy has some excellent properties such as chemical resistance, high 
tensile, compression, and bending strengths, they have relatively low thermal conduc-
tivity (<0.1 W/m K). Therefore, it is ideal for designing epoxy-based composites with 
higher thermal conductivity for heat dissipation (TC) (1–10 W/m K). Here, recent 
progress in the field of modeling, simulation, and machine learning is explained, 
describing methods of predicting the TC of epoxy materials based on different factors. 
Several classical theoretical models are discussed here based on their applications 
on the TC of epoxy-based composites. Some examples of simulation studies of the 
micro- and macro-scale level on the TC of epoxy-based materials are elaborated to 
show how these studies can be carried out to predict the TC. Finally, an overview of 
two different ML techniques (transfer learning and deep learning) for predicting the 
TC of epoxy materials is explained. 

1 Introduction 

Due to the increased demand for high-speed processors with improved efficiency 
in the last several years, the electronic industry is leaning toward manufacturing 
miniaturized and integrated devices to meet the requirements. However, it poses 
severe problems due to the heat accumulation in the denser assemblies of electronic 
devices, which might degrade their performance or might cause premature failure 
[1]. To overcome this challenge, thermal management materials of superior thermal 
conductivity (TC) and low coefficient of thermal expansion (CTE) can dissipate the 
heat quickly and relieve the thermal stress in these devices. Epoxies are widely used 
for electronic packaging due to their lightweight, excellent adhesive strength, long 
service life, ease of manufacturability, and excellent moisture/corrosion resistance 
[2, 3]. Although pure epoxy possesses a low CTE of 50–90 × 10−6 K−1 [4], its TC
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is relatively low (∼0.2 Wm−1 K−1) [5] to be used as thermal management mate-
rials. Therefore, research has been conducted in the past years on incorporating high 
thermal conductive fillers into the epoxy matrix to prepare epoxy-based materials or 
composites with superior thermal conductivity. The traditional thermally conductive 
epoxy-based materials are prepared by the addition of one or several kinds of fillers 
such as graphene [6], boron nitride [7], aluminum nitride [8], silicon carbide [9], and 
zinc oxide [10]. 

The TC is one of the most important intrinsic material properties to design mate-
rials for thermal management applications. The TC of epoxy-based materials is influ-
enced by several factors: bulk TC of the epoxy matrix, intrinsic TC of the fillers, fabri-
cation methods, interfacial thermal resistance, filler morphology, filler loading level, 
and filler functionalization [11]. Due to the dependence of TC of epoxy materials 
on several factors, there a large combination of possible variables to design a ther-
mally conductive material with the best property. Therefore, to reduce the number 
of possible experiments, modeling and simulation could be implemented to find 
the best candidate materials, saving time and resources. Furthermore, modeling and 
simulation can be used to study qualitatively or quantitatively the effect of various 
parameters on the TC of the materials. Also, in the case of 2D materials with atomic-
scale thickness, measuring the TC experimentally can be a daunting task and does 
not always produce the best result [12]. Modeling and simulation approaches are 
needed in this scenario to verify and validate the experimental characterization of 
the TC of 2D materials. 

Another method to provide a promising solution for fast and accurate prediction of 
physical properties including TC is machine learning (ML). ML can precisely portray 
the relationship between structure and properties including interactions which are 
nonlinear and complex. Different physical laws govern the structure and properties 
which does not provide a universal relationship in traditional theory or experimental 
works. As ML uses data mining, it can build a proper relationship without consid-
ering the laws or principles [13]. Several studies have been carried out in recent 
years in applying ML techniques to discover materials with desirable thermal prop-
erties. These studies considered either the atomic/molecular scope or the macroscopic 
physical properties [14, 15]. 

Figure 1 shows the different approaches to science that have progressed over 
time. For several hundred years, the processing and designing of materials have 
been carried out by experimental observation from empirical knowledge. During the 
twentieth century, the theoretical modeling was achieved from the extracted experi-
mental results. With the advent of supercomputers, the theories are implemented in 
the simulation of complex phenomena (e.g., thermal transport phenomenon), leading 
to accurate predictions of the properties of materials. However, some of these scien-
tific events are too complicated to explicitly explain with the theory. The emergence 
groundbreaking ML methods to teach computers the concept of those phenomena 
using big data sparked the “fourth paradigm of science” for materials discovery [14].

This chapter will systematically present approaches to modeling, simulation, and 
ML related to TC of epoxy materials. The first section will provide the fundamental 
theories of thermal transport in amorphous polymers such as epoxy. In the second
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Fig. 1 Different scientific approaches over the last four hundred years. The supercomputer image 
was taken from Oak ridge national laboratory [14]

section, different theoretical modeling for determining TC of epoxy composites is 
discussed, considering several factors such as the interaction of fillers, interfacial 
thermal resistance, and filler geometry. Some simulation techniques for determining 
the TC of epoxy materials are presented with the examples drawn from the previous 
simulation studies conducted on epoxy materials. Finally, ML methods for predicting 
the TC of epoxy materials are explained in detail with two different approaches. 

2 Theories of Thermal Conduction in Epoxy Polymers 

Thermal conduction is the principal mechanism of heat transfer in a solid material. 
The characteristics of thermal conduction can be expressed by the TC and specific 
heat capacity. The TC of solid material is expressed via Fourier’s law: 

jq = −  κ∇T (1) 

where jq is the heat flux (W/ m2), κ is the value of TC, and ∇T is the temperature 
gradient (K/m). The negative sign indicates that thermal transfer occurs down the 
temperature gradient. Another equation to describe the thermal conduction is the 
diffusive heat flow equation which is shown as 

C 
δT 

δt 
− ∇(κ∇T ) = 

δqv 
δt 

(2) 

where C is the volumetric heat capacity (J/ Km3), and qv is the volumetric heat 
flow. These two equations are the central pillar for thermal conductivity modeling 
by providing an analytical or numerical solution with relevant initial and boundary
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conditions. However, to understand the underlying relationship between the thermal 
conduction and structure or bonding, the microscopic level of the material needs to 
be considered. 

Thermal conduction occurs via heat carriers such as phonons and electrons at 
the microscopic level. Phonons are the main contributors of vibrational energy for 
thermal transport, and the resulting TC, κ of a bulk material can be expressed by the 
Debye approximation: 

κ(T ) = 
1 

3

∑

j 

Cj(ω)vjlj(ω)d ω (3) 

where Cj is the phonon specific heat with branch index j and phonon frequency ω, 
ν j is the phonon group velocity, lj is the phonon mean free path (MFP), and T is 
the temperature of the bulk material [16]. However, Debye’s model assumes that 
the vibrations are harmonic with the distribution of frequencies and high-frequency 
cutoff ω, just like in a pure crystalline material. The TC increases with T 2 at low 
temperature caused by increased specific heat, whereas at high temperature, the TC 
decreases linearly with T due to the Umklapp scattering of phonons. 

On the other hand, epoxy polymers are amorphous or semi-crystalline materials 
that deviate from Debye’s high-temperature model. At high temperatures, the TC of 
epoxy polymers reaches a plateau as κ increases up to a saturation point resulting 
from the localization of the excited phonons. This might be because the polymer 
materials consist of non-homogenous bonding with stiff-force constant involving 
the covalent bonding within the polymer backbone, and side groups coexist with 
softer non-bonded interactions between the chains [17–19]. Also, these non-bonded 
interactions are nonlinear with localized an harmonic vibrations like the “fracton 
hopping” model, which contributes to thermal transport [20]. Therefore, the basic 
thermal transport for amorphous polymers is best described by the “minimum thermal 
conductivity model (MTMC)” which states that the amorphous limit can be derived 
from Debye’s model as discussed above, assuming that the lifetime of vibration is 
half of the period of vibrations. Considering the contribution of individual vibrations, 
minimum thermal conductivity, κmin can be expressed by two measured variables (the 
atomic density and average sound velocity) as shown below: 

κmin =
(π 
6

)1/3 
κBn

2/3 
3∑

j 

Vj

(
T 

θj

)2 
θj/T∫

0 

x3ex 

(ex − 1)2 
dx (4) 

where κB is the Boltzmann constant, n is the atomic density, V 1 = Vl and V 2,3 =Vt are 
the longitudinal and transverse speed of sound, respectively, θ j = Vj(è/κB)(6π 2n)1/ 3 
is the Debye cutoff temperature, and è is the reduced Planck constant [21]. For 
amorphous polymers at or above room temperature, where all vibrational modes are 
assumed to be thermally excited, the minimum thermal conductivity can be given
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by κmin = 0.40 κBn2/ 3(Vl + 2Vt). This is usually observed in polymers with long 
straight sections in longitudinal directions due to the drawing process. 

3 Modeling of Thermal Conductivity of Epoxy Composites 

Modeling of the TC of polymer is generally developed for their composite materials 
due to the low TC of the polymers. Classical theoretical modeling of TC for compos-
ites mainly falls into two types: “effective medium approximations” and “microme-
chanics method”. In this section, several classical models of these categories for the 
TC of polymer composites are explained, considering the conditions in which models 
can be used. The application of these models on the TC of epoxy composites is also 
discussed to validate the accuracy of the models in specific conditions. 

3.1 Rule of Mixtures and Equivalent Inclusion Models 

Rule of mixtures models can calculate the TC of the composites as a function of its 
volume fraction and the individual components’ properties. The parallel model (also 
known as the linear mixing rule) calculates the upper bound of the TC. In contrast, the 
series model (also known as the inverse mixing rule) calculates the lower bound of the 
TC of the composites. Most experimental results fall within these two limits in which 
the accuracy of the series model is greater. Assuming each component contributes 
independently to the overall TC of the composites and the two components are in 
perfect contact with each other, the series and parallel models are shown by 

κ−1 
c = Vf κ

−1 
f + (

1 − Vf
)
κ−1 
m (Series) 

κc = Vf κf +
(
1 − Vf

)
κm (Parallel) 

(5) 

where κc is the TC of the composites, κ f and κm are the TCs of the filler and polymer 
matrix, respectively, and Vf is the volume fraction of the filler [22]. 

To understand the mechanism involved, Gozny et al. fitted three separate theo-
retical models (series model, parallel model, and equivalent inclusion model) to 
calculate the TC of epoxy composites consisting of amino-functionalized multi-
walled carbon nanotubes (MWCNT) as fillers. The correlation of the experimentally 
obtained TC values for MWCNT(–NH2)/epoxy composites with theoretical models 
is shown in Fig. 2. For the series model, they assumed that the composite was homo-
geneous with the fillers isolated in the matrix, which leads to TC values of the lower 
bound. The parallel model assumes that an internal network of conduction pathways 
is formed, with the fillers and matrix considered as separate phases without any inter-
actions. This provides an overestimation of the TC values of the composites with an 
upper bound [23]. A third model, known as the equivalent inclusion model, which
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Fig. 2 Comparison of the 
TC values obtained 
experimentally for 
MWCNT(–NH2)/epoxy 
composites with rule of 
mixtures and equivalent 
inclusion models [23] 

was developed by Hatta et al. [24] based on the previous works from Eshelby [25], 
was chosen to overcome the limitations of the rule of mixtures models. 

The equivalent inclusion model considers the aspect ratio of the fillers, especially 
in a random orientation. The derived equations for the calculation of TC of 3D 
random short fiber-reinforced composites are shown below: 

κc 

κm 
= 1 + Vf

[(
κf − κm

)
(2S33 + S11) + 3κm

]

J 
(6) 

J = 3
(
1 − Vf

)(
κf − κm

)
S11S33 + κm

[
3(S11 + S33) − Vf (2S11 + S33)

]
(
κf − κm

) (7) 

S11 = 1/D 

2[(l/D)2 − l
]3/2 

⎧ 
⎨ 

⎩

(
l 

D

)[(
l 

D

)2 

− l

]1/2 

− cosh−1

(
l 

D

)⎫ 
⎬ 

⎭ (8) 

S33 = 1 − 2S11 (9) 

where l is the length of the filler and D is the diameter of the filler. From Fig. 2, 
it can be concluded that the obtained values from the equivalent inclusion model 
are in good agreement for high aspect ratio fillers with the experimental data for 
MWCNT/epoxy composites compared to the rule of mixtures models. However, for 
low aspect ratio fillers, a significant difference is observed between the experimental 
and fitted values, which might be due to the agglomeration of CNTs, their waviness, 
and the shortening of fibers during processing. In the case of amino-functionalized 
MWCNTs, the experimental results tend to follow the equivalent inclusion model 
at high filler loadings because of the increased percolation threshold due to the 
functionalization process [23].
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3.2 Maxwell–Garnett (MG) Model 

The Maxwell–Garnett (MG) model is one of the earliest models for predicting the 
TC of composites derived from the early works of Maxwell’s utilization of potential 
theory [26]. MG models assume that the spherical fillers are isolated within the 
matrix, and there is no interaction among them. At low filler loading, the theoretical 
values from the MG model follow a linear relationship for the TC of the composites. 
For a composite with no interaction between homogeneous spherical fillers randomly 
distributed in a homogeneous matrix, the TC is calculated by [27]: 

κc = κm

(
1 + 3Vf 

κf − κm 
2κm + κf − Vf

(
κf − κm

)
)

(10) 

Nayak and coworkers are used two theoretical models (rule of mixtures model 
and Maxwell model) and a numerical analysis model (FEM model) to compare the 
experimental values for TC of pine wood dust particles-reinforced epoxy composites 
with the predicted values. According to the Maxwell model, the fillers were spher-
ical and dispersed, whereas the matrix was in a continuous phase. Among the two 
theoretical models, they found out that the deviation of the theoretical results from 
the experimental results is 2–44% and 4–28% for the rule of mixtures model and 
Maxwell model, respectively. Furthermore, they concluded from their findings that 
the Maxwell model overestimates the TC values, and the rule of mixtures model 
underestimates the TC values with respect to the experimental ones. From Fig. 3 and 
the results obtained, it can be stated that the Maxwell model has greater accuracy 
than the rule of mixtures model for a particulate filler epoxy composite. However, the 
Maxwell model’s accuracy is lower than the FEM model because it fails to take into 
account the interaction of fillers at high filler loading, and all fillers are not uniformly 
spherical [28].

3.3 Lewis-Nielsen Model 

Unlike the MG model, the Lewis-Nielsen model considers the geometry and orien-
tation of the fillers. It also considers that a thermally conductive pathway can be 
formed with a specific shape and size distribution of fillers at low filler loading. This 
model is shown as follows: 

κc = 
1 + ABVf 

1 − Bψ Vf 
(11)
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Fig. 3 Comparison of TC values obtained from the maxwell model with the other models [28]

where B = 
κf 
κm 

−1 
κf 
κm 

+A 
and ψ = 1 +

(
1−ψm 

ψ2 
m

)
f . A is a generalized Einstein coefficient that 

depends upon the filler geometry and orientation, and ψm is the maximum packing 
fraction [29]. 

Wang and Qiu investigated the effect of TC enhancement with incorporating CNT 
in glass fiber/epoxy composites through the experimental procedure and theoretical 
modeling with the Lewis-Nielsen model. They determined that the Lewis-Nielsen 
model underestimated the experimental TC values, as shown in Fig. 4. This might be 
because the model is invalid for fillers with a high aspect ratio, or it might have ignored 
entirely the orientation effect of the fillers during the processing of the composites 
[30].

3.4 Agari Model 

Agari model is based on the generalization of the rule of mixtures models and 
considers the formation of thermal conduction chain by the interaction of fillers 
fraction, geometry, and the interaction between them. Therefore, the model can accu-
rately predict the TC of composites for high filler loading [31]. Agari derived the 
following equation for determining TC: 

log κc = Vf C2 log κf +
(
1 − Vf

)
log(C1κm) (12)
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Fig. 4 Comparison of the TC values of epoxy-CNT composites for experimental results and results 
obtained from the Lewis-Nielsen model (square marks: experimental results, solid line: theoretical 
predictions) [30]

where C1 is the correlation of the effect of the fillers on the crystallinity and crystal 
size of the polymer matrix, which directly influences κm, and C2 is a factor of 
ease in forming conducting chains of fillers and falls between 0 and 1. The value 
of C2 approaches 1 when particles can more easily form conductive chains, thus 
contributing to a greater effect to change the overall κc [32]. 

Wang and co-researchers analyzed the TC of the Si/epoxy composites by 
comparing the experimental data and the theoretical data from the Agari model to 
observe whether the model provides an accurate prediction of the TC of the compos-
ites. They reported that the predicted TC values of the composites are close to the 
experimental values at lower filler loading, as shown in Fig. 5. Although the model 
deviates at high filler loading, it should not be considered invalid because the error 
might be due to the poor filler dispersion and the presence of voids in the compos-
ites during the processing of the composites. Agari model does not consider these 
processing variables that might arise and only consider the intrinsic variables [33].

3.5 Bruggeman Model 

The Bruggeman model considers the formation of the thermal conduction pathway 
due to the direct contact between the fillers. At high filler content, the distance 
between the fillers is small, and the fillers interact with each other. This model is an 
expansion of the Maxwell model as it also regards the fillers to be spherical. The 
Bruggeman model is defined by the following equation for a binary composite [34]: 

1 − Vf = 
κf − κc 
κm − κc

(
κm 

κc

)1/3 

(13)
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Fig. 5 Comparison of the 
experimental and the Agari 
model values of the TC of 
the three composites with 
different filler volume 
fractions [33]

Lee and coworkers fitted several models, including the Bruggeman model, to 
compare how the models predict the experimental data for TC values of aluminum 
nitride (AlN) filled epoxy composites, as shown in Fig. 6. Bruggeman’s model 
provides a more accurate and consistent result at a high filler fraction than the 
Maxwell model as it considers the interaction among fillers. However, the Agari 
model matched better than the Bruggeman model as it considers the aforementioned 
factors, C1 and C2, which affect the TC of the composites, unlike in the Bruggeman 
model, where all fillers are assumed to be spherical [35]. 

Fig. 6 Comparisons of the 
measured TC of aluminum 
nitride-filled epoxy 
composite with the 
calculated TC by various 
theoretical models, including 
the Bruggeman model [35]
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3.6 Deng-Zheng Micromechanical Model 

Deng-Zheng micromechanical model does not have the limitations that other models 
face and thus fit perfectly for composites with low filler loading. Besides considering 
the effect of anisotropy, aspect ratio, and rough surfaces of the fillers, it also considers 
the “interfacial thermal resistance (ITR)” between the fillers or matrix and filler. The 
equation shows Deng-Zheng model for a 2D shaped filler-reinforced composites 
[36]: 

κc 

κm 
= 

⎡ 

⎣ 1 
3 

η(
κm 

ηκce+H (ηp)

)

⎤ 

⎦Vf + 1 (14)  

where κce is the equivalent axial TC of the fillers as shown by the equation: 

κce = κf(
1 + 2Rk κf 

L

) (15) 

Here, Rk represents the Kapitza resistance, and L is the average largest lateral length 
of folded 2D fillers. The quantity H(ηp) can be shown by 

H (ηp) = 1(
(ηp)2 − 1

)

⎡ 

⎣ ηp√ (
(ηp)2 − 1

) ln
(

(ηp) +
√ (

(ηp)2 − 1
)) − 1 

⎤ 

⎦ (16) 

where p = SA/SL is the aspect ratio, η = Se 
A 
SA 

is the folding degree, and Se 
A is the 

equivalent average area of flat surface of the 2D fillers. 
In Fig. 7, it is shown that the theoretical values from the Deng-Zheng model 

fitted perfectly with the experimental values in a straight line for epoxy composites 
consisting of 2D exfoliated graphene (EG) nanosheets. From the figure, the intercept 
and slope are calculated and found to be 1 and 172.28, respectively. The slope can 
also be expressed as 

κc 

κm 
= 

⎡ 

⎣ 1 
3 

η(
κm 

ηκce+H (ηp)

)

⎤ 

⎦ (17)

Putting the calculated value of the slope in the above equation, the folding degree 
η is calculated and found to be η = 0.84, which indicates that the fillers are not fully 
extended in the epoxy matrix. Therefore, Deng-Zheng’s micromechanical model also 
provides information on the influence of the filler’s microstructure in the matrix [37].
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Fig. 7 Experimental values 
(dot) and Deng-Zheng 
micromechanical model 
derived values for effective 
TC λe/λm of 2D EG-epoxy 
nanocomposites [37]

4 Simulation of Thermal Conductivity of Epoxy Materials 

4.1 Molecular Dynamics Simulation 

Molecular dynamics (MD) simulation is a statistical mechanics-based tool where 
Newton’s law of motion, F = ma, is combined for a collection of particles relative 
to time. Using Newton’s law, MD can determine the microstructure and interactions 
between the particles considering the particles’ physical movements in a short period. 
In MD simulation, a force-field file is used as input to describe the physical parameters 
of the particles such as the atomic mass, bond angle, and bond length. The size of the 
MD system is typically between 10 A and 100 nm; the number of atoms in the system 
is from several thousand to millions, and the simulation period is between 100 ns and 
microseconds [38]. MD simulations mainly fall into two categories: non-equilibrium 
MD (NEMD) and equilibrium MD (EMD). 

The most straightforward approach for determining the TC of epoxy materials 
with MD simulations is the non-equilibrium molecular dynamics (NEMD) method. 
This method considers the arbitrary shapes and structures of the composites without 
any assumptions or simplifications and can describe in detail the vibrational motion 
of phonons. The temperature gradient is calculated by implementing heat source 
and sink, in which the temperatures are kept constant and then removed at a steady 
rate. However, it requires a large amount of computation power and time, and it also 
ignores the size effect of highly aligned polymer chains when the phonon mean free
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path is longer than the length of aligned chains. To overcome this problem, equilib-
rium MD (EMD) based on Green–Kubo formalism is usually carried out. This method 
does not use any kind of heat source and sink and use periodic boundary conditions. 
Therefore, phonon scattering does not occur, and size effects are negligible. A smaller 
system size can be used as there is no need to establish the temperature gradient. 
Although the simulation time is longer, a single process can determine the whole TC 
tensor, which is applicable for anisotropic materials [39]. 

Before simulating epoxy materials, its model structures need to be generated with 
force acting between its atoms. Two types of molecular modeling are carried out to 
generate the epoxy structures: united-atom (UA) models and coarse-grained (CG) 
models. UA model combines a group of carbon and other heavy atoms into one 
particle, excluding the hydrogen atoms, and evaluates the dynamics and interaction 
between the particles based on united-atom force fields. As a result, it ignores most 
of the non-bonded interactions present in the epoxy materials. CG model treats small 
groups of atoms into a single particle or bead, considering all kinds of interactions 
and bonding energy present in the epoxy materials [38]. The non-bonded interactions 
are determined by pair potentials such as Lennard–Jones (LJ) potential to describe 
the “hard-core repulsion”, “van der Waals attraction” or “Coulomb interactions”. 
The bonded energies include the energy for “bond stretching”, “angle bending”, 
“torsion”, “inversion”, and the cross term of these functions. 

4.1.1 NEMD Simulation of TC of Epoxy Materials 

Several studies have been carried out in recent years on NEMD simulation of TC of 
epoxy-based materials. Wang et al. examined the effect of incorporating function-
alized graphene (FG) in epoxy resin by NEMD. At first, the equilibrated molecular 
structure of FG/epoxy composites is constructed by the atomistic modeling of FG and 
epoxy with the implementation of NVE and NPT ensemble in the MD simulation. 
The term “NPT ensemble” indicates that the number of atoms (N), pressure (P), and 
temperature (T) is kept constant during the simulation. “NVE ensemble” indicates 
that the number of atoms (N), volume (V), and energy (E) remains constant during 
the simulation. The simulation cell consists of the FG positioned in the center of the 
box in the XY plane direction with the epoxy chains distributed evenly on both sides 
of the FG, as shown in Fig. 8a. A temperature gradient is created by applying heat 
energy to the right side of the cell (heat source) and removing the same amount of 
energy from the left side (heat sink) at a constant rate. The TC of the epoxy nanocom-
posites is then calculated by Fourier’s law, as shown in Eq. (1). Another simulation 
cell is constructed to determine the TC of the nanocomposites by considering the 
“interfacial thermal conductance (ITC)” at the FG/epoxy interfaces. In this cell, the 
FG and the epoxy chains are oriented perpendicularly to the XY plane so that heat 
flux can pass through FG/epoxy interfaces, as shown in Fig. 8b. From the NEMD 
simulation, the ITC was calculated as shown by
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Fig. 8 NEMD simulation for a in-plane TC of graphene/epoxy composite and b ITC of 
graphene/epoxy interface [40] 

H = q

Δt.A.ΔT 
(18) 

where H is the ITC, A is the cross-sectional area through which the heat flux passes, 
and q is the supplied or removed heat energy in the nanocomposite model in each step 
of the NVE ensemble. ΔT is determined as the average of half of the temperature 
difference of the epoxy located at each side of the interface of the segmented cell 
regions [40]. 

4.1.2 EMD Simulation of TC of Epoxy Materials 

EMD is the most efficient way to estimate the anisotropic TC of epoxy materials 
at various temperatures compared to the NEMD techniques, where a single scalar 
quantity of TC is measured. The first step in the EMD technique is to construct the 
atomic modeling of epoxy polymers with sufficient cross-linking units so that their 
properties are portrayed properly. “Dendrimer growth approach” is the most popular 
method to build epoxy networks. In this technique, a single monomer of epoxy resin 
is modeled first, followed by cross-linking a second layer of monomers around it. 
The third layer of monomers is cross-linked to the second layer, and in this way, 
layers of monomers are added to the core structure that grows at each pass to build 
cubic unit cells [41]. After constructing the dendrimer structure, the TC is estimated 
using the “Green–Kubo expression”, which relates the TC tensor to the integral over 
time t of the heat flux autocorrelation function as follows: 

κ = 
V 

3κBT 2 

∞∫

0 

J (0).J (t)dt (19)
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where V is the volume of the unit cell, κB is the Boltzmann’s constant, T is the 
temperature, J is the atomistic heat flux vector, and the angular brackets denote the 
ensemble average, heat current autocorrelation factor, HCACF = J(0) . J(t) [42]. J 
is defined as 

J =
∑

i 

eivi + 
1 

2

∑

i<j

(
fij

(
vi + vj

))
xij (20) 

Liu et al. carried out an equilibrium MD study on the thermal and rheolog-
ical properties of boron nitride nanosheets (BNNSs) filled epoxy composites. The 
models of neat epoxy resin and BNNS/epoxy composites were constructed using 
the Materials Studio 8.0 software, as shown in Fig. 9. Different force fields were 
used to characterize the interactions present in the model structure. CVFF potential 
is used for interactions between the epoxy resin and curing agent. Tersoff potential 
was applied to define the bonding within BNNS, and Lennard–Jones (LJ) poten-
tial was used for the interactions between epoxy and BNNS. Then, based on the 
“Green–Kubo theory”, EMD simulation was carried out to determine the TC of the 
BNNS/epoxy composites. The calculations were carried out by using the large-scale 
atomic/molecular massively parallel simulator (LAMMPS) package. The energy of 
the constructed epoxy composites system was minimized by applying the conjugate-
gradient algorithm. NVT and NPT ensembles were carried out using a Nose–Hoover 
thermostat and barostat to accurately construct the model with the actual density. 
Finally, the calculations for the TC of the composites were obtained by carrying out 
a dynamic equilibrium for the whole model at 300 K in the atmosphere with the 
periodic boundary conditions applied in three directions [43].

Figure 10 shows the TC of epoxy and epoxy/BNNS composites at 300 K with 
the change of correlation time. The heat current autocorrelation function calculates 
the TC with a correlation time of 50 ps and then integrated within the correlation 
time interval using Eq. (20). Ten independent calculations were performed for each 
system to calculate its TC by averaging the TC values of the ten systems in the last 
5 ps. In the figure, the thin gray line represents TC of each system, and the blue line 
is the average.

4.2 Finite Element Modeling 

Finite element modeling (FEM) is a powerful numerical simulation technique to 
solve many engineering problems at the macroscopic level involving stress anal-
ysis, heat transfer, fluid flow, etc. Software packages such as ANSYS, ABAQUS, 
and COMSOL Multiphysics are general-purpose finite element modeling packages 
for solving wide variety of engineering problems numerically. A physical problem 
usually occurs in a continuum of matter (solid, liquid, or gas) with several field vari-
ables which vary from point to point in a domain resulting in an infinite number
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Fig. 9 Different types of models constructed using materials studio: a epoxy monomer, b boron 
nitride nanosheet (BNNS), c neat epoxy d–f 10 wt.%, 2 × 10 wt.%, 4 × 5 wt.% BNNS/epoxy 
composites, respectively [43]

of solutions. FEM helps to provide a finite number of solutions by segmenting the 
domains into elements consisting of nodes located at element boundaries. These 
nodes reduce the physical problem by solving the variables at its locations, and the 
solution of these nodes can be extrapolated further from its neighboring nodes to the 
whole domain [25]. 

FEM can be used to validate and verify the values obtained from numerical simu-
lation by comparing them with the values obtained from experimental methods or 
theoretical models. Recent FEM studies on determining the TC of epoxy mate-
rials mainly focused on the epoxy-based composites due to their macroscopic struc-
ture. Sharma et al. carried out FEM analysis along with experimental investigation 
and theoretical models to compare the TC of unfilled and marble dust-filled needle 
punched nanowoven jute-epoxy composites (NNPJEC). 

They used ANSYS to determine the TC of the composite for different filler concen-
trations. A three-dimensional model of the composites was constructed in the first 
step by the design modeler in the ANSYS Workbench as shown in Fig. 11. 100 × 
100 × 100 μm cube is modeled and then segmented into alternate layers of 5 epoxy 
(in vol.%) and 4 jute as the reinforcing material. The marble dust particles were 
constructed as spherical shaped and randomly distributed in the layers of epoxy. In 
the next steps, the mesh parameters and boundary conditions are defined.

The geometrical model is meshed in program-controlled, linear element mode 
with an element size of 0.0001 mm, as shown in Fig. 12. For the boundary conditions, 
the temperature (T1) at nodes of face ABCD was set as 20 °C and nodes of face EFGH 
was set as 100 °C. The heat flow was applied in the X direction with all other sides
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Fig. 10 TC vs correlation time of a neat epoxy and b 10 wt.% BNNS/epoxy at 300 K [43]

Fig. 11 3D geometry model for a unfilled and b MD filled NNPJEC [44]
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completely insulated, as shown in Fig. 13. The numerical solution is performed using 
Eq. (1). The temperature distribution obtained from the simulation is shown in Fig. 14 
[44]. 

The underlying mechanism of heat transfer in epoxy-based composites can also 
be understood by the FEM simulation technique. Xu and coworkers are used another 
simulation package for FEM called COMSOL Multiphysics 5.4 to study the heat 
transport and enhancement mechanism for randomly distributed BN/epoxy and 3D-
BN/epoxy composites. They constructed three models of pure epoxy, randomly 
distributed BN (20 vol%)/epoxy, and 3D-BN (20 vol%)/epoxy with the boundary 
conditions defined. The temperature at the bottom is fixed at 120 °C, while the other 
sides are perfectly insulated with an initial temperature of 20 °C. Transient-state 
finite element methodology was implemented with a total time length of 0.02 s and 
step length of 0.002 s. 

The temperature distribution and heat flux arrow of the three different models are 
shown in Fig. 15. The heat transfers occur evenly throughout the body of pure epoxy

Fig. 12 Meshing for a unfilled and b MD filled NNPJEC [41] 

Fig. 13 Boundary 
conditions for the developed 
model [44]
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Fig. 14 Temperature distribution profile for a unfilled NNPJEC and b, c, and  d 8, 16, and 24 wt.% 
MD filled NNPJEC [44]

and randomly distributed BN/epoxy. The average top surface temperatures of these 
models remain constant throughout the whole process. This is due to insufficient 
thermal conduction pathway and the epoxy matrix’s low TC. On the other hand, the 
heat transfers faster, with the average top surface temperatures and bottom surface 
temperatures becoming almost equal. The 3D-BN provides selective and efficient 
thermal conduction pathways due to BN arrangement along the heat flow direction 
[45].

5 Machine Learning (ML) for the Thermal Conductivity 
of Epoxy-Based Materials 

In the past few years, machine learning (ML) techniques have piqued interest in 
various research fields due to their excellent ability to extract useful information. ML 
methods can play a significant role in the design of novel materials or in predicting the 
physical properties of an unknown material. However, in polymer science, ML-based 
methods have not been widely implemented because there are not enough datasets 
due to the experiments being labor-intensive and expensive to construct. Further-
more, the datasets obtained from the previous literature sources are usually noisy 
and inconsistent because of several experimental factors such as process conditions, 
origin and purity of used chemicals, and environmental conditions. As a result, a
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Fig. 15 Process of heat transfer displayed by finite element simulation. Temperature distribution 
and heat flow arrows of a pure epoxy resin, b randomly distributed BN/epoxy composite with 20 
vol% BN, c 3D-BN/epoxy composite with 20 vol% BN [45]

vast and comprehensible source of information on polymer properties are not easily 
obtainable, and the datasets are scattered [46, 47]. Moreover, for polymeric mate-
rials like epoxy, it is difficult to construct an ML model to create a link between its 
structure and TC. This is due to the shortage of common public databases including 
TC of epoxy materials. Additionally, developing an extensive database by molecular 
dynamics for polymers that occupy an ample chemical space is seriously limited by 
its longer computation time. As a second rank tensor, the obtained TC values also 
depend on the factors such as polymer processing operations which are not recorded 
in the database [48]. 

Few workflows have been conducted in the past to predict polymers’ TC by ML 
methods to overcome the issue of limited data. Here, two approaches will be discussed 
to predict the TC of epoxy or epoxy composites materials. The first approach 
combines experimental techniques with active learning and Bayesian optimization to 
model and maximize the κ from various epoxy materials. This approach also helps to 
find out the best condition for achieving the target TC from a limited dataset without 
requiring any data from the previous literature through designing controlled experi-
ments [49]. In the second approach, several ML algorithms, including “convolution 
neural network (CNN)”, are employed to train models that can predict the effective 
TC of epoxy-based composites. The datasets contain composites structures that are 
created from a “quartet structure generation set (QSGS)”, and numerical methods 
are applied, such as the lattice Boltzmann method (LBM), to calculate the effective 
TC [50]. Before discussing these approaches, an overview of the methodology of the 
ML framework is explained.
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5.1 ML Methodology Framework 

ML techniques generally fall into three main categories: supervised learning, unsu-
pervised learning, and reinforcement learning. Most of the techniques used for 
predicting TC utilize the supervised ML strategies. Supervised learning uses the 
training dataset that contains a labeled set of input and output pairs for N number 
of samples. The goal of the supervised learning method is to evaluate a prediction y 
for the corresponding input x with low bias and low variance error [51]. The overall 
process of developing ML models consists of four steps, as shown in Fig. 16. The  
first step is collecting enough data from experiments, trusted numerical simulations, 
or other reliable sources. The second step is choosing proper features (e.g., molec-
ular structure, physical properties, and/or chemical properties of the material) on the 
subject as input parameters. This is followed by capturing the effect of each param-
eter on the output, which leads to model training. In the last step, the final model 
should be evaluated by another portion of the dataset known as the testing dataset 
[52]. 

Data collection should be done so that a suitable and reliable dataset is prepared 
after understanding the problem and thermal transport mechanism in the material. 
The main objective during this process is to ensure that the training dataset represents 
the complete diversity of reality as much as possible. Due to the development of mate-
rials informatics in the past several years, many research groups have contributed to 
building databases to collect material properties for both experimental and theoret-
ical values. These commonly used databases are Materials Project Database, Citrine 
Informatics, Wolfram Data Repository, Polyinfo, Cambridge Structural Database, 
Nanomine, and Atomwork. 

Feature generation or engineering is carried out by setting up features from the 
training dataset that can represent both the materials in the training dataset and the new 
dataset. The quality of feature selection seriously influences the accuracy of the ML 
models. For predicting the TC of epoxy-based materials, the features might include 
molecular weight, specific heat capacity, density, coefficient of thermal expansion, 
curing temperature, curing reagent, thermal stability, etc.

Fig. 16 Workflow for constructing a ML model for predicting TC [53] 
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After choosing the dataset and its features, the ML model is trained to draw 
a relationship between features (input data) and the TC (output data) through the 
ML algorithm. The complete set of data is divided into 3 sub-groups for training, 
validation, and testing purposes. The training data are used in the learning process 
by the ML algorithm to provide the ML models parameters. The validation data 
can optimize the hyperparameters in ML models for the best performance. To eval-
uate the predictive performance of the ML algorithms, three statistical performance 
measures are widely used: “linear correlation coefficient (R)”, “mean absolute error 
(MAE)”, and “root mean square error (RMSE)”. If the obtained ML model shows 
low accuracy to predict the TC of the testing dataset for a particular ML algorithm, 
the previous steps are reiterated by increasing the samples of the training dataset or 
choosing a different ML algorithm until the ML model shows better accuracy with 
the performance metrics. 

5.2 Prediction and Optimization of TC of Epoxy Materials 
from Small Dataset Through Transfer Learning 

The barrier of the limited dataset in the field of polymer science can be tackled by a 
two-stage data-driven approach called transfer learning. Transfer learning involves 
active learning and Bayesian optimization to take relevant segments of a pre-trained 
ML model and applying it to a new and similar problem. The objective of the first 
stage, active learning, is to develop a model to find epoxy materials for a specific 
range of high TC. Bayesian optimization is carried out in the next stage to search for 
epoxy materials with extremely high TC after screening the experimental conditions. 
It is a sample-efficient optimization method that does not require many samples to 
obtain good results and suitable for tasks that requires function which are extremely 
expensive to evaluate. The schematic for this ML-guided process including different 
steps is shown in Fig. 17.

At first, the data are collected from the public database such as Polyinfo and QM9 
for the forward prediction step. The data for TC values had only a few instances 
which provide a poor accuracy for the model obtained through direct learning as 
shown in Fig.  19d. Therefore, an indirect approach is preferred by mapping structures 
of epoxy materials to proxy properties which include glass transition temperature 
Tg, melt temperature Tm, density ρ, and heat capacity Cv. Molecular fingerprint 
(ECFP) can be selected as the molecular feature to represent the chemical structure 
of the epoxy monomer. A linear regression model is trained on a random selection 
of 80% of the instances of the given data for Tg and Tm. As shown in Fig. 18c–d, the 
modes gave decent predictions for glass transition temperature and melt temperature. 
Similarly, 1000 pre-trained models were constructed by using a different portion 
of the dataset to refine the weight parameters for the small dataset on TC values. 
The best transferable model to predict TC was identified from the 1000 pre-trained 
models that predicted the highest generalization capability on the five validation sets,
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Fig. 17 Different steps for the prediction of TC of polymers from small datasets through transfer 
learning. a Forward prediction derives a model that describes polymeric properties (e.g., glass 
transition temperature (Tg) and melting temperature (Tm)) as a function of chemical structures 
in the constitutional repeat units. The forward model trained on the dataset from PoLyInfo was 
inverted to obtain a backward model, which was conditioned by desired property regions (UTg and 
UTm). The backward model produced a library of hypothetical chemical structures that exhibit the 
desired properties. In addition, a prediction model of TC was developed, which was utilized in the 
post-screening of the produced library. Here, an ML framework called transfer learning was used to 
overcome the issue of limited data on TC: prediction models of proxy properties were pre-trained on 
the given large datasets from PoLyInfo and QM9, and then, the pre-trained models were fine-tuned 
using the limited data on the target property. The transferred model is not directly used for the 
molecular design calculation because its generalization capability would likely be restricted by the 
design space spanned by the few training polymers. b Analytic workflow consisting of four internal 
steps toward materials discovery [54]

each randomly constructed from 20% of the data. In this way, “transfer learning” is 
constructed to correlate TC to the molecular structure [48, 54].

However, the model is unreliable since the test dataset only has a few data points for 
TC. Therefore, the properties Tg and Tm are considered as design targets, whereas the 
transferred model is used to screen promising candidates with a high TC. Figure 18c 
shows the excellent accuracy of transfer learning for predicting TC. The next stage 
involves backward propagation for the generation of the structure of the chosen candi-
dates. A molecular library composed of different epoxy materials is generated using 
the Bayesian molecular design method which requires fewer training data values. 
In the molecule generation process, 1000 candidates are generated based on factors 
such as synthetic accessibility (SA), ease of processing, validity of chemical bond, 
and liquid-crystalline polymers (LCPs) likeness. At the final stage, three chemical 
structures are selected from these 1000 candidates based on three main criteria: TC, 
LCPs likeness, and SA score. Finally, the monomer of these three candidates is 
carried out for experiments to obtain the values of the thermophysical properties for 
validation [48, 54].
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Fig. 18 Performance of forward prediction models. a–b Five-fold cross-validation of trained linear 
models for glass transition temperature (Tg) and melting temperature (Tm). All predicted values in 
the five validation sets are plotted against observed values, denoted by blue dots (red for the training). 
The mean absolute error (MAE), root mean square error (RMSE), and correlation coefficient (R) 
are shown in each plot. c–d Validation results for the prediction model on TC exhibited the best 
transferability (MAE = 0.0204 W/mK) out of 1000 pre-trained models on Tm. The prediction 
results of the best-transferred model and a random forest model trained directly using the 28 data 
points for TC (MAE = 0.0327 W/mK) are shown in c, d, respectively [54]
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Fig. 19 Structure of composites for different volume fractions of inclusions [50]

5.3 Predicting the TC of Epoxy Composites Using Deep 
Learning (DL) Methods 

A specialized branch of ML is the deep learning (DL) which can analyze unstructured 
data and automated identification of features by extracting high-level features from 
raw input data. The use of convolution neural network (CNN) in deep learning (DL) 
methods of ML has been developing fast in recent years and is a handy tool for image 
detection. Like face recognition, CNN can also be applied to record the feature of 
the composites’ microstructure. The extracted structural features can be used to find 
out the relationship between these structures and the property of the compos. CNN 
can provide a rapid prediction of a composite without solving tedious simulation 
processes or carrying out experiments. 

For analyzing the heat transfer phenomenon and predicting the TC of epoxy 
composites, a database with different composite material structures must be 
constructed. The structures can be created by the quartet structure generation set 
(QSGS) package, and lattice Boltzmann method (LBM) is applied to calculate its 
effective TC. The calculated TC values obtained from LBM by solving Boltzmann 
transport equation (BTE) are later used in the training dataset. This method is chosen 
because the dataset collected from QSGS and LBM is easily obtainable. Also, the 
results calculated from LBM have greater accuracy as the energy from BTE follows 
the heat diffusion laws in macroscale composite systems. The CNN model is then 
applied to train the dataset to predict the effective TC of composite materials. 

A large number (about 1500) of structures are generated using QSGS with different 
volume loading of inclusions ranging from 2 to 30%, and each volume fraction has
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about 100 data. Figure 19 shows some examples of the generated structure using 
QSGS. The extensive training data reduce over-fitting of data and provide a model 
with higher accuracy. The ratio of the TC of matrix material κ1 and the TC of 
inclusion κ2 is fixed at a specific value (1:10) as the objective of CNN is to represent 
the structural features. The dataset is then divided randomly into training data and 
testing data. For a dataset containing 1500 structures, 1400 structures consist of 
training and validation data, whereas the rest of the structures are used for testing 
the dataset. 

Several CNNs with various generated structures have been previously constructed 
for image recognition such as LeNet-5, AlexNet, and ResNet. Wei et al. used the 
LeNet-5 CNN model to predict the effective TC of composites based on their training 
data [50]. The architecture of this CNN model as shown in Fig. 21 is discussed 
here to show how the CNN model works in predicting the TC of composites from 
its structure. The CNN involves an input layer (i.e., the structure), an output layer 
(i.e., the effective TC), and multiple hidden layers. The input layer is an image of 
the structure with a particular pixel size (in this case 100 × 112 with approx. 104 
parameters). CNN reduces the number of parameters from the input to establish the 
mapping from the structure to the effective TC. The CNN can reduce the image to a 
few parameters in a one-dimensional vector using different kinds of functional layers 
without altering the key features of the structure, as shown in Fig. 20. Here, 96 feature 
maps with sizes of 54 × 48 pixels containing 96 different features were obtained 
using the kernels of 7 × 7 pixels in the first layer. The size of feature map was further 
reduced to 27 × 24 pixels using the corresponding kernels of 3 × 3 pixels in Pool-1. 
Using three convolution and pooling layers, the output features were converted to a 
one-dimensional feature vector by the fully connected layer FC-1 which in turn was 
processed by the fully connected layer FC-2. The feature vector is finally transformed 
into effective TC as the output which can be used to construct the regression model 
to predict the TC. 

An activation function (e.g., sigmoid function) is added after each output layer 
to increase the nonlinearity of the network. A convolution neural kernel matrix is

Fig. 20 Architecture of the convolution neural network LeNet-5. The size of kernels and the number 
of feature maps are indicated, and they can be adjusted according to specific needs [50]
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Fig. 21 Relationship 
between the TC predicted 
using CNN model and the 
LBM model. The CNN 
model is trained with 1400 
datasets. The inset is the 
histogram of the RMSEs of 
the CNN models with 
different training datasets 
(1400, 750, 250) [50]

used for the mapping of the image of the structure to generate feature maps. The 
kernel parameters are first initialized by the “Gaussian initialization method” before 
extracting the features. Euclidean loss as the loss function is utilized for the parame-
ters to be optimized to obtain the optimal regression model. Euclidean loss calculates 
the square sum of the difference between the two inputs among which one is the 
normalized target value, and the other is a predictive value as shown below: 

1 

2N 

N∑

i=1

∥∥yi − y'
i

∥∥2 
(21) 

During the training of the neural network, the weighted parameters of the function 
are constantly updated according to the algorithm during each iteration to minimize 
the loss. After training the network, optimal parameters in the layers of the regression 
model are obtained which can best fit the target effective TC to the structure. From the 
trained CNN model, effective TC of testing data is predicted. With a testing dataset 
size of 100, the predicted effective TC values from the CNN model are compared with 
the TC values calculated by LBM. As shown in Fig. 21, the predicted results fit well 
with the calculated values by LBM which indicates a greater accuracy of the CNN 
model. It also shows that the root means square error (RMSE) decreases slightly with 
the number of training datasets. The RMSE is calculated by the following equation: 
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where κLBM and κCNN are the calculated results from LBM and predicted results 
from the CNN model, respectively.
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6 Conclusions and Future Outlook 

Epoxy-based materials are widely used for thermal management applications due to 
their electrically insulating nature and low coefficient of thermal expansion. Highly 
thermally conductive fillers are usually incorporated into the epoxy matrix to develop 
epoxy-based materials with high thermal conductivity. Modeling and simulation are 
required to reduce the number of potential experiments, develop new design criteria 
for the selection of matrix and fillers, and understand the heat transfer mechanism 
for existing materials. 

Over the years, various theoretical and analytical models have been developed 
for the prediction and description of thermal conductivity in polymer composites. 
These models take into consideration several assumptions such as particle size and 
size distribution, filler volume fraction, shape, topology, spatial distribution, and 
so on. For instance, the Maxwell model considers diluting dispersion of spherical 
particles embedded in a continuous matrix ignoring the interactions between fillers. 
The Bruggeman model considers filler interaction and therefore, is more accurate 
for high filler volume fractions. Although these models are successful in describing 
experimental results, the accuracy largely depends on the introduction of fitting 
parameters (e.g., interfacial or Kapitza resistance). 

To understand the phenomenon of heat transport at the molecular level within the 
matrix and/or fillers through various interfaces, classical molecular dynamics (MD) 
simulation can be carried out. It combines the computational efficiency and the rela-
tive accuracy of the description of atomic structure, chemistry, polymer chain confor-
mation, and bonding to determine the TC. It also considers the interfacial thermal 
resistance when fillers are added into the polymer matrix and accurately describes the 
inter-atomic forces present within the polymer matrix or fillers. Numerical simulation 
methods in the form of finite element modeling are another simulation technique to 
predict the TC of epoxy composites considering the details of materials distribution. 
Finite element modeling calculates the TC of the material by directly solving the 
heat diffusion equation through partial differential equations methods. Unlike the 
numerical models, it can clearly portray the heat conduction mechanism that occurs 
throughout the material. 

ML techniques are widely used in this era of the rapid growth of technology in 
different fields. The development of new materials synthesis technology and the fast-
growing demand for the rapid and accurate prediction of physical properties require 
new computational approaches like ML methods. ML methods can correlate many 
variables to predict the TC of an epoxy material. Also, it can be used to design a 
new epoxy material with the desired TC value. Here, two studies are discussed to 
predict the TC of epoxy materials. The first study used transfer learning to estimate its 
TC with limited dataset while the other study implemented DL methods to predict 
the TC from the microstructure of epoxy composites. However, the ML methods 
are relatively new and developing in the field of polymer science, and more work is 
needed to be done in future related to TC of epoxy materials to reach its full potential.
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