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Abstract

Legumes, which are an essential source of plant proteins and dietary fibre, are the
most valued diet for humans after cereals. Globally, legume is commonly grown
in the arid and semi-arid tropics. Legumes play an important role in the effective
management of fertilisers and improve soil fertility, thereby sustaining agricul-
ture. Improved nutrient absorption, translocation, and cellular homeostasis are
essential for optimum plant growth and development. Legumes have evolved
strategies to adapt to nutritional deprivation at both physiological and molecular
levels. High-throughput sequencing as well as other recent advancements in
molecular biology techniques have allowed researchers to investigate the molec-
ular basis of nutrient deficiency tolerance in legume crops. In this chapter, we
attempt to present various physiological and molecular mechanisms, specific to
legumes wherever available, assisting in adaptation to nutrient-deficient
conditions. However, increased efforts are needed on food and feed legumes in
the area of mineral nutrition covering physiology and molecular aspects.
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12.1 Introduction

Legumes, belonging to the Fabaceae family, consist of more than 700 genera,
including 20,000 species that comprise the second major group of food and fodder
crops cultivated globally (Iantcheva et al. 2013). Around 250 Mt of grain and
legumes are produced annually accounting for 27% of the global primary food
output and 33% of human dietary protein requirements (Hussain et al. 2018). Global
malnutrition is a serious threat to nutritional security that leads to a high mortality
rate due to the emerging non-communicable diseases (Roorkiwal et al. 2021).
Legumes are considered an economical source of nutrition with a high percentage
of protein (20–25%) and fibre (8–27%) and a low glycaemic index (Sánchez-Chino
et al. 2015). A cup of cooked dried legume contains 6–8 g of fibre and 14–16 g of
protein. The majority of legume grains are storage protein, which consists primarily
of globulin (70%), albumin (10–20%), and glutelins (10–20%) (Sharif et al. 2018).
Protein quality is determined by its amino acid composition, and a protein containing
all the essential amino acids (EAA) is called a ‘complete protein’. Most of the
proteins in legumes are deficient in EAA and considered ‘incomplete proteins’,
whereas proteins from eggs, meat, and milk products are categorised as ‘complete
proteins’. Usually, legumes contain low fat (<5%) except for soybean (Glycine
max), lupin (Lupinus albus), and chickpea (Cicer arietinum) (15–47%). Besides,
legumes also contain substantial amounts of nutritionally important minerals as well
as vitamins (B1, B2, B3, B6, and B9) (Rebello et al. 2013; Roorkiwal et al. 2021).

Legumes constitute a major part of sustainable agriculture as it improves soil
fertility through symbiotic association with beneficial rhizobia and mycorrhizal
fungi (Abdelrahman et al. 2018). The interaction of plant roots with soil and water
influences nutrient availability in soil and their uptake, leading to a significant role in
the growth and productivity of plants. Plants require 17 nutrients for completing their
life cycle, which is grouped as macro- and micronutrients based on the quantity
required by plants. The macronutrients include carbon (C), hydrogen (H), oxygen
(O), nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg),
and sulphur (S). Out of these, C, H, and O constitute 90–95% of the total biomass
and are available to plants from carbon dioxide and water. Other macronutrients
which make up 0.2–4.0% of plant dry weight are divided into two categories:
primary (N, P, K) and secondary (Ca, Mg, S). Micronutrients, although required in
very less amounts, constitute only 0.002% of the total plant dry weight, but they are
indispensable for plant growth. Micronutrients are divided into two groups: posi-
tively charged (iron (Fe), copper (Cu), manganese (Mn), zinc (Zn), and nickel (Ni))
and negatively charged (boron (B), chlorine (Cl), and molybdenum (Mo)) (Singh
et al. 2013).

The root of legume crops forms two types of symbiotic association with soil
microorganisms: rhizobial symbiosis, responsible for atmospheric N fixation, and
arbuscular mycorrhizal (AM) symbiosis, which enhances plant P uptake (Püschel
et al. 2017). The AM fungi colonise roots, and its hyphae spread over the
surrounding soil, forming enormous mycelium networks, which enhance P and Zn
uptake by improving root-soil interaction (Kiers et al. 2011; Püschel et al. 2017).
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This chapter deals with the physiological and biochemical adaptation strategies with
a focus on molecular mechanisms that allow legumes to tolerate nutritional
deprivation.

12.2 Physiological Tolerance Mechanisms to Nutrient
Deficiency in Legumes

The atmospheric N2-fixing ability not only benefits the legume crop but is also useful
for succeeding crops or main crops with the former as an intercrop. However, several
factors influence the process of symbiotic N2 fixation, including crop growth stage,
soil water status, soil temperature, N concentration in the rhizosphere, and presence
of other nutrients in the soil (Garg and Geetanjali 2006). In legumes, N deficiency is
less common, and the mechanism of symbiotic N2 fixation is another vast topic and
therefore not covered in this chapter. The biological role and the physiological
tolerance mechanisms specific to legumes for different nutrients’ stress are
summarised in Table 12.1. Under low-P conditions, legumes adopt many physio-
logical strategies for mitigating P starvation by adjusting their external and internal P
demand. The first strategy involves an improved root-soil interaction by increasing
root surface area through alteration in root architecture like an increased number of
secondary roots with more root hairs and nodules (Lazali and Bargaz 2017; Meena
et al. 2021; Ramtekey et al. 2021; Reddy et al. 2020; Richardson et al. 2011). In
addition to altered root morphology, other changes include rhizosphere acidification,
root exudation of low-molecular-weight organic acids and acid phosphatase, and
symbiotic association with microorganisms including fungi and bacteria (Meena
et al. 2021; Singh and Pandey 2003; Smith and Read 2010; Vengavasi et al. 2016;
Vengavasi and Pandey 2018). K plays a vital role in CO2 assimilation, and under its
deficiency, the rate of photosynthesis drastically reduces due to a reduction in the
leaf size, leaf number, leaf sunlight interception, stomatal conductance, increased
mesophyll resistance, and reduced Rubisco (ribulose 1,5-bisphosphate carboxylase/
oxygenase) activity in plants (Liu et al. 2008; Pettigrew 2008; Zhao et al. 2001). The
physiological influence of S starvation is a reduction in root hydraulic conductivity,
which is the first response that signals nutrient hunger through root to shoot
(Hawkesford and De Kok 2006). Availability of S in soil determines the relative
status of reduced sulphate pools as a means of mobilising S within the plant. If
vacuolar sulphate pools are small due to S starvation, the involvement of reduced S
compounds translocated through phloem increases dramatically and plays an impor-
tant role in delivering sulphur to sink tissues like developing seed (Hawkesford and
De Kok 2006). The most common adaptation of plants under Mg starvation is starch
accumulation in chloroplast at the source leaves. The de-chelating of Mg2+ ion from
chlorophyll molecules during chlorophyll catabolism is a defence strategy of plants
experiencing Mg starvation. Mg is relatively a phloem-mobile element; thus, the
regenerated Mg is transported in favour of growth of young tissues (Ceppi et al.
2012; Yang et al. 2012). In legumes, during the early stage of infection in nodule
development process, the rhizobia invade plants through a transcellular tunnel and
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Table 12.1 A summary of biological roles and physiological tolerance mechanisms developed by
legumes in response to various nutritional stresses

Physiological tolerance
mechanisms

Phosphorus Constituents of ATP,
phospholipids, and nucleic
acids, important for root
growth and nodule
development

Improved root-soil interaction
by improved root surface
area; exudation of low-
molecular-weight organic
acids and acid phosphatase

Lazali and
Bargaz
(2017),
Meena et al.
(2021)

Potassium Osmoregulator and involved
in ROS detoxification

Increased mesophyll
resistance; lowered the
Rubisco activity in leaf;
altered root gravitropic
behaviour

Pettigrew
(2008)

Sulphur Major constituent of cysteine
(C) and methionine (M) and
vitamins like biotin and
thiamine, promotes nodule
formation in legumes

Reduction in root hydraulic
conductivity; reduces
translocation of S towards
seeds

Afzal et al.
(2015)

Magnesium Central atom of chlorophyll
molecule, involved in protein
synthesis, N uptake, and
assimilation

Starch accumulation in
chloroplast; increased
mobilization of
photosynthates towards root
for nodule development

Peng et al.
(2018, 2020),
Yang et al.
(2012)

Calcium Secondary messenger;
involved in cell division and
cell wall strengthening

Reduces the passive flow of
monovalent ions, which
decreases membrane fluidity

De Freitas
et al. (2016)

Iron Cofactor, structural
constituent of many
antioxidative enzymes,
involved in lipid peroxidation

Improved root growth, root-
tip swelling, increased ferric
reductase activity in the root,
release of phyto-siderophore

Hindt and
Guerinot
(2012),
Sharma et al.
(2019)

Zinc Regulates activities of all six
classes of enzymes, involved
in transcriptional control of
the Ros-type regulator MucR
in legumes

Increased length and number
of root hairs; release of phyto-
siderophore

Lurthy et al.
(2020)

Manganese Acts as a cofactor, component
of antioxidant enzyme,
oxygen-evolving complex of
photosystem II

Lignin concentration
decreased in the root

Socha and
Guerinot
(2014)

embed in the plant matrix glycoprotein (MGP), secreted by host plants. Ca with B
plays an essential role in these stages to modulate plant-rhizobia interaction at the
cell surface. The degree of attachment and cell invasion by Rhizobium in the root is
regulated by both Ca and B nutrition, so the deficiency of both elements reduces the
induction capability of nod genes (Redondo-Nieto et al. 2003).

Plants respond to Fe deficiency by exhibiting morphological changes, including
increased root surface area, enhanced root hair development and branching, root-tip
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swelling, and increased lateral root formation for Fe reduction and uptake (Hindt and
Guerinot 2012; Muller and Schmidt 2004). Previous studies on legumes showed that
increased Fe3+ reductase activity in the root of soybean (Glycine max) and lotus
(Lotus japonicus) provided higher tolerance to cope with Fe deficiency (Klein et al.
2012; Li et al. 2011). To manage Zn deficiency, a tightly regulated network of
coordinated expression of Zn transporters for acquisition from the soil, translocation
between tissues, and intracellular sequestration has been evolved in plants (Kabir
et al. 2017). The cellular utilisation of Zn is considered as a potential Zn efficiency
mechanism (Rengel and Graham 1995). Importantly, the activity of carbonic
anhydrase, a metallo-enzyme that catalyses the conversion of CO2 to HCO3

-, is
associated with cellular Zn concentration. In black gram (Vigna mungo), the activity
of carbonic anhydrase and Cu/ZnSOD enzymes significantly correlated with Zn
supply, which can be used as a marker for Zn deficiency (Pandey et al. 2002). Under
Mn deficiency, Mg replaces Mn, which could have a detrimental effect on the
cellular process such as lignin synthesis that involves Mg. The lignin concentration
was found to decrease significantly in root tissue under Mn deficiency because Mn is
a cofactor of phenylalanine ammonia lyase (PAL) enzyme, which is involved in the
phenylpropanoid pathway to produce monolignols (Socha and Guerinot 2014).

12.3 Molecular Basis of Nutrient Uptake Under Starvation
Conditions

All efforts have been made to present the information available up to date with
particular reference to legumes wherever available for each nutrient element in the
subsequent paragraphs. The transporters characterised for each nutrient element and
their regulation are presented briefly in Table 12.2.

12.3.1 Phosphorus

12.3.1.1 Uptake and Transport
Plant roots absorb inorganic P (Pi) from the soil as H2PO4

- or HPO4
2- ions

depending on soil pH; however, these ionic forms are present in the soil solution
at very low concentrations, usually at micromolar (<10 μM) levels (Hinsinger
2001). Phosphate transporters (PTs) are localised in the plasma membrane of root
cells and play a major role in the acquisition of soluble Pi from the soil solution
against the concentration gradient. Plants possess two nutrient transport systems:
(1) high-affinity transport system (HATS), regulated by P concentration in the
media, and (2) low-affinity transport system (LATS) which is constitutively
expressed. The plants’ internal Pi status adjusts their P uptake, especially by raising
Imax (maximum influx), while changes in Km are insignificant in this process
(Muchhal and Raghothama 1999; Pandey et al. 2018). According to the protein
sequence, location, and structure, plants have a wide variety of Pi transporter
families such as Pht1, Pht2, Pht3, Pht4, and Pht5 (Guo et al. 2008; Liu et al.
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Table 12.2 List of transporter and regulatory genes involved in the uptake and homeostasis of
different nutrient elements in legume crops

Transporter/
regulatory gene

Phosphorus Phaseolus
vulgaris

PvPHR1, PvmiR399 Positive regulator of
genes implicated in
P transport,
remobilization, and
homeostasis

Valdés-López
et al. (2008)

Medicago
truncatula

MtPT1, MtPT2,
MtPT3

Low-affinity P
uptake

Cao et al. (2021),
Liu et al. (2008)

MtPT5 High-affinity P
uptake

Liu et al. (2008)

Glycine
max

GmPT5 High-affinity P
uptake and
homeostasis

Qin et al. (2012)

Cicer
arietinum

Putative CaPHO1,
CaPHO2,
CaPHT1;4,
CaPAP17,
CaPPase4,
CaDGD1

P uptake, transport,
and mobilization
from roots and
leaves to nodules

Esfahani et al.
(2016)

Potassium Lotus
japonicus

LjKUP K transport across
plasma membrane

Desbrosses et al.
(2004)

Glycine
max

GmKEA2 to 6 Cation/proton
antiporter involved
in K accumulations

Chen et al.
(2015)

Cicer
arietinum

K+ efflux antiporter
(KEA)

Accumulation of K Azeem et al.
(2018)

Calcium Medicago
truncatula

MCA8 Involved in calcium
signalling during
symbiotic contacts

Capoen et al.
(2011)

Medicago,
Lupinus
luteus,
Vicia faba

Ca2+/ATPases Ca absorption into
symbiosomes

Andreev et al.
(1997, 1998),
Benedito et al.
(2010), Kataoka
et al. (2004)

Sulphur Lotus
japonicus

Homolog of
AtSultr3.5

Essential for S
supply to the
bacteroides

Kataoka et al.
(2004)

Medicago
truncatula

MtSULTR High-affinity
sulphate transporter

Casieri et al.
(2012)

Glycine
max

GmSULTR1;2b High-affinity
sulphate transporter

Ding et al.
(2016)

Iron Phaseolus
vulgaris

Phvul.005G130500/
FIT1-like,
Phvul.002G099700/
IRT1-like

Fe uptake Castro-Guerrero
et al. (2016)

Phvul.003G086500/
OPT3-like

Fe signalling Castro-Guerrero
et al. (2016)
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Table 12.2 (continued)

Transporter/
regulatory gene

Melilotus
japonicus

MtIRT and MtFRD3 Fe uptake and
transport

Li et al. (2014)

Medicago
truncatula

MtNRAMP1 Fe uptake and
transport, expressed
in roots and nodules

Tejada-Jiménez
et al. (2015)

Glycine
max,
Medicago

DMT1 (divalent
metal transporter1)

Ferrous transporter
in symbiosome
membrane

Benedito et al.
(2010), Kaiser
et al. (2003)

Glycine
max

Glyma03g28610,
Glyma03g28630

Fe acquisition Peiffer et al.
(2012)

Zinc Glycine
max

GmZIP1 Zn uptake and
transport

Moreau et al.
(2002)

Phaseolus
vulgaris

PvZIP12, PvZIP13,
PvZIP16, PvbZIP1

Zn uptake and
transport

Astudillo et al.
(2013)

Medicago
truncatula

MtZIP1, MtZIP3,
MtZIP4, MtZIP5,
MtZIP6, MtZIP7

Zn uptake and
transport

Lopez-Millan
et al. (2004)

Arachis
hypogaea

AhNRAMP1 Zn, Fe, and Mn
transport

Wang et al.
(2019), Xiong
et al. (2012)

Manganese Medicago
truncatula

MtZIP4, MtZIP7 Mn uptake and
transport

Socha and
Guerinot (2014)

Pisum
sativum

PsIRT1 Mn uptake and
transport

Socha and
Guerinot (2014)

Molybdenum Medicago
truncatula

MtMOT1.3 Mo transport to
nodule cells

Tejada-Jiménez
et al. (2015)

Lotus
japonicus

LjMOT1 Mo uptake and
translocation to
shoots

Gao et al. (2016)

2011; Qin et al. 2012; Raghothama 1999; Rausch and Bucher 2002; Schachtman
et al. 1998). The Pht1 family belonging to HATS is responsible for P absorption
from rhizospheres and its transport to the xylem (Gu et al. 2016), while the families
of Pht2, Pht3, Pht4, and Pht5 are organelle transporters responsible for the transport
of P across the plastid (Pht2/4), mitochondrial (Pht3), Golgi membrane (Pht4), and
vacuole (Pht5) (Huang et al. 2019; Liu et al. 2016). The Pht1 family has received
utmost attention among the Pi transporter families, and the members of Pht1 were
identified and functionally validated from a wide range of plant species including
Arabidopsis, tomato (Lycopersicum esculentum), rice (Oryza sativa), maize (Zea
mays), soybean, Medicago truncatula, and lotus (Bulgarelli et al. 2020; Liu et al.
2008, 2011; Maeda et al. 2006; Nagy et al. 2006; Paszkowski et al. 2002). All the
members of Pht1 family are H2PO4

-/H+ symporters with a similar structure
containing 12 membrane-spanning domains with hydrophilic N- and C-terminals.
A putative glycosylation site is present in transmembrane domain 10, while a



298 S. Sharma et al.

hydrophilic loop is located between transmembrane domains six and seven
(Karandashov and Bucher 2005; Smith and Read 2010).

Major transcripts of high-affinity transporter are strongly induced by P starvation
and are preferentially expressed in the epidermal cells of root hairs and cortical cells,
while a few are expressed in various aerial parts like stems, leaves, flowers, and
grains (Ai et al. 2009; Qin et al. 2012). In soybean, 14 members of Pht1 family,
namely GmPht1;1–14, as well as one pseudogene (Glyma13g18420) have been
identified. GmPht1 transporters are distributed unevenly on soybean chromosomes
(2n= 20); however, these transporters are located only on 8 chromosomes out of 20.
Among 14 GmPht1 transporters, maximum four (GmPht1;4 to GmPht1;7) are
located on chromosome 10, three (GmPht1;12 to GmPht1;14) are on chromosome
20, two (GmPht1;9 and GmPht1;10) on chromosome 14, while GmPht1;1, 2, 3, 8,
and 11 are located on chromosomes 2, 3, 7, 13, and 19, respectively (Qin et al. 2012).
Except for GmPht1;8, which is located in the endoplasmic reticulum, all other
GmPht1 transporters are located in the plasma membrane (Fan et al. 2013). Similar
to other Pi transporters, GmPht1 transporters were significantly upregulated by P
deficiency, with the exception of GmPht1;10. Among GmPht1 transporters, seven,
including GmPht1;1, 2, 3, 4, 7, 8, and 12, are expressed only in root tissues.
GmPht1;9 and GmPht1;13 were strongly induced in roots and stems as well as in
immature leaves and roots, while flowers and stems were the primary sites for the
expression of GmPht1;5 and GmPht1;14 (Gu et al. 2016; Qin et al. 2012). The
β-glucuronidase staining of transgenic soybean roots showed expression of
GmPht1;5 predominantly in the junction region of roots and young nodules as
well as in nodule vascular bundles, suggesting its function in Pi transport from
root vascular system into nodules. In M. truncatula, four Pht1 members, MtPT1,
MtPT2, MtPT3, and MtPT5, were identified which showed significant expression in
root tissue under P starvation (Cao et al. 2021; Liu et al. 1998, 2008).

12.3.1.2 Regulation of Pi Transporters
The Pi trafficking across the plasma membrane is coordinated among different
cellular organelles and regulated by cytosolic Pi homeostasis (Pratt et al. 2009).
Under P deficiency, the expression of genes involved in C metabolism (glyceralde-
hyde 3-phosphate dehydrogenase), N assimilation (glutamine synthetase and gluta-
mate synthase), phospholipid biosynthesis (phosphoethanolamine N-methyl
transferase), photosynthesis, and mitochondrial electron transport (ferredoxin
NADPH reductase) is suppressed in response to cytosolic P and maintains cytosolic
Pi homeostasis (Misson et al. 2005; Valdés-López et al. 2008). Proteins containing
SPX domain at the N-terminal have been linked to Pi sensing and transport. The
SPX-domain proteins (SPX1 and SPX2) function as intracellular Pi sensors and,
when bound to PHR1 (PHOSPHORUS STARVATION RESPONSE1), suppress P
starvation response under P-depleted condition (for details, see Wang et al. 2021).
Inositol polyphosphate (InsP) is an intracellular P signalling molecule that binds
with the SPX domain affecting the PHR1-SPX1 interaction. Inactivating the redun-
dant genes, VIH1 (VIP1 HOMOLOG1) and VIH2, which encode PPIP5K
(diphosphoinositol pentakisphosphate kinase), limits InsP8 production and induces
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the expression of PHT1 genes causing excessive Pi accumulation (Yan Wang et al.
2021; Zhu et al. 2019). Several genes with consensus cis-acting DNA sequences
such as W-box, G(E)-box, TATA-box, P1BS (PHR1-binding sequence), MBS
(MYB-binding site), helix-loop-helix, and PHO have been associated to the
responsiveness of Pi transporters and other P starvation-responsive genes (details
in Gu et al. 2016; He et al. 2019). The expression of most of the Pi transporter genes
was induced by P starvation, while some of them are controlled by P starvation
response transcriptional factors (TFs) such as MYB-coiled coil (MYB-CC), WRKY,
and C2H2-type zinc finger protein. The transcription factor belonging to MYB-CC
family regulates the transcription of P starvation-induced (PSI) genes by binding to
their proximal promoter regions with the imperfect palindromic sequences
(GNATATNC) (Baek et al. 2017; Bustos et al. 2010; Gu et al. 2016; Guo et al.
2015). The members of WRKY (WRKY6, WRKY42, WRKY45, and WRKY75)
and C2H2 (ZAT6) families are involved in Pi starvation signalling in Arabidopsis,
bean (Phaseolus vulgaris), soybean, Medicago, and lupin (Devaiah et al. 2007a, b;
Graham et al. 2006). These TFs are localised in the nucleus and overexpressed under
P starvation to regulate root architectural modifications. The WRKY75 recognises
W-box ((T)TGAC(C/T)), DNA cis-regulatory elements, and a region of genes
involved in P homeostasis and remobilisation, while ZAT6 regulates the expression
of several genes of WRKY75 pathway (Devaiah et al. 2007a, b; Su et al. 2015;
Valdés-López et al. 2008). Recently, two new transcriptional factors, namely,
OsbHLH6 (He et al. 2021) and RLI1/HINGE1 (Zhang et al. 2021), were identified
in rice, which regulates the expression of PHT1 family genes.

The regulation of Pi transporter genes at post-transcriptional level has been
reported in plants. Small regulatory RNAs, microRNAs (miRNA), and small
interfering RNAs (siRNAs) are considered the most ubiquitous molecules that
regulate post-transcriptional gene expression (Bartel 2004). The expression profiles
of various miRNAs in legumes under P starvation have been reported earlier. In
lupin and soybean, 167 and 57 miRNAs, respectively, showed significant alteration
in their expression (Zeng et al. 2010; Zhu et al. 2010). The role of miR399 during P
deficiency is well characterised in plants; however, P deprivation alters the expres-
sion of some other miRNAs such as miR827, miR2111, miR778, miR169, and
miR395 (Franco-Zorrilla et al. 2007; Fujii et al. 2005; Hsieh et al. 2009; Pant et al.
2008). In Arabidopsis, miR399 binds to the five complementary bases of the
PHOSPHATE OVER ACCUMULATOR2 (PHO2) transcripts and inhibits internal
Pi mobilisation from older to new leaves (Chiou et al. 2006; Fujii et al. 2005).
miR399 also influences the PSI signalling in the roots of Phaseolus vulgaris and
phloem sap of Brassica napus and Cucurbita moschata (Pant et al. 2008; Ramírez
et al. 2013; Valdés-López et al. 2008). miR211 accumulates in the phloem sap only
under low-P conditions, targets the F-box protein in soybean and Arabidopsis, and
regulates the protein abundance under P starvation (Hsieh et al. 2009; Xu et al.
2013). Besides miRNAs, long non-coding RNAs (lncRNAs) are also expressed in
response to P starvation, which plays a significant role in the regulation of P uptake.
The well-studied IPS1 (induced by P starvation1) acts as a ribo-regulator rather than
the target of miR399 and functions as an endogenous target mimic (eTM) of PHO2
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in Arabidopsis (for details, see Franco-Zorrilla et al. 2007). The ribo-regulators At4
and Mt4 were induced by IPS1 in Arabidopsis and Medicago, respectively. Further,
in Medicago, three PHOSPHORUS DEFICIENCY INDUCED lncRNAs (PDILs)
were characterised under P starvation, out of which PDIL1 suppresses the degrada-
tion of MtPHO2 transcripts (Wang et al. 2017). Borah et al. (2018) identified
putative lncRNAs for nitrogen and P starvation in soybean and Arabidopsis, respec-
tively, which can act as eTMs. They showed computationally that miR827
(P starvation induced) and miR169 (N starvation induced) could be sponged by
two and three eTMs, respectively, thereby regulating nutrient uptake through the
regulatory module of ‘eTM-miRNA-mRNA’.

12.3.1.3 Regulation of Pi Transporters by Arbuscular Mycorrhizal Fungi
Legumes establish root symbiosis not only with rhizobia but also with AM fungi,
which significantly influences the expression of Pi transporters. Only Pht1, high-
affinity H+/Pi symporters, have been identified which are involved in mycorrhizal
driven P acquisition among different Pi transporter families. The mycorrhiza-specific
Pht1 transporters are grouped into two subgroups, namely, subfamilies I and III.
During AM symbiosis, most of the subfamily I transporters are expressed only in the
arbuscule-containing cortical cells, while subfamily III Pht1 genes are expressed in
plant roots but specifically induced in cortical cells (Bucher 2007; Harrison et al.
2002; Javot et al. 2007). The upregulation of AM-inducible Pi transporter generally
suppresses the expression of other Pi transporters, specifically those involved in
direct P uptake from the rhizosphere. This interaction between Pht1 transporters
could indicate the association between mycorrhizal and direct Pi uptake routes.
However, it is still unclear whether the downregulation of other Pi transporters is
caused by a direct plant response to symbiosis or is caused by an enhancement in Pi
acquisition (Garcia-Brugger et al. 2006; Paszkowski et al. 2002). The AM
symbiosis-inducible PHT1 subfamily I transporters were identified in a few plant
species such as M. truncatula (MtPT4), rice (OsPT11), and Astragalus sinicus
(AsPT4) (Breuillin-Sessoms et al. 2015; Xie et al. 2013; Yang et al. 2012). Gener-
ally, P starvation induced the expression of most of the Pht1 family transporters in
soybean, but AM symbiosis suppressed the expression of GmPht1;6, 7, and 10 in
root tissues, while the expression of GmPht1;1, 7, and 11 was significantly induced
(Bulgarelli et al. 2020; Tamura et al. 2012).

12.3.2 Potassium

12.3.2.1 K Uptake and Transport
Plant roots acquire potassium ion (K+) from soil solution, which is derived from
several sources such as potassium chloride (KCl), potassium nitrate (KNO3), potas-
sium carbonate (K2CO3), and potassium sulphate (K2SO4) present in soil or applied
as chemical fertilisers. A wide variety of K transporters and channels are involved in
the uptake of K by roots and its mobilisation throughout the plant. The transporter
proteins have a high affinity for K+ and are active at low K concentrations, whereas
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the channels have a low affinity for K and are active only at high K concentrations
(>300 μM external K) (Wang and Wu 2013). The K transporters are grouped into
five different classes: (1) shakers/voltage-gated channels, (2) non-voltage-gated
channels/tandem pores, (3) HAK/KT/KUP high-affinity transporter family,
(4) HAT high-affinity family, and (5) KEA family of antiporter (Gomez-Porras
et al. 2012; He et al. 2012; Rehman et al. 2017).

The members of the shaker family, which controls membrane conductance in
most plant cell types, are further classified into three groups: inwards-rectifying
(Kin), activated by membrane hyperpolarisation and mediates K uptake; outward-
rectifying (Kout), activated by membrane depolarisation and facilitates K efflux; and
weakly-inward rectifying (Kweak) that mediates K efflux and influx based on the
electrochemical gradient due to K+ (Shabala and Pottosin 2010; Véry et al. 2014; Yi
Wang and Wu 2013). All the voltage-gated K+ channels contained a conserved
amino acid motif (TVGYGD) and were widely expressed in plant tissues, allowing a
fast K distribution across various parts of the plant and cellular compartments
(Kuang et al. 2015; Rehman et al. 2017). In soybean, 16 genes encode voltage-
gated K+ channels, and all of them have a highly conserved gene structure with
varying lengths, 57, 98, and 185 bp exons (Rehman et al. 2017). According to
Damiani et al. (2016), a candidate gene implicated in membrane repolarisation,
movements of stomata, and K+ extrusion into the xylem sap of M. truncatula
belongs to this family. The non-voltage-gated K+ channels, also known as tandem
pore channels (TPKs), contained two pore loops per subunit and four transmembrane
domains (TM domain). There are six members of the non-voltage-gated K+ channel
family, including a single subunit channel and five tandem pore channels. With the
exception of TPK3 and TPK4, voltage-gated channels are located at the plasma
membrane in plants, whereas non-voltage-gated channels are located on the
endomembrane of several organelles (Pandey and Mahiwal 2020).

The HAK/KT/KUP family plays a critical role in K acquisition from soil and is
assumed to function as H+/K+ symporters (Véry et al. 2014). The HAK/KT/KUP
transporter families have a wide range of subcellular localisation, including the
plasma membrane, tonoplast, and another endomembrane, while its transcript is
expressed in diverse plant tissues such as guard cells, vascular tissues, root
meristems, and fruits (Scherzer et al. 2015). A large number of HAK/KUP/KT
genes have been found in different plant species such as 17 in Vitis vinifera, 13 in
Arabidopsis, 20 in Medicago, and 29 in soybean and poplar (Populus alba) (Davies
et al. 2006; Nieves-Cordones et al. 2016; Rehman et al. 2017). Among legumes,
LjKUP was the first KUP family high-affinity K transporter and was identified in
L. japonicus with maximum expression in nodules under K stress (Desbrosses et al.
2004). The transcriptomic profiling of soybean showed that 22 HAK/KUP/KT genes
were differentially expressed during nodulation, wherein GmHAK5, GmKUP8, and
GmKUP8 recorded higher expression in root hairs during nodulation (Clarke et al.
2014; Rehman et al. 2017).

The HKT family belonging to the high-affinity K transporters has been widely
studied after the cloning of TaHKT2;1 from Triticum aestivum, the first member of
HKT gene family (Schachtman et al. 1992). Based on the presence of Gly or Ser
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residue in P loop, the selectivity pore-forming area, the members of this family were
categorised into two subfamilies: subfamily I has a Ser residue (SGGG type) in the
P-loop region that is thought to be linked to the specialised Na+ transport. The
subfamily II has only Gly residues (GGGG-type) in the P loop, which mediate the
transport of both K+ and Na+ (Horie et al. 2009; Huang et al. 2020; Platten et al.
2006). These transporters are still very poorly characterised in legumes; GmHKT1
and GmHKT1;4 are two soybean genes that have been identified and functionally
validated as participating in salt tolerance (Chen et al. 2014). Only 4 out of
70 potential K+ transporters identified in soybean belong to the HKT family
(Rehman et al. 2017).

The KEA (K+ efflux antiporter) belongs to the cation/proton antiporter family-
2 (CPA2 family) and is responsible for the active accumulation of K in plants. The
first KEA was identified in gram-negative bacteria involved in a mechanism for
cytosol acidification as a defence against harmful electrophiles (Munro et al. 1991).
In plants, KEAs are located in tonoplast, plasma membrane, and membranes of
mitochondria and chloroplast (Sze et al. 2004; Walker et al. 1996). Till date, six
KEA genes have been identified in Arabidopsis genome (AtKEA1 to 6). The
mutation in KEA1 and KEA2 gene in Arabidopsis showed that they have diverse
effects on leaf development and photosynthetic rate (Dana et al. 2016). Chen et al.
(2015) identified 12 members of a novel KEA gene family in soybean, which was
divided into five subgroups based on their similarity with the Arabidopsis KEA gene
family as GmKEA2 to 6, whereas the KEA1-type gene was not found in the entire
genome of soybean. Recently, 23 K channels and transporter genes were identified
by genome-wide analysis in chickpea (Azeem et al. 2018). Among 23 genes, only
6 belonged to KEA family, while 2 and 15 genes belonged to HKT and KUP/HAK/
KT family, respectively.

12.3.2.2 Regulation of K Transporters
In most of the plant species, transcriptional regulation of K transporter is a ubiqui-
tous mechanism to cope with K starvation conditions (Wang and Wu 2013). When
high concentration of K is available in soil solution, most channels are employed to
transport K through the membrane along with the concentration gradient, while
under K starvation conditions, an active or energy-driven transport system is
required to pull K inside the cell (Ragel de la Torre 2019; Rubio et al. 2010). In a
few higher plants, the activity of K transporter and channels is regulated by external
NH4

+ concentration. K absorption is competitively reduced by NH4
+ uptake via

these K transporters and channels at high NH4
+ concentrations (Wang and Wu

2013). The sensitivity to NH4
+ is a key feature of carrier protein-mediated K+ uptake.

Several NH4
+-sensitive or -insensitive high-affinity K uptake systems have been

found in plants such as Arabidopsis (Nieves-Cordones et al. 2007), rice (Chen et al.
2015), and barley (Santa-Marıa et al. 2000). The NH4+/K+ channels mediate the
trafficking of K across the symbiosome membrane (SM) of soybean, faba bean
(Vicia faba), and L. japonicus; however, the identity of these transporters is
unknown (Andreev et al. 2005). The interaction of CBL (calcineurin B-like proteins,
major Ca2+ sensor in plants) proteins with CIPK (CBL-interacting protein kinase)
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plays a key role in regulating K acquisition in plants in response to K-starved
conditions (Xu et al. 2006). In Arabidopsis, 26 CIPK and 10 CBL proteins have
been identified that control multiple signalling pathways in response to many abiotic
stresses (see review Ragel de la Torre 2019; Wang and Wu 2013). In soybean, the
upregulated expression of CBL1/9 (Glyma05g05580), CIPK23 (Glyma14g04430),
and CDPKs (Glyma14g02680, Glyma04g38150, and Glyma14g00320) genes under
K starvation revealed that they probably play a vital role in adaptation to low-K
stress (Wang et al. 2012). Earlier studies found that the phosphorylation and
dephosphorylation processes regulate the activity of K channels (Chérel et al.
2002; Hashimoto et al. 2012; Lee et al. 2007; Xu et al. 2006). Most of the K
channels have cytoplasmic regulatory domains and therefore could be regulated by
many cytoplasmic regulatory domains, viz. trafficking proteins (such as SYP121),
14-3-3 proteins (such as GF14-6), and K channel β-subunits (Honsbein et al. 2009;
Sottocornola et al. 2006; Sutter et al. 2006). Another gene family possessing BURP-
domain protein (a plant-specific protein with a conserved C-terminal domain named
after four common members: BNM2, USP, RD22, and PG1) might be significant for
plants’ responses to stresses. Wang et al. (2012) identified 23 members of BURP
gene family in soybean, which exhibited an alteration in expression under K stress,
implying that they are involved in K uptake. Further, the expression of a few
jasmonic acid biosynthesis-related genes (allene oxide synthase, allene oxide
cyclase, and lipoxygenase) was found to be significantly induced by K starvation,
but K resupply downregulated their expression indicating that jasmonic acid plays a
prominent role in K starvation signalling (Armengaud et al. 2004). Many transcrip-
tion factor genes such as GATA transcription factors (Glyma11g04060,
Glyma07g05960) of the MYB family are thought to have a role in low-K tolerance
in soybean (Wang et al. 2012).

A few miRNAs have been characterised as post-transcriptional regulators in
response to K starvation such as miR319 and miR396 in barley (Zeng et al. 2019),
miR399 in rice (Hu et al. 2015), and miR168 in tomato (Zeng et al. 2019). A recent
study on cotton showed that the expression of miR165, miR166, and miR390 was
inhibited in cotton after 8 days of K starvation, leading to increased expression of
their target genes (ADF3 and HD-Zip) indicating their probable role in the K
deficiency-regulating mechanism (Fontana et al. 2020). However, studies related
to the regulation of K transporters by non-coding RNA in legumes are lacking.

12.3.3 Sulphur

12.3.3.1 S Uptake and Transport
Sulphate (SO4

2-) is the predominant inorganic S form acquired by roots from the
soil solution. Sulphate content in the cytoplasm is relatively constant, and the excess
sulphate is stored in the vacuole. Once inside the cytoplasm, it travels through
plasmodesmata from cell to cell and reaches the distant leaf chloroplast, where it
is converted from sulphate to sulphide and subsequently assimilated into amino
acids or other metabolites (Mitra 2015). A large family of sulphate transporters
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(SULTRs) are employed in sulphate absorption from the soil solutions. The majority
of the SULTR proteins are expressed in the root cell plasma membrane and are made
up of a polypeptide chain of ~70 kDa. Sulphate transport through the plasma
membrane is most likely a pH-dependent H+-linked cotransport including 3H+/
SO4

2- stoichiometry (Hawkesford and De Kok 2006). According to their function
and location, SULTRs are categorised into five groups. The transporters of Group
1 and Group 2 are located in the plasma membrane; the former includes high-affinity
while the latter includes low-affinity S transporters. Group 1 SULTRs are predomi-
nantly expressed in root tissue, while Group 2 transporters are expressed in vascular
tissues (Buchner et al. 2004; Smith et al. 1997). Group 1 SULTRs were first
identified in Stylosanthes hamata, a tropical legume (Smith et al. 1995), followed
by characterisation in the many other plant species such as rice (Godwin et al. 2003),
chickpea (Tabe et al. 2003), Arabidopsis, Brassica oleracea (Buchner et al. 2004),
L. japonicus (Krusell et al. 2005), Zea mays (Nocito et al. 2006), and T. aestivum
(Shinmachi et al. 2010). Group 3 SULTRs are also localised in the plasma mem-
brane and associated with heterodimer association with unknown function. In
Arabidopsis, one isoform, AtSultr3.5, failed to mediate sulphate transport itself
but, after forming heterodimer with AtSultr2.1, catalysed sulphate transportation.
In L. japonicus, a homolog of AtSultr3.5 was identified, which was localised on
the symbiosome membrane of nodules and indispensable for S mobilisation to the
bacteroides (Kataoka et al. 2004). The SULTRs belonging to Group 4 mediate the
efflux of sulphate from the vacuole to cytoplasm. Group 5 SULTRs, like Group
4, are located in tonoplast and are thought to be important in the absorption of
molybdenum (Mo) and selenium (Se) (Shinmachi et al. 2010). Group 5 SULTRs,
similar to Group 4, are located in the tonoplast and are thought to be important in the
absorption of molybdenum (Mo) and selenium (Se).

Some SULTRs mediate the mobilisation of sulphate from plant cells to rhizobia
and play an essential role in the establishment of symbiotic association (Frendo et al.
2013). The Sst1 gene in L. japonicus is expressed in the symbiosome membrane of
root nodules and encodes a SULTR protein, which mediates the transport of sulphate
from plant cytoplasm to bacteroides, thus playing a vital role in symbiotic N2

fixation (Krusell et al. 2005). Casieri et al. (2012) identified eight putativeMtSULTR
genes inM. truncatula belonging to four SULTR groups, expressed differentially in
leaves and root tissue, and their transcript levels were affected by S concentration.
Although SULTR genes have been characterised in many crops, only a few were
reported in soybean. Ding et al. (2016) isolated and characterised a high-affinity
sulphate transporter gene (GmSULTR1;2b) from soybean that was extensively
expressed in root tissues and induced by S starvation.

12.3.3.2 Regulation of S Transporter
The regulation of sulphate uptake is well coordinated with the transcript levels of the
SULTRs, which are mostly higher under low S supply and are rapidly reduced after
resupplying of sulphate to S-starved plants (Koralewska et al. 2009; Rouached et al.
2008; Smith et al. 1997). The transcript levels of AtSULTR1;1, 1;2, 2;1, 4;1, and 4;2
were induced by S starvation in Arabidopsis, and the same was true for wheat,
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Medicago, and Brassica (Gigolashvili and Kopriva 2014). Uptake of nitrate
influences the sulphate uptake; with low nitrate concentrations, sulphate acquisition
was also suppressed (Kopriva et al. 2002). An intermediary metabolite, O-
acetylserine (OAS), acts as a sulphate starvation regulatory signal, which
accumulates under S starvation-induced expression of SULTR genes at low or
even at sufficient S conditions (Hopkins et al. 2005). A cis-element characterised
in Arabidopsis, known as S-responsive element (SURE), regulates the S response in
plants under S starvation. SURE is a 16-base pair sequence found in the promoter
region of several S starvation-inducible genes (Maruyama-Nakashita et al. 2006).
SURE21A and SURE21B are present in the 3′-flanking region of SULTR2;1
(low-affinity sulphate transporter), which is required for the transcriptional activa-
tion of these low-affinity SULTRs and is essential for enhancing the rate of root-to-
shoot sulphate mobilisation under S starvation (Maruyama-Nakashita et al. 2006).
Additionally, transcriptional regulator, Sulfur LIMitation1 (SLIM1), was found to
induce the expression of many SULTRs under S starvation (Maruyama-Nakashita
et al. 2006). SLIM1, also known as ETHYLENE-INSENSITIVE3-LIKE3 (EIL3), is
a member of the transcription factor family that controls the ethylene response. It
could be hypothesised that ethylene regulates sulphate absorption and metabolism;
however, the effect of ethylene on S metabolism remains unknown (Takahashi
2019). The soybean embryo factors (SEFs) 3 and 4 are also known to be
S-responsive factors that bind to the 235 bp region of β-conglycinin promoter
(Awazuhara et al. 2002). A similar component has also been reported in the promoter
region of serine acetyltransferase in Citrullus vulgaris (Saito et al. 1997).

The post-transcriptional regulation of SULTRs by microRNAs such as miR395
induced by a S starvation regulates several genes of sulphur assimilation pathway,
including SULTR2;1 and two chloroplast-localising ATP sulphurylases (APS1 and
APS4) (Jones-Rhoades and Bartel 2004; Kawashima et al. 2009). Furthermore,
Kawashima et al. (2009) found that the transcription factor SLIM1 regulates the
accumulation of miR395 in addition to directing the expression of protein-coding
genes involved in sulphur metabolism. Li et al. (2017) identified five novel miRNAs
and 27 conserved miRNAs whose accumulation was altered under S starvation in
Arabidopsis. Among five novel miRNAs, two (miR66 and miR67) were
upregulated, while the other three (miR14, miR20, and miR43) were downregulated
under S starvation condition.

12.3.4 Magnesium

12.3.4.1 Mg Uptake and Transport
The Mg content in the soil is usually very low because it binds weakly with soil
particles and could be leached out by rainwater. The Mg homeostasis in various plant
tissues is maintained by a very efficient transporter system, which is involved in
acquiring Mg2+ from the soil and their allocation throughout the plants. The majority
of Mg transporters are members of a single protein family belonging to bacterial
CorA Mg2+ transporter (MGTs) (Li et al. 2001). The first family of MGTs in the
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plant was reported in Arabidopsis, AtMGT and AtMRS2 (Li et al. 2001). According
to the cellular localisation and tissue of expression, ten members of MGT were
identified in Arabidopsis. Their structural analysis revealed that they possessed two
transmembrane domains with a conserved amino acid (GMN) motif (Tang and Luan
2017). The molecular mechanisms of Mg acquisition in plants are poorly under-
stood, and members of the MGT family have been identified in only a few crops
including rice (Chen and Ma 2013), Brassica napus (Zhang et al. 2019), and maize
(Li et al. 2016). To the best of our knowledge, no Mg transporter has yet been
identified and characterised in legume crops.

12.3.5 Calcium

12.3.5.1 Ca Uptake and Transport
Plants absorb Ca as a divalent cation (Ca2+) from the soil solution and its uptake by
roots against the electrochemical potential gradient. Inside the root cells, Ca can be
mobilised via symplast or apoplast, thereby maintaining a low Ca concentration in
root cells and preventing its toxicity in the shoot (Marschner 2011). Plastids,
endoplasmic reticulum, and mitochondria have the ability to store Ca, but vacuoles
serve as the principal Ca storage organelle with a concentration 10,000 times more
than the cytoplasm. The cytosolic Ca concentration is almost 0.1 μM during the
resting phase of cells, while it rises to 1 μM when Ca participates in any signalling
process (Dodd et al. 2010). Ca channels are located in the plasma membrane, and
according to their voltage dependence, they are classified into two groups: (1) volt-
age-dependent cation channels (VDCCs) and (2) voltage-independent cation
channels (VICCs) (Sanders et al. 2002). The VDCCs are further divided into two
subgroups: (a) depolarisation-activated cation channels (DACC), permeable to both
mono- and divalent cations and contributing to only short and transient Ca influx,
and (b) hyperpolarisation-activated cation channels (HACC), permeable for
sustained Ca influx and playing a key role in stomatal closure under drought
condition. VICCs located at the plasma membrane can be constitutively opened,
so are permeable to both mono- and di-valent cations and play a vital role in
maintaining cytosolic Ca level (González-Fontes et al. 2017; Tang and Luan 2017).

Ca2+/ATPases and H+/Ca2+ antiporters actively regulate the trafficking of Ca
between cytosol and apoplast or vacuoles against the electrochemical potential
gradient. Previous studies proposed that the Ca2+/ATPases possessing a higher
affinity (Km = 0.4–10 μM) but lower Ca transport capacity are essential for
maintaining cytosolic Ca homeostasis in resting cells (Hayter and Peterson 2004;
Hirschi 2001). Two major families of Ca2+/ATPases that are identified in plants
include (a) P-type ATPase II A family and (b) P-type ATPase II B family (details in
González-Fontes et al. 2017; Tuteja and Mahajan 2007). The H+/Ca2+ antiporters
have lower affinities (Km= 10–15 μM) but a higher efficiency for Ca transport. They
function to withdraw Ca from the cytosol during signalling events and control
cytosolic Ca concentration fluctuations (Hirschi 2001; Pittman and Hirschi 2016;
Shabala and Palmgren 2011; Sze et al. 2000).
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The first H+/Ca2+ antiporter was characterised in yeast followed by Arabidopsis,
oat (Avena sativa), barley (Hordeum vulgare), maize, rice, mung bean, soybean, and
Medicago (Chanson 1991; Charpentier et al. 2016; Cunningham and Fink 1996;
DuPont et al. 1990; Hirschi et al. 1996; Schumaker and Sze 1986; Ueoka-Nakanishi
et al. 1999; Zeng et al. 2020). In Medicago, the calcium ATPase (MCA8) was
identified, which was localised in the nuclear envelope; however, in the endoplasmic
reticulum, MCA8 was necessary for nuclear calcium signalling during symbiotic
contacts (Capoen et al. 2011). A Ca2+/ATPase-driven Ca absorption into
symbiosomes has been reported in yellow lupin and broad bean (Andreev et al.
1997, 1998), while NH4

+/K+ channels mediate Ca transport in the symbiosome
membrane of L. japonicus. Out of the 15 Ca2+/ATPases characterised in Medicago,
only one showed a>150-fold increase in expression during the late stages of nodule
growth (Benedito et al. 2010).

12.3.5.2 Regulation of Ca Transporters
The perturbations in cytosolic Ca concentration in response to a specific environ-
mental challenge or developmental signal are referred to as the ‘Ca2+ signature’ that
is unique to each response. An increase in cytosolic Ca concentration measured by
an array of Ca sensors is a common response to stress (Tuteja and Mahajan 2007).
Calmodulin (CaMs), calmodulin-like proteins (CMLs), Ca-dependent protein kinase
(CDPKs), and calcineurin B-like proteins (CBLs) are the major families of plant Ca
sensors whose conformation or catalytic activity changes after Ca2+ binding
(González-Fontes et al. 2017).

CaMs are usually located in the cytosol; however, they have also been found in
the nucleus, endoplasmic reticulum, and plasma membrane. CaMs/Ca complex
regulates the expression of genes for several plant responses through post-
translational modification of transcription factors (Rudd and Franklin-Tong 2001).
Members of the CAMTA (calmodulin-binding transcription activator), bZIP,
CBP60, MYB, MADS-box, NAC, and WRKY transcription factor families bind to
CaM and control gene expression in response to light, mechanical stress, heat shock,
and osmotic stress in plants (Kim et al. 2009; Reddy et al. 2011). Wang et al. (2015)
identified 15 CAMTA proteins in soybean, all expressed in root tissues and induced
by several stresses (dehydration, cold, H2O2) and hormone signals (abscisic acid,
methyl jasmonate, and salicylic acid). Although all GmCAMTAs express constitu-
tively in root and leaf tissue, a recent study found that five of them (GmCAMTA2,
4, 5, 11, and 12) were upregulated under drought indicating their contribution to the
drought tolerance of soybean (Noman et al. 2021). An increased Ca influx and Ca
accumulation in cells enhanced phytase (PA) and acid phosphatase (PAP) activity by
increasing the expression of PA, PAP, and alkaline phosphatase (ALP) gene in the
mung bean sprouts (Zhou et al. 2018). The Ca signature was also triggered by a
variety of elicitors (either a group of compounds secreted or constituents of
pathogens) including protein, oligogalacturonides, β-heptaglucosans,
lipopolysaccharides, and xylanases. The perception of elicitors significantly
increases Ca influx through various Ca channels such as cyclic nucleotide-gated
channels (CNGC) and activated multiple protein kinases (Garcia-Brugger et al.
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2006; Reddy et al. 2011). Recently, a few miRNAs were identified that target the
sites within putative Ca transporter genes (gma-miR156b target sites on GmACA22,
gma-miR156b target sites on GmMCA13 and GmMCA14, and gma-miR9750 target
sites on GmMCA3 and GmMCA4), indicating that miRNA may be involved in Ca
homeostasis and signalling (Zeng et al. 2020).

12.3.6 Metal Divalent Cations: Fe, Zn, and Mn

12.3.6.1 Uptake, Transport, and Regulation of Metal Divalent Cations
The transport of metal divalent cations is mostly mediated by similar transporter
families such as zinc-regulated transporter/iron-regulated transporter [ZRT/IRT1]-
related protein (ZIP), natural resistance-associated macrophage protein (NRAMP),
yellow stripe-like (YSL), P-type ATPases, and vacuolar iron transporter (VIT)
(Guerinot 2000; Socha and Guerinot 2014). Plants have a limited number of ‘Mn-
only’ transporter because most of the divalent cation (Fe and Zn) transporters such as
NRAMP, YSL, zinc-regulated transporter/iron-regulated transporter-related protein
(ZIP), and cation exchanger (CAX) are involved in Mn transport (for details, see
review Socha and Guerinot 2014).

In legumes, Strategy I which is a reduction-based mechanism is operational to
acquire insoluble Fe3+ from the rhizosphere into the root cells. The enzymes, iron-
regulated transporter (IRT) and ferric chelate reductase (FCR), are required for the
uptake of the reduced form of ferric by the roots (White 2012). The gene encoding
IRT belongs to the ZIP family (ZRT-IRT-like protein), and the FCR enzyme belongs
to the ferric reductase oxidase (FRO) family (Wu et al. 2005). The IRT is a major Fe
importer expressed in the root tissue and located in the plasma membrane, which
contains eight transmembrane domains. In soybean, homologs of Arabidopsis IRT
(AtIRT1) and FRO (AtFRO2) were identified, which showed an increased transcript
level under Fe starvation in root tissue (Stribe 2012). Later, MtIRT and MtFRD3
genes fromMelilotus japonicus (Li et al. 2014) and homologs of IRT and FRO genes
were characterised from L. japonicus (Campestre et al. 2016), which showed
enhanced expression under low-Fe conditions. Besides Strategy I, the NRAMP
family is another Fe transporter family with a highly conserved domain that mediates
the trafficking of a divalent metal ion such as Mn and Fe across cellular membranes
(Thomine and Vert 2013). The members of NRAMP gene family have been
characterised in several plant species such as Arabidopsis, barley, rice, and mustard
(Qin et al. 2017; Yamaji et al. 2013). Recently, various NRAMP genes have been
characterised in legumes. For example, the AhNRAMP1 gene in groundnut (Arachis
hypogaea) was expressed in roots and leaves (Xiong et al. 2012), while the
MtNRAMP1 in M. truncatula was expressed in roots and nodules under low-Fe
stress (Tejada-Jiménez et al. 2015). Further, Qin et al. (2017) identified 17 NRAMP
genes in soybean that are differentially regulated by deficiencies of several nutrient
elements such as N, P, K, S, and Fe. In contrast to soil conditions where Fe is present
in ferric form, the nodule cytosol maintains Fe in its reduced form; hence, the
absorption of ferrous is faster than ferric in the nodules (Moreau et al. 1995). The
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members of NRAMP, vacuolar iron transporter (VIT), yellow stripe-like (YSL), and
ZIP transporter family are overexpressed in nodules and thereby may be involved in
iron transport across symbiotic membranes (Brear et al. 2013). A ferrous transporter,
GmDMT1 (divalent metal transporter 1), has been identified in soybean symbiosome
membrane and showed maximum similarity with NRAMP transporter family
(Kaiser et al. 2003). Similarly, the homologs of GmDMT1 were identified in
Medicago, which were expressed specifically in the nodules (Benedito et al.
2010). The release of citrate by LjMATE1 (multidrug and toxic compound extrusion
1) increased Fe transport into rhizobia-infected cells of L. japonicus, resulting in
enhanced leghaemoglobin concentration and nitrogenase activity in nodules
(Takanashi et al. 2013).

The Zrt and Irt-like proteins (ZIP) and bZIP families of transporters are involved
in Zn absorption, and its mobilisation to shoot, developing embryo and seeds (Eide
et al. 1996). The ZIP family is highly conserved in prokaryotes and eukaryotes, and
it is thought to have eight transmembrane domains with a histidine motif (Chen et al.
2008; Eng et al. 1998). Members of the ZIP family transporter have been identified
in several plant species, including Arabidopsis (15 members), rice (17 members),
and wheat (14 members), demonstrating a wide range of localisation and function
(Evens et al. 2017; Milner et al. 2012). Moreau et al. (2002) discovered that a
member of the ZIP family, GmZIP1, was highly selective for zinc uptake in soybean
nodules. VvZIP3, a member of ZIP family, identified in Vitis vinifera showed higher
expression in flower tissue under Zn deficiency (Gainza-Cortés et al. 2012). Lopez-
Millan et al. (2004) identified six genes inM. truncatula, namely,MtZIP1, 3, 4, 5, 6,
and 7, all of which contained a conserved Zn motif with eight transmembrane
domains. They showed that MtZIP1, 5, and 6 transporters restored yeast growth in
Zn-deficient media; MtZIP3, 5, and 6 proteins restored yeast growth in Fe-limited
media; while MtZIP4 and 7 proteins restored yeast growth in Mn-deficient media.
Astudillo et al. (2013) identified and characterised a large family of Zn transporters
in Phaseolus vulgaris, 23 of which belonged to the Zip family and three to the bZIP
family.

The regulation of uptake and translocation of most divalent cations and their
deficiency responses are controlled by the master regulator, FER transcription factor,
which belongs to the bHLH transcription factor family and was first cloned from
tomato (Ling et al. 2002). Its homolog, AtFIT (FER-like iron deficiency-induced
transcription factor), was later found in Arabidopsis (Colangelo and Guerinot 2004;
Yuan et al. 2008). Similar to IRT1 and FRO2, the expression of FIT is also induced
by Fe starvation in root tissue, where it upregulates the expression of IRT1 and
FRO2. Two soybean genes, Glyma03g28610 and Glyma03g26830, showed homol-
ogy with AtFIT and upregulated the Fe acquisition genes IRT and FRO2 under Fe
starvation (Yuan et al. 2008). Another member of bHLH family transcription factor,
POPEYE (PYR), controls the internal mobilisation of Fe or Zn by regulating the
activity of FRO6, ZIF1 (zinc-induced facilitator 1), and NAS4 (nicotianamine
synthase 4) (Long et al. 2010). The impact of phytohormones on Fe uptake has
also been studied; auxin and ethylene positively control the Fe starvation response
(Romera et al. 2011; Zuchi et al. 2009), while cytokinin and jasmonate act as a
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negative regulator of Fe acquisition by decreasing the expression of FRO2 and IRT1
(for details, see review, Hindt and Guerinot 2012).

12.4 Conclusions

Protein calorie malnutrition is a prevalent nutritional disorder, especially among
children, in underdeveloped nations. The lower income populations are particularly
vulnerable because they cannot afford to buy conventional protein sources like milk
and meat. The high protein content in legumes makes them a viable replacement for
more energy-dense animal protein sources. The availability of several mineral
nutrients may influence legume productivity and N2 fixation. Due to symbiotic
nitrogen fixation, the demand for other nutrients is higher for legumes as compared
to other non-legume crops. Among nutrient elements, P is a common limiting factor
for nodulation in legume crops because of the energy-intensive N2-fixation reaction.
Similarly, Ca is significantly important for early symbiotic activities. On the other
hand, S and K are not a major bottleneck for nodulated legumes, but the K
supplement for osmoadaptation is necessary for the development of legume crops.
Due to the anaerobic and acidic environment inside the nodule, Fe is more or less
deficient in legume crops even though the soil contains sufficient Fe concentration.

Available literature showed that the characterisation of transporters and identifi-
cation of their regulatory genes in legumes have been accomplished for a few
nutrient elements. However, such studies for the majority of essential nutrient
elements in legumes are still in the primitive stage. This chapter has outlined the
various physiological and molecular mechanisms which assist in the adaptation of
legumes to nutrient-deficient conditions. Future efforts should be directed to deter-
mine the molecular basis of nutrient absorption, translocation, and cellular homeo-
stasis in legume crops.
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