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Abstract

The continuous presence of plant pathogens, pests, and diseases affects the
agriculture and forestry sector, which demands the need for highly potential
and inexpensive methods for diagnosing and monitoring diseases of plants and
pests. Based on the huge data obtained from the sensitive analysis and the various
systems based on remote sensing, features related to remote sensing are identified,
including VIS-NIR, sensitive analysis, characteristics of habitats, thermal and
fluorescence parameters, and image- and landscape-based features. However,
suitable areas for sensors have been incorporated for the precise and early
detection of particular diseases, including field systems, screening for resistance,
and assessing and evaluating reactions based on plant defense. Moreover, based
on different sensors, remote sensing techniques vary significantly. These
techniques assist in the detection and diagnosis of various major diseases. This
chapter focuses on RGB camera, hyperspectral imaging, fluorescence spectros-
copy, thermography, and multi-temporal-based remote sensing techniques used
chiefly on diseases that significantly impact the agriculture economy.
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During the last 30 years, the use of digital images and visible light imaging
analysis increasing with time. The use of this software has become user-friendly and
more sophisticated. For resolving the issues of disease management, remote sensing
techniques show significant potential (Mahlein et al. ). The data obtained
through remote sensing can recognize the crop conditions involving diseases and
give information about the most effective strategy for management of diseases
(Weiss et al. Liu et al. ). The meaning of the word “Remote” is far
away. That’s why meaning of the “remote sensing” is the sensing of the objects from
a distance. The term “remote sensing” is described by the ASPRS (American Society
for Photogrammetry and Remote Sensing) as the technology, and science of gaining
precise information about that thing which have physical appearance as well as about
the environment, through the process of recording. It is also defined as the science
and art of gaining information about a thing without establishing any physical
contact. The procedure of remote sensing may be satellite, ground or aerial based
(Gogoi et al. ). The remote sensing technology has two types.2018
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3.1 Introduction

There is a need to enhance the yield of agricultural commodities to manage the
requirement of the increasing population. It will not be possible to manage these
requirements without the application of modern technologies (Mahlein et al. 2012a).
Several abiotic and biotic factors reduce the yield of agricultural products such as
viruses, fungi, animals, and arthropods. All these may be managed to some extent,
but the losses due to abiotic factors may be significantly high. The estimated crop
losses due to pathogens (oomycetes, viruses, bacteria, and fungi) are 16% worldwide
(Oerke 2020). Monitoring plant pests and diseases at the right time is an important
factor in solving these problems. In the last 80 years, the accuracy of visual disease
assessment depends upon the conventional disease scales. Identifying the visual
symptoms is most important for the accurate diagnosis of diseases. The assessment
of the diseases with the emerging technologies gives accurate, reliable, and precise
results.

1. Active (such as radar and LidDAR)
2. Passive (e.g., optical) remote sensing

In active remote sensing, the reflection of the emitted signals from the object is
measured on the sensor and the object is irradiated from an artificial source of
energy, e.g., radar.

In the passive remote sensing, the natural source applied to irradiate the object, for
example, solar radiation, to detect the desired phenomenon.

In the passive remote sensing, there are different imaging cameras and detectors
which are used to measure the reflection of the solar radiation that have wavelength
of thermal infrared (3–15 μm), NIR (near infrared: 700–1100 nm) VIS (visible
spectrum: 400–700 nm), and SWIR (shortwave: 1100–2500 nm), while in active
remote sensing, the instruments used are LIDAR and Radar (Fahey et al. 2021).



The passive remote sensing is classified into two categorizes on the basis of using
spectral resolution of sensor.
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1. Multispectral remote sensing
2. Hyperspectral remote sensing

The use of hyperspectral remote sensing shows good potential in the passive
remote sensing because it is non-destructive and non-invasive tool to monitor the
abiotic and biotic plant stresses (Jones and Vaughan 2010). Hyperspectral imaging
techniques offer various options to observe the disease at the initial stage, through
the provision of early indicators in the form of minute variations in spectrum
reflectance as a result of reflection or absorption. The small differences in canopies,
individual plant or soil, can be more easily seen in hyperspectral images since they
can provide comprehensive spectral profiles with hundreds of spectral bands. There-
fore, hyperspectral images are used to resolve the large problems for timely and
accurate determination of the physiological conditions of the crop. As a result of
early detection, the outbreak and spread of the pests may be avoid on the important
crops and it also reduce the consumption of pesticides which is harmful for the
humans and their environment (Lucieer et al. 2014; Gonzalez-Dugo et al. 2015).

3.2 History

The development of the camera over than 150 years ago led to the establishment of
advanced remote sensing technologies. The practice and concept of looking down at
the Earth’s surface first developed when photographs from cameras attached to
balloons were taken for the purpose of topographic mapping in the 1840s. Remote
sensing (by application of visible spectrum) is started in 1909 in the form of aerial
photography. In 1931, color infrared photography was started, and then it is widely
used in forestry and agriculture. In 1950, Ms. Evelyn Pruitt first used the term
“Remote Sensing” in the United States. Satellite remote sensing originally started
as a dual method to photographing surfaces utilizing different sensors from space-
craft in the early stages of the space age (both American and Russian projects). In 4th
October,1957, Soviet was the first who launched man-made satellite named as
“Sputnik 1” (Choudhary et al. 2022). In 1956, Colwell used the remote sensing
technique to monitor the stem rust of wheat.

3.3 Remote Sensing Techniques on the Basis of Different
Sensors

3.3.1 Imaging Approaches

3.3.1.1 RGB-Imaging
To assess the plant health, digital photography is an important technique in plant
pathology. Red, green and blue images are called as RGB digital images in short
form. The digital cameras are the simple source of red, green and blue (RGB) digital
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images for quantification, detection, and identification of diseases and they are easy
to operate. The technical factors of these simple digital cameras such as spatial
resolution, digital and optical focus, or light sensitivity are increasing with the
passage of time. In these days, nearly everybody carries a smartphone or tablet
computer, together with a contemporary, powerful digital camera sensor, whether
they are phytopathologist or a farmer. Alternative tools for analyzing digital
photographs of various plant parts, from inflorescences to roots, include scanners
or video cameras. Throughout the growth season, RGB sensors are utilized to
monitor plants at every resolution scale.

The biotic stress of the plants have been detected by the using of RGB images
with green, blue and red channels (Bock et al. 2010), including the data about the
colors in LAB (A and B used for the adversary magnitudes that depend on the
non-linear coordinates and L stands for lightness), RGB, HSV (stands for hue
saturation value) color, YCBR (Y is the component of luma) and CR and CB are
red and blue difference parts of chroma, respectively, and their special arrangement
gives the information about the diseases of plants (Bock et al. 2010). Furthermore,
variables for the detection and identification of plant disease signs include gray
levels, colors, texture, connectivity, form factors, and dispersion (Neumann et al.
2014; Camargo and Smith 2009).

Many research teams have utilized machine learning and pattern recognition
techniques to detect and diagnose diseases of plants by using RGB photos (Camargo
and Smith 2009; Neumann et al. 2014). Additionally, the classification accuracy is
improved by carefully choosing essential characteristics from the RGB pictures
(Behmann et al. 2014). In the assessment of plant diseases, the analysis of digital
images is important technology. There are different software packages such as “Leaf
Doctor,” custom-made modules, ASSESS 2.0 and Scion image software are avail-
able (Pethybridge and Nelson 2015; Bock et al. 2010; Wijekoon et al. 2008; Tucker
and Chakraborty 1997). In ASSESS 2.0, the histograms used as the foundation for
the following thresholding are used to assess the color information of the photos. The
user may modify the parameters for healthy and unhealthy regions through a well-
organized graphical interface. Additionally, once the background has been removed
from the item of interest, disease severity can be determined as a percentage or as
infected pixels. The measurement of disease severity on single leaves and precisely
ordered photos is particularly practical with ASSESS 2.0. The picture acquisition
stage needs special consideration. Illumination, uniform focus, and sharpness are
important for reliable and for getting accurate results through the analysis of images.
Under the natural status, the quality of the image is dependent on the distance
between the sensor and the object, pixel size, and the leaf orientation or image
angle. Poor picture quality and heterogenic situations frequently lead to difficulties
in recognition and low degree of accuracy.

3.3.1.2 Hyperspectral and Multispectral Reflectance Sensors
The classification of the sensors of spectral reflectance is based on the resolution of
spectral (such as width and number of the bands which are measured), type of
detector (such as non-imaging and imaging sensor), and their spatial scale. The
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earliest spectrum sensors developed were multispectral ones. Typically, these
sensors evaluate an object’s spectral information across a number of somewhat
broad wavebands. For instance, data from multispectral imaging cameras may be
provided in the G, B, and R wavebands as well as in an extra near infrared band. The
development of current sensors in hyperspectral imaging tools with a spectral range
between 350 and 2500 nm and a potential of the spectral resolution below 1 nm
enhanced the complexity of the measured data (Steiner et al. 2008). Sensors of
hyperspectral imaging tools give both spatial and spectral information for the
observed things, in contrast to non-imaging, which average the spectral information
across a specific region.

Large matrices containing spatial y- and x-axes and spectral data as reflectance
intensity for each waveband in the 3d space, z, can be used to show hyperspectral
data. The distance between the sensor and object has a significant impact on the
spatial resolution. That’s why, spaceborne or airborne, far range system contains low
level of spatial resolution as compared to the microscopic or near range systems. The
spatial resolution has significant role in the detection of plant–pathogen interaction
and in the identification of plant pathogens (West et al. 2003; Mahlein et al. 2012b).
Field patches that are affected by the soilborne pathogens can precisely detected by
the airborne sensors (Hillnhütter et al. 2011) or at the later stage of the disease
(Mahlein et al. 2012a; Mewes et al. 2011) or the identification of single symptoms or
infected plants and leaves, sensors with a spatial resolution of around 1 m are
scarcely acceptable; proximal sensor system is preferred in these situations (West
et al. 2003; Oerke et al. 2014). Despite numerous studies, the use of innovative
hyperspectral imaging technology to plant pathology and the evaluation of disease
severity is still in the early stages of development (Bock et al. 2010). The optical
properties of the leaves are described by the absorbed light by the chemicals of
leaves (sugars, water, amino acids, and lignin) reflection of light through leaves
surface and from their internal structures and transmission of light through a leaf.

Therefore, reflection of light from the plant surface is a complex procedure that
depends upon the many biochemical and biophysical interactions. The SWIR
(1100–2500 nm) depends upon the composition of water and leaf chemicals, VIS
(visible range 400–700) is influenced by the pigment content of the leaf, and NIR
(near infrared reflectance 700–1100 nm) mainly influenced by the leaf structure,
absorption by the water of leaf and internal scattering process of the leaf
(Jacquemoud and Ustin 2001; Carter and Knapp 2001). When a highly specific
plant disease or plant pathogen causes changes in reflectance, such as the sequence
of necrotic and chlorotic tissue or the presence of typical fungal structures like
powdery mildew conidia and hyphae or uredospores of rust, those changes can be
described by difficulties in the structure of leaf and chemical composition of the
tissues.

During the infection, the obligate fungus parasites such as rusts and powdery
mildews have comparatively low effect on the chlorophyll composition and tissue
structure as compared to the other pathogens such as, pathogens that are cause of leaf
spot, mainly cause the degradation of tissues due to the production of pathogen-
related specific enzymes or toxins and their results is in the form of necrotic lesions.
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In opponent, rusts and powdery mildews fungi form their structures on the leaf that
can induce the optical characteristics of plant–pathogen contact (Ul Haq and Ijaz
2020a, b). By using semi-thin parts of diseased leaf portion and raster electron
microscopy, complex and distinctive relationships for sugar beet leaf diseases are
exemplarily observed. The highly distinctive and unique pattern of the disease
enables the recognition of the disease based on the spectral characteristics of the
plant. It is described that the variation of foliar pathogens depends on the reflectance
from the leaf in the case of sugar beet (Mahlein et al. 2010, 2013). Based on these
studies, Rumpf et al. (2010) were capable to identify sugar beets that were infected
with rust, powdery mildew, and Cercospora leaf spot before any typical symptoms
appeared. Non-invasive spectral data have been beneficial for monitoring Fusarium
graminearum in wheat and other plant–pathogen systems (Bauriegel et al. 2011),
Phytophthora infestans of tomato (Wang et al. 2008), or Venturia inaequalis in the
apple (Delalieux et al. 2007). It was also shown that hyperspectral imaging technique
to be helpful in the assessment of pathogens that producing toxins in the maize crop
(Del Fiore et al. 2010).

Additionally, in-field spectral imaging was employed by Bravo et al. (2003) for
the early identification of wheat with yellow rust infection, Hillnhütter et al. (2011)
effectively differentiated between soilborne diseases by examining the symptoms
brought on by the soilborne fungus (Rhizoctonia solani) and nematode Heterodera
schachtii in fields of sugar beet. Apan et al. (2004) used EO-1 Hyperion
hyperspectral imaging technique to identify orange rust on sugarcane. Later,
Huang et al. (2007) used aerial hyperspectral imaging and ground-based spectral
measurements to identify yellow rust in wheat crop. Hyperspectral imaging tech-
nique is also widely applied for the observation of fruit quality and health along with
the identification of plant pathogens during the vegetative period of the crop. By
using hyperspectral imaging tool, defects on the surface of apple (Mehl et al. 2004),
rot disease of strawberries (ElMasry et al. 2007), and canker lesions on the citrus
fruit can be identified (Qin et al. 2009). These methods are useful for avoiding
storage infections of crops and screening fruits.

3.3.1.3 Thermal Sensors
IRT stands for infrared thermography which measures temperature of plants and has
relationships with crop microclimate, variations in transpiration rate caused by early
plant–pathogen infections, and plant water status. Infrared and thermographic
cameras are able to detect infrared radiation that is emitted in the thermal infrared
range between 8 and12 mm, which is represented in fake color photographs with
each image pixel including the value of temperature of the observed thing. Infrared
thermography may be used at the different spatial scales and temporal from small
scale to airborne applications. However, it is mostly depending on the environmental
conditions such as sunlight, wind speed, rainfall, or ambient temperature. The
transpiration of the plant shows close relationship with the leaf temperature, which
is affected in different ways by the variety of pathogens. While many other foliar
pathogens such as rusts or leaf spots bring well defined and local changes, damaged
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by the plant root pathogens such as Pythium spp. or Rhizoctonia solani, or systemic
infection that mostly induce water flow in all parts of plants and transpiration rate.

It is reported that the temperature changes in plants are due to the infection caused
by the pathogens or due to the defense mechanism of the plant. By using IRT
technique, successfully monitored the downy mildew of cucumber
(Pseudoperonospora cubensis) or apple scab (Venturia inaequalis). The variability
between and among leaves can be used for efficient IRT image analysis. A major
predictor of the emergence of plant disease is the mean temperature differential
within individual leaves, crops, and plants.

3.3.1.4 Fluorescence Imaging
Different parameters of chlorophyll fluorescence have been used in the determina-
tion of plant photosynthetic activity. Chlorophyll fluorescence imaging devices are
frequently active sensors that measure photosynthetic electron transport using laser
light or LED source. Fluorescence imaging is used to evaluate variation in plant
photosynthetic system due to the abiotic and biotic stresses on the leaf surface.
Combining the image analysis and fluorescence imaging techniques to be useful in
the quantification and determination of fungal infection. In order to assess plant
disease at the field or canopy level, research has focused on collecting fluorescence
characteristics from sun-induced reflection in the field (Mahlein 2016).

3.3.2 Non-imaging

3.3.2.1 Vis-NIR Spectroscopy
Visual infrared-near infrared spectroscopy (VIS-NIR) is a rapid and non-destructive
procedure which provides prediction of biological and chemical composition of the
system. The Vis technique of the spectroscopy can examine the pigment and color
analysis, while NIR is used to measure the quantity of macro components, mostly
water. The visible region that ranges between 400 and 700 nm can provide data on
the basis of spectral features of pigments and it is also used during the photosynthesis
process of the plants. In these pigments, anthocyanin, carotenes, and anthocyanin are
involved that induce the color appearance and can show disease in trees and plants.
Each pigment has specificity in spectrum absorption such as the green region absorbs
530–550 nm wavelength light which is due to the presence of anthocyanin, and due
to the presence of carotenes, range of the light wavelength is 420–503 (Zahir et al.
2022).

3.3.2.2 Fluorescence Spectroscopy
Fluorescence spectroscopy is a procedure which is applied to determine the fluores-
cence of the substance after reflection along a beam which is usually ultraviolet and
having wavelength 10–400 nm. The fluorescent material has unique color that only
visible when comes in the front of UV light since the absorbed light is undetectable
to the human eye while the released light is in the detectable range. The mechanism
of this procedure is involved using a light beam that induce the electrons in
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molecules of a substance and as a result light is emitted. FS has wide range of
applications. FS is used to monitor the stress levels and physiological states of the
plants. Generally, the use of FS tool in plant study, especially in nutrient deficiencies
and plant diseases has gain more attention. The FS procedure applied as a tool
determines and senses the pathogens of plant at their initial stage. For instance, FS
has been used to determine the plant–pathogen interaction in leaf rust and powdery
mildew of wheat, spring barley, to identify the cucumber disease, and to quantify and
identify the infection of banana due to the Fusarium oxysporum f. sp. cubense.

There are several devices of FS that have used to observe and gain information
from plant specimens. In these devices, fiber optic fluorescence spectrometer,
portable multiparametric sensor, and imaging multispectral fluorescence are
involved. However, the most reliable and accurate FS device to detect plant
pathogens is the fiber optic fluorescence spectrometer in contrast to other devices.
There are four emitted wavelengths used in the FS, that are Green (G), Red (R), Blue
(B), and UV and the excited FS is observed in red RF, far red RF, and yellow YF.

3.4 Remote Sensing Features for Plant Diseases and Pest
Monitoring

Agriculture and the forest sector are highly threatened by the ongoing progression of
plant diseases and pest attacks globally (Oerke 2006; Strange and Scott 2005). Plant
protection practices must be guided by knowledge about the location, scope, and
severity of disease and pest incidence. Techniques and approaches based on remote
sensing (RS) might be a prime addition that has the capability to monitor and
diagnose diseases on plants as well as on pests, an extensive scale because standard
field searching of pests and diseases on plants is quite effortful, liable not to be
impartial, and typically exhibits minimum proficiency (Mahlein 2015). Methods of
“radiodiagnosis” of plants that effectively provide contact-free and at a global level
constant monitoring and examining of pests and diseases on plants that could be
viewed in the remote sensing of pests and diseases on plant diseases.

With regard to the efficient detection or monitoring of pests as well as diseases,
numerous systems of RS are accessible that can be applied efficiently to possibly
monitor the progression of the disease. These RS systems provide data collection
ranging from gamma-ray to microwave radiations, working with both radiations that
are either passive or active. Many struggles have been brought to action for various
RS systems in detecting the infection symptoms such as blights, pustules, and scabs,
structural changes such as landscape structure, canopy structure, and physiological
responses such as changes in water content, pigment content, caused by pests and
diseases on plants in order to effectively detect and monitor pests and plant diseases
(Hahn 2009; Sankaran et al. 2010; Mahlein 2015).

It is essential to recognize useful and distinguishing RS characteristics and
features in order to employ RS-based observations in monitoring and examining
pests and plant diseases. Until now numerous RS-based features and attributes have
been suggested or discovered for identifying plant pests and diseases as well as for



identifying their natural environment. The primary RS-based features involve
features based on the landscape as well as image-based features for thermal and
fluorescence systems, and VIS-NIR spectral characteristics. Considering that differ-
ent diseases and pests have different damage processes, a precise and accurate
assessment of RS characteristics is typically required to provide efficient monitoring
(Mahlein 2015).

3.4.1 VIS-NIR Spectral Features

VIS-NIR spectral features are extensively employed since VIS-NIR sensors are
considered widely used systems based on RS for tracking pests and plant diseases.
The most basic version of these properties is band reflectance. The majority of
researchers have found that several diseases of plants and pests are sensitive to the
green, red, and NIR spectral areas. There are several approaches to altering the
values of spectrum reflectance, including continuous wavelength transformation,
spectral derivatives, and continuous removal transformation.
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Spectral derivative transformation is generally executed to apprehend convex
features of the spectral measurement of plants which includes red edge position
and amplitude.

The continuous removal technique is usually used for the quantitative characteri-
zation of both the convex and concave traits of the plant’s spectra performed
along the spectrum in a precise absorption location, which can be employed
efficiently for the diagnosis of many plant diseases mainly wheat powdery
mildew and tomato leaf minor (Xu et al. 2007; Zhang et al. 2012).

Continuous wavelet analysis or CWA has been employed for the identification and
detection of many pests and diseases on plants (Cheng et al. 2010; Luo et al.
2013). CWA-derived features outperform certain traditional spectral-related
features in identifying winter yellow rust of wheat due to their ability to capture
some subtle changes in spectral shape (Zhang et al. 2014).

3.4.2 Fluorescence and Thermal Parameters

For the diagnosis and identification of numerous pests and diseases in plants
associated with thermal and fluorescence sensors, some variables and parameters
have been set to create an efficient linkage between the symptoms of infection and
signals based on thermal and fluorescence sensors. For the diagnosis of the
presymptomatic state of a pathogen, some researchers have used the ratio by
dividing the fluorescence amplitude such as F686/F740 on the basis of continuous
fluorescence spectra with the addition of fluorescence peaks (Bürling et al. 2012;
Tartachnyk et al. 2006; Kuckenberg et al. 2009). Additionally, a number of fluores-
cence parameters were used in the detection of pests and plant diseases based on the
saturation pulse fluorescence analysis, including the non-photochemical quenching
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(NPQ), the highest potential in light-adapted material of PSII photochemistry (Fv0/
Fm0), the efficiency of photosystem II (PSII) in terms of quantum yield and the
maximal quantum efficiency of primary photochemistry photosystem II (PSII) (Fv/
Fm) (Cséfalvay et al. 2009; Scholes and Rolfe 2009; Iqbal et al. 2012).
Characteristics which are produced from sensors based on thermal infrared for
detecting pests and diseases on plants are reasonably easy to understand and less
complex than spectral features and fluorescence features. In essence, the canopy and
leaf temperatures have been considered quite significant signals. The differential
temperatures between the air and leaves (Tleaf - Tair) in a controlled environment
such as a greenhouse were discovered to be useful in identifying presymptomatic
Plasmopara viticola infection in grapevines (Stoll et al. 2008).

3.4.3 Image-Based and Landscape Features

For monitoring and surveying diseases on plants and pests, imaging observation can
be obtained and examined based on distinct systems of RS such as fluorescence,
thermal and VIS-NIR systems. Using the features such as texture and landscape, the
precise evaluation of the severity and in-depth disease mapping of the area where
infection occurs can be done efficiently (Bauriegel et al. 2011). To extract texture
features from images, including uniformity, variance, mean intensity, correlation,
contrast, modus, product-moment, entropy, inverse difference, and information
correlation, the colour cooccurrence method (CCM) is frequently used which are
crucial especially at the micro (leaf) level for identifying plant diseases and pest
(Donohue et al. 2001; Shearer and Holmes 1990). Yao et al. (2009) suggested the
classification of rice blast, rice bacterial leaf blight, rice sheath with 97.2% of
precision based on the group of shape and texture traits. Some spatial measurements
such as landscape features bring out from the RS images. Moreover, the features
based on the texture of image can identify the pattern based on spatial and geo-
graphic distribution for pests and plant diseases and provide helpful information in
their extensive such as regional and plot monitoring. In addition to the features based
on optical, thermal, fluorescence and last but not least image-based offers a different
viewpoint for keeping track of pests and plant diseases.

3.4.4 Features Associated with Habitat Characteristics

A few attempts have been done to use data based on RS to define the suitability of
the habitat of the pests and the plant pathogens, irrespective of the traits of RS that
cannot be indirectly associated to losses brought on by pests and plant diseases.
Given that stressed plants are frequently more vulnerable to disease and insect
attack, the Tasseled Cap Transformation (TCT) based metrics such as brightness,
greenness, and wetness linked with soil moisture and vigor and vitality of plant were
found to be an effective substitute for habitat fitness (Coops et al. 2009; Zhang et al.
2013; Wolter et al. 2008). Regardless of the metrics based on TCT, LST, and Vis, are
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effectively employed to give substantial and vital information for habitat state
description. In the efficient monitoring and observation of mosquitoes larvae, tree
woolly adelgid, wheat powdery mildew, and spruce budworm, several VIs such as
MSI, WI, PRI, SAVI, MSAVI2, NDWI, and TVI connected with biomass, water
contents, and concentrations of pigments are highlighted (Brown et al. 2008). The
land surface temperature which is used to monitor the rated intensity of transpiration
in plants is easily accessible from products obtained from satellite imagery such as
MODIS-LST or it can be recovered from many satellites of thermal bands such as
HJ-IRS, Landsat TM, and ASTER. Suitable habitat for the monitoring of disease and
pests can be obtained with 82% of verified precision. Assimilation of RS features
and parameters of meteorology together constructed the disease forecasting model
(Zhang et al. 2013). An accuracy of 69–78% of their results suggested that adding up
information related to RS efficiently improves the level of precision for plant disease
and pest monitoring.

3.4.5 Sensitivity Analysis for Selection of Features

It is a prerequisite step always that is required to do a sensitivity evaluation to
determine the best feature of RS for the monitoring and examination of pests and
diseases on plants since they may produce noticeably distinct symptoms and differ-
ing environment characteristics. In order to do this, statistical techniques have been
used to evaluate feature sensitivity. Analysis of Variance (ANOVA) and indepen-
dent t-tests were widely employed, for instance, to categorize different types of
illnesses and pests or to distinguish between different infection levels (Yuan et al.
2014; Zhang et al. 2012). For RS features identification, the Pearson correlation
analysis is considered the most favored and highly sensitive technique of analysis
(Huang et al. 2012; Zhang et al. 2012, 2014). Yang et al. (2007) found that the
sensitivity band for detecting rice leaf folders drastically changed from tillering stage
at 757 nm to the heading stage at 445 nm. Furthermore, it is important to keep in
mind that sensitivity features may differ across observation scales.

3.5 Relevant Areas for Sensors in Plant Disease Detection

Plant pathologists have access to a wide range of sensor technologies that may offer
high and accurate resolution data on agricultural crops and serve as the foundation
for the on-time detection and diagnosis of diseases on plants. It is astonishing how
far these technologies have come in the last 40–50 years in terms of development and
application to agriculture as well as detection and monitoring of plant disease
(Brenchley 1964; Nilsson 1995; Jackson and Wallen 1975; West et al. 2003; Seelan
et al. 2003). Latest and customized techniques for solving plant and agricultural
science-related problems have been created as a result of developments in plant
phenotypes and agriculture (Cobb et al. 2013; Fiorani et al. 2012). The most
effective sensors are now being employed for non-invasive field assessments of
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crop nutrient status. In agriculture, practical base future applications will benefit
from the development of new, low-cost sensor technologies that perform satisfacto-
rily and are now on the market (Grieve et al. 2015). There are equipment and
technical options for phenotyping in the field, greenhouse, and other environments.
However, they cannot be used widely because these are highly customized and
specialized prototypes.

3.5.1 Field Systems

The imaging platform developed by Polder et al. (2014) for the diagnosis and
detection of Tulip breaking virus (TBV) which usually infects bulbs of tulip flowers,
or the monitoring and detection of the wheat yellow rust caused by Puccinia
striiformis hyperspectral imaging platform prototype developed byBravo et al.
(2003) are two examples of cutting-edge systems with potential field applications.
A robot with multispectral sensors and pipelines for mechanized vision online
evaluation was created by Polder et al. (2014). There were not many technical
specialists available to rate tulip bulbs, which motivated this study. This technique
was able to be optimized and adjusted to reach a degree of precision comparable to
that attained by seasoned rating experts. Under light ambient conditions, the yellow
rust disease of wheat can be able to detect and categorize in fields successfully with a
rate of 96% using the hyperspectral imaging “buggy” of Bravo et al. (2003). Their
findings are highly promising for the establishment of optical sensor systems that are
both affordable and accurate for the early plant disease detection in various crops.

3.5.2 Resistance Screening

Different technological techniques have been created for plant phenotyping. The
process of development began with controlled investigation and examination of
individual plants (Chaerle et al. 2007; Jansen et al. 2009). Improved field systems
have lately quite durable, allowing for a comprehensive evaluation of plant execu-
tion and performance across many plots or throughout the whole canopy of plants
(Walter et al. 2015). It has been demonstrated that optical sensors can assess the
degree of sensitivity and/or resistance of various genotypes and variants to a
particular disease. By using multispectral and fluorescence imaging, Chaerle et al.
(2007) contributed by distinguishing lines of sugar beet with varying degrees of
sensitivity to C. beticola. In order to assess the symptoms on Phaseolus vulgaris by
Xanthomonas fuscans subsp. fuscans, depends on the chlorophyll fluorescence
metrics Fv/Fm on picture pixels Rousseau et al. (2013). Additionally, more contem-
porary innovations were produced, such as the HyperART system for concurrently
monitoring and observing leaf transmission as well as leaf reflectance (Bergstrasser
et al. 2015). In a preliminary application study to evaluate different sugar beet
resistance/susceptibility levels to C. beticola, this sensor device showed potential.
It has been demonstrated that extra data from the measurements during transmission
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boosts the sensitivity of detection; nevertheless, the measurement methodology and
procedure are fairly complicated and still call for a significant amount of
human work.

3.5.3 Assessment of Plant Defense Reactions

The majority of research has been published on the subject of detection and diagno-
sis of plant disease systems which are dependent on symptoms, biochemical, and the
changes that occur physiologically prior to symptoms. In the screening of resistance,
pathologists are interested in minute defensive responses that are essential for plants’
capacity to pathogen invasion or restrain pathogen growth. Robinson (1969) defined
resistance in the host as a plant genotype’s capacity to impede a pathogen’s growth
and/or development. Long recognized as two broad forms of resistance, qualitative
resistance is controlled by a single gene (complete or vertical resistance), and
qualitative resistance is controlled by numerous genes with partial effects (incom-
plete or horizontal resistance). A significant range of defensive mechanisms are
activated by plants in response to pathogen infection (Glazebrook 2005). These
strategies include the synthesis of proteins and antimicrobial metabolites, the forma-
tion of callose and lignin to physically strengthen cell walls, and the stimulation of
hypersensitive responses. Following the initial encounter with a pathogen, these
changes take place at the level of tissue and cell and are necessary for eventually
interactions either compatible or incompatible or, when examining the plant edges,
for sensitivity or tolerance of a genotype or any disease. It is necessary to build
particular sensors with a high and efficient spatial resolution in order to evaluate
these extremely early and marginal changes. By integrating highly throughput DNA
cloning and transformation techniques based on single cells adjusted with
phenotyping and automated microscopy, Douchkov et al. (2013) developed a
planned platform known as the “microphenomic.” On several genotypes of barley,
they were able to evaluate the penetration efficiency of fungus Blumeria graminis
f. sp. hordei.

It is notable that in this instance, histological analysis of leaf portions that had
previously been detached and decolored was employed. From digital pictures
obtained from microscopical RGB, sites of fungal penetration and as feeding organs
powdery mildew may be evaluated automatically and tallied. This extremely intru-
sive method only allows for the examination of a plant pathogen’s interactions with
its host plant at a particular time period. Generally, this enables distinguishing
various types of resistance such as complete, incomplete, and partial resistance,
whereas some portions impede a pathogen’s penetration initially, others cause a
hypersensitive reaction to reduce supply of nutrients to make the pathogen starved.
Moreover, spore forming capability of pathogen is also restricted in some situation
(Glazebrook 2005). Kuska et al. (2015) have created a technique for hyperspectral
microscopic analysis. With this data-driven phenotyping technique and sensor-based
system, evaluation of over time interactions between host and pathogen and the



differentiation of barley genotypes against powdery mildew in terms of varying
susceptibilities were made possible on a small-scale basis.

3.6 Use of Different Remote Sensing Methods for Different
Diseases

Based on various sensors, for monitoring and detecting pests and diseases on plants,
generally remote sensor techniques involve two groups which are discussed as
follows:

60 A. Faraz et al.

• Imaging Approaches
– RGB camera
– Imaging based on multispectral spectrum
– Imaging based on hyperspectral spectrum
– Thermal base imaging
– Fluorescence-based imaging

• Non-Imaging Approaches
– Spectroscopy of VIS and IR
– Spectroscopy technique based on fluorescence3.6.1 RGB Camera

3.6.1.1 Use of Airborne Remote Sensing for Plant Disease Detection

3.6.1.1.1 ADAR System for the Detection and Diagnosis of Rice Sheath Blight
Disease

Four aerial-based remote sensing photos were collected with the help of the ADAR
(Airborne Data Acquisition and Registration) System 5500, Qin and Zhang (2005)
in central Arkansas, USA identified the rice sheath blight disease. The pictures were
divided into four bands: near infrared was included in band 4 with 780–1000 nm
wavelength, red was in band 3 with 610–680 nm wavelength, green was included in
band 2 with 530–600 nm wavelength, and blue was in band 1 with a wavelength of
450–540 nm. They compared the photos with the field disease index using three
different techniques: the Direct Band Digital Number (DN) value, Standard Differ-
ence Indices (SDI), and Ratio Indices (RI). The findings suggested that RI and SDI
may be used to remotely identify the pathogen that causes rice sheath blight (Qin and
Zhang 2005).

3.6.2 Hyperspectral Imaging

3.6.2.1 Early Detection of Wheat Yellow Rust Disease Caused by
Puccinia striiformis by Using Hyperspectral Imaging

Hyperspectral base imaging in agriculture has increased significantly in recent years.
The amount and information quality become increased by this technology’s usage of
narrowband sensors. The spatial Z-axis, a spectral X-axis, and a spatial Y-axis are



axes on which whole data is based. The complete information of wavelength is
contained in each spatially situated pixel of a picture. For the purpose of early
identification of the winter yellow rust disease (Puccinia striiformis) in wheat,
Bravo et al. (2003) employed VNIR hyperspectral imaging. The full spectral range
from 463 to 895 nm was covered by 19 wavebands that were each 23 nm or 30 pixels
wide. They noticed that due to the disintegration of leaf structure internally, the
symptomatic plants had increased reflectance in the visible spectrum (VIS) due to
decreased activity of chlorophyll and in the near infrared (NIR) spectrum higher
absorption was observed (Bravo et al. 2003).
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3.6.3 Thermography for Plant Disease Detection

3.6.3.1 Thermographic Assessment of Apple Scab Disease
Oerke et al. (2011) injected 6 × 105 conidia/mL of the HS1 isolate of V. inaequalis
onto apple leaves and monitored the results daily. They captured thermograms using
a spectral sensitivity ranging from 8 to 12 m, Varioscan 3201 ST camera and by
using IRBIS plus software pictures were then analyzed (Vers. 2.2, InfraTec.). Prior
to the development of obvious scab signs, the researchers noticed that the leaves
injected with V. inaequalis conidia had shown the appearance of concentric spots of
very low leaf temperature (6 dpi). When the typical scab symptoms appeared at
8 dpi, the affected leaf area and difference of temperature from non-diseased areas
increased, but the temperatures of apple leaves that were not infected varied little
over space (Oerke et al. 2011).

3.6.4 Fluorescence Spectroscopy for Plant Disease Detection

3.6.4.1 Early Detection of the Hypersensitive Reaction to Tobacco
Mosaic Virus Using Multicolor Fluorescence Imaging

In the “Samsun NN” and “Sumsun nn,” the resistant and susceptible cultivars of
tobacco plant, respectively, Chaerle et al. (2007) inoculated tobacco mosaic virus to
observe the HR response and subsequent death of plant cells aggravated by TMV
inoculation. A “Luminescence spectrometer LS52” equipped with a “Xenon flash
lamp (FX-4400)” was used to excite the fluorescence. After 88 h of inoculation with
TMV observation was started. Above 400 nm of wavelength, ultraviolet light as
compared to the control induced blue fluorescence which considerably enhanced
during the hypersensitivity response to tobacco mosaic virus infection. Towards the
550 nm range, the difference in fluorescence steadily diminished. The susceptible
tobacco cultivar “Samsun nn” was not changed substantially in fluorescence emis-
sion by TMV infection (Chaerle et al. 2007).
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3.6.5 Multi-temporal Remote Sensing for Plant Disease Detection

3.6.5.1 Use of Multispectral Remote Sensing for Multi-temporal Wheat
Disease Detection

For the identification and detection of wheat leaf rust and powdery mildew,
QuickBird satellite multispectral multi-temporal images with high resolution were
used which are evaluated by Franke and Menz (2007) in Bonn, Germany. Mixture
tuned matched filtering (MTMF) and NDVI techniques were used to classify the
data. The initial scene’s classification accuracy was 56.8%, but the subsequent
scenes attained much better accuracies of 65.9% and 88.6%, respectively, as com-
pared to the initial scene of classification accuracy (Franke and Menz 2007).

3.7 Conclusion

For disease and pest management, large-scale growing of agricultural crop is the
need of the hour for early disease diagnosis. In order to monitor and predict
epidemics, remote sensing offers precise, non-invasive, accurate, quick, and reliable
estimates of diseases. When used to identify illnesses in green plants, data obtained
by hyperspectral remote sensing is collected from low altitudes and often has a great
spectral and spatial resolution. Regional agricultural disease mapping has proved to
be quite efficient for multi-temporal data based on remote sensing. The approach of
categorization based on spectra can be used to identify agricultural diseases. When
comparing the NDVI spectral profiles of healthy and diseased crops, a significant
difference could be seen that indicated situation of crops under stress. To dramati-
cally spatialize diagnostic results, remote sensing technology will be very beneficial.
This will increase agricultural sustainability and safety by reducing the costly usage
of pesticides for crop improvement and protection. A multidisciplinary approach
involving engineering, plant pathology, and informatics is necessary to fully use the
promise of these highly advanced, new technologies. The adoption and complete
awareness of this approach will be enhanced by a solid decision support system via
cross-disciplinary collaboration.
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