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Abstract

Mung bean [Vigna radiata (L.) Wilczek] is one of the upsurging, highly econom-
ical, nutritive Asiatic leguminous crops. The crop is getting higher attention in
terms of the consumption and production worldwide being an important source of
amino acids, proteins, dietary fibre and unsaturated fatty acids. It possesses folate
and iron in significant amount along with several phytochemicals. The short life
cycle and nitrogen-fixing ability make it more suitable for sowing along with
other crops. In spite of several advantages, it has got less attention in terms of
development of morphophysiological and molecularly diverse varieties. Mung
bean has a small genome, and fortunately it has been sequenced; therefore, it may
be utilized as an exemplary plant to understand other legumes. Development of
wild mung bean pool from diverse origins and environmental conditions would
help to conserve the genetic wealth of the crop. Higher yields, shorter maturity
period, higher harvest index, photoperiod insensitivity, resistance to major insect
pests/diseases, compact canopy and synchronous maturity are some of the impor-
tant objectives for crop improvement in mung bean. This chapter reviews the
morphophysiological and molecular diversity of mung bean and also gives an
insight about mutagenesis, plant protection and abiotic stresses associated with
the crop.
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5.1 Introduction

Mung bean [Vigna radiata (L.) Wilczek], also known as green gram, golden gram,
green bean or mash bean, is an important fast-growing, highly economical, nutritive,
multipurpose leguminous crop cultivated in tropical and subtropical regions of Asia
(Tah 2006; Yang et al. 2008). It is a self-pollinating species belonging to the genus
Vigna of Fabaceae family. The crop is mainly grown in frost-free regions from Asia
to Africa, South America and Australia (Nair et al. 2012). India is one of the largest
producers of mung bean and shares about 50% of global annual production (Nair
et al. 2012).

Being a leguminous crop, mung bean is an important source of amino acids,
proteins, dietary fibre and unsaturated fatty acids (Hou et al. 2019). It is easily
digestible, produces low flatulence as compared to other legumes and contains
higher folate and iron (Keatinge et al. 2011). The crop makes the soil fertile and
improves its texture (Graham and Vance 2003). Similarly, it has also been observed
that the cereals intercropped with mung bean have a lesser incidence of pest
infestation and have a higher yield due to the availability of nitrogen fertilizer
(Yaqub et al. 2010).

Owing to higher vitamin, calcium, iron and phosphorus content as compared to
other leguminous crops, mung bean is a preferred nutritive food. The presence of
amino acids, proteins, polyphenols and oligosaccharides in the crop has been
exploited for antioxidant, antitumor, anti-inflammatory and antimicrobial activities
(Anjum et al. 2011; Randhir et al. 2004). Mung bean has also been reported to
contain several phytochemicals, viz., steroids, triterpenoids, glycosides, flavonoids,
alkaloids, polyphenols, tannins, saponins, daidzin, daidzein, ononin, formononetin,
isoformononetin, quercetin, kaempferol, myricetin, rhamnetin, etc. (Priya et al.
2012; Ramesh et al. 2011; Tang et al. 2014).

Mung bean has also been reported to contain a good amount of antifungal
proteins (Solanki et al. 2018) that can be used against human and plant pathogens.
Mung bean seeds possess alkaloids, coumarin and phytosterol that support the
physiological metabolism in human beings. The seeds are also free from anti-
nutritional factors, viz., trypsin inhibitors, phytohemagglutinins and tannins (Xin
et al. 2003).

Mung bean has been used as a model crop for physiological studies (Musgrave
et al. 1988) and for understanding the beginning and expansion of adventitious roots
(Norcini et al. 1985; Tripepi et al. 1983). The rooting bioassay of this plant has also
been used to assess the root-promoting potential of growth regulators (Kling et al.
1988). Mung bean is used globally for human consumption, cattle feed and medici-
nal purposes (Jo et al. 2006). Its sprouts and splits are very nutritious, and as a
component of soups, noodles, cake or ice cream fillings, it is commonly used in
human foods. Its haulm, green and dry fodder are used as nutritious animal feed
(Garg et al. 2004). Studies have revealed its importance in the treatment of hepatitis,
gastritis, etc., and it has antihypertensive, antidiabetic and anticancer properties
(Kumar and Singhal 2009). Keeping in view the importance of the crop, the
consumption of mung bean has increased considerably along with its production
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(Shanmugasundaram et al. 2009). Therefore, mung bean is considered among cash
crops and has attracted the interest of researchers.

5.2 Origin

Mung bean has diploid (2n = 2x = 22) chromosome numbers. Vavilov (1951)
proposed Central Asian regions as the basic genetic centre of mung bean and India as
the centre of its domestication (Singh et al. 1970; Smartt 1985). The diversity data
and archaeological confirmations also suggested India to be the origin place of mung
bean (Fuller and Harvey 2006; Jain and Mehra 1980), although the wild relatives of
mung bean have been reported from the subtropical and tropical provinces of
northern and eastern Australia (Lawn and Cottrell 1988). Studies carried out based
on protein and enzyme variability suggest that modern mung bean has several series
of domestication (Lambrides and Godwin 2007; Viña and Tomooka 1994).

5.3 Genetic Resources

Availability of germplasms having superior alleles and wide genetic diversity is one
of the prerequisites for a sustainable breeding programme. Therefore, numerous
organizations have collected mung bean germplasm to sustain the genetic resources.
To facilitate the effective utilization and easier access to genetic resources,
germplasms have been conserved in China, India, Korea and the USA. Asian
Vegetable Research and Development Center has established a core collection of
about 1700 mung bean accessions. These accessions have been morphologically and
molecularly characterized (Shanmugasundaram et al. 2009). Germplasms having
variable characteristics are the most important resource for crop improvement and
play an important role in widening the genetic background of cultivars.

5.4 Cultivation

Mung bean is a short-day crop and is generally grown during the rainy seasons. It
takes about 90–120 days to mature. It is the third most important leguminous crop
after chickpea and pigeon pea cultivated in India (Ahmad and Belwal 2019). Mung
bean is globally cultivated on nearly seven million hectares and is mostly limited to
Asian countries (Nair et al. 2019). The total production of the crop in India from
2018 to 2019 was 2455.37 thousand tonnes with an average productivity of 516 kg
per hectare (Anonymous 2020), suggesting that India is one of the largest producers
of mung bean.

The production and partitioning of dry matter potential in mung bean are an
outcome of several growth stages of the plant. The changes in the growth stage
mainly depend upon the temperature and photoperiod. Manipulation in the process
of the growth stage in context to the environmental conditions may lead to grain
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yield improvement. The time taken for mung bean crop to mature is an important
yield factor. The duration may change with the environmental conditions, sowing
time and cropping season. It helps to determine the suitability of crops under various
cropping systems. Mung bean is sensitive to photoperiod, and flowering in the crop
is influenced by the duration of light (Aggarwal and Poehlman 1977). It has been
reported that short days lead to early flowering, while long days result in delayed
flowering (Aggarwal and Poehlman 1977). A higher yield can be realized from the
crops grown under proper drainage conditions in sandy loam soil, while higher
humidity and excessive rainfall may lead to several diseases and lower yields in
mung bean (Oelke et al. 1990). The determinants influencing the crop duration in
mung bean have been discussed by several workers (Robertson et al. 2002;
Summerfield and Lawn 1987).

Mung bean has broad and trifoliate leaves that overlap horizontally bounding the
light into the canopy. It has been noticed that the mung bean plants having narrow
leaves capture maximum light and give comparatively higher yields (Lee et al.
2004). Mung bean has epigeal germination, and cotyledons have to arise from the
soil for the growth of the seedling. However, low-moisture conditions and crusting
of soil under higher temperatures may limit this type of germination (Cook et al.
1995), resulting in poor germination and simultaneously poor establishment (Harris
et al. 2005). Seedling vigour may be important under such conditions, but no relation
could be noticed between seedling vigour and crop yield in mung bean (TeKrony
and Egli 1991). A plant stand of about 30 plants under each square meter is
considered significant to provide higher yields in mung bean (Rachaputi et al. 2015).

The flowering and pod maturity in mung bean do not take place evenly, and
differences between these two incidences are higher (Tah and Saxena 2009), leading
to non-synchronous maturity and yield losses (Alam Mondal et al. 2011). Early and
uniform maturity of a crop has a positive effect on the grain yield; however, this
important characteristic is not known in the case of mung bean (Chen et al. 2008).
High-yielding, uniform-maturity and disease-resistant varieties are of choice for the
successful cultivation of mung bean (Tomooka et al. 2005), while low-yielding
potential, poor harvest index and vulnerability to diseases and biotic and abiotic
stresses (Srinives et al. 2007) are some of the major challenges in its cultivation.
Wild species of mung bean may serve as a better genetic material as the cultivated
germplasm may have lost many alleles during the process of domestication and/or
breeding programmes (Hyten et al. 2006). Therefore, beneficial alleles from unculti-
vated species have been accustomed to the crop improvement in mung bean (Nair
et al. 2012).

5.5 Genetic Variability

Self-pollinated crops generally have composite floral structures and low natural
variability. Therefore, the selection of such plants for crop improvement becomes
difficult; nevertheless, estimation of the phenotypic coefficient of variation (PCV),
genotypic coefficient of variation (GCV), heritability estimates and genetic advance
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(GA) provides immense opportunity to choose better genotypes. Estimation of these
variabilities reveals the influence of several gene effects operating towards total
variability for the desired traits. Several studies reported the importance of GCV,
PCV, heritability and GA in the improvement of traits in different crops (Denton and
Nwangburuka 2011; Johnson et al. 1955; Kim et al. 2015a). Evaluation of pheno-
typic or genotypic variability offers better insight into the utilization of available
germplasm resources (Bisht et al. 1998; Schafleitner et al. 2015). Wide variation in
morphological traits, viz., number of pods per plant, yield per plant, 100-seed
weight, fruit-setting capacity, flowering period, maturity, number of pod-bearing
peduncles, plant height, primary branches, length of branches, nodule and leaf
pattern, has been observed in mung bean (Bisht et al. 1998).

The study on the inheritance of narrow trifoliate leaves in mung bean revealed the
inheritance of larger leaflets over smaller leaflets (Dwivedi and Singh 1985). Lobed
leaf shape was found dominant over the entire leaf shape, while pentafoliate leaf was
reported to be an inherited characteristic in mung bean (Chhabra 1990). The inheri-
tance of dullness and shininess of leaf surface suggest that it is governed by a digenic
interaction (Bhadra et al. 1991) with the dominance of dullness over shininess.
Inheritance of plant and flower bud colour in mung bean suggested that the dark
purple colour of the plant was dominant over the green plant colour; similarly, purple
flower buds showed dominance over the green flower buds (Khattak et al. 2000). It
was found that black and green seed colour is governed by similar genes; however,
black seed is dominant over green seeds (Chen et al. 2001). The occurrence of
anthocyanin is a dominant character so is the black-colour seed coat over the green
colour (Chen et al. 2001). The study also revealed that the genes responsible for
purple petiole and black seed colour have higher lineages. Single recessive gene was
observed to control mung bean yellow mosaic virus resistance in the crop with
susceptible behaviour being dominant over the resistant behaviour (Win et al. 2021).

PCV and GCV along with heritability estimates provide an insight into the
improvement of requisite characters (Burton and de Devane 1953). Mung bean has
been reported with higher PCV and GCV for seed yield and pod numbers (Makeen
et al. 2007), plant height, pod numbers and grain yield, while it was low with respect
to days to 50% flowering (Anand and Anandhi 2016). Primary branches, pod
numbers, seed yield and clusters showed higher GCV and PCV in mung bean
(Asari et al. 2019). Higher PCV and GCV were reported for 100-seed weight,
flowering period, seed length and seed breadth (Tripathi et al. 2020). The number
of pods, seed yield and number of clusters have been recorded with high PCV and
GCV in mung bean (Salman et al. 2021), suggesting the presence of higher
variabilities for these traits, and therefore, there are more opportunities for further
improvement using several genetic influences.

Heritability is the amount of phenotypic variance among different genotypes due
to the effect of inherited genes. The estimation of heritability is done to find the
similarity between the genotypes (Falconer and Mackay 2005). It also explores the
association between phenotypic and genotypic variance (Lourenço et al. 2017).
Heritability in combination with genetic advance gives better insight into the desired
genotype (Nwangburuka and Denton 2012). The traits presenting higher heritability
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along with higher genetic advance in mung bean may be enhanced by the selection
method (Degefa et al. 2014) because these characteristics are under the influence of
additive gene action. The influence of both additive and non-additive gene effects
has been reported for several traits in mung bean (Khattak et al. 2002). Days to first
pod maturity (Khattak et al. 2001) and seed yield (Sharma 1999) exhibited higher
heritability. It has also been reported that the additive gene effect governs the seed
yield in mung bean (Joseph and Santhoshkumar 2000).

The number of pods, plant height and test weight had a high value of heritability
coupled with a higher genetic advance in mung bean, suggesting the influence of
additive gene effect in their manifestation (Makeen et al. 2007). Higher variability
was recorded during the assessment of genetic diversity among yield-attributing
traits comprised of 9 qualitative and 21 quantitative characters among 340 cultivated
mung bean collections (Yimram et al. 2009). Several yield-attributing traits showed
higher genetic variability and heritability (Yimram et al. 2009). The number of
seeds, seed yield and biomass yield exhibited higher heritability coupled with higher
genetic advance, suggesting their importance in the selection of mung bean for better
yield potentials (Degefa et al. 2014).

Genetic architecture of synchronous pod maturation and yield-related traits in
mung bean were studied, and domination of additive and environmental components
for days to flowering, pod maturation, synchrony in pod maturation and yield-related
characters were recorded (Iqbal et al. 2014). The study suggested that inter-crossing
of F2-generation plants having earliness and synchronized pod maturation along
with high-yielding potential and their subsequent selection may be useful for
manipulation of complex inherited characters in the development of mung bean
lines for plant improvement (Iqbal et al. 2014). Seed yield, plant height and number
of pods exhibited high values for heritability (Anand and Anandhi 2016).

High heritability coupled with higher genetic advance was reported for plant
height, number of primary branches, number of clusters, number of pods and seed
yield, signifying the dominance of additive gene action (Asari et al. 2019). Higher
heritability was reported for seed dimension-related traits, days to 80% maturity,
100-seed weight, days to 50% flowering, pod length and days to initial maturity,
suggesting that these traits are appropriate for mung bean breeding (Tripathi et al.
2020). Pod numbers, seed yield, clusters, number of branches, seeds and height had
high heritability coupled with high genetic advance, suggesting the influence of
additive genes in the inheritance of these morphological characters (Salman et al.
2021).

5.6 Mutation

Mutation is an unexpected genetic modification caused by variation in the gene
sequences, leading to alteration in several plant characteristics including height,
branches, flowers, pods, etc. It may occur naturally or may be induced artificially.
The natural mutation is sudden, and its frequency is very low; therefore, it cannot be
considered realistic. Hence, artificial methods of mutation were discovered to create
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variability in the crops. The introduction of mutations has played an important role in
the field of genetic studies and plant breeding (Raina et al. 2016). The mutation is
considered a promising tool for evolution, and induced mutagenesis is an ideal
methodology for the creation of required genetic variability in crops (Auti 2012;
Dubinin 1962). It may be induced using physical and chemical mutagens either
individually or in combination. Various physical and chemical mutagens have been
recognized in various crops (Pathak 2015; Shah et al. 2008). X-rays and gamma rays
are generally applied as physical mutagens, while ethyl methane sulphonate (EMS),
diethyl sulphonate (DES), sodium azide (SA), methyl methane sulphonate (MMS),
nitrosoguanidine (NG), nitroso-methyl urea (NMU), etc. are the chemical mutagens
used for creating variability. The genetic material generated through mutagenesis
and the mutants with better desired characteristics may be included in the breeding
programmes. Several attempts have been undertaken to improve the genetic
variability in mung bean using different mutation techniques. The variability lost
during the adaptation or evolution of a crop can be refurbished or renewed with the
help of induced mutations. Selection of morphologically varied mutants, viz., plant
type, chlorophyll, leaf, flower and seed-type mutants, has enhanced genetic
variability and showed higher level of resistance towards abiotic and biotic stresses
(Mounika 2020).

5.6.1 Mutations Induced Through Physical Factors

Physical mutagenesis is an effective method for creating variability for crop
improvement in self-pollinated crops including mung bean (Sarkar and Kundagrami
2018; Shah et al. 2008). Irradiation with ionizing or non-ionizing rays is used to
induce physical mutation. It was started with X-rays, but at the later stage, gamma
rays got more popular (Auerbach and Robson 1946) due to better effects over plant
growth and development by stimulating cytological, genetical, biochemical, physio-
logical as well as morphological variabilities (Gunckel and Sparrow 1967). The
influence of gamma irradiation on morphological and cytological changes in mung
bean was recorded, wherein decreased seed germination, seedling survivability and
growth rate were observed with increased doses of gamma rays (Subramanian 1980).
Dosage of 10–30 kR gamma rays was reported to be appropriate to obtain earliness,
synchrony in the maturity and resistance towards yellow mosaic disease in mung
bean (Singh and Chaturvedi 1982). Substantial variability for the number of clusters
was recorded with 10, 30 and 40 kR gamma radiation in different mung bean
genotypes (Tah 2006), and a 16–20% increase was observed over the control.
Mung bean varieties treated with 10–40 Gy gamma rays resulted in mutants having
synchronous maturity (Tah and Saxena 2009).

Gamma rays were applied to create synchrony in the pod maturity, and the
obtained mutants exhibited synchronous pod maturity along with variegated leaves
(Sangsiri et al. 2007). The shallow rooting system of high-yielding and MYMV-
resistant mung bean variety (Samrat) was improved using 450 Gy gamma rays, and a
long-root mutant possessing a root length of 71 cm was identified in the M2
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generation (Dhole and Reddy 2010). The mutant showed better performance in
terms of water uptake as compared to ‘Samrat’ and survived better under drought
conditions. Gamma rays (300, 400 and 500 Gy) and EMS (10, 20 and 30 mM) were
applied to screen the yellow vein mosaic virus disease-resistant mutants in mung
bean, and several disease-resistant mutants were identified in M3 generation (Vairam
et al. 2016). Gamma radiation was applied to advance the genetic constitution of
mung bean, and 20 mutants from M5 progeny having an early maturing period and
high yield potential were identified (Sarkar and Kundagrami 2018). Four doses of
gamma rays (100, 200, 300 and 400 Gy) were applied to improve genetic variation in
mung bean varieties, and mutants showing higher harvest index were isolated in M7
generation from 200 and 400 Gy dosages of gamma rays (Dewanjee and Sarkar
2018). The mutants having potential characteristics may be released as a variety, or
the potential character may be transformed in other varieties to get better yields in
mung bean (Pratap et al. 2020).

5.6.2 Mutations Induced Through Chemical Factors

Mutations carried out by irradiation of ionizing rays may lead to chromosomal
aberrations; therefore, chemical mutagens were taken as a substitute to create
variabilities. Chemical mutagens have become more popular as no specific equip-
ment is involved during their applications, and it is comparatively easy to induce.
Compared to physical mutagens, it induced point mutations causing single base pair
changes (Sikora et al. 2011). Two important groups of chemical mutagens, viz.,
alkylating agents and base analogues, are usually applied for creating mutations.
However, out of these chemical mutagens, alkylating agents such as EMS and NMU
are generally used to induce mutation in crops. Various chemical mutagens, viz.,
ethyl methane sulphonate (EMS), sodium azide (SA) and hydrazine hydrate (HZ),
have been used in mung bean (Auti and Apparao 2009; Khan and Goyal 2009; Wani
2006). Variation in seed size of mung bean was observed when it was treated with
EMS and nitroso-methyl carbamide (Singh and Chaturvedi 1982). Higher seed yield,
fertile branches and pods were reported in mung bean mutant lines acquired after the
application of EMS and HZ (Wani 2006). EMS induces mutations more efficiently
in mung bean as compared to gamma rays (Singh and Rao 2007). The crop duration
in the M2 generation of mung bean was reduced with the help of SA mutagen
(Lavanya et al. 2011).

5.6.3 Mutations Induced Through Physical and Chemical Factors

Physical and chemical mutagens individually have several advantages and induce
random changes in the genome. However, the genetic variability induced by the
combination of physical and chemical mutagens is comparatively more efficient, and
the possibility of obtaining the required characteristics is significantly higher (Raina
et al. 2017). A combination of lower doses of physical and chemical mutagen is more
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acceptable for artificial mutation (Medina et al. 2004). Both effectiveness and
efficacy are important parameters for mutagens. The effectiveness and efficacy
give information regarding the rate of point mutations concerning dosage and
other biological effects, respectively, induced by the mutagen (Konzak et al.
1965). It relies upon the genotype and the mutagen. Varied effectiveness and
efficiency of mutagens have been reported in several crops including mung bean
(Wani et al. 2017). EMS and gamma rays were applied to create variability in mung
bean and subsequently for the development of novel cultivars having higher yields
and resistance towards insect pests (Khan and Goyal 2009; Wani 2006). Mung bean
seeds treated with different concentrations of SA and EMS and different doses of
gamma radiation were grown to study mutagenesis in mung bean (Auti and Apparao
2009), and several viable morphological and physiological mutants were obtained.

Seeds of mung bean were treated with gamma rays (10–60 KR) and EMS
(0.1–0.4%) alone and in various combinations, and several chlorophyll and morpho-
logical mutants were identified in the M2 generation (Kumar et al. 2009).
Chlorophyll-deficient mutants are considered genetic markers and are used to
study the photosynthesis process (Rungnoi et al. 2010). Maximum mutations were
recorded with EMS followed by gamma rays and their combinations. Higher
numbers of albina-, chlorina- and viridis-type chlorophyll mutants were observed
with the treatment of EMS, MMS and SA in mung bean (Khan and Siddiqui 1993).
Similarly, albina, xantha, viridish, sectorial and chlorina mutants have also been
recognized by Singh and Rao (2007) in mung bean. Chlorophyll mutation in mung
bean has also been observed with gamma radiations and EMS alone and in its
combinations (Kumar et al. 2009), wherein maximum frequency was recorded
with EMS followed by gamma rays and their combinations. A higher number of
chlorophyll mutation was observed when 300 Gy gamma rays were used in combi-
nation with 10 mM EMS in M2 generation (Vairam et al. 2016). Bifoliate,
tetrafoliate and pentafoliate leaves have been reported in mung bean with the
treatment of EMS (Auti and Apparao 2009). Mutation in flower colour has also
been reported by various workers. Comb-like flowers having pollen sterility have
been reported in mung bean upon mutation (Sangsiri et al. 2005). Variations in seed
shape, seed size and seed colour were observed in mung bean mutants developed
through treatment with gamma rays, EMS and SA (Auti and Apparao 2009).

5.7 Genotype × Environment Interaction and Stability

Improvement in the quality and quantity of crops coupled with enhanced stability
over the varied environmental conditions is the most important requirement in the
breeding programme. The best varieties always have higher yields along with better
stability (Eberhart and Russell 1966). Genotype × environment (G × E) interaction
suggests the variable responses of a trait of genotypes evaluated under different
environments. It also reveals the comparative suitability of a genotype within a
particular environmental situation (Allard 1960). The genotype may acquire stability
alone or may be due to the buffering effect of the population; however, the yield is
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validated due to the effect of G × E interactions (Allard and Bradshaw 1964).
Nevertheless, the comparison of varieties in a chain of environments provides
relatively different positions resulting in difficulties to identify superior varieties
(Eberhart and Russell 1966). The comparative performance of genotypes differs
from one environment to another, and it can be articulated as a linear function of an
environmental variable (Pathak 2015; Tan et al. 1979). Therefore, to assess the
stability of a variety for the desired trait, an understanding of G × E interactions is
essential. Stable varieties have great significance in several crops including mung
bean for cultivation in variable environmental conditions (Verma et al. 2008).
Variable performance of a variety towards different environmental conditions
compels to search novel breeding materials under multi-environmental trials for
years to evaluate their stability for desired traits (Fehr 1987; Kang 1993). A decrease
in the interactions between genotype and environment is necessary to find a stable
genotype that has less interrelation with the environment wherein it is cultivated.
Significance of genotypes upon environment and adaptation of varieties towards
yield and yield-attributing traits with respect to stability has been thoroughly
underlined by several workers in mung bean (Abbas et al. 2008; Dwivedi 2006;
Mahalingam et al. 2018). While highlighting the importance, it was suggested that
the environment and G × E interactions must be considered during the designing and
selection of materials for breeding in mung bean (Singh et al. 2009).

Stable varieties of mung bean have been identified over the years under varied
environmental conditions by several researchers (Abbas et al. 2008; Baraki et al.
2020; Raturi et al. 2012b), and the prominence of some genotypes over the environ-
ment was also observed (Mahalingam et al. 2018). The environment imposes a
higher impact on several characteristics of mung bean including flowering time, pod
formation as well as yields. Kamannavar and Vijaykumar (2011) assessed G × E
interactions in mung bean cultivars grown in different agro-climatic zones and
reported that genotype, environment and G × E interaction were significant for all
the characters signifying the existence of variabilities for genotype and environment
along with non-linear influence of genotypes over the environment. However, the
partitioning of interaction into linear and non-linear components suggests the
involvement of both predictable and unpredictable sources of variables.
Non-significant G × E interaction was recorded for 100-seed weight, suggesting
the variable response of genotypes towards variable environmental conditions
(Revanappa and Kajjidoni 2004). On the basis of stability analysis and their
influences, Henry and Mathur (2007) categorized the genotypes for favourable,
adverse and variable environmental conditions.

Raturi et al. (2012a, b) reported significant G × E interactions for 1000-seed
weight, days to 50% flowering, number of seeds per pod and number of primary
branches revealing varied responses of genotypes to varied environments. Signifi-
cant G × E interactions have been recorded for seed yield among genotypes of mung
bean grown under varied environmental conditions (Baraki et al. 2020). A crossover
G × E interaction is usually observed if genotypes are evaluated under multi-location
trials. Studies suggest that the variation in the seed yield of mung bean due to G × E
interactions is inherited, and the genotypes perform differently to the varied
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environmental situations of the site of sowing (Baraki et al. 2020; Waniale et al.
2014). Therefore, mung bean genotypes may essentially be tested at multi-locations.

5.8 Correlation and Path Analysis

The morphophysiological characteristics of a genotype depend on several factors,
and therefore, several aspects are taken into account during the selection of a
genotype including the fact related to the association of characters and the influence
of direct and indirect effects of each trait. Correlation provides the information with
respect to the association between the traits, but it does not reveal the cause and/or
consequence of association (Roy 2000), while the path coefficient analysis gives a
better insight into the influence of one trait on another during identification of a
predictor variable (Akanda and Mundt 1996). Thus, path analysis informs about the
cause and reveals the comparative influence of the traits, while correlation analysis
just provides reciprocal relation of traits (Dewey and Lu 1959).

The findings on correlation coefficient in mung bean recommend that a plant with
more number of branches, clusters, pods and higher number of seeds in a pod is
anticipated to provide higher seed yields. Thus, an increase in the number of
branches and pods may be culminated into higher seed yield as branches bear
pods and pods bear seeds. The association between seed yields was significantly
positive with the number of branches, number of pods and total biomass in mung
bean (Nawab et al. 2001), indicating the influence of these traits on the seed yield.
The number of pods and plant height had a significantly positive association with
seed yield (Makeen et al. 2007; Upadhaya et al. 1980); similarly, these traits along
with test weight showed a maximum direct effect on the seed yield (Makeen et al.
2007). A significant positive association was observed between seed yield and days
to 50% flowering, primary branches, secondary branches, clusters, pods, pod length,
seeds, pod mass, pod wall mass, seed mass, shelling percentage, seed and harvest
index (Singh and Kumar 2014), suggesting that these traits may be useful for
selecting genotypes for yield improvement in mung bean. Seed yield had highly
significant and positive correlations with pods, clusters and seed numbers (Singh and
Kumar 2014), whereas days to maturity had a negative association with seed yield.
The study also showed that seed yield had no significant association with protein
content.

Number of clusters and number of pods showed a significantly positive associa-
tion with seed yield, suggesting that these are the most important components for
crop improvement in mung bean (Anand and Anandhi 2016; Asari et al. 2019).
Similarly, the study also revealed a positive and direct impact of days to 50%
flowering, test weight, number of clusters, number of pods and number of primary
branches on seed yield (Asari et al. 2019), suggesting that emphasis may be given on
these traits during the crop improvement in mung bean. Seed weight was reported to
be negatively associated with seed roundedness, days to first flowering, days to 50%
flowering, flowering period and days to maturity (Tripathi et al. 2020), while pod
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length showed a positive correlation with seed weight, seed area and seed
dimensions.

5.9 Genetic Divergence

Quantification of divergence within the characters required to be improved gives the
understanding to find suitable parents for breeding programmes (Mahalanobis
1936). It was suggested that the measurement of the metric distance between
population centroids may help in the consideration of high-yielding parents having
wider genetic divergence that are found beneficial in the development of high-
yielding hybrids (Murty and Arunachalam 1966). The analysis also measures
the magnitude of divergence and simultaneously provides an understanding of the
evolutionary patterns in terms of the comparative influence of various traits on the
entire divergence functioning at intra- and inter-cluster levels. Genetic divergence
studies help in the identification of suitable parents for hybridization during crop
improvement (Mohammadi and Prasanna 2003) as the involvement of genetically
different parents brings gene constellation in the progressive generations.

Several studies have been carried out to find the nature and extent of genetic
divergence in mung bean using Mahalanobis D2 statistics (Goyal et al. 2021; Rahim
et al. 2010; Ramana and Singh 1987; Ramanujam et al. 1974; Sen and De 2017), and
it was concluded that the genotypes grouped in different clusters with higher
statistical distances may be utilized in the hybridization programmes for crop
improvement in mung bean. The comparative influence of each character on the
total genetic divergence, the clusters having the highest statistical distance and the
collection of at least one genotype from such clusters are some of the most signifi-
cant points for the identification of parents using D2 statistics. It has been observed
that there is no relation between geographic and genetic diversity in mung bean
(Naidu and Satyanarayana 1991; Raje and Rao 2000; Tripathi et al. 2020).

5.10 Plant Protection

Mung bean is susceptible to several viral, bacterial and fungal diseases leading to
major economic losses to the crop (Mbeyagala et al. 2017; Pandey et al. 2018; Singh
et al. 2000). Cercospora leaf spot, powdery mildew, anthracnose, dry root rot, web
blight, fusarium wilt and Alternaria leaf spot are major fungal diseases (Pandey et al.
2018); halo blight, bacterial leaf spot and tan spot are the important bacterial
diseases; while mung bean yellow mosaic disease (MYMD) is a major viral disease
(Nair et al. 2017) found in mung bean. Maximum yield losses in mung bean have
been reported due to MYMD (Karthikeyan et al. 2014) followed by several fungal
diseases (Bhat et al. 2014; Maheshwari and Krishna 2013; Shukla et al. 2014). Effect
of several bactericides and fungicides in the seed treatment and foliar spray along
with the influence of good agronomic practices have been reported to combat these
infections (Pandey et al. 2018). The use of disease-resistant varieties and the
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employment of integrated disease management are the best cost-effective ways to
control the incidence of diseases in mung bean.

5.10.1 Viral Diseases

Mung bean yellow mosaic virus (MYMV) is a major threat to mung bean cultivation.
The reference genome of this virus is available (Morinaga et al. 1993). The virus is
comprised of two DNAs of about 2.7 kb. There are several views concerning genetic
resistance associated with MYMV. It was suggested that it is controlled by a solo
recessive gene (Reddy 2009), a dominant gene (Sandhu et al. 1985), while others
reported that it is controlled by two recessive genes and a complementary recessive
gene (Ammavasai et al. 2004; Dhole and Reddy 2012; Pal et al. 1991). The infected
plant shows yellow-coloured spots on the young leaves that become yellow mosaic
shape in the later stage, and simultaneously drooping of leaves takes place after the
entire yellowing and drying of the leaves. Presently, fully resistant varieties to
MYMV are unavailable. However, resistant varieties exhibit high variability and
depend on climatic conditions (Nair et al. 2017) as the virus is transmitted through
whitefly. The occurrence, distribution and transmission of this vector are well known
that may help to cope with the spread of the virus. The variation in pathogen because
of several other factors makes its control more cumbersome (Alam et al. 2014).

5.10.2 Fungal Diseases

Cercospora leaf spot (CLS) disease caused by fungus Cercospora canescens is one
of the important foliar diseases in mung bean. The disease may reduce the yield up to
40%. There is chaos on the genetic basis of CLS-resistant gene, whether it is
monogenic or multigenic. It has been reported that CLS resistance is governed by
a single dominant gene (Lee 1980); besides this, studies also suggest the presence of
quantitative genetic control (Chankaew et al. 2011) and a single recessive gene
influence (Mishra et al. 1988) in respect to CLS resistance in mung bean. Variability
among C. canescens strains is a major problem in crop breeding as it varies in the
same region and within the same host including mung bean. Variable mycelial
characteristics have also been reported with CLS (Joshi et al. 2006).

5.10.3 Bacterial Diseases

Blight caused by Xanthomonas axonopodis is a distressing bacterial disease in mung
bean. Seeds are the primary source of bacteria, and therefore proper treatment of
seeds before sowing is the best practice to control the disease (Baker and Smith
1966). A bacterial disease showing symptoms of marginal and veinal necrosis of
leaves caused by Curtobacterium flaccumfaciens subsp. flaccumfaciens has been
reported (Wood and Easdown 1990). The pathogen does not cause any wilting. The
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disease can be generally seen in rainfed crops suffering with water stress. Another
bacterial disease showing the symptoms of necrotic spots on the leaves and collaps-
ing of the upper part of the stem was observed in mung bean, and it was reported that
the disease is caused by Pseudomonas syringae pv. syringae (George and Tripepi
1990). Besides this, irregular necrotic spots encircled with slender chlorotic and
water-soaked radiance are seen on the leaves of mung bean that may result in blight.
The disease is caused by X. axonopodis pv. phaseoli and may lead to severe loss to
the crop (Osdaghi 2014). Necrotic spots surrounded with yellow halo caused by
P. syringae pv. phaseolicola have been observed in China (Sun et al. 2017). A foliar
disease caused by P. syringae pv. tabaci showing resemblance to wildfire has also
been reported in mung bean (Sun et al. 2017). The disease initially appears in the
form of small rounded light green patches that becomes brown from the centre
during later stage due to necrosis of parenchymatic tissues. The necrosis proceeds
quickly, and the brown spot encircled with watery lesion increases in length and
width. The severity of infection may lead to deformation and drooping of leaves.

5.10.4 Nematodes

Nematodes have destructive effect on agriculture. Several nematodes, viz.,
Rotylenchulus reniformis, Meloidogyne incognita, Bitylenchus vulgaris,
Basirolaimus indicus, B. seinhorsti, Helicotylenchus indicus, H. retusus,
Tylenchorhynchus mashhoodi and Tylenchus sp., have been reported to infest
mung bean (Ali 1995). Heterodera vigni is also known to infect mung bean crops,
resulting in higher yield loss and dry matter content. Population-monitoring system
(Saxena and Reddy 1987) and oil extracted from herbs (Sangwan et al. 1990;
Siddiqui and Mahmood 1996) are considered better approaches to getting rid of
nematodes in mung bean.

5.10.5 Insect Pests

Several insect pests are known to infest mung bean from its sowing to storage and
lead to severe yield losses. Some of the insect pests found on mung bean are stem fly,
thrips, aphids, whitefly, pod borer complex, pod bugs and bruchids (Swaminathan
et al. 2012). They may directly attack the crop or work as vectors of diseases. Bean
fly (Ophiomyia phaseoli) is the important pest found on mung bean. Besides
O. phaseoli, other species of bean flies such as Melanagromyza sojae and
O. centrosematis also infest mung bean crops (Talekar 1990). The flies attack the
crop within a week after the germination, and under severe conditions, it may lead to
complete loss of the crop (Chiang and Talekar 1980). Whitefly (Bemisia tabaci) is
another pest that affects the crop directly and indirectly. It feeds on phloem and
excretes honeydew on the plant that becomes black sooty moulds; besides this, it is
the well-known vector of MYMV. Thrips also infest the crop at different stages.
Several thrips, i.e., seedling thrips (Thrips palmi and Thrips tabaci) and flowering
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thrips (Caliothrips indicus or Megalurothrips spp.), are found on the crop. Spotted
pod borer (Maruca vitrata) is also an important pest found on mung bean crops
grown in tropical and subtropical regions. The larvae of this pod borer attack the
flower, stem, peduncle and pod of mung bean (Sharma 1999). Azuki bean weevil
(Callosobruchus chinensis) and cowpea weevil (Callosobruchus maculatus) are
some of the most serious pests of mung bean in the field, while bruchids are the
serious pests found in storage conditions (Somta et al. 2007; Tomooka et al. 1992).

5.11 Physiology and Abiotic Stresses

Abiotic stresses have an adverse effect on plant growth and productivity, leading to
major economic losses (Ye et al. 2017). These stresses may include several atmo-
spheric issues along with drought, flooding, radiation, salinity, temperature, etc. The
effect of climatic aberrations over the periods also reduced crop yields (Boyer et al.
2013; Rosenzweig et al. 2014). Mung bean is highly sensitive to salinity, drought
and fluctuating temperatures during the flowering and pod formation stages, leading
to severe yield losses. Understanding of physiological limits influencing the seed
yield in mung bean is critical, and it should be properly identified before devising
solutions.

5.11.1 Water Stress and Drought

Mung bean is generally grown under limited soil moisture conditions and does not
require any additional input. Nevertheless, its growth is highly influenced by the
availability of moisture in the field. However, it is highly susceptible to waterlogging
conditions (Singh and Singh 2011). It was observed that water stress during the
flowering stage resulted in 50–60% yield reduction (El Nakhlawy et al. 2018) in
mung bean, and the study also revealed that seed formation was the most sensitive
stage to water stress. Further, studies also suggest that the extreme drought
conditions may lead to a reduction of plant biomass, pod numbers and consequently
great toll on seed yield (Kumar and Sharma 2009). A decline in the pace of pod
initiation, its development (Begg 1980) and flower shedding (Moradi et al. 2009) are
the significant impacts of water stress during the reproductive growth of the crop.
Drought condition during the reproductive stage has a negative effect on flowering
and simultaneously leads to a reduction in the yield (Raza et al. 2012).

Drought conditions during flowering and podding stages may lead to 31–57%
and 26% yield reduction, respectively (Nadeem et al. 2019). Drought condition leads
to the production of destructive superoxide molecules that damages cells, and this
oxidative stress depends mainly upon the level of ascorbic acid and glutathione pools
(Anjum et al. 2015). Heat and cold stress are highly dangerous to different growth
stages and may result in higher yield losses. The optimum temperature for plant
growth is 28–30 °C. Higher temperatures (>45 °C) during the flowering stage may
lead to flower shedding. Several developmental stages of mung bean including
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germination, seed emergence, vegetative phases, flowering stage and pod/seed
setting stage are highly sensitive to temperature extremity (HanumanthaRao et al.
2016). Crops grown during February or March months face major problems of water
stress due to insufficient or no rainfall; hence, sowing of short-duration varieties may
be preferred to avoid the stress (Pratap et al. 2013). Mung bean varieties/lines having
tolerance against several abiotic stresses, viz., drought, heat and salt, have been
identified over the period (Bindumadhava et al. 2018; Dutta et al. 2016; Dutta and
Bera 2008; Manasa et al. 2017; Sharma et al. 2016).

5.11.2 Salt Stress

Salt stress adversely affects seed germination, biomass and shoot and root growth
along with several yield-attributing traits (Ahmed 2009; Promila and Kumar 2000).
Lesser seed germination was observed in mung bean with the increasing salinity
levels (Kandil et al. 2012; Maliwal and Paliwal 1982). It may be due to the fact that
salinity evades water uptake or causes toxic effects, resulting in a reduction of seed
germination (Murillo-Amador et al. 2002). Salt stress is usually exhibited as a
general stunning of plant growth. Symptoms of salt injury such as chlorosis and
necrosis have also been reported in mung bean due to increased levels of salinity
(Reddy 1982; Wahid et al. 2004). Significant variability was observed for growth,
yield, yield components and chemical composition in mung bean seeds under
different salinity levels (Mohamed and El-Kramany 2005). Mung bean plants have
been reported to have higher proline content in the root and shoot due to increased
salinity and or salinity stress (Misra and Gupta 2006). It was suggested that salt stress
may affect the filling of seeds in the pods of mung bean, leading to a reduction in the
number of seeds in the pods and simultaneously a reduction in the yield potential
(Ahmed 2009). Yield variability in mung bean upon salt stress has also been noticed
by various workers (Hossain et al. 2008; Jahan et al. 2020). It has been observed that
salt-stressed plants of mung bean had a higher concentration of sodium and chloride
ions in their leaves, roots and shoots and a lower concentration of potassium and
calcium ions as compared to the non-stressed plants (Mohammed 2007). Owing to
this condition, the electrolyte leakage in mung bean was comparatively higher
(Alharby et al. 2019). A decrease in seed germination, plant height, shoot and root
length, dry matter, biomass, and root, stem and leaf weights has been reported in
mung bean due to an increase in salt stress (Mohamed and El-Kramany 2005;
Mohammed 2007). It has been observed that 50 mM NaCl significantly affected
the yield of mung bean (Saha et al. 2010). Accumulation of a higher quantity of salt
leads to a reduction of the osmotic ability of soil sap, resulting in water stress in
plants and consequently nutritive deficiency and oxidative stresses (Tavakkoli et al.
2011) along with reduction in photosynthesis rate. This may also stimulate physio-
logical and metabolic pathways (Misra and Dwivedi 2004) of the cells. Reduction in
root length due to salt stress impedes the uptake and supply of nutrients. Number of
nodules also reduced with the increase in salinity; however, their size increased due
to salinity (Naher and Alam 2010). Pre-treatment of mung bean with sub-lethal



5 Morphophysiological and Molecular Diversity in Mung Bean (Vigna radiata L.) 131

dosage of sodium chloride may help in adaptation of the crop to the lethal levels of
salinity (Saha et al. 2010). There is comparatively little work available on the
development of salt-tolerant varieties of mung bean. Decline in relative water
content, cellular dehydration and osmotic stress have been observed in mung bean
due to salt stress (Singh et al. 2021). The biometric, morphophysiological, biochem-
ical and biophysical characters in mung bean were highly affected due to salt stress
(Kumar et al. 2012). It suggests that salt stress imposes water insufficiency in plants
and may cause physiological drought. It has been reported that salinity tolerance
depends on the genotype and different growth stages; hence, salt tolerance at
seedling stage may not suggest that it may show tolerance at maturity stage
(Sehrawat et al. 2013). Salinity has different responses in the plant, which can be
manifested at tissue, canopy, physiological or molecular level (HanumanthaRao
et al. 2016).

5.11.3 Other Abiotic Stresses

Rising application of synthetic fertilizers and higher human interference along with
the mixing of contaminated industrial effluents have deteriorated the cultivated land,
and indirectly the crops are grown on it. The water or air pollutants are significant
threats to crop cultivation as they have a higher concentration of heavy metals
(Lagerverff and Specht 1970). The metal accretion in the soil is increasing continu-
ously due to uncontrolled usage of fertilizers, pesticides, industrial waste and sewage
(Harland et al. 2000). Soil pollution due to heavy metals is very hazardous because
heavy metals cannot be despoiled naturally and may remain in the ecosystem for a
longer time and simultaneously in the food chain (Igwe et al. 2005). Lethal impacts
of heavy metals have been observed on the soil microflora (Pawlowska and Charvat
2004) along with amendment of the variability, quantity and entire activity of the
microbial communities (Smejkalova et al. 2003). Besides heavy metal contamina-
tion, air pollution has higher concentration of sulphur dioxide, nitrogen dioxide and
ozone, which also have deleterious effects on biomass, seed quality and yield
potential of crops including mung bean (Agrawal et al. 2003, 2006). The toxic effect
of heavy metals on mung bean seed germination was studied, and delayed germina-
tion was observed with a higher concentration of lead (Ashraf and Ali 2007). The
study also suggests that silver was more toxic followed by lead and zinc. A decrease
in the biomass and quality of seeds was reported due to air pollutants such as sulphur
dioxide, nitrogen dioxide and ozone in mung bean (Agrawal et al. 2006). Heavy
metal nickel adversely influences the photosynthetic pigments and yield in mung
bean (Ahmad et al. 2007). It also supports the deposition of sodium, potassium and
calcium ions.

An increased level of proline in the plant is suggestive of abiotic stress. The level
of proline was tested in mung bean under cadmium, cobalt, lead and zinc stress
(Saradhi 1991), and cadmium was found as the most poisonous metal triggering
proline production. Cadmium increases glutathione reductase activity (Gill and
Tuteja 2010), inhibits photosynthetic activity (Wahid et al. 2008) and affects the
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activity and structure of chloroplast (Wahid et al. 2007) in mung bean. Cadmium and
lead induce changes in growth, biochemical attributes and mineral accumulation
(Ashraf et al. 2016), while mercury induces changes in germination and biochemical
attributes (Saminathan 2013) in mung bean, suggesting that heavy metal-
contaminated soil exhibits negative impacts on the development, production and
protein content in the crop. Sharma et al. (2021) observed that cadmium had
amended several morphological and biochemical characteristics of mung bean. It
also affected the chlorophyll, carbohydrate, protein, polyphenol and antioxidant
profile of the crop.

5.12 Tissue Culture and Genetic Transformation

The development of plants through the tissue culture technique permits the transfer
of genes into plant cells (Chandra and Pental 2003). The transgenic exploration in
mung bean is sluggish owing to its recalcitrant behaviour towards tissue culture and
lower frequency of regeneration after transformation (Eapen 2008; Varshney et al.
2015). However, regeneration protocols for mung bean have been developed
through embryogenesis (Sivakumar et al. 2010), organogenesis (Himabindu et al.
2014) and axillary bud proliferation using cotyledonary node explants (Sagare and
Mohanty 2015; Yadav et al. 2010). Successful transformation in mung bean has also
been reported in which transgenes were effectively inherited and conceded to the
following generations (Baloda and Madanpotra 2017).

Genetic transformation in mung bean was initially carried out in hypocotyls and
primary leaves (Jaiwal et al. 2001), and a binary vector (selection marker: neomycin
phosphotransferase and reporter gene: beta-glucuronidases) was successfully
incorporated. Later, Saini et al. (2007) developed morphologically normal and fertile
transgenic plants of mung bean comprising two transgenes, bialaphos resistance and
alpha-amylase inhibitor, using cotyledonary node explants. A pathogenesis-related
gene (bjnpr1) isolated from mustard was introduced into mung bean, and it was
observed that the transgenic mung bean plants exhibited resistance against fungal
diseases (Vijayan and Kirti 2012). Similarly, annexin1bj gene was successfully
incorporated into mung bean, and the consequently developed transgenic plants
revealed better tolerance against drought stress (Yadav et al. 2012). Transformation
of mung bean plants for salt and drought tolerance was carried out by introducing a
gene for an osmoprotectant glycine betaine (Saraswat et al. 2017), and transforma-
tion and expression of the transgene (codA gene) were realized. Modification in the
DNA structure of food crops is usually unacceptable; therefore, genetically
engineered food crops have always been viewed with a question mark despite
several advantages.
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5.13 Genetic Markers and Biotechnology

Several molecular markers, viz., restriction fragment length polymorphism (RFLP),
random amplified polymorphic DNA (RAPD), simple sequence repeat (SSR) and
single nucleotide polymorphism (SNP) markers, have been employed to study the
genetic diversity in mung bean. The molecular markers have also been used for the
construction of linkage maps focusing on yield, nutritional aspects and disease
resistance.

Mung bean has a smaller (~600Mb) genome and takes a lesser period to complete
its life cycle; therefore, it is comparatively more suitable to apply other approaches
for crop improvement. It was observed that maximum genes found in mung bean
showed synteny with the genes found in soybean (Kang et al. 2014). Vigna radiata
variety VC1973A was genetically sequenced, transcriptome sequences of
22 accessions were obtained (Kang et al. 2014) and relatedness of two homologous
genomes of V. reflex-pilosa (a wild species) was outlined. The study enhanced the
understanding of the evolution of Vigna species that may enable crop improvement
in mung bean. The molecular markers facilitate the identification of loci linked to the
desirable characteristics, and their tracking is more accurate and effective as com-
pared to traditional breeding (Collard and Mackill 2008).

Bruchid resistance in mung bean was analysed using RFLP markers (Young et al.
1992), and 153 RFLP markers were categorized into 14 linkage groups having an
average interval of 9.3 cM. Further, RFLP markers were used to prepare a linkage
map of mung bean comprising 11 linkage groups, and an interspecific hybrid
population between V. radiata ssp. radiata and V. radiata ssp. sublobata was
obtained (Menancio-Hautea et al. 1992). Humphry et al. (2002) exploited RFLP
markers to construct a genetic map using recombinant inbred populations of
80 mung bean accessions derived from a cultivated variety and V. radiata subsp.
sublobata. The map included 13 linkage groups with an average distance of 3 cM,
and a highly conserved marker order was reported between mung bean and Lablab
purpureus. Transfer of bruchid beetle resistance allele (Somta et al. 2008; Tomooka
et al. 1992) and yellow mosaic disease resistance allele (Basak et al. 2005; Gill et al.
1983) from wild mung bean is an example of marker-assisted breeding in
mung bean.

RAPD markers were applied to assess the genetic diversity among uncultivated
and cultivated Vigna species, namely V. angularis, V. umbellata, V. radiata,
V. aconitifolia and V. mungo (Kaga et al. 1996). A genetic map was prepared
using RFLP and RAPD markers using F2 populations obtained by crossing
V. radiata ssp. radiata and V. radiata ssp. sublobata. Lambrides et al. (2000)
grouped all the 67 accessions in 12 linkage groups having 691.7 cM intervals.
Kaga and Ishimoto (1998) also used RFLP and RAPD markers to prepare a linkage
map and identified the genes accountable for bruchid resistance. Genetic maps
showing the information on several morphophysiological and agronomic traits of
cultivated and wild accessions of mung bean have been constructed (Isemura et al.
2012; Wang et al. 2016) that will facilitate the understanding of important traits of
interest in both cultivated and wild mung bean accessions. RAPD and inter-simple
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sequence repeat (ISSR) markers were used to assess genetic diversity in mung bean
germplasm (Chattopadhyay et al. 2005), wherein ISSR markers were found to be
competent as compared to RAPD markers. Yu et al. (1999) employed simple
sequence repeat (SSR) to assess microsatellite efficacy as genetic markers in mung
bean and 61 simple repetitive DNA sequences having 23 motifs were recognized as
prospective microsatellites.

Mung bean gene pools comprising 415 cultivated, 189 wild and 11 intermediate
accessions were assessed to study the presence of genetic diversity using 19 SSR
markers (Sangiri et al. 2008), and wide polymorphism was recorded among wild and
cultivated pools. The study suggested that Australia and New Guinea were the
diversity core for wild mung bean. In view of the higher diversity in mung bean
accessions from South Asia, it was suggested that the crop may have been
domesticated in South Asia (Sangiri et al. 2008). SSR markers linked to Cercospora
leaf spot (Yundaeng et al. 2021) and powdery mildew diseases (Chankaew et al.
2013; Kasettranan et al. 2010) have been identified, and quantitative trait loci (QTL)
maps were prepared using these markers. A genetic linkage map was constructed,
and a genetic analysis of domestication-related traits in mung bean was done using
430 SSR and EST-SSR markers (Isemura et al. 2012). The markers were grouped
into 11 linkage groups with a total distance of 727.6 cM, and 105 QTLs including
38 domestication-related gene traits were distinguished. The study also revealed
some useful QTLs for seed size, pod dehiscence and pod maturity in mung bean.

With the developments in next-generation sequencing, the attention of
researchers has shifted to finding single nucleotide polymorphisms (SNPs). SNP
markers are biallelic, codominant and universally distributed across the entire
genome (Brumfield et al. 2003). Mung bean cultivars were sequenced to search
for resistance to Riptortus clavatus and Callosobruchus chinensis (Moe et al. 2011),
and 2098 SNPs were reported. Raturi et al. (2012a) characterized 44 genotypes of
mung bean based on nuclear ribosomal DNA and RAPD polymorphism to assess the
genetic diversity and relationships and reported 82% polymorphism with wide
intraspecific variations. The study also revealed internal transcribed spacer (ITS)
length variations, SNPs and insertions/deletions at the number of sites in nuclear
rDNA region. Genome sequence of mung bean and its comprehensions into evolu-
tion within Vigna species were carried out (Kang et al. 2014), and genomic evidence
of allopolyploid event was reported on the basis of de novo assembly of a tetraploid
Vigna species (V. reflexo-pilosa var. glabra).

EST-based SSR markers have been exploited to study functional genomics in
mung bean (Chavan and Gacche 2014; Chen et al. 2015; Moe et al. 2011). SSR
motifs were recognized in 1848 EST sequences in mung bean, and it was observed
that about 45% and 55% of these motifs were situated in coding and untranslated
regions, respectively (Moe et al. 2011). Biotin-labelled oligo-probes and
streptavidin-coated beads were applied to prepare an SSR-enriched library from
mung bean genotypes, and 308,509 SSR motifs were identified (Wang et al. 2016).
Illumina paired-end sequencing technology was used for transcriptome sequencing
of mung bean genes, and identification of EST-SSR markers (Chen et al. 2015) and
more than 103 million high-quality cDNA sequences was done.
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Mung bean genome has been characterized using translational genomics to obtain
genomic information from well-studied species (Isemura et al. 2012; Kim et al.
2014). The flowering gene in mung bean was recognized with the help of genome-
wide evaluation between mung bean and Arabidopsis. It was observed that out of
207 genes that were related to flowering in Arabidopsis, 129 were homologous to
mung bean genes (Kim et al. 2015b). In another study, it was also observed that these
genes were near to the SSR markers on a genetic map (Isemura et al. 2012). Mung
bean genome was also compared to the soybean genome, and it was noticed that five
flowering-related genes in mung bean were homologous to soybean flowering genes
(Kim et al. 2015b). The studies may lead to the functional characterization of genes
of interest in mung bean. Application of several biotechnological tools may facilitate
the introduction of beneficial genes in promising mung bean lines to increase genetic
variability.

5.14 Conclusion and Prospects

Being an important leguminous crop owing to its high nutritional contents, several
studies have been carried out in mung bean addressing yield-related traits including
resistance to different diseases and domestication-related traits. The lack of genomic
information has led to stagnation in mung bean breeding. However, after the
publication of the reference genome sequence of mung bean in 2014, breeders
have got a better opportunity to understand the genomic and genetic background
of several agronomically important traits of the crop. Preparation of wild mung bean
pool from diverse origins and environmental conditions is essentially required to
conserve the genetic diversity of the crop. The yield of more than 20 quintals per
hectare, maturity period between 60 and 75 days, higher harvest index, photoperiod
insensitivity, resistance to major insect pests/diseases, compact canopy and synchro-
nous maturity are some of the important objectives for crop improvement in mung
bean. The inclusion of the ideotype approach may also be considered to attain
sustainable yield.
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