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Chapter 16
Potential Industrial Application of Diatoms
for a Greener Future

Kavita Bramhanwade, Vivek Narkhedkar, and Shalini Dhyani

Abstract The advantage of the complicated, microscopic, and industrially impera-
tive diatoms is not a secret now and has recently astounded the scientific society with
their miscellaneous potentiality. It attracts considerable attention due to their success
in diverse environmental conditions. Diatoms are highly attractive for industrial
applications due to their richness in natural lipids and carotenoids, especially in
the field of biofuel, metabolites, and nutraceutical production. The possibility to
utilize a diatom cell for industrial application has increased considerably accompa-
nied with the advanced knowledge of microscopy, metabolic pathways, and genetic
tools. Commercially it is feasible to perform the harvesting, primary culturing, and
further downstream processing of diatom culture. Diatoms with their unique frustule
structure, micro- to nanoscale properties, good thermal steadiness, proper surface
area, surface functionalization procedures, and eco-friendliness have obtained a huge
attention for their application in diverse topics of biotechnology and nanotechnol-
ogy. In this chapter, an effort has been made to assemble the important development
of diatoms in various industrial applications such as metabolite, feed, nutraceuticals,
biofuel, pharmaceutical products, and nanostructure production.
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16.1 Introduction

The biggest challenge of today’s world has paced up the scientific community’s
attention toward the arising issues related to resource limitations. The prime chal-
lenges of the world include, but are not limited to, clean water, energy, access to
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affordable medicines, and healthy food. Recently, the International Conference on
Key Engineering Materials 2020 researchers addressed the likely challenges in
context to material science before the scientists from different areas of research. It
was pointed out that innovations are required that rely on biomimetic to find a
sustainable way for the production of structural and functional materials. The
arguments pertaining to the economic meltdown, global health issues, and current
environmental scenario favored the utilization of eco-friendly, renewable, and local
resources. Optimistically, the forum promoted the idea that to counter the changing
scenario of disrupted global demand and supply chain, such use of resources is
inevitable (Kalyaev et al. 2020).
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In this context, diatoms by the virtue of their worldwide distribution, a significant
role in silicon and carbon recycling, a major share in the ocean’s photosynthetic
productivity is presumed to be a suitable alternative for today’s crisis (Huang and
Daboussi 2017; Yi et al. 2017). But conversely, diatoms are the least explored
organisms for their utility, although average annual diatomaceous resource avail-
ability accounts for 132 MT dry diatoms/ha within approximately 5 years (Wang and
Seibert 2017). Alongside, it is noteworthy that diatoms’ share in the annual produc-
tion of oxygen and organic carbon is approximately 20% and 40%, respectively
(Treguer et al. 1995; Falkowski et al. 1998; Afgan et al. 2016). Diatoms constitute
the rich diversity and dominating phytoplankton community possessing silica-built
cell walls called frustules. Since the nineteenth century, this inherent capacity of
silicon acquisition marked diatoms as an appealing microbial community (Sharma
et al. 2021).

The electron microscopy and advanced genetic tools facilitated the research on
frustule structure and confirmed the biochemical processes that constitute acquisi-
tion, transfer, and polymerization of silicon (Knight et al. 2016; Zulu et al. 2018).
Moreover, this knowledge advancement in metabolic processes and elucidation of
frustule structure could be a sustainable key to fabricating a vast range of commercial
products, like biofuels, nutrient supplements, ecological tools, optoelectronics, etc.
(Marella et al. 2020). Also, diatoms are capable to capture carbon and nitrogen
released from different sources. This property could be utilized in waste manage-
ment and the biofuel industries to generate fuels without carbon (Singh et al. 2017).

In the nutraceutical and pharma industries, diatoms can be explored to produce
plant-based proteins, omega, and other important fatty acids (Wen and Chen
2001a, b). The industrial dependence for omega oils on the fishery sector could be
reduced by replacing omega fatty acid diatoms. This will also decrease the issue
pertaining to the biochemical composition of fish oil, which was arising due to the
oceanic contamination and seasonal changes (Martins et al. 2013). The diatoms
could also ease the commercial production of fucoxanthin and some other caroten-
oids, strong antioxidant pigments (Xia et al. 2013). Likewise, this multifaceted
applicability of diatoms allows a colossal opportunity for sustainable development
that could help to achieve carbon neutrality.

The structure of diatom frustules has provided enormous potential to build up
various techniques and tools in biomedical industries (Mishra et al. 2017). The
nanomaterials developed from diatom biosilica have major applications in the



recognition of highly sensitive compounds of biological origin by advanced optical
and electronic techniques (Dolatabadi et al. 2011). In a new approach to diatom,
metabarcoding has widened its applicability in exploring environmental issues such
as algal blooms, acidification, and changing climate (Nanjappa et al. 2014).
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Fig. 16.1 Industrial applications of diatoms. (Modified after Hildebrand et al. 2012; Jayakumar
et al. 2021; Popovich et al. 2020; Rabiee et al. 2021; Saxena et al. 2021)

In this context, this chapter intends to serve recent development in the potential
use of diatoms in the industrial sector (Fig. 16.1). Herein, we attempted to produce
inclusive knowledge on a diverse array of diatom applications for sustainable
development. Indeed, the exploration of diatom’s potential will significantly
improve the steps progressing toward sustainable development. This will strengthen
the economy along with decrease reliance on nonrenewable resources. Therefore, the
need of the hour is to sustainably procure benefits and services from diatoms.

16.2 Industrial Applications

16.2.1 Biofuel Production

The advances in science and technology have created an era of industrialization and
globalization. Although it has affected the environment largely, this is now an
inevitable part of the human race. Industrialization is dependent on the transportation



sector that runs approximately almost completely on nonrenewable energy sources
(Rodrigue and Notteboom 2013). In this scenario, finding a sustainable carbon-
neutral energy solution is the need of the hour. This will not only reduce the
utilization of natural oils but will also shoulder the monitory development along
with living in tune with nature. Consequently, in this context, biofuel generation via
diatoms will serve as an optimistic solution due to its copious occurrence, cheap
processing methods, and fast and handy growth (Wang and Seibert 2017). Diatoms
in their vegetative growth phase produce oil food reserve till the arrival of a
favorable condition. These oil contents of the oil glands produce more oil than
many other oil seeds (Mishra et al. 2017). In comparison, oil yield in corn is 15 times
less than that in diatoms; conversely, corn and maize occupy 66 times more land than
diatom (Brocks et al. 2003). Also, it was reported that under stress condition diatom
yields more oil (Ramachandra et al. 2009). They developed a modified diatom that
secrete oil for daily oil extraction rather than oil storage and genetically modified
diatom secretes gasoline without extra processing. Consecutively, substation of
natural oil by diatom fuel may reduce greenhouse gases.
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The cultures of diatom Thalassiosira weissflogii and Cyclotella cryptic under
nitrogen starve condition enhance the lipid yield. Nitrogen deficiency works by
affecting the de novo triacylglycerol synthesis and lipid remodeling. In
T. weissflogii and C. cryptic, out of the total glycerolipids, approximately 82% and
88% are triacylglycerols, respectively. This accounts for suitability of diatoms for
the large-scale production of biofuels (d’Ippolito et al. 2015), while diatom
Fragilaria capucina’s ability to accumulate lipids to high level along with different
temperature tolerance outstands its potential for biofuel production. Conversely,
large industrial scale production is limited by the need for more optimized and
improved protocols (Chaffin et al. 2012).

Additionally, high production of biodiesel could be achieved by
transesterification of oil obtained from diatom Nitzschia punctata. This catalytic
process is carried out by an enzyme lipase obtained from fungi Cladosporium
tenuissimum (Saranya and Ramachandra 2020). In 2019, Popovich et al. reported
the suitability of diatom Navicula cincta for biodiesel production along with the
presence of value-addition compound, i.e., methyl palmitoleate formed by catalytic
transesterification. The enhanced biodiesel yield of 81.47% from Amphiprora
sp. was reported in the culture medium with 2% catalyst and methanol:oil::1.5:1
ratio at 65 °C for 3 h (Jayakumar et al. 2021). Table 16.1 mentioned few recent
studies about different types of biofuel production using diatoms.

The study performed using cold-tolerant Mayamaea sp. JPCC CTDA0820 was
reported to overcome the seasonal constraints for culture and growth (Matsumoto
et al. 2017). This diatom was selected for culture in winter-like condition, i.e., at 10 °
C. Consequently, the combined culture of winter diatom Mayamaea sp. along with
Fistulifera solaris, diatom from another season, in outdoor reactor showed consis-
tent whole-year production of biofuel. Although the advances in technology
endorsed diatom-based biofuel production, available statistics revealed the different
constraints of the biosynthetic process. Therefore, mixed form of fuel, i.e., biodiesel
along with petrodiesel, would be a suitable alternative. The relative research data of



pure petrodiesel and mixed fuel (petrodiesel, 80%; diatom fuel, 20%) revealed no
significant performance differences. Moreover, blended biofuel showed reduced
carbon monoxide emission, unburnt hydrocarbons, and less smoke (Soni et al.
2020).
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Table 16.1 shows recently reported studies of biofuel yield by a variety of diatom species

Sl.
no. Diatom species

Type of
biofuel Yield References

1. Navicula cincta Biodiesel 97.6% Popovich
et al.
(2019)

2. Amphiprora sp. Biodiesel 81.47% Jayakumar
et al.
(2021)

3. Staurosirella pinnata
and Phaeodactylum
tricornutum

Biomethane
(CH4)

79.2 ± 5.9 and 239.4 ± 6.7 mL
CH4/g organic fraction,
respectively

Savio et al.
(2020)

4. Phaeodactylum
tricornutum

Biodiesel,
bioethanol and
biomethane

1.72, 0.35 and 1361 m3/year of
biodiesel, bioethanol, and
biomethane, respectively

Branco-
Vieira et al.
(2020)

Furthermore, the production of biofuels has started the utilization of genetically
modified diatoms by the companies like Synthetic Genomics and Algenol Biofuels
(Sharma et al. 2021).

16.2.2 Metabolite Production

The potential use of diatoms for the synthesis of bioactive chemicals and compounds
had already gained attention of the industries (Vinayak et al. 2015). The intracellular
metabolites, like amino acids, necessary lipids, and eicosapentaenoic acid (EPA), are
reported to be produced from cultured diatoms for cosmetic and pharma industries
(Lebeau and Robert 2003; Hemaiswarya et al. 2011). Also, nutritional contents such
as vitamins, vegetarian protein, antioxidants, and animal feed could be produced
using diatoms (Sharma et al. 2021).

In addition, considerable quantity of nutrients for animal feed as well as human
diet was obtained from extracts of Nitzschia inconspicua, N. laevis, N. saprophila,
and Phaeodactylum tricornutum (Kitano et al. 1997; Wen and Chen 2001a, b; Wah
et al. 2015; Tocher et al. 2019). The living diatoms could also serve as larval feed,
such as Thalassiosira and Chaetoceros (Spolaore et al. 2006), while feeding material
for bivalve mollusks could be diatoms like Skeletonema costatum, Tetrasel
missuecica, Isochrysis galbana, Pavlova lutheri, and Thalassiosira pseudonana
(Hemaiswarya et al. 2011). While in France, diatom Odontella aurita had been
marketed as food in 2002 (Pulz and Gross 2004; Buono et al. 2014). Also in rats, it
had shown antioxidant effects (Haimeur et al. 2012) and the haslenes or



polyunsaturated sesterpene oils are reported to have anticancer properties (Lebeau
and Robert 2003; Hildebrand et al. 2012).
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The EPA, a potent agent to prevent heart and blood-related illnesses, was
successfully produced in various photobioreactors using cultivated Nitzschia laevis
and Phaeodactylum tricornutum (Lebeau et al. 2002). Interestingly, diatom’s self-
defense mechanism consists of an array of chemicals that confers protection against
pathogens. For example, high quantities of palmitoleic acid, an omega-7 monoun-
saturated fatty acid, along with many other bioactive agents, are produced by
Phaeodactylum tricornutum against gram-positive bacteria (Desbois et al. 2009).

The culture conditions’ modification influences the metabolite production. In
Amphora sp., report suggests that change in nutritional supplements and culture
temperature had elevated the synthesis of polyphenol and flavonoid (Chtourou et al.
2015). In marine diatoms, the increased contents of primary and secondary metab-
olite along with growth promotion was achieved by inductively coupled plasma
(ICP) nanosilica as catalyst in Chaetoceros sp. and Thalassiosira sp. (Saxena et al.
2021). Gerin et al. (2020) revealed the freshwater diatom’s industrial significance in
photoautotrophic batch cultures. Therein, high biomass culture of Nitzschia palea
and Sellaphora minima improved yield of EPA and fucoxanthin.

Moreover, from the established eco-friendly and cheap bioprocess at the pre-pilot
scale, it can be concluded that biomass production and metabolite compositions of a
diatom are not fixed. However, the production of primary and secondary metabolites
is influenced by species or strain, light, growth phase stage, temperature, nutrient
media, the extraction process, different stresses, etc. (Ingebrigtsen et al. 2016;
Popovich et al. 2020).

Ingebrigtsen et al. (2016) reported the variability in the production and chemical
constituents of both secondary metabolites and biomass. Such differences were
attributed to the variations in temperature, light, species, phases of growth, nutrient
media, sample processing, and several other aspects. The only species of diatom that
was proven to be promising in industrial application in eicosapentaenoic acid
production and aquaculture is P. tricornutum (Hamilton et al. 2015; Huang and
Daboussi 2017).

16.2.3 Diatom-Based Nanofabrication

The synthesis of nanoparticles via the physicochemical process for commercial
utilization necessitates more time and energy, needs increased pressures and tem-
perature, and subsequently released hazardous chemicals into the environment
(Farjadian et al. 2019). Therefore, a quick, cheap, and eco-friendly way of synthe-
sizing nanostructures is in need of time (Kiani et al. 2020, 2021; Tavakolizadeh et al.
2021). Thus, the mass production of nanoparticles could be achieved by diatom-
based synthesis for a variety of applications. This diatom-based biological
nanofabrication prevails over the complex process and reduces the cost of both
issues, i.e., miniaturization and production enhancement for all industrial



technologies. Such many advantages are witnessed in silica frustules of diatoma-
ceous algae over recent technology (Korsunsky et al. 2020). Likely, a study on
diatomaceous earth-derived silicon nanostructure used as anode for Li-ion battery
showed enhanced performance of battery (Wang et al. 2012; Campbell et al. 2016;
Cui et al. 2019).
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The smallest species of diatom Nanofrustulum shiloi was reported to be a potent
producer of triangular gold nanoparticles with tricationic gold solution within 72 h.
This gold-decorated nanosilica could be visualized in imaging without labels by the
virtue of its self-fluorescent property (Roychoudhury et al. 2021a, b). In another
case, the study performed to decrease the reflection of electromagnetic radiation
showed the utility of silicon nanoflake coating as antireflective material (Aggrey
et al. 2020). The hybrid material like biosilica coated with polydopamine was
proposed to add the silver nanoparticles on the silica surface. This is supposed to
be applicable to biomedicine, bioelectronics, and more (Vona et al. 2018).

Ragni et al. (2018) explored the probability of easy synthesis of photonic
nanostructures having tailored fluorophores in the frustules of diatom Thalassiosira
weissflogii by feeding the algae with altered photoactive materials. At room temper-
ature, the silver nanoparticles were used as sensing material to observe water-
dissolved ammonia was synthesized by diatom Navicula species (Chetia et al.
2017). Interestingly, it was hypothesized that by the virtue of peptide embedding,
diatom frustules can grasp the metal nanoparticles that could prove as highly
efficient energy devices (Gupta et al. 2018).

In 2017, Borase et al. reported the synthesis of gold nanoparticles from Nitzschia
diatom species. It showed higher antibacterial properties of the mixture of antibiotics
(streptomycin and penicillin) with gold nanoparticles than the isolated antibiotics
and gold nanoparticles. It was suggested that biofabrication of silver into nanopar-
ticle silver is due to the Chlorophyll-c and fucoxanthin, a photosynthetic pigment
(Mishra et al. 2020). Moreover, nanoparticles derived from Skeletonema sp.,
Chaetoceros sp., and Thalassiosira sp. are employed for the antipathogenic activi-
ties against some of the bacteria (Mishra et al. 2020).

Some other notable reports on the utility of diatom nanofabrication include
photodegradation of pollutants in the visible spectrum by frustule with titania-
deposition (Chetia et al. 2018), acetaldehyde abatement by titania nanoparticles
from the species Thalassiosira pseudonana (Ouwehand et al. 2018), Si-ZrO2

nanoporous complex from Phaeodactylum tricornutum as an electrochemical sensor
for the detection of methyl parathion (Gannavarapu et al. 2019), and multifaceted
applications of silver-silica hybrid nanoparticles derived from Gedaniella species
applicable in biosensing, electronic device designing, medical field, etc.
(Roychoudhury et al. 2021a, b).
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16.2.4 Biomedical Industry

The estimated monitory requirement for drug development and release to the market
is 2.6 billion dollars (DiMasi et al. 2016). To overcome the current system of drug
design and delivery (Aw et al. 2011a, b), it is much necessary to conduct detailed
studies on the applications of diatomaceous frustules along with other biological
alternatives for utilization in biomedicine (Sharma et al. 2021).

The optimistic characteristics of ideal drug delivery tools, such as thermostability,
adjustable surface chemistry, specific surface area, etc., are the key benefits offered
by the frustules of diatom. The porous structures of diatom frustules show multiple
patterns from nano- to micrometer (Chandrasekaran et al. 2014; Cicco et al. 2015;
Ragni et al. 2017). These properties of diatoms make it worthy of exploring silica-
based applications in biomedicine (Mishra et al. 2017; Terracciano et al. 2018).

Exploring the idea of the suitability of diatoms in biomedicines, Coscinodiscus
concinnus and Thalassiosira weissflogii are reported to be excellent drug carriers
owing to their morphology and amorphous nature (Aw et al. 2011a; Gnanamoorthy
et al. 2014). Moreover, microcapsules from diatoms could be implanted or admin-
istered orally as an efficient carrier for water-soluble and poorly soluble drugs
(Aw et al. 2011a; Ragni et al. 2017). An interesting development was reported by
Losic et al. (2010), wherein an altered diatom surface with iron oxide dopamine
modification was designed for a drug carrier guidance system using magnetic
properties. This allowed the sustained discharge of inadequately soluble drugs for
about 2 weeks. Additionally, anticancer drug delivery to tumor sites was possible
due to genetically altered biosilica (Delalat et al. 2015). In another case, diatom
surface activated by dopamine-altered iron oxide nanoparticles was used in tumor
healing drug release (Medarevic et al. 2016). The improvement to this system was
reported due to the use of biosilica-based drug encapsulation with optimized delivery
features (Kabir et al. 2020).

The surface modification of diatoms and alternation applications have an array of
possibilities in the biomedicine industries, such as biosilica-modified surface of
Chaetoceros sp. using iron-oxide nanoparticles comprised of trastuzumab antibody,
was used for differentiating normal and breast cancer cells (Esfandyari et al. 2020),
detection of interleukin 8 in human blood using integrated gold nanoparticles into
biosilica (Kaminska et al. 2017), on site and in vivo bone repair using biosilica, that
is stable and well-suited for biological system (Rabiee et al. 2021), and controlling
hemorrhage with chitosan-coated diatoms (Feng et al. 2016).

16.3 Conclusion and Future Perspectives

The evident studies reported the surprising possible applications of diatoms. The
cheap and eco-friendly aspects of diatom’s industrial applications are steps to
augment human use of renewable resources for dipping carbon emissions. Even



though the industrial utilization of diatoms still demands upgradation, it is certainly a
decisive research field for human welfare. Furthermore, recent progression in
sequencing and processing greater biological data has made it feasible to store the
biodiversity of diatoms.
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The chief lacking point in diatoms’ industrial use is the maximization of the
various aspects of biofabrication. Nevertheless, it is expected to conquer such
lacunas in the coming future by genetic engineering techniques. Finally, to enhance
the diatom-based industrial sector, shift from the current policies by the government
and decreasing the gap between industries and academicians is the call of the hour.
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