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Abstract Cache coherency refers to the ability of multiprocessor system cores to
share the same memory structure while maintaining their separate instruction caches.
Cache coherency is used in coherence protocols to maintain data consistency between
cache memory in multiprocessor systems. All cores have the same design, share same
main memory (MM) and have their own cache memory. Whenever a core requests
a block of data from MM for its cache, it needs a protocol to broadcast the status
of blocks in MM and cores. Various hardware and software-based cache coherent
mechanisms including contemporary protocols, have been thoroughly explored. This
survey focuses on analyzing the different cache coherence techniques used in SoC
devices. With a variety of cache coherence techniques to choose from, the best
strategy is determined by a number of factors such as latency, scalability and so on.
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1 Introduction

Cache coherence techniques have a huge influence on the performance of a central-
ized and distributed shared memory of multi-core systems architecture [1]. Correct
execution happens when any one of the two cores perform an instruction to read a
value from variable “a.” Core 2 must see the changed value if core 1 conducts a
store instruction that alters variable “a,” and core 2 then performs a load instruction
from that variable. As a result, the new value must be transmitted to core 2’s copy of
variable “a.” This is known as the cache coherence problem shown in Fig. 1.

Consider two systems interacting in a shared-memory paradigm. They may navi-
gate a shared address-based namespace domain, perform direct read and write
operations on places inside the region, and hence transfer data through different
addresses.

In a single processor context, read and write operations are primarily used for inter-
processor communication. As the shared-memory model is a simple and straightfor-
ward expansion of the single processor, numerous devices need be combined for
calculations to generate correct results by ensuring cache coherence [2]. This coop-
eration is in addition to the SoC basic memory access transaction flow. These new
transactions must also be handled differently.

An action that necessitates the invalidation of particular information from cache
for example shown in Fig. 2, should broadcast to all other caches in the system. When
read or write exchange with no coherency have D2D communication topologies,
enforcing cache coherence for the similar communications results in difficult many-
to-many communication topologies. This methodology demands the collection of
specific coherence responses transaction by following multi-casting of the combined
coherence output. All of these actions must be supported efficiently by SoC coherency
connectivity [3]. The objective of this study is to explore cache coherence protocols
and their challenges for multi-core systems.

A few frameworks are normally progressive, including frameworks contained
various multicore chips. Inside every cores, there is an intra-chip convention as well
as a convention across the chips. Coherency issues may be fulfilled by the intra-chip
convention don’t interface with the between chip convention; just when a solicitation

Core 1 Core 2 Core 3 Core 4

/ Cache \ Cache Cache Cache

a=5678 a=1234 / Main Memory (MM)

Fig. 1 Cache coherency addressed in multi-core system architecture
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can’t be fulfilled by one more hub on the chip requests gets elevated between the chip
convention. This decision of convention at each core is generally autonomous of the
decision to next core. For instance, an intra-chip sneaking around convention can
be made viable with off-chip index convention. Each chip needs a solitary registry
regulator which believes that whole chip are connected with single hub in the registry
convention. The off-chip registry convention could be indistinguishable from any
registry conventions introduced in following section with index process normally
addressed in a coarse design.

Another conceivable progressive framework is index conventions for inter-chip
and intra-chip conventions. These conventions will be something very similar and
unique when compared with each other. A benefit of progressive conventions for
various leveled frameworks is that empowering plan of basic, possibly non-adaptable
intra-chip plan for production. Once it is processed, it is useful to plan a solitary
convention that scales to the biggest conceivable amount of centers which can exist
in a framework. Such a convention is probably going to be needless excess in huge
majority of frameworks contained a single chip.

This paper is organized as follows. Section 2 begins with overview of cache
coherence mechanisms. Section 3 explains the protocols to maintain cache coher-
ence. Section 4 investigates the challenges in coherencies followed with concluding
remarks in Section 5.
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2 Cache Coherence Mechanisms

The underlying interconnection system is enhanced by cache coherence, which intro-
duces a specific group of procedures and network traffic topologies. With the intention
of maintaining coherency over MM and caches, it may be necessary to exchange some
information to various entities in the system. The organization of cache coherence
mechanisms is shown in Fig. 3.

For hardware-based approaches, because of the instruction count is unaffected by
hardware, it’s tempting to use it to judge processor performance. Many a computer
designer has been stymied by such oblique performance indicators [4]. The tempta-
tion for evaluating memory hierarchy performance is to focus on miss rate because it
is also unaffected by hardware speed. As we’ll see, the miss rate is just as deceptive
as the instruction count. The average memory access time (T_avg) is a strong metric
of memory hierarchy efficiency given by,

Tavg =Ty +Tyu.Tp (1)

where, Ty, Ty and Tp are hit time, miss rate and miss penalty rate respectively.
Cache coherence mechanisms based on compilers analyze the code to identify
which information are potentially dangerous for caching [5]. Snooping protocol and
directory-based protocol are the two most used cache coherence techniques. Only a
bus-based system can utilize the snooping protocol, which employs a number of states
to identify whether there is necessity to update cache entries and control over write
process to blocks. The directory-based protocol is scalable to multiple processors

Cache
Coherence
I
' '
HW approach SW approach
|
i i
; Directory .
Snooping hasad OS/Compiler
[
{ 1 1
Flat-based Heirarchical Shared/Private
Hybrid Directory-less

Fig. 3 Classiifcation of cache coherence
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Fig. 4 Partitioning memory locations into iterations or epochs

or cores since it may be used on any network. Snooping, on the other hand, is not
scalable [6].

In this architecture, a directory is utilized to keep track of which memory addresses
are shared across several caches and which are reserved for one core’s cache alone.
Snooping, on the other hand, is not scalable. In directory-based method, a directory
is utilized to keep track of which memory addresses are shared across several caches
also may reserve for single cache. The directory is aware when a block needs to be
updated or invalidated [5].

One method is to utilise a cache coherence technique that is based on invalidation.
This method tackles the cache coherence problem by requiring that whenever a core
asks to write to a cache block, the core must invalidate (delete) the block’s copy
from any other core’s cache that has the block. The requesting core now owns the
lone copy of the cache block and has complete control over its contents. When any
other core tries to read the block later, it will encounter a cache miss and will have
to retrieve the updated data from the core that modified it. Figure 4 demonstrates the
iterative partitioning of memory locations.

Shared memory is supported in hardware by many processors and multi-core
processors as well. Each of the processor cores in a shared memory system may
read and write to a single shared address space. The memory consistency models
specify the architectural and observable behaviour of a shared memory machine’s
memory system. Read (load) and write (store) operations can affect memory defined
by reliability characterizations. Numerous mechanisms implement cache coherency
methods to assure that multiple copies of cached data are maintained at present as
part of providing a memory consistency model.

2.1 Distributed Memory Architecture

Data must be explicitly transferred between jobs in the distributed memory architec-
ture shown in Fig. 5. Synchronous send-receive semantics can be used to accomplish
task synchronization. The receiving job is paused until the data for transmission is
ready. Asynchronous message passing is also possible. Send-receive semantics are
employed in this technique, and the receiving process checks or is told when data
is ready without blocking. This allows processing and communication to overlap,
resulting in considerable speed increases.
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Fig. 5 Organization of cache coherence

In comparison to shared memory, the distributed memory architecture generally
results in a greater communication cost (mostly in message creation and tear-down,
as well as explicit data copying). As a result, message forwarding for both functions
should be optimized. The fact that memory is estimated based on the number of
processors is another significant benefit of the distributed paradigm. As a result,
there will be an increase in the number of processors.

As aresult, as the number of processors rises, so does the size of memory. Another
benefit is that each CPU now has direct access to its own memory, free of interfer-
ence from other cores and the expense of maintaining cache coherency. It is easier
to employ commodity, off-the-shelf CPUs and networking using this method. The
main downside of this design is that the programmer is now in charge of all data
transmission aspects. Existing data structures based on a global memory layout may
also be more challenging to translate to a distributed memory architecture.

2.2 Symmetric Multiprocessing Architecture (SMP)

Two or more identical processors are combined to particular, shared main memory
in symmetric multiprocessing (SMP) systems. All I/O devices, such as UARTSs and
Ethernet, are accessible to SMP systems. Any processor on an SMP system may work
on any job, irrespective of location where data for each operation is stored in memory.
The system’s tasks should not be running on two or more processors at the same
time. Figure 6 gives the multicore SMP based architectures. Many ways have been
proposed to improve the scalability of directories for multicore SMP. However, they
often decrease directory memory cost by reducing coherence information that results
in extra unneeded coherence messages and, as a result, energy wasted, performance
deterioration, and lack of scalability.
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Fig. 6 Detailed structure for multicore architectures

2.3 Asymmetric Multiprocessing Architecture (AMP)

All CPUs are not handled equally in an AMP systems shown in Fig. 7. First and
foremost, the CPUs do not have to be identical; alternative core architectures and
instruction sets can be used. Certain processors in AMP systems can be dedicated
to I/O activities with certain peripherals. This sort of CPU specialisation has the
potential to improve system performance.

2.4 Maintaining Cache Coherence

The preceding section’s coherence invariants give some insight into how coherence
protocols function. The great majority of coherence protocols, known as “invalidate
protocols,” are built with these invariants in mind. If a core reads a memory location,
it transmits information to cores to determine present value of that particular memory
location by ensuring that no other cores having cached read—write replicas of that
same memory location. With these messages, any active read—write epoch iteration
is terminated, by initialising read-only operation. When the particular core decides to
write an information to any memory locations, it transmits a message to other cores
to get the memory location’s present value. It does not have a definite read-only
cached copy, and to ensure that no other cores have read-only or read—write cached
copies of the memory location.
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2.5 Directory Based Cache Coherence

This is a cache coherence protocol system that does not employ the broadcasting
technique, therefore it must keep all of the cached information of every block in the
shared data, whether it is centralized or dispersed across several processors [7]. Every
memory block has a directory entry, which is the name of the structure that keeps
all of the information about the shared block’s various locations. Depending on the
current state of the directory and transactions, the directory-based cache will take
any action. The directory-based protocol must also be disseminated across the nodes.
Each nodes in interconnection networks has blocks of local memory that are always
associated with local cache and directory in the cache coherent non-uniform memory
access. Distributing the directory-based protocol have benefits of reducing bandwidth
difficulties and potential bottlenecks. Cache coherence techniques based on direc-
tories offer the ability to grow shared memory multiprocessors to huge numbers
of processors. An important advantage of directory based protocols is the effective
scaling over snoopy protocols. The significant characteristic of directory protocols
is the ability to exploit arbitrary point-to-point interconnects.

2.6 Snooping Cache Coherence

Snooping method is used for write-invalidate and write-update protocols. Each cache
listens in on bus transactions to observe what other processors are doing in memory,
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and thus requires the employment of a broadcast media in the machine. One of
the major advantages of snoopy protocols is the average cache-cache miss latency
is very low. The bandwidth required to broadcast messages to all processors is
limited by cache coherence overhead and performance of shared buses. Another
issue with snoopy protocols is their inefficiency in terms of power consumption.
Each cache controller has the ability to “snoop” on the network in order to detect and
respond to these broadcasted notifications. Snoopy protocols are particularly suited
to a bus-based multiprocessor because the shared bus provides a direct method for
broadcasting [8].

3 Cache Coherence Protocols for Multi-core System
Architectures

3.1 MSI Protocol

The MSI protocol detects when a cache line has been modified (M), indicating that
the cache block has been changed and the data in the cache varies from data in backup
repository [9]. The modified block cache is in control over updating underlying store
and read data, but it will not share or send any information externally.

A block that has not been updated and is read-only in at least one cache is referred
to as shared (S). Without first updating the underlying store, the cache can get the data.
Invalid (I) state indicates that the block is invalid and unavailable, so it is invalidated
by bus request in the present cache, requiring it to be retrieved from memory. The
connection between the cache and the backup store keeps the states S, M, and [ active.

3.2 MESI Protocol

MESI protocol is also termed as Illinois protocol as it was developed in University of
Illinois [13-16]. This is well-known protocol that incorporates a write-back cache.
Even though MESI is the extension of MSI protocol, two transitions for each write
operation is processed and there is no sharing in data blocks. In the first epoch, the
memory block is put into shared state, and in the second epoch, the status of data
blocks are changed from modified to shared state. It includes a new Exclusive (E)
state to the MSI protocol, which saves bandwidth use by writing to a shared data
block.
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3.3 MOSI Protocol

MOSI is a variation of MSI protocols. The additional state is called as Owned state
[11] which is accurate and has the present copy of data is obtainable as the cache
line is in this state. The owned state is related to the shared data memory and same as
changed state since main memory may have an expired backup of the information.
Only one cache may be in the owned state at a time, with all other caches holding
the data in the shared state. It converts into shared state after writing by updating the
MM.

3.4 MOESI Protocol

MOESI protocol [12] is classified into five states. The data update and data sharing
is denoted by Owned (O) state shown in Fig. 8. This eliminates the requirement for
changed data to be written back to main memory before being shared.

Reset,
Invalid,
Write_invalid

Probe write hit
Read Hit

\ \ Exclusive

Invalid

Read Hit,
Write Hit

Read -Ha't,
Probe Read Hit

Modified 3
Read Hit, Probe
. Read Hit

Fig. 8 MOESI protocol
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3.5 Firefly Protocol

Firefly algorithm involves in three states such as Valid-Exclusive, Shared and Dirty.
The cache block is valid, clear, and unique in that it only exists in one cache. The
cache block is legitimate, clean, and may be found in several caches [16]. The block
is the sole duplicate of the memory, and it is dirty, meaning that its value has changed
since it was brought from MM. The only condition that causes a write-back is the
replacement of block in the cache.

3.6 Dragon Protocol

When a write operation to a cache block is followed by many read operation by
processor, update-based protocols like the Dragon protocol [17] perform well because
the updated cache block is quickly accessible over every processors. It involves in
four states which are as follows. The present processor was the first to fetch the cache
block, and no other processor has accessed it subsequently. The cache block is very
certainly present in many processor caches.

The protocol keeps states Exclusive (E) and Shared clean (Sc) distinct to prevent
read—write operations on non-shared cache blocks from causing bus transactions
and so slowing down the execution. In shared modified (SM), the block persists in
many processor caches, with the present processor being the latest to alter it. As a
result, the present processor is referred to as the block’s owner. Unlike invalidation
protocols, the block only has to be updated in the processor, not the MM. When a
cache block is evicted, the processor is responsible for updating the main memory.
In single-threaded applications, this is a regular event. Finally, modify (M) the value
from MM.

3.7 MECSIF Protocol

MECSIF is a custom established hybrid cache coherence method that employs both
directory and snoopy protocols [18]. It involves in seven states including clean (C)
and forward (F) states. If a copy of a data block has never been updated and at least
one cache contains a copy of the data block, the processor will only respond to a
remote processor request with a copy of the data block in its current state.
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4 Challenges in Cache Coherency

Though the protocol discussion appears to be straightforward, the implementation is
fraught with difficulties. The protocol’s main flaw is that it assumes operations are
atomic—that is, that an operation may be performed without any intervening actions.
For example, the given protocol implies that write misses may be detected, the bus
acquired, and a response received in a single atomic operation. This is not the case
in reality. Similarly, read misses would not be atomic if we employed a switch, as
many current multiprocessors do. Non-atomic actions increase the likelihood that
the protocol may deadlock, or reach a point where it will be unable to proceed.

Any centralized resource in the system can become a bottleneck as the number of
processors in a multiprocessor increases, or as each processor’s memory demands
increase. The bus and memory form a bottleneck in the simple case of a bus-
based multiprocessor. As a result, scalability becomes a problem. Designers have
employed numerous buses as well as interconnection networks, such as crossbars or
tiny point-to-point networks, to boost the communication bandwidth between CPUs
and memory. The memory system can be divided into many physical banks in such
architectures to increase the effective memory bandwidth while maintaining a consis-
tent memory access time. Both hardware and software is always seen as integrated
and interdependent in multicore systems.

With growing complications, the resulting logical steps involved in shifting and
transforming parallel hardware and software via plenty of programming models, as
well as programmable processors that specify operating on multiprocessor systems-
on-chips (MPSoCs) [19]. As of now, design of multicore processors is getting higher
difficulties, forcing the manufacturers move ahead to block-level design, which sepa-
rate the design of sub-system blocks from design of SoC platform also keeping power
problems in mind. The technological aspects has enhanced the electronics hardware
part to enable for verification and automated synthesis of gates from gate designs to
transistors levels and eventually to register-transfer level (RTL) design [20, 21].

Abstraction, in combination with automation, translations, and validation in
contradiction of the resulting lowest level of abstractions have traditionally been
the response to escalating complexity, resulting in increased silicon real estate in
prior decades. Both hardware and software must be viewed as integrated in multi-
core designs. Even the best hardware multicore architectures in industry will perform
badly if only inadequate group of programmers can program to accomplish tasks. The
most imaginative algorithm, on the other hand, will not run as planned if the under-
lying hardware design lacks sufficient computation, storage, and communication
resources. The following are the common problems addressed in cache coherency
mechanisms:

1) Detecting certain sharing patterns in order to improve coherence. We may use
modified adaptability coherence mechanisms to increase system performance by
exploiting application-level asymmetrical behaviours, such as application access
patterns at application-level granularity.
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2) Workload heterogeneity is taken into account while designing coherence proto-
cols. We can change the operating system to lead coherence protocol activities
and transition across protocols.

3) Adapting area-effective directory architecture to assure scalability of on-chip
directory storage.For these goals, we can use hierarchical and tag-less design
alternatives, for example.

4) Optimizing data placement strategy in a multi-core cache system to reduce distant
cache visits by bringing private data closer to the “home core” and reducing data
migration operations in the coherence protocol.

5 Conclusion

The different coherence maintenance strategies exploited in multi-cores are investi-
gated in this survey. Cache coherence is expected to be phased away soon, according
to few researchers, because it raises hardware costs by storing more state, transmitting
more messages, and verifying that everything is correct.

However, we envisage that coherence will endure popular since the software cost
of dealing with incoherence is always high and is recognized by few established
design engineers rather than developers who should deal with it. This work aids
researchers in comprehending coherence processes and investigating the implemen-
tation issues provided by the rapidly expanding number of cores. Despite significant
progress in this field, it remains a very active study topic. Many research areas
exist, such as protocol correctness verification, performance assessment, compar-
ison, directory size, and protocol overhead minimization that has to be looked at in
the future.
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suggestions.
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