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Abstract Nowadays, sound serves as a crucial factor in all facets of human life. 
Staring from automating personal security systems to critical surveillance systems, 
sound is an indispensable component. The practical implementation of the present 
day automatic sound recognition systems in real-life settings is inadmissible due 
to their poor detection accuracy. However, deep learning-based systems overcome 
the incompetence of the traditional machine learning-based models, and it can be 
used to develop automatic sound classification systems. This work proposes a deep 
meta-model for categorizing environmental sounds on the basis of the spectrogram 
images generated from these sounds. In the proposed approach, spectrogram images 
of environmental sounds are used to train five different deep learning models, and 
the predictions from these base models are then stacked using the proposed deep 
meta-model. Experimental results on two benchmark datasets such as ESC-50 and 
UrbanSound 8K demonstrate the fact that the proposed deep meta-model is a promis-
ing alternative to the conventional approaches for environmental sound recognition. 
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1 Introduction 

Over the previous decade, significant amount of research has been proposed toward 
environmental sound modeling and its recognition. Routine sounds, i.e., the sounds 
people experience in day-to-day life except speech and music, are commonly referred 
to as environmental sounds. Nowadays, environmental sound recognition (ESR) sys-
tem is a key component in efficient machine audition. With the developing interest 
on query-based probing such as content-based video and image retrieval [4], ESR is 
often instrumental in effective sound search applications. Once the sound files have 
been automatically labeled with meaningful keywords, an ESR system can be used
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for keyword-based sound recovery. Moreover, robot navigation is often improved 
by integrating an ESR module in the navigation framework. In recent years, ESR is 
effectively incorporated in home-surveillance, be it for helping old folks living alone 
in their own residence or for a smart house. Similarly, ESR can be customized for 
the recognition of animals and poultry species by their distinctive sounds.

In recent years, music and speech are the two fundamental categories of audio 
signals that have been extensively investigated. In its early stages of development, 
ESR frameworks were very much identical to sound and music recognition mod-
els. Majority of these ESR framework comprises of three different stages such as 
signal pre-processing, extracting domain peculiar features, and then classification. 
Signal pre-processing divides the input into multiple segments from which meaning-
ful features are extracted. In feature extraction step, the dimensionality of all these 
segments was reduced by characterizing each of the segments by low-dimensional 
feature vectors. The commonly used features are pitch, crossing rate, and frame-
related measures. These features are then passed to an appropriate classifier for 
recognizing speech. 

However, the above-mentioned framework is found to be inappropriate for ESR 
because of its non-stationary behavior. As an example, phonetic structures have 
been considered as the fundamental building blocks of speech signals and they form 
the basis of speech recognition. As opposed to this, environmental sounds such as 
thunder or storm do not have such observable sub-structure present in them. On the 
other hand, music signals often exhibit relevant static patterns such as rhythm and 
melody. More recently, visual displays of an audio signals obtained with different 
time frequency representations such as spectrograms provide extensive description 
of the temporal and spectral structure of the original signal. Furthermore, features 
extracted from spectrogram images yielded more promising results for the task of 
detecting environmental sounds. 

In general, spectrogram is an efficient approach to visualize frequency spectrum 
of the underlying sound waves. Such spectrogram images can be further analyzed 
using deep learning-based frameworks. The hierarchical feature learning capacity [2, 
3, 13] of deep learning-based frameworks can be utilized to develop more efficient 
sound classification systems by overcoming the limitations of traditional approaches. 
However, the lack of sufficient training data still hinders the performance of these 
deep learning models. An ensemble of deep learning classifiers is often found to be 
much more accurate than individual ones [7]. Among ensemble-based approaches, 
stacking involves the training of a meta-model in order to aggregate the results of 
multiple models to generate the final prediction. To this end, this paper proposes an 
improved stacking-based ESR system using spectrogram. 

The remaining sections of this paper are organized as follows: A brief overview 
of the existing works in the field of ESR is presented in Sect. 2. The proposed 
methodology for ESR is explained in Sect. 3. Experimental evaluation of the deep 
meta-model is depicted in Sect. 4, and the proposed approach is concluded in Sect. 5.
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2 Related Work 

Numerous machine learning-based models have been proposed in the literature for 
the task of environmental sound recognition. The rest of this section will briefly 
summarize the state-of-the-art ESR techniques. Demir et al. [5] proposed a ESR 
system based on CNN-based features extracted from spectrogram images, and it 
uses a KNN classifier defined in ensemble sub-space for sound recognition. Later 
on, the same authors [6] also introduced a pyramidal-CNN framework to recognize 
environmental sounds. They used VGG16, VGG19, and DenseNet201 models for 
feature extraction from sound images obtained by applying STFT on sound signals. 
Here, feature is extracted in pyramidal mode so that the generated feature descriptor 
is of having higher dimension. Finally, an SVM classifier is trained using these high-
dimensional pyramidal features for recognizing various environmental sounds. 

More recently, Zhang et al. [19] employed recurrent neural network model to 
extract temporal correlations from spectrogram images. They also employed frame-
level attention mechanism to concentrate more on semantically linked and prominent 
frames. Meanwhile, an automatic system to recognize bird species has been proposed 
by Stastny et al. [14]. Their proposed model involves two processing stages. In the 
initial stage, certain pre-processing operations such as framing, noise removal, and 
pre-emphasis are performed on sound clips to generate spectrograms. In the second 
stage, a CNN-based model is trained using the spectrograms generated in the initial 
stage as input to recognize the species in which the bird belongs. Later on, Guzhov 
et al. [8] proposed a model that takes STFT sound images as input and various 
pre-trained models such as ResNet and SiameseNet are trained to perform sound 
classification. 

A weighting filters-based CNN architecture for ESR is introduced by Tang et al. 
[15]. In this framework, a new mechanism for feature weighting has been proposed, 
and they achieved significant improvement in detection accuracy with this weighting 
mechanism. On the other hand, stacking-based CNN model to recognize environ-
mental sound has been proposed by Ahmed et al. [1]. This model takes Log-Mel 
(LM) spectrogram images from the sound clips as input. Extensive hyperparameter 
tuning has been proposed in this work such as employing different drop-out rates, 
various padding schemes in the convolution layers, altering the size of max-pooling 
layer, and varying the stride values to figure out the combination that yield the best 
accuracy in detecting environmental sounds. 

In recent years, few stacking-based ESR systems have been proposed [1, 11, 
12]. However, majority of them employed time domain and time frequency domain 
features to combine the predictions generated by different classifiers. Spectrogram-
based features are not used in any of these existing approaches. Also, most of these 
models assume a linear relationship between the prediction scores of base models 
while stacking is performed. However, the relationship between base classifiers is 
not linear in real life.
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Fig. 1 Proposed ESR model 

3 Methodology 

The architecture of the proposed ESR system is depicted in Fig. 1. The proposed 
system consists of five base models, each of them generates classification results by 
analyzing the spectrogram corresponding to the given environmental sound, and later 
on, the deep meta-model efficiently combines the classification results yielded by 
each of the base models to generate a consensus final result. A detailed description 
of the base models used in this work and the proposed deep meta-model to aggregate 
the results of these base models is given below. 

3.1 Base Models 

In this work, the first level classifiers refereed to as the base level models are trained 
based on the principle of transfer learning. In transfer learning, the knowledge
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acquired while solving a particular problem is reused in a different but identical 
problem. As an example, the expertise attained while trying to classify Jeeps can be 
utilized to certain extent in classifying Buses. To this end, the following CNN-based 
models have been used in this work as the base level models: 

• FractalNet: FractalNet [10] is a specific type of CNN model without having 
residual connections but involves a fractal type design. FractalNet implements an 
expansion rule that is executed in recursive fashion to account for a deep network 
structure with its basic units known as fractals. In this type of architecture, there 
will be correspondence between diverse sub-paths and it do not assimilate pass-
through interdependence. 

• ResNeXt: ResNeXt [17] is based on the paradigm of divide and conquer. Its inten-
tion is to reduce the number of hyperparameters as opposed to ResNet. This can be 
achieved by the concept of cardinality. In ResNeXt architecture, cardinality can be 
treated as an additional dimension apart from its depth and width. Thus, ResNeXt 
architecture is constructed by aggregating the repetition scheme of ResNet and the 
split-transform-merge principle of InceptionNet. 

• Wide Residual Network (WideResNet): WideResNet [18] is an alternative to 
ResNet, where the depth of the residual network is reduced, but its width is 
increased. This can be achieved with the help of wide residual blocks. As a result, 
the number of filters in convolutional layers can be increased. 

• Squeeze and Excitation Network (SENet): SENet  [9] consists of specially 
designed blocks termed as squeeze and excitation (SE) units to enhance the repre-
sentation power of the features generated by CNN. The advantage of SENet is that 
with a negligible rise in total number of parameters to be learned, it can greatly 
enhance the overall performance of the network. To any of the convolutional lay-
ers, we can incorporate SE units, and the squeeze block combines the feature maps 
generated along each channels in a particular layer, whereas the excitation block 
involves fully connected layers that accepts the output of the squeeze blocks as 
input and generates a set of weight corresponding to each channel. 

• Convolutional Block Attention Module (CBAM): Similar to SENet, the CBAM 
[16] is a way to enhance the representation ability of CNN architecture. In CBAM, 
there exist two separate blocks channel attention and spatial attention. These two 
modules can be applied in sequential order to each layers of the CNN architecture. 

3.2 The Proposed Deep Meta-model 

Once the predictions were generated from the above-mentioned base level models, 
we need a mechanism to efficiently aggregate the results yielded by these base level 
models to get a consensus final output. Stacking is a prominent technique used in 
the literature to efficiently combine the results generated by the base level models. 
In stacking, a meta-model is initially trained with the predictions obtained from the
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base level models as inputs and the expected target as the required output. As a result, 
the meta-model learns how to effectively combine the initial level predictions made 
by the base models. 

This paper proposes a deep meta-model for combining the predictions from 
the base level models. Initially, the original dataset D is divided into five groups, 
{D1, D2, D3, D4, D5}, where each Di = {  fi j  , ti j }n j=1 involves n labeled samples 
taken from the given training collection. In the first pass of the proposed algorithm, 
the set {D2 ∪ D3 ∪ D4 ∪ D5} is used as the training data for the proposed deep meta-
model, and the set D1 = {  f1 j , y1 j }n j=1 is kept aside as the test samples. Given an input 
sample x1, the base models will generate predictions, and these predictions are then 
appended with the target class t1 corresponding to x1 to form a feature vector of 
the following form: [h1(x1), h2(x1), h3(x1), h4(x1), h5(x1)]. This newly generated 
feature vector acts as the input for the proposed deep meta-model. 

The deep meta-model that aggregates the base level predictions is formulated as 
a deep neural network. A deep neural network with five hidden layers is trained 
with the above-mentioned feature vectors to generate the final prediction score as 
the combination of the prediction scores given by the base level models. Given the 
set of base level predictions and the target class label, the deep meta-model can 
adjust the weights of the hidden layers such that it can learn a non-linear function 
approximation between the base level predictions and their aggregate. The key benefit 
of the proposed stacking scheme is that, instead of learning a linear relationship 
among the base level predictions, it can learn complex non-linear associations. Thus, 
the proposed deep meta-model always guarantees a consensus prediction score. 

4 Experimental Evaluation 

This section delineates a detailed description of the datasets used, the performance 
measures employed, and the discussion on the results obtained by the proposed model 
for the task of automatic recognition of environmental sounds and its comparative 
evaluation. 

4.1 Dataset Used 

To evaluate the performance of the proposed deep meta-model for ESR, two bench-
mark datasets such as ESC-50 and the UrbanSound 8 K have been utilized in our 
experiments. The ESC-50 dataset involves audio recordings of 2000 environmental 
sounds which are labeled. Each of these sound recordings are of duration 5 seconds 
and are grouped into 50 different categories. On the other hand, the UrbanSound 8K 
is an audio dataset which consists of 8732 labeled sound recordings of 10 semantic 
categories with duration equal to 4 seconds.
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4.2 Performance Measures Used for Evaluation 

The following performance measures have been used in this work to demonstrate the 
efficiency of the proposed deep meta-model: 

• False Positive Rate (FPR): It quantifies the chance that the proposed model cate-
gorizes a negative sample as positive. 

• False Negative Rate (FNR): It quantifies the extend by which the proposed model 
missed out true positives. 

• True Positive Rate (TPR): It measures the potential of the proposed model to 
predict a positive sample as positive. 

• True Negative Rate (TNR): It measures the potential of the proposed model to 
categorize a negative sample as negative. 

In addition to these quantitative measures, we also used receiver operating char-
acteristic (ROC) curve to qualitatively evaluate the proposed ESR system. The ROC 
curve depicts the relationship between TPR and FPR of the proposed model at dif-
ferent classification thresholds. 

4.3 Results and Discussion 

This section evaluates the results obtained with the proposed deep meta-model in 
comparison with the sate-of-the-art approaches. All the simulations discussed in this 
section were conducted on a machine equipped with Intel i7 processor having 8 GB 
of RAM and Ubuntu as operating system. 

The results obtained with the proposed deep meta-model were compared with the 
models coined by Ahmed et al. [1], Ragab et al. [12], and Liu et al. [11]. The hardware 
setup which was used to simulate the proposed deep meta-model is also used to 
implement the state-of-the-art models. Tables 1 and 2 summarize the comparison 
results on the selected benchmark datasets. From these results, it is evident that 
the proposed deep meta-model exhibits better performance in comparison with the 
existing approaches for the task of ESR. 

Table 1 Comparison of the proposed deep meta-model with existing schemes on ESC-50 dataset 

Performance 
metric 

Proposed deep 
meta-model 

Ahmed et al. [1] Ragab et al. [12] Liu et al. [11] 

TPR % 98.5 94.90 92.67 90.82 

FPR % 0 10.33 12.44 14.61 

FNR % 0 7.67 9.28 11.58 

TNR % 98 93.80 91.65 89.81
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Table 2 Comparison of the proposed deep meta-model with existing schemes on UrbanSound 8K 
dataset 

Performance 
metric 

Proposed deep 
meta-model 

Ahmed et al. [1] Ragab et al. [12] Liu et al. [11] 

TPR % 98 92.82 90.45 88.58 

FPR % 0 12.23 14.35 16.31 

FNR % 0 9.75 11.63 13.44 

TNR % 97 91.64 89.44 87.22 

(a) ESC-50 Dataset (b) UrbanSound 8K Dataset 

Fig. 2 Comparative evaluation of the proposed model based on ROC curve 

In addition to this, the performance of the proposed model in comparison with the 
state-of-the-art approaches is evaluated on the basis of ROC curve. Figure 2 depicts 
the ROC curves obtained for the proposed model in comparison with the existing 
stacking schemes when applied on ESC-50 and the UrbanSound 8K datasets. By 
analyzing the results shown in Fig. 2, it can be inferred that the proposed deep neural 
network-based stacking scheme gives rise to higher area under curve scores. This is an 
indication of the fact that the proposed deep meta-model can assure better recognition 
performance as compared to the existing stacking-based approaches for ESR. 

5 Conclusion 

The objective of this work was to investigate the applicability of the proposed deep 
meta-model to categorize environmental sounds based on the spectrograms of audio 
signals. The proposed deep meta-model utilizes the prediction scores of diverse base 
level models as input to a deep neural network and adjusts its weights so as to 
combine the initial level predictions to form a final consensus result. We analyzed 
two different environmental sound datasets on five distinct base level models and the 
proposed deep meta-model. The experimental results demonstrated the fact that the
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proposed deep meta-model outperforms all the base level models and the existing 
stacking approaches in several evaluation metrics. In addition to this, it was evident 
that the proposed deep meta-model was able to automatically encode the complex 
interrelation among the base level models and thus to entitle superior prediction. 
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