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Legumes are commonly referred to as “poor man’s meat” and play a significant role
in balanced diet. They constitute the primary source of protein, oil, fiber, and
micronutrients for both human beings and livestock. They also have the ability to
fix atmospheric nitrogen, which is crucial for crop production. Legumes occupy
third place after cereals and oilseeds in terms of global production. They have a
significant impact on the environment, agriculture, animal and human nutrition, and
health. Legumes are susceptible to a wide range of abiotic stresses, including cold,
drought, ultraviolet light, high temperatures, mineral toxicity and deficiency, salin-
ity, and alkalinity. Hence, the yield of legume is drastically affected by these abiotic
stresses. These limitations could be facilitated by using recent biotechnological
techniques like molecular marker-assisted breeding, gene pyramiding, transgenic
breeding, somaclonal variation, in vitro mutagenesis, in vitro selection,
transgenomics, transcriptomics, and proteomics. It is essential to comprehend how
plants react to these abiotic stresses in order to create new crop types that are more
suited to harsh environmental circumstances.

This book offers a thorough overview of the agronomical, physiological, and
molecular basis of plant responses to abiotic stresses. This book includes 15 chapters
covering most of the legume crops and gives a complete description of plant
responses to various environmental stresses. It is intended for academics,
technologists, policy makers, and undergraduate and postgraduate students inter-
ested in plant physiology and molecular biology for sustainable agricultural produc-
tion. This book is an important contribution to agricultural college and university
libraries and research centers at state and national levels, where plant physiology and
agricultural and horticultural science are being taught. We wholeheartedly thank
every author who contributed their valuable chapters for the excellent outcome of
this book. We are incredibly thankful to the publisher, Springer Nature, for assisting
us to publish globally.
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Physiology and Molecular Biology
of Abiotic Stress Tolerance in Legumes

R. Anandan, B. Sunil Kumar, M. Prakash, and C. Viswanathan

Abstract

Agricultural productivity in legumes is hampered due to several abiotic stresses,
including extreme temperatures, salinity, flood, drought, heavy metals, ultraviolet
radiation, and nutrient deficiencies. Generally, it is empathized that legumes are
sensitive to abiotic stresses, and abiotic stresses negatively influence the plant
survival and agricultural productivity. Over a decade, advances in crop physiol-
ogy and genetics and scientific developments in omics such as genomics,
transcriptomics, proteomics, lipidomics, metabolomics, and epigenomics have
substantially enhanced our understanding of crop response to these stresses. To
explore the underlying complex multilayered abiotic tolerance mechanism, a
comprehensive understanding of abiotic stress, especially molecular-
physiological strategies, is essential for breeding involving abiotic stress toler-
ance. This chapter addresses the diverse abiotic stresses and their management to
increase the agricultural productivity.
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1.1 Introduction

Around 87% of the area under pulses is rainfed and predominantly restricted to
marginal and submarginal soils, and abiotic stressors are the key impediments to
attaining the yield potential. Losses in pulses owing to biotic and abiotic stressors
range from 30% to 100%, depending on the degree of the stress (Rana et al. 2016).
Due to the restricted availability of breeding lines/materials obtained from crossings
between landraces and wild progenitors, grain legume breeding is time expensive
and results in relatively poor yield gains when compared to cereal crops
(Abdelrahman et al. 2017). Legumes including soybean (Glycine max), pea (Pisum
sativum), chickpea (Cicer arietinum), lentil (Lens culinaris), and faba bean (Vicia
faba) are high in protein, starch, fiber, vitamins, and minerals (Clemente and Olias
2017).

Genomics-based techniques give access to agronomically desirable alleles pres-
ent at quantitative trait loci (QTLs) that influence such responses, allowing us to
more effectively increase abiotic stress tolerance and yield of crops grown in stressed
situations (Tuberosa and Salvi 2006). As a result, a variety of complex adaptations
evolved, some of which are unique in the biological world (Ceccon 2008). By using
anumber of methodologies, interdisciplinary scientists have attempted to understand
and dissect the processes of plant resistance to various stresses; nevertheless,
progress has been limited (Mir et al. 2012). Molecular approaches have been utilized
to better understand the processes by which plants sense environmental cues and
transmit them to cellular machinery to trigger adaptive responses in the previous
decade (Osakabe and Osakabe 2012).

This review discusses about recent advances in plant physiology for precision
phenotyping of abiotic stress response, which is a prerequisite for implementing
genetic and molecular-physiological strategies to unveil the multilayered drought
tolerance mechanism and further exploration using molecular breeding approaches
for crop improvement.

1.2 Abiotic Stress

Abiotic stress is a severe threat to life on Earth, especially for crops whose growth
and yield are harmed. Plants have developed a variety of physiological, biochemical,
and metabolic strategies to deal with abiotic stressors. Normally, it is harder to
envision the complex signaling pathways that are activated and deactivated in
response to various abiotic stresses (Chawla et al. 2011). According to recent
findings, molecular techniques play a crucial part in abiotic stress stimulation in
several crops. Farm revenues and agricultural advantages are reduced as a result of
abiotic stressors (Waraich et al. 2022). Reactive oxygen species are produced in
response to abiotic stresses, causing detrimental effects on carbohydrates, nucleic
acids, lipids, and proteins. Plant growth is harmed as a result of oxidative stress
(Zhu-Salzman et al. 2004). Furthermore, agricultural plant transpiration, stomatal
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conductance, and photosynthesis might be harmed by water deficit and heat stress
(Varshney et al. 2014).

1.3 Drought-Stress Response and Signaling

Drought is among the most major abiotic stress factor that affects productivity in
many regions of the world, and it has proven to be the most resistant to standard
breeding methods (Tuberosa and Salvi 2006). Due to the complexity of the water-
limiting environment and climatic change, drought stress has become one of the
major constraints on worldwide agricultural productivity (Umezawa et al. 2010). It is
important to note that water constraint alone is responsible for 70% of global
agricultural productivity losses. Drought stress has a negative impact on the pheno-
logical stages of legumes (Magbool et al. 2017). Also, when it comes to drought,
desiccation has been identified as the most severe kind of drought that results in
protoplasmic water loss. Furthermore, lack of water hinders the most important
biological function of photosynthesis as well as other plant metabolic activities
(Chaves et al. 2003; Pinheiro and Chaves 2011). To maximize legume yield under
drought stress, it is critical to first understand the mechanisms of tolerance (Nadeem
et al. 2019). Drought escape is one of the most important adaptive mechanisms.
Legumes can withstand drought by shortening their life cycle to prevent stress,
keeping higher tissue water potential, and minimizing water loss (Siddique et al.
1993). When phenological development is successfully connected to phases of soil
moisture availability, drought escape occurs, especially when the growing season is
shorter and terminal drought stress is more prevalent (Farooq et al. 2014).

Legume crops with an uncertain growth habit (like common bean and cowpea)
may help to lower the negative effects of short-term drought stress by growing new
organs throughout the stress recovery phase. Plants with a deep rooting system and a
perpetual growth habit can endure stress better than annuals with shallow root
systems (Chowdhury et al. 2016). If drought strikes early on, drought escape crops
can use the succulent approach or a more progressive drought tolerance mechanism
such as osmolyte synthesis and high water-use efficiency to gradually transition to
drought avoidance (Amede et al. 2004). Drought-stressed plants produce ROS,
which functions as a signal to activate defense systems in the plant (Choudhury
et al. 2017). ROS works as a signaling molecule at low concentrations, triggering a
variety of reactions in response to dryness. When the level of ROS exceeds the
defense system, it causes oxidative stress to proteins, lipids, and nucleic acids,
resulting in changes in biomolecule inherent properties and cell death (Kurutas
2016; Salmanoglu and Kurutas 2020). The defense mechanism of ROS in cell is
regulated by both enzymatic and nonenzymatic components and by maintaining a
larger concentration of antioxidants or antioxidant enzymes that has been shown to
be a responsive adaptation under drought stress (Al Hassan et al. 2017; Sahitya et al.
2018). The activities of superoxide dismutase, ascorbate peroxide, glutathione
reductase, dehydroascorbate reductase, hydrogen peroxide, glutathione peroxidase,
and POD activities increased under drought stress, in resistant cultivars of green



4 R. Anandan et al.

bean (Chakrabarty et al. 2016), pea (Noctor et al. 2000; Zoz et al. 2013), soybean
(Yasar et al. 2013), chickpea (Osman 2015), common bean (Guler and Pehlivan
2016; Saglam et al. 2011), and horse gram (Jyoti and Yadav 2012; Patel et al. 2011).
Moreover, elevated antioxidant activity in legumes might aid drought tolerance by
guarding against oxidative stress.

Gibberellins, cytokinins, auxins, ABA, and ethylene are phytohormones that
govern and control all factors of plant growth and development. Drought tolerance
is aided by these plant hormones (Ullah et al. 2018). For example, a surge in
cytokinin levels in xylem sap during a water shortage induces stomatal opening by
decreasing ABA sensitivity (Bielach et al. 2017). When there is a lack of water,
gibberellin, cytokinin, and auxin levels drop, while ethylene and ABA levels rise
(Weyers and Paterson 2001). In kidney beans, decreased stomatal conductance was
associated to a rise in ABA concentration produced by rewatering (Miyashita et al.
2005). Jasmonic acid induced drought resistance in plants by a variety of
mechanisms, including stomatal closure, ROS scavenging, and root growth (Ullah
et al. 2018). Jasmonates like ABA participated in the control of stomatal closure and
stomatal modulation in response to drought stress, according to several studies
(Kazan 2015; Munemasa et al. 2011; Riemann et al. 2015; Savchenko et al. 2014).

Methyl jasmonate promotes drought tolerance and plant development in soybean
(Mohamed and Latif 2017). The formation of vast roots was thought to be a key
characteristic for drought resistance in chickpeas, since it provided more coverage
for more water intake and increased yields by avoiding terminal drought (Kashiwagi
et al. 2006). Water uptake, water use, and temporal aspects should be prioritized over
the roots themselves (Vadez and Ratnakumar 2016). Drought tolerance is a multi-
faceted quantitative characteristic governed by a number of small-effect genes, or
QTLs. Understanding the physiological and genetic underpinnings of plant drought
responses is critical for addressing the complexity of these responses (Passioura
2012). Drought tolerance QTLs have been discovered in various significant and
essential crop species, such as soybean (Mian et al. 1996, 1998; Specht et al. 2001;
Bhatnagar et al. 2005; Monteros et al. 2006) and common bean (Blair et al. 2012).
Root features including root depth and root proliferation have been recognized as the
most promising qualities in chickpea for terminal drought resistance because they
aid in the extraction of available soil moisture (Varshney et al. 2017).

The accumulation of better alleles by marker-assisted recurrent selection is used
to improve drought tolerance (Varshney et al. 2017). Stress has an effect on gene
expression as well. Drought stress causes the expression of many genes to be either
upregulated or downregulated. Copper-related genes are targeted by miR408, a
conserved miRNA found in terrestrial plants. Despite the fact that numerous envi-
ronmental conditions, such as drought stress, alter miR408 expression, the biological
activity of miR408 remains unknown. To investigate the role of miR408 in
chickpeas under drought stress, transgenic lines overexpressing the miR408 gene
were created. Plants with increased miR408 expression showed induced tolerance
after a 17-day lack of water (Hajyzadeh et al. 2015). Plantacyanin transcript sup-
pression caused by overexpression resulted in DREB and other drought-sensitive
genes being regulated (Magbool et al. 2017). CarNAC3, a member of the NAP
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family, is involved in plant growth and abiotic stress responses. Under stress
condition, CarNAC3 expression produced increases in proline and photosynthetic
pigment levels, as well as antioxidant enzyme activity (Movahedi et al. 2015).
Additionally, as compared to the wild-type control, CarNAC3 expression reduced
malondialdehyde levels. According to phylogenetic research, CarNAC3 is a member
of the NAP subgroup of the NAC protein family (Peng et al. 2009). When compared
to control plants, the transgenic OX-amiR408 cowpea lines showed improved
drought and salinity tolerance, with greater chlorophyll, relative water content, and
proline content, and reduced cellular H,O, concentration under drought stress
(Mishra et al. 2022). The identification and characterization of this plant’s
drought-responsive miRNAs might be a precious genetic resource for understanding
the molecular pathways of drought tolerance in plants. By sequencing short RNA
libraries from normal and moisture-stressed leaf tissues, Bhat et al. found 143 and
128 conserved miRNAs, respectively (Bhat et al. 2020). Pseudomonas putida strain
MTCC5279 is a plant-growth-promoting rhizobacterium that increases plant growth
and development by colonizing the root surface and provides drought-stress resis-
tance in chickpeas (Jatan et al. 2019).

Water stress has a negative effect on several aspects of plant physiology, particu-
larly photosynthetic potential. Plant development and productivity are drastically
affected if the stress is extended (Osakabe et al. 2014). Plants have developed
complex biochemical, molecular, physiological, morphological, and cellular
responses to survive with different stresses and evolved a range of molecular
processes to limit resource use and modify growth in response to changing environ-
mental conditions (Ha et al. 2012). One of the important contributors in the EL stress
is water stress, which causes a leaf water potential reduction and stomatal opening,
resulting in downregulation of photosynthesis-related genes and decreased CO,
availability (Osakabe et al. 2011). Stress responses include a variety of molecular
networks, including signal transduction (Nishiyama et al. 2013). Environmental
stresses can influence stomatal function, which can affect CO, absorption and
consequently photosynthesis and plant development. Under drought, endogenous
ABA is rapidly released, causing a series of physiological responses, including
stomatal closure, which is controlled by a signal transduction system (Endo et al.
2008). The majority of ABA biosynthesis genes have been discovered, and they are
mostly expressed in leaf vascular tissues. NCED is a major enzyme in ABA
biosynthesis, and one of the products of such genes as AtNCED3 is mainly induced
by dehydration in Arabidopsis (Behnam et al. 2013). However, increased seed
dormancy was one of the detrimental consequences of overexpression of NCED in
tomato employing constitutive promoters (Tung et al. 2008). At drought condition,
OsbZIP16 expression was significantly increased. Transgenic rice plants
overexpressing OsbZIP16 showed considerably increased drought tolerance at
both the seedling and tillering phases, which was positively linked with OsbZIP16
expression levels (Chen et al. 2012). Drought resistance is controlled by hundreds of
genes and small-effect loci that govern physiological and morphological responses
to drought (Hu and Xiong 2014).
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Drought-responsive gene expression is linked to major physiological processes,
according to transcriptomic and proteomic analyses in various species such as
soyabean (Alam et al. 2010), Ammopiptanthus mongolicus (Zhou et al. 2012),
banana (Muthusamy et al. 2016), Agropyron mongolicum (Zhao et al. 2018),
Arachis duranensis (Carmo et al. 2019), sesame (You et al. 2019), maize (Jin
etal. 2019; Liu et al. 2020; Zenda et al. 2019), Vitis champinii cv. Ramsey (Cochetel
et al. 2020), Arachis hypogaea (Jiang et al. 2021), opium poppy (Kundratova et al.
2021), and Phoebe zhennan (Xie et al. 2022). Several types of kinases such as CPKs
(Campo et al. 2014; Ciesla et al. 2016; Bund6 and Coca 2017; Huang et al. 2018),
CIPK (Xunji Chen et al. 2021; Ketehouli et al. 2021; Lu et al. 2021; Luo et al. 2017,
Wang et al. 2018c), MAPKSs (Li et al. 2017; Muhammad et al. 2019; Lin et al. 2021;
Zhu et al. 2021), and SnRK2 (SNF1-related kinase 2) (Maszkowska et al. 2019;
Kamiyama et al. 2021) have been reported to be involved in drought response.

RSA, which is comprised of structural features such as root length, spread,
number, and length of lateral roots, among others, shows a lot of flexibility in
response to environmental factors and might be crucial in producing more efficient
roots (Hu and Xiong 2014). The potential of roots to penetrate and the degree of
drought resistance have been proven to be positively related (Aslam et al. 2015;
Wasaya et al. 2018). Woody plant seedlings in arid environments have vertical roots
that are ten times longer than the height aboveground. Plants may sustain a higher
water potential and a longer duration of transpiration during drought situations
because of their large root system and rooting depth, which gives additional benefits
to their growth and development. Plants dynamically adapt and adjust their root
system morphology in response to soil water deficits by modifying their root
development in a variety of ways, depending on the species (Tardieu 2012;
Monneveux et al. 2013; del Pozo and Ramirez-Parra 2014; Lynch 2018). Drought
causes changes in leaf morphology and ultrastructure in most of the plant species.
Alterations in leaf size, stomata submersion in succulent plants and xerophytes,
thickening of leaf cell walls, cutinization of leaf surface, underdevelopment of the
conductive system but a rise in the number of big xylem vessels, leaf rolling in
cereals, and induction of early senescence are all examples of changes (Anjum et al.
2011, 2017). Glaucousness is another trait that conserves moisture content by
minimizing transpiration when there is a water shortage (Kaur and Asthir 2017).

1.4  Temperature Stress

In legumes, temperature has a significant impact on seed yield and quality
(Christophe et al. 2011; Ruelland and Zachowski 2010). Heat stress in plants is
defined as an increase in air temperature of one degree over a threshold level
(Teixeira et al. 2013). Heat stress has different effects depending on the severity,
duration, and degree of the high temperature. Extreme temperature changes, both
high and low, may negatively impact plant development by affecting plant growth
and function (Wahid et al. 2007). Physiological processes of plants can be disrupted
by heat stress, leading to shortened vegetative and pod-filling phases (Adnane et al.
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2015), poor crop stands and consequently lower yield, photosynthetic inhibition,
reduced reproductive development, stigma receptivity, pollen viability, nitrogen
anabolism, ovule size, ovule viability, fertilization, seed composition, grain filling,
seed/fruit set, seed quality, higher protein catabolism, and reduced radicle and
plumule growth, as reported in legumes (Prasad et al. 2002; Chakraborty and
Pradhan 2011; Kumar et al. 2013; Kaushal et al. 2013; Tzudir et al. 2014,
HanumanthaRao et al. 2016).

After dry bean and field pea, chickpea is the world’s third most popular cool-
season grain legume crop. Chickpea production is harmed by freezing and below-
zero temperature in many of its growing locations. At the cellular, molecular,
canopy, and whole-plant levels, response mechanisms to chilling and freezing are
studied. A plant’s freezing tolerance varies substantially across different tissues,
such as top and lower leaves of the canopy, meristems, stems, and roots (Croser et al.
2003).

Among various environmental conditions, low temperature is one of the most
critical factors limiting plant productivity and distribution (Theocharis et al. 2012).
Many physiological and biochemical cell activities have been linked to observable
symptoms as a result of exposure to low temperatures (necrosis, chlorosis, or
wilting) (Ruelland and Zachowski 2010). Alterations in the expression of certain
genes producing proteins that give enhanced cold tolerance are required for plant
acclimatization to low temperatures (Doherty et al. 2009). Plants with higher
antioxidative enzyme activity in chickpea were shown to be more cold tolerant
(Kumar et al. 2012b). Modifying preexisting proteins and up- or downregulating
gene expression and protein synthesis are all part of the process. The activity of cold/
chilling-induced genes has been linked to the metabolic alterations that provide
low-temperature tolerance in several studies (Doherty et al. 2009; Thomashow
2010).

Cold stress, which includes chilling (0—15 °C) and freezing (<0 °C), is an abiotic
stress that has a negative impact on plant development and productivity (Guo et al.
2018; Liu et al. 2018). Cold is an important factor that affects agriculture productiv-
ity, among the several abiotic stressors. Low temperatures have an impact on the
growth and development of agricultural species all over the world (Pearce 2001). A
series of complex physiological and metabolic changes occur throughout this pro-
cess. Many chemicals or protective proteins, such as soluble sugars, proline, and
cold-resistance proteins, are generated at the physiological level in plants (Kaplan
et al. 2007). Chilling stress impacts plant cell membrane rigidification, which is
thought to be the fundamental process that causes plant cold-stress responses (Orvar
et al. 2000; Cano-Ramirez et al. 2021; Fan et al. 2015). Freezing stress lowers the
activity of enzymes such as ROS scavenging enzymes and disrupts the stability of
proteins or protein complexes. Photoinhibition and reduced photosynthesis are the
results of these processes, as well as significant membrane damage (Siddiqui and
Cavicchioli 2006; Ruelland et al. 2009; Shi et al. 2015; Ding et al. 2019). Chilling
stress has also an impact on gene expression and protein synthesis because it
promotes the development of secondary RNA structures (Rajkowitsch et al. 2007;
Ruelland et al. 2009).
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Several components of cold-stress signaling pathways have been found over the
last two decades, including protein kinases and phosphatases, messenger molecules,
and transcription factors (Ding et al. 2019). The CBF-COR signaling pathway is the
most well studied of them. CBE/DREB]1 genes are strongly activated by cold stress
and play an important role in plant cold adaptation (Wu et al. 2015; Jan et al. 2017).
Frost tolerance was significantly improved in both TaDREB2 and TaDREB3 trans-
genic plants with constitutive overexpression of the wheat transgene. Higher expres-
sion of TaDREB?2 and TaDREBS3 led to increased expression of ten additional CBF/
DREB genes in transgenic wheat (Morran et al. 2011), Lolium perenne (Li et al.
2011), Moso Bamboo (Wu et al. 2015), Arabidopsis thaliana (Hua 2016; Hu et al.
2018), barley (Yunfei Yang et al. 2020), and Kandelia obovata (Peng et al. 2020).

Successful cold-stress acclimation pathways are controlled by a number of TFs
and proteins. The ICE-CBF-COR signaling system in plants governs how plants
acclimate to cold stress. Cold stress triggers signal transmission, resulting in the
activation and regulation of ICE genes, which upregulate the transcription and
expression of CBF genes. The CBF protein activates transcription by binding to
the CRT/DRE, a homeopathic element of the COR promoter. These activities result
in a high level of cold-stress tolerance (Hwarari et al. 2022). Exogenous melatonin
induces cold tolerance on strawberry seedlings via the DREB/CBF-COR pathway
(Hayat et al. 2022). Compared to wild-type plants, overexpressed PvC3H72 driven
by the maize ubiquitin promoter showed significantly improved chilling tolerance at
4 °C, as evidenced by less electrolyte leakage and higher relative water content, as
well as a considerably higher survival rate after freezing treatment at —5 °C.
PvC3H72 transgenic lines with improved cold tolerance have considerably
upregulated the expression of the ICEI-CBF-COR regulon and ABA-responsive
genes under cold condition (Xie et al. 2019).

Lee and Seo (2015) reported that an R2R3-type MYB transcription factor,
MYBY96, integrates the ABA and cold signaling pathways. MYB96 is activated by
cold stress in an ABA-independent way and hence stimulates freezing tolerance.
Large-scale alterations in the transcriptome are linked to this process, which are
influenced by a collection of tandemly duplicated CBF transcription factors found at
the Fr-2 gene (Pearce et al. 2013). During the day/night cycle, a plastid signal helps
to regulate CBF expression and downstream expression of cold-responsive genes
(Norén et al. 2016). BpERF 13 overexpression lines were more tolerant to subfreez-
ing and exhibited lower levels of ROS in B. platyphylla, which shows that the
transcription factor BpERF'13 affects physiological processes in woody plants that
promote cold tolerance (Lv et al. 2020). Many of the molecular responses to cold
stress were reported in various crops (Kim et al. 2015; Liu et al. 2018; Guo et al.
2018; Song et al. 2021; Wang et al. 2018b; Zhang et al. 2020; Bielsa et al. 2021).
Cold stress also leads to changes of some protected enzymes such as POD, SOD, and
CAT. The activities of SOD, POD, and CAT increased under low temperature in
Avena nuda L. seedlings (Liu et al. 2013).

High-temperature stress is a key environmental stress that restricts plant growth,
metabolism, and production. Biochemical and physiological responses to heat stress
have been hot topics in recent days, and molecular techniques are being used to
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develop high-temperature tolerance in plants (Hasanuzzaman et al. 2013). Heat
stress reduces photosynthetic efficiency significantly. Melatonin is a bio-stimulator
that regulates abiotic stress tolerance in a variety of ways. The fundamental pro-
cesses of melatonin-mediated photosynthesis in heat-stressed plants, on the other
hand, are still largely unknown (Jahan et al. 2021). The reproductive period is very
vulnerable to environmental challenges, particularly high temperatures (HT), which
drastically limit commercial crop yields (Almeida et al. 2021). Molecular techniques
that discover the response and tolerance mechanisms will pave the road for creating
plants that can tolerate HT and might serve as the foundation for developing crop
varieties that can provide economic yields in HT-affected environments (Zrébek-
Sokolnik 2012). Plants’ genomes include multiple heat stress-sensitive genes, and
DNA is the starting point for all molecular data linked to heat-stress tolerance (Yeh
et al. 2012). Chakraborty and Pradhan (2011) exposed 5-day-old thermotolerant
genotype, namely BPR-542-6, and thermosusceptible genotype, namely NPJ-119, of
B. juncea to HT (45.0 + 0.5 °C) stress. Kumar et al. (2012a) explored the antioxidant
defense system and the comparative response of HT in O. sativa and Z. mays plants
under stress. When compared to the susceptible variety, the tolerant types were able
to sustain higher levels of activity at HT. HT stress has a variety of effects on
different crop species, such as Glycine max (Djanaguiraman et al. 2011), Nicotiana
tabacum (Tan et al. 2011), Triticum aestivum (Zhang et al. 2013), Abelmoschus
esculentus (Gunawardhana and De Silva 2011), and Zea mays (Edreira and Otegui
2012).

Heat stress may be minimized by applying different genetic engineering and
transgenic techniques to generate agricultural plants with enhanced thermal toler-
ance. Grover et al. (2013) suggested that transgenic plants could be used to develop
HT stress tolerance by overexpressing HSP genes or altering levels of HSFs that
regulate the expression of heat-shock and non-heat-shock genes, as well as
overexpression of other trans-acting factors such as DREB2A, bZIP28, and WRKY
proteins. Under high-temperature stress, the activities of SOD, POX, CAT, APX,
and GR raised, although the rise was substantially larger in the tolerant genotype
(Rani et al. 2013). HSPs/chaperones are regulated by a variety of heat-shock factors,
which are activated in response to stress (Jacob et al. 2017). When miR398 is
downregulated in response to oxidative stress, one of its target genes, CSD2, is
upregulated, which helps plants cope with oxidative stress. Heat stress increases the
expression of miR398 and decreases the expression of its target genes CSDI, CSD2,
and CCS (Guan et al. 2013).

1.5 Heavy Metal Tolerance

Since heavy metals accumulate in many parts of agricultural plants, they limit plant
growth/productivity and pose serious health risks to humans (Rai et al. 2021).
Various metals and metalloids, such as mercury (Hg), cadmium (Cd), cobalt (Co),
chromium (Cr), lead (Pb), zinc (Zn), aluminum (Al), arsenic (As), and nickel (Ni),
cause significant toxicity when they reach the soil agroecosystem by anthropogenic
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or natural processes (Neilson and Rajakaruna 2015). Elevated heavy metal
bioaccumulation over the threshold level has been found to have a severe influence
on the natural food chain and microbial flora and is now being viewed as a serious
danger to the ecosystem and environment (Singh and Kumar 2017). Heavy metals,
when present at low quantities, stimulate plant growth and development by serving
as cofactors for a variety of enzymes engaged in numerous physiological and
metabolic pathways (Mohammed et al. 2011; Luo et al. 2015). Lablab purpureus
L., often known as the hyacinth bean or Indian bean, has been shown to be resistant
to heavy metals such as Cd, Hg, Pb, Zn, P, and Cr (Ruthrof et al. 2018). Heavy metal
toxicity has been related to a variety of processes that occur at the same time, posing
severe metal-induced toxic effects via the production of oxidative stress (Pottier et al.
2015).

Plant tolerance to a specific heavy metal (HM) is controlled by a complex
network of physiological and molecular processes, and knowing these mechanisms
and their genetic base is critical for developing plants as phytoremediation agents
(DalCorso et al. 2010; Hossain et al. 2010). In trying to adapt with stress signals,
plants must coordinate complex biochemical and physiological processes, changes
in metabolite compositions, protein modifications, and gene expression culminating
in proper stress signal recognition and tolerance (Urano et al. 2010). To figure out
what causes HM buildup, tolerance, and adaptive responses to HM stress, scientists
are still using physiological, biochemical, and molecular approaches (Hossain et al.
2012).

Zinc is used as a cofactor by about 200 transcription factors and 300 enzymes
involved in auxin metabolism, membrane integrity, and reproduction
(Ricachenevsky et al. 2013). Several heavy metals, including Cr, Al, Cd, Hg, Pb,
and others, are exceedingly harmful even at very low quantities, despite the fact that
they are nonessential and play no physiological role (Garzén et al. 2011; Hayat et al.
2012; Shahid et al. 2012; Gill et al. 2013; Chong-qing Wang et al. 2013). Excessive
levels of heavy metals cause inactivation and denaturation of enzymes and proteins,
blockage of functional groups of metabolically important molecules, displacement
or substitution of critical metal ions from biomolecules, conformational
abnormalities, and disruption of membranosomes, to name a few toxicity symptoms
(Villiers et al. 2011). Brassicaceae members make for 25% of all known metal-
hyperaccumulation species and might be employed in phytoremediation (Gall and
Rajakaruna 2013). Plants tackle HM stress by overexpressing a variety of stress-
related proteins, glutathione-mediated tolerance pathways, and signaling proteins
involved in a variety of stress regulatory networks (Thapa et al. 2012).

Though each HM response may differ and be more particular in terms of stress
network regulation, plant growth, biomass, and photosynthetic pigments were found
to be increased with rising metal concentrations in soil up to 1.0 mM and then
declined as metal levels climbed (Tauqeer et al. 2016). Suaeda glauca and
Arabidopsis thaliana plants’ growth and physiological responses were studied
along with the soil conditions under various amounts of Cd, Pb, and Mn, and it
was found that S. glauca showed better tolerance capacity for Mn, Cd, and Pb, when
compared with Arabidopsis (Zhang et al. 2018Db).
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1.6 Saline/Salt Tolerance

Salt stress is a persistent threat to agricultural production, especially in nations where
agriculture is irrigated. Efforts to increase salt tolerance in agricultural plants are
critical for ensuring future food supply by ensuring sustainable crop production on
marginal areas (Farooq et al. 2017). According to the FAO, salinity affects roughly
800 million hectares of soil worldwide. Grain legumes are vulnerable to salt stress,
which results in decreased yield (Flexas et al. 2004), nutritional imbalances, hor-
monal disturbances, specific ion and osmotic effects (El Sayed and El Sayed 2011),
delayed blooming, and lower flower numbers and pod set (Chowdhury et al. 2016).
Salt-stress tolerance in legumes is linked to alterations in various physiological,
molecular, and biochemical processes, including Na* sequestration, antioxidative
stress induction, and osmoprotectant accumulation (Adnane et al. 2015; Zhang et al.
2017).

Salt-tolerant plants are equipped with a diverse array of antioxidant enzymes,
such as GPX, DHAR, MADHAR, CAT, SOD, GR, APX, GPX, and GST, and
certain nonenzymatic antioxidants, such as glutathione, carotenoids, tocopherols,
ascorbic acid, flavonoids, and flavones (Hernandez et al. 1999; Kukreja et al. 2005).
Rehabilitation of salt-degraded soils is dependent not only on salt-tolerant legumes,
but also on rhizobia survival under saline environments (Coba de la Pena and Pueyo
2012; Ventorino et al. 2012; Bruning et al. 2015). A comparative ecophysiological
examination of salt-stress tolerance in wild (Glycine soja) and cultivated soybean
was conducted in another research, and it was noted that wild soybean was able to
sustain a greater relative water content, accumulate more osmolytes such as proline
and glycine betaine, and enhance K™ inflow and Na* efflux to maintain a higher K*/
Na* ratio by increasing K* influx and Na* efflux (Hasegawa et al. 2000; Li et al.
2006; Waheed et al. 2006; Phang et al. 2008; Turner et al. 2013; Farooq et al. 2017).
SOS1 overexpression enhances plant salt tolerance. SOS/ is an antiporter that helps
to remove excess Na* from roots and is involved in long-distance Na™ transport in
the xylem (Shi et al. 2000). It was revealed that wild soybeans had alternative
tolerance mechanisms or varying amounts of the same mechanisms, allowing them
to tolerate salinity better than cultivated soybeans (Wu et al. 2014). Exogenous
proline can increase plant tolerance to salt stress by regulating endogenous proline
metabolism, which is done partly by differential expression of particular proline-
related genes (P5CS) (de Freitas et al. 2019). Adding exogenous proline inhibited
P5CS function in both stressed and unstressed plants, but only in unstressed plants
did it enhance PDH activity (Zheng et al. 2015). Beans have been researched under
drought stress with the addition of ABA or miRNA accumulation, but their function
under saline circumstances has not been addressed (Covarrubias and Reyes 2010).
Upregulation of miRNAs, on the other hand, is critical for soybean salinity stress
management (Dong et al. 2013). Furthermore, the PRI0a gene was important in
reducing faba bean salt tolerance (Hanafy et al. 2013). Similarly, transgenic lines of
chickpea with the AP2-type TFs, CAP2, improve SS tolerance (Frugier et al. 2000).
The altered root system of overexpressing plants was able to maintain growth under
high salinity, while roots with MtNAC969 downregulation grew better under salt
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stress. As a result, production of salt stress markers was reduced or increased in
MINAC969-overexpressing or RNAI roots, suggesting that this transcription factor
has a regulatory role in the salt-stress response. Methyl jasmonate, glucose, manni-
tol, and NaCl treatment dramatically elevated the expression of the two soybean
flavone synthase genes, GmFNSII-1 and GmFNSII-2 (Yan et al. 2014). The above
examples provided an insight into mechanisms that enable various legumes to adapt
to salt stress.

Therefore, understanding the processes of salt tolerance is critical in order to
develop plants that respond better to this abiotic stress (Herndndez 2019). Salt
tolerance is a valuable economic trait for crops grown in both irrigated and nonirri-
gated regions. Salt tolerance is a multigene-controlled characteristic that includes a
variety of biochemical and physiological pathways (Zhang and Shi 2013). Complex
metabolic processes, physiological features, and molecular or gene networks are all
involved in plant adaptation or tolerance to salt stress (Gupta and Huang 2014).

The response of salt-tolerant and salt-sensitive Populus species to salinity injury
(photosynthesis, plant growth) and primary salt tolerance mechanisms (accumula-
tion of soluble osmolytes, ion homeostasis), as well as reactive oxygen and nitrogen
species (ROS) metabolism and signaling networks induced by salinity, were studied,
and candidate genes for improving salt tolerance were discovered (Zhang et al.
2019). Transcriptome sequencing might give a functional understanding of plant
salt stress resistance pathways, and Wang et al. (2018a) investigated the
transcriptome of the algae Chlamydomonas reinhardtii after a short-term (24-h)
adaptation to salt stress (200 mM NaCl). The role of the bZIP transcription factors
in response to salt stress was investigated using C. reinhardtii as an experimental
organism (Ji et al. 2018). Six CrebZIP genes were found to be involved in stress
response and lipid accumulation after qRT-PCR expression profiling of CrebZIP
genes.

Wu et al. (2019) sequenced the Linum usitatissimum L. transcriptome to identify
DEUs under NaCl stress. The transcriptome profile under abiotic stressors has been
widely revealed and compared using next-generation sequencing technology based
on high-throughput RNA-Seq technology (Haider et al. 2017), which provides large-
scale data to identify and characterize the differentially expressed genes DEGs. Miao
et al. (2018) identified a new ROP gene from banana (MaROP5g) that boosted salt
tolerance in transgenic Arabidopsis thaliana plants when it was overexpressed. A
transgenic plum line (J8-1) with four copies of the pea cytosolic ascorbate peroxi-
dase gene (cytapx) responds to salt stress (Bernal-Vicente et al. 2018).

Overexpression of MAX?2 from Sapium sebiferum (SsMAXZ2) in Arabidopsis
plants considerably improved resilience to abiotic stressors such as osmotic, drought,
and salinity (Wang et al. 2019). Overexpression of an SKn-type dehydrin from
Capsicum annuum L. (CaDHN)) in Arabidopsis plants resulted in greater tolerance
to salt and osmotic stresses, suggesting that CaDHNS5 plays an essential role in
response to the abiotic stressors indicated (Luo et al. 2019). The CPK12-RNAi
mutant was more susceptible to salinity than wild-type plants in terms of seedling
development, demonstrating the role of CDPKSs in Arabidopsis adaptation to salt
stress (Zhang et al. 2018a). Overexpression of genes in plants has been engineered.
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Antiporter encoding gene has been established as a viable strategy for producing
salt-tolerant plants such as vacuolar Na*/H" antiporter Ms NHX1 from Arabidopsis
(Bao-Yan et al. 2008), rice (Verma et al. 2007), and vacuolar Na™/H" antiporter Pg
NHX1 from tobacco (Zhang et al. 2008). Brassica juncea and Brassica campestris
are two examples of increased antiporter gene expression in response to salt stress
(Chakraborty et al. 2012). Various saline-tolerant genes are reported, SOSI, SOS2,
SOS3, AtNHX genes, OsPRP, SAG, HSPCO025 (Roshandel and Flowers 2009),
OsHSP23.7, OsHSP71.1, OsHSP80 (Zou et al. 2009), OsHspl17.0, OsHsp23.7
(Zou et al. 2012), Arabidopsis thaliana AtSKIP (Lim et al. 2010), JcDREB (Tang
et al. 2011), and DcHspl17.7 in carrot (Song and Ahn 2011).

In the plant cell, ionic homeostasis is maintained. Without salt stress under
normal conditions, 14-3-3 and GI proteins interact with and repress SOS2 kinase
activity, and the activity of plasma membrane H*-ATPase is inhibited by SCaBP1/
CBL2 (calcium-binding protein) and PKS5/SOS2-like SCaBP8 inhibits the action of
AKT]1. A calcium signal activates the SOS pathway during salt stress, and SCaBP8
is phosphorylated by SOS2, which may dissociate from AKT1, a potassium channel.
SOS1 sodium transport necessitates the creation of a proton gradient by PMH™-
ATPases, whose activity is stimulated by DnaJhomolog3 (J3; heat-shock protein
40-like) suppression of PKS5 kinase activity. The vacuolar Na*/H" exchanger
(a vacuolar Na*/H" antiporter) is a vacuolar Na*/H" antiporter that is driven by the
proton gradient generated by vacuolar H*-ATPases and H"-pyrophosphatases. The
activity of the vacuolar H*-ATPase and Na*/H" exchanger can be activated by SOS2
(Yang and Guo 2018).

1.7 Flood Tolerance

The establishment of fine roots in the surface aerobic layers of a flooded soil can
therefore attain a degree of flood tolerance, and while the usable soil volume may be
limited and shoot growth may be slowed, the intake of phototoxins can be reduced
(Laan et al. 1989). Higher levels of decreased ascorbate play a significant role in
plant defense against flooding damage, according to studies (Kawano et al. 2002;
Das et al. 2004). Due to a scarcity of tolerant germplasm and possible target genes,
traditional breeding to generate tolerant cultivars is limited (Tyagi et al. 2022). The
overexpression of enzymes involved in ascorbic acid production aids the plant’s
capacity to withstand stress (Hasanuzzaman et al. 2012). During flooding, it interacts
with ROS in both photosystems I and II via ASC-GSH, as well as the xanthophyll
cycle (Damanik et al. 2010). A high overexpression of tyrosine protein kinase and a
downregulation of linoleate 9S lipoxygenase 5, a fat metabolism gene, suggested an
energy-saving approach in Kaspa. In NL2, however, the upregulation of a subtilase
family protein and peroxisomal adenine nucleotide carrier 2, a fat-metabolizing
gene, suggested a quicker energy consumption approach (Zaman et al. 2019).
Oram et al. (2021) discovered that grasses were more resistant to floods than
legumes, and that legumes recovered more quickly. The resistance of resource-
conserving grasses was stronger, but resource-acquiring grasses recovered faster.
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N,O emissions were reduced by resilient grass and legume species. Grasses with
lower intrinsic leaf and root '*C (as well as legumes with lower root '*C) produced
less N,O during and after the flood. NO and H,S are known to affect essential
physiological pathways such as leaf senescence, stomatal closure, and regulation of
various stress signaling pathways, and NO is also involved in the production of
adventitious roots under waterlogging (Tyagi et al. 2022).

1.8 Conclusion

Abiotic stress is one of the key factors limiting crop development and productivity in
the surrounding environment. In abiotic environment, crop growth, development,
and yield were all hampered. We outlined how plants respond to osmotic, ion,
drought, flood, temperature, salt, and oxidative stresses in this work and compiled
a large number of research advances on the effect of abiotic stresses on plants.
Thorough study on plants’ physiological and biochemical adaptation to abiotic
stress, along with genetic engineering, will help to clarify the plant abiotic tolerance
mechanism and give enough theoretical direction for the future production of
abiotic-resistant crops. Plant abiotic tolerance has to be improved further, and
there are a lot of abiotic-tolerant plant species that need to be studied.
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Plant genetic variations provide opportunity to develop new and improved
cultivars with desired characteristics, hence gaining major attention from the
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molecular traits proved to be the major components for breeding programs to
augment the gene pool. With genetic variations, it is possible to identify the
phenotypic variations governed either by a single gene or by many genes that will
be helpful for mapping associated quantitative trait loci. Genetic variations can
also be traced by examining various physiological traits of a crop plant like
growth traits (biomass, plant height, and root growth), leaf traits (stomatal
conductance, chlorophyll content, chlorophyll fluorescence, photosynthetic rate,
membrane stability, sucrose content, and canopy temperature depression), and
floral traits (mainly associated with male gametophyte). Yield traits can also
display enormous variation, making it highly useful/reliable for screening
purposes. Further, genetic variation at the biochemical level can be assessed by
measuring the expression of enzymes (related to oxidative stress and
antioxidants) and metabolites (both primary and secondary). Evaluating how
genetic variation influences phenotype is the ultimate objective of genetics, and
using omics approaches can improve the understanding of heat tolerance-
governing mechanisms. Further, collecting molecular data at different levels of
plant growth and development will help to accelerate our understanding of the
mechanisms linking genotype to phenotype.

Keywords

Genetic variations - Physiological and molecular traits - Metabolites - Phenotype -
Heat tolerance - Omics approaches

2.1 Introduction

The Earth’s rising average surface temperature, possibly due to global warming,
poses a significant threat to the production potential of plants (Bita and Gerats 2013).
Temperature is one of the main factors affecting plant phenology and plays a
significant role in plant species distribution around the globe (Li et al. 2018). All
plant species have a threshold temperature for growth to reach their yield potential;
temperatures beyond the threshold are stressful at all plant growth stages, affecting
overall performance (Wahid et al. 2007). Heat stress is supraoptimal temperatures
that cause irreversible damage to plants (Hasanuzzaman et al. 2013). The impact of
heat stress depends on species, specific growth stage, and intensity and duration of
the stress (Farooq et al. 2017; Li et al. 2018).

Heat stress affects all stages of plant growth, viz., (1) seed germination (decreases
seed germination rate and seedling root and shoot lengths), (2) vegetative growth
(decreases plant height, biomass production, and root growth), (3) leaf structure and
function (damages membrane structure, increases canopy temperature, decreases
stomatal conductance, chlorophyll fluorescence, photosynthetic rate, and sucrose
metabolism), (4) reproductive traits (mainly male gametophyte), (5) cellular homeo-
stasis (elevated reactive oxygen species production), and (6) yield (reduced seed
number, seed weight, and seed-filling rate). The reproductive stage is much more
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Fig. 2.1 Impacts, defense mechanisms against heat stress, and possible screening traits used for
selecting temperature-resilient crops. High temperature adversely affects plant growth, causes tissue
damage, and impairs vital processes such as photosynthesis, respiration, and reproduction. The
injuries caused by heat stress lead to oxidative stress due to the production of reactive oxygen
species, reducing crop yields. Plants implement various mechanisms to cope with heat stress,
including antioxidant and metabolite production, accumulation and adjustment of compatible
solutes, and most importantly chaperone (heat-stress proteins, HSPs) signaling and transcriptional
activation. These mechanisms, regulated at the molecular level, enable plants to thrive under heat
stress. Various growth traits [e.g., plant biomass, plant height, root system architecture (RSA)], leaf
traits [e.g., cell membrane thermostability (CMT), canopy temperature depression (CTD), stay-
green trait (SGT), stomatal conductance, chlorophyll fluorescence, photosynthetic rate], reproduc-
tive traits (e.g., pollen viability, pollen germination), biochemical traits [e.g., reactive oxygen
species (ROS) detoxification, various metabolites, HSP levels], and yield traits have been explored
as heat-tolerance indicators for screening and breeding for heat tolerance

sensitive to heat stress than the vegetative stages, leading to lower seed weights and
thus yield (Farooq et al. 2017). Plants are sessile organisms that can develop various
adaptive mechanisms to endure heat waves, such as antioxidant production, synthe-
sis of low-molecular-weight secondary metabolites, increasing heat-shock proteins
(HSPs), and upregulating various transcription factors (Fig. 2.1). These endurance
mechanisms vary between crop species, growth stage, and growth traits (Bita and
Gerats 2013; Prasad et al. 2017).
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2.2 Heat Stress and Legumes

Food legumes are an indispensable part of the human diet in developing countries.
The major food legumes consumed worldwide are pea (Pisum sativum L.), chickpea
(Cicer arietinum L.), common bean (Phaseolus vulgaris L.), lentil (Lens culinaris
Medik.), mung bean/green gram (Vigna radiata L.), urdbean/black gram (Vigna
mungo L.), and cowpea [Vigna unguiculata (L.) Walp.], and the major oilseed
legumes include peanut (Arachis hypogaea L.) and soybean (Glycine max L.)
(Maphosa and Jideani 2017). Due to their high nutritional value, legumes are ranked
second after cereals. They are rich in protein (20-45%), carbohydrates (60%),
dietary fiber (5-37%), and mineral matter (calcium, iron, potassium, phosphorus,
copper, and zinc) with no cholesterol and low fat (Igbal et al. 2006). Environmental
factors, mainly rising temperatures, are major constraints on the growth and yield of
food legumes. Heat stress adversely affects physiological and reproductive stages,
resulting in poor seed yield and quality (Sita et al. 2017). Table 2.1 shows the
threshold temperatures for commonly grown legumes in different regions of the
world. Various studies have reported the impact of heat stress on seed germination,
including poor emergence, germination percentage and radicle and plumule growth,
and abnormal seedling vigor. For instance, chickpea germinated well at temperatures
from 15 to 35 °C but poorly at temperatures above 40 °C (Kumari et al. 2018).
Temperature beyond the threshold range showed lethal effects on the chickpea
seedlings (Kumari et al. 2018). Similarly, a 50 °C heat treatment for 30 min signifi-
cantly reduced seed germination, seed vigor, and seedling growth of dry black gram
(Piramila et al. 2012).

Heat stress affects early vegetative growth, decreasing biomass accumulation and
root growth and stunting plant height (Huang and Xu 2008; Kaushal et al. 2013).

Table 2.1 Threshold temperatures of few selective food legumes

Threshold temperature (°

Food legumes C) References

Pulses

Chickpea (Cicer arietinum L.) 16-27 Devasirvatham et al.
(2013)

Common bean (Phaseolus vulgaris 27-30 Rainey and Griffiths

L.) (2005)

Cowpea (Vigna unguiculata L.) 18-28 Craufurd et al. (1998)

Faba bean (Vicia faba L.) 22-23 Lavania et al. (2015)

Lentil (Lens culinaris Medik.) 18-30 Sita et al. (2017)

Mung bean (Vigna radiata L.) 28-30 Kaur et al. (2015)

Pea (Pisum sativum L.) 1824 Jiang et al. (2015)

Urdbean/black gram (Vigna mungo 30-35 Anitha et al. (2016)

L.

Oilseeds

Peanut (Arachis hypogaea L.) 22-28 Prasad et al. (1999)

Soybean (Glycine max L.) 20-26 Nahar et al. (2016)
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Various studies have reported that heat stress inhibits physiological processes and
cellular response activation, including decreased cellular membrane thermostability
(Xu et al. 2006). Heat stress dramatically affects the photosynthetic process by
disrupting chloroplast structures (thylakoid leakiness and grana stacking) and dam-
aging the D1 protein of PSII due to the accumulation of reactive oxygen species
(ROS) (Allakhverdiev et al. 2008; Sharkey 2005). Deactivation of the RuBisCo
enzyme even at moderate—high temperatures further hampers photosynthesis
(Allakhverdiev et al. 2008).

High temperatures significantly affect the reproductive phase, as reported in
various food legumes, including mung bean (Kaur et al. 2015), chickpea (Kaushal
et al. 2013), lentil (Bhandari et al. 2016; Sita et al. 2017), and peanut (Prasad et al.
1999). The main reproductive events affected by heat stress are male gametophyte
development (meiosis in microspore mother cell, tapetum development in viable
pollen, reduced pollen germination, reduced pollen tube growth), female gameto-
phyte development (meiosis in the megaspore mother cell, tapetum development in
viable eggs, altered stigmatic and style positions, reduced stigma receptivity), and
fertilization (double fertilization and triple fusion) (Farooq et al. 2017; Prasad et al.
2017). Heat stress accelerates seed filling, inhibiting the accumulation of reserves in
developing seeds, resulting in poor-quality seeds (Calderini et al. 2006) and reduced
seed yields in food legumes such as chickpea (Awasthi et al. 2014) and lentil (Sehgal
et al. 2018).

Understanding the impact of heat stress and the related mechanisms will help
improve crop genotypes under heat stress. Therefore, identifying traits through
extensive screening experiments related to heat tolerance is important for selecting
better performing heat-tolerant genotypes of food legumes. This chapter identifies
various traits in genotypes of various food legumes with different heat sensitivity/
tolerance levels (Fig. 2.1) and offers insight into the overall traits and mechanisms
used to select heat-tolerant genotypes.

23 Growth-Based Studies

High temperature adversely affects the growth and development of various legumes,
restricting the growth cycle from emergence to seed set (Sehgal et al. 2018). Seed
germination and seedling establishment, including root and shoot lengths and
seedling vigor, are highly sensitive to high temperature. For instance, mung bean
seedlings exposed to 45/35 °C had reduced growth (Kumar et al. 2011), and
chickpea seedlings exposed to 40 °C for 96 h died (Kumari et al. 2018). Heat stress
accelerates early vegetative growth, decreasing leaf number and dry matter accumu-
lation (Tahir et al. 2008). Even moderate heat stress leads to rapid growth and
development, resulting in shorter crop duration and less carbon assimilation over
the plant’s life cycle (Driedonks et al. 2016; Hatfield and Prueger 2015). Many
studies have shown that disturbances in fundamental physiological processes, such
as photosynthesis, respiration, water status, membrane stability, primary and sec-
ondary metabolites, and ROS generation, due to metabolic disparity resulted in
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fewer and malformed plant parts (Wahid et al. 2007). Reduced vegetative growth
also results from various anatomical and structural changes in cellular organelles,
leading to necrosis, chlorosis, sunburn, senescence, and abscission of leaves, twigs,
branches, and stems. Further, heat stress negatively affects plant architecture,
including branching pattern, leaf area, internode elongation, and leaf/branch angles
(Sabagh et al. 2020). The above studies indicate that several processes and molecules
are involved in heat stress, reducing plant growth. Many studies have reported
reduced vegetative growth in legumes, suggesting an interaction between potential
yield and vegetative growth traits, for instance, in chickpea (Awasthi et al. 2014),
common bean (Soltani et al. 2019; Yoldas and Esiyok 2009), faba bean (Siddiqui
et al. 2015), lentil (Sita et al. 2017), mung bean (Kumar et al. 2011; Sharma et al.
2016), and soybean (Sabagh et al. 2020). Thus, the impact of heat stress on plant
growth can be evaluated by assessing traits such as plant height, biomass, and root
system architecture. Studies on contrasting genotypes revealed genetic variation in
these traits in response to heat stress, which will help identify the mechanisms
associated with heat tolerance in legumes.

2.3.1 Biomass

Biomass is an indicator of dry matter accumulation during plant growth, which is
adversely affected by heat stress in various legumes (Sabagh et al. 2020). Several
studies have revealed genetic variations in biomass accumulation in legumes under
high temperatures. Thus, chickpea under heat stress (>32/20 °C) in a greenhouse
had 22-30% less biomass than control plants (Kaushal et al. 2013). High tempera-
ture decreased biomass more in heat-sensitive chickpea genotypes (ICC5912,
ICC10685) than heat-tolerant genotypes (ICC15614 and ICCV92944) (Kaushal
et al. 2013). In another greenhouse study, heat stress (38/35 °C) decreased alfalfa
(Medicago sativa) biomass, more so in heat-sensitive WI712 than heat-tolerant
Bara310SC, compared to the control (25 °C) (Wassie et al. 2019). In the field,
heat stress (>32/20 °C) significantly decreased lentil biomass (Sita et al. 2017).
Genotypes 1G3263, 1G2507, 1G3297, 1G3312, IGG3327, IG3330, IG3546, IG3745,
1G4258, and FLIP2009 retained the most biomass and were considered heat tolerant,
while genotypes 1G2519, 1G2802, 1G2506, 1G2849, 1G2821, 1G2878, 1G3326,
1G3290, 1G3973, 1G3964, 1G4242, DPL15, DP315, 1G4221, and 1G3568 were
considered heat sensitive. High temperature (>40/28 °C) in the field significantly
reduced (76%) plant biomass in 45 mung bean accessions from the World Vegetable
Center, compared to control conditions (34/16 °C)—genotypes EC693357,
EC693358, EC693369, Harsha, and ML 1299 retained the most biomass under
heat stress and were considered heat tolerant, while genotypes EC693363,
EC693361, KPS1, EC693370, and IPM02-3 retained the least biomass and were
considered heat sensitive (Sharma et al. 2016).
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2.3.2 Plant Height

Heat stress suppresses the overall vegetative growth of plants by affecting various
growth-related mechanisms involving hormones and enzymes (Siddiqui et al. 2015).
Plant height at different growth stages is a vital indicator of plant growth under stress
situations and has been correlated with heat stress sensitivity (Prasad et al. 2008). A
field study was undertaken to screen 12 Kabuli chickpea lines through delayed
sowing for heat exposure (39.4 °C) (Mishra and Babbar 2014). Four chickpea
lines—KAK?2, JGK2, ICCV07311, and ICCV06301—were selected as heat tolerant
based on plant height and other yield traits, with positive correlations between
phenological traits (days to flowering, days to 50% flowering, maturity days, number
of secondary branches, plant height) and yield traits (Mishra and Babbar 2014).
Soybean genotypes (64) exposed to heat stress (40/32 °C; seedling stage for 20 days)
varied in plant height—IREANE, CZ4898RY, CZ5242LL, CZ5375, ELLIS,
5N393R2, CZ4181, and 45A46 were categorized as heat tolerant, and 5115LL,
S47-K5, S45-W9, 483C, 38R10, RO1-416F, JTN-5110, S48RS53, and
DG4825RR2/STS as heat sensitive, with the remainder categorized as moderately
heat tolerant or moderately heat sensitive (Alsajri et al. 2019). Similarly, high
temperature imposed on four common bean genotypes (Gima, Volare, Amboto,
Nassan) by delaying normal sowing (late-sown) significantly reduced yields, relative
to normal-sown plants, due to a shorter vegetative cycle, and genotypes Gima and
Volare maintained taller plants than Amboto and Nassan (Yoldas and Esiyok 2009).
In a greenhouse study, ten faba bean genotypes raised under high temperatures
(HT1: 31 °C and HT2: 37 °C) had markedly reduced plant height compared to the
control plants. Genotype C5 produced the tallest plants (heat tolerant), while Espan
produced the shortest plants (heat sensitive) (Siddiqui et al. 2015).

2.3.3 Root System Architecture

Root system architecture (RSA) is the structure and spatial and temporal configura-
tion of plant root systems (de Dorlodot et al. 2007). On a macroscale, RSA can
determine the organization of the primary and secondary roots (Smith and De Smet
2012). On a microscale, RSA can determine root microstructures, such as fine root
hairs and root tips and their interactions with soil and soil microorganisms responsi-
ble for water and mineral uptake (Wu et al. 2018). The spatial and temporal
distribution of roots determines the crop’s ability to exploit heterogeneously
distributed soil resources (Brussaard et al. 2007). Heat stress directly affects plant
roots by restricting carbohydrate transport from shoots to roots (Huang and Xu
2008). A comprehensive understanding of RSA helps us understand the effect of
environmental conditions and management practices on crops, decreasing the devi-
ation between potential and actual average yields (Garnett et al. 2009; Judd et al.
2015; Ryan et al. 2016). RSA plays an important role in plant—soil-microbe
interactions and resolving the cross talk with beneficial soil microbes in the rhizo-
sphere (Ryan et al. 2016).
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Root architecture adapts to fluctuating environments. Therefore, we can improve
crop performance by increasing root traits, such as root development allocation, and
morphological, anatomical, or developmental plasticity (Sultan 2000). Thus, under-
standing the genetic and molecular mechanisms determining root phenotypic plas-
ticity is necessary for effective selection and crop breeding efforts. Direct
relationships between individual root architectural plasticity and yield have been
reported across changing environments in various species (Niones et al. 2013;
Sadras 2009). Root branching is important for improving soil anchorage and root
surface area, enabling plants to reach more distant water reserves. In plants, high-
and low-temperature stress generally reduces primary root length, lateral root density
(number of lateral roots per unit primary root length), and emergence angle of lateral
roots from the primary root, but does not affect the average lateral root length
(McMichael and Quisenberry 1993; Nagel et al. 2009). Heat stress affects nutrient
uptake due to a decline in root biomass and root hair surface area. In mung bean,
high temperatures of 40/30 °C and 45/35 °C inhibited root growth by 13% and 23%,
respectively (Kumar et al. 2011).

Root growth has lower optimal growth temperatures and is more sensitive to high
temperatures than shoot growth (Huang and Gao 2000; Xu and Huang 2000). Some
plant roots synthesize heat-shock proteins (HSPs) by ameliorating their working
efficiency (Nieto-Sotelo et al. 2002). Root phenotyping of 577 common bean
genotypes in variable heat environments revealed significant relationships between
seed yield and seedling basal root number, seedling adventitious root abundance,
and seedling taproot length (Strock et al. 2019). The Mesoamerican genotypes
yielded higher than the Andean genotypes under heat stress (Strock et al. 2019). In
another study, five chickpea genotypes were assessed for thermotolerance at 30, 35,
and 40 °C using root length and root branching as criteria, which identified CSJID
884 and RSG 895 as heat tolerant and C 235 as heat sensitive (Kumari et al. 2018).
The 40 °C treatment for 96 h negatively affected root branching in chickpea (Kumari
et al. 2018).

Similarly, screening 48 lentil genotypes in a growth chamber at 34 °C using root
length as one of the selection criteria identified Ranjan, Moitree, 14-4-1, IC 201710,
and IC 208329 as heat tolerant (Choudhury et al. 2012). In another lentil study, heat-
tolerant genotypes (1G2507, 1G3263, 1G3745, 1G4258, and FLIP2009) had 1.8-22-
fold more root nodulation than heat-sensitive genotypes (IG2821, 1G2849, 1G4242,
1G3973, 1G3964) under heat stress (>32/20 °C) (Sita et al. 2017).

24 Yield-Based Traits

Heat stress negatively impacts reproductive efficiencies and seed development
stages, reducing crop yield and quality (Sehgal et al. 2018). Various studies have
shown that the relative performance of plants in terms of yield under heat stress is
useful for selecting genotypes for crop improvement programs (detailed below).
Heat stress severely affects seed development and seed filling in many crop species,
resulting in abnormal and shriveled seeds (Egli 1998). The direct effect of heat stress
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on the sink potential of maturing seeds (Commuri and Jones 1999) disrupts cell
division in the endosperm, decreases the number of starch granules, and reduces
starch accumulation. Many screening studies under heat stress have included yield
traits, such as seed number, seed weight, seed-filling rate, and duration (Farooq et al.
2017).

2.4.1 Seed Number

Heat stress disrupts pollination and fertilization events that directly curtail seed
number. For instance, high temperature (45/32 °C) reduced seed number in mung
bean genotypes relative to the control (34/16 °C), more so in heat-sensitive
genotypes (EC693363, EC693361, KPS1, EC693370, and IPM02-3) than heat-
tolerant genotypes (EC693357, EC693358, EC693369, Harsha, and ML 1299)
(Sharma et al. 2016). Similarly, in a greenhouse study, the 33/30 °C treatment
reduced pod number and seed number per pod the most in 24 common bean
genotypes exposed to varying temperatures (24/21 °C, 27/24 °C, 30/27 °C,
33/30 °C), more so in heat-sensitive genotypes (—66%; ASS, Labrador, Majestic,
IJR) than heat-tolerant genotypes (—31%; Brio, Carson, G122, HB1880, HT38,
Venture) (Rainey and Griffiths 2005). In another study, heat stress (36/27 °C)
reduced seed number per pod in all but two cowpea lines (heat-tolerant B§9-600
and TN88-63) evaluated for heat tolerance in a greenhouse (Ehlers and Hall 1998).
In another greenhouse study, high temperature (38 °C) during the reproductive stage
of 211 pea genotypes revealed HUDP-25, IPF-400, HFP-4, and DDR-56 as heat
tolerant and VL-40, KPMR-615, DDR-61, and KPMR-557 as heat susceptible based
on yield parameters; for example, heat-tolerant genotypes had more seeds per plant
(35-197) than heat-sensitive genotypes (1-58) (Mohapatra et al. 2020).

24.2 Seed Weight

Seed weight is one of the major traits governing crop yield and is thus used as a
screening trait in many studies to select heat-tolerant varieties. For example, chick-
pea exposed to different temperatures (35/25 °C, 40/30 °C, and 45/35 °C) in a
growth chamber decreased seed weight at 40/30 °C by 37-45% in sensitive
genotypes (ICC14183, ICC5912) relative to tolerant genotypes (ICCV07110,
ICCV92944). However, higher temperature (45/35 °C) had a more severe effect,
with fewer seeds in tolerant genotypes and no pod set in sensitive genotypes (Kumar
et al. 2013). Similar findings were recorded in mung bean when high temperatures
(45/32 °C) coincided with reproductive growth; seed weights declined by 48.3% in
the sensitive genotype (SML668) and 35.1% in the tolerant genotype (SMLS§32),
relative to the control (Kaur et al. 2015). Likewise, seed weight of lentil plants
exposed to high temperature (>32/20 °C) in the field declined, relative to control
plants (Bhandari et al. 2016), more so in the heat-sensitive genotypes (—50%; LL699
and LL1122) than the heat-tolerant genotype (—33%; LL931).
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In common bean, a high temperature of 33/30 °C was adequate for selecting heat-
tolerant (Carson, G122, Brio, HB1880, HT38, Venture) and heat-sensitive
genotypes (Labrador, ASS5, Majestic, IJR), based on seed weight trait in the field;
seed weights decreased by 88% in heat-sensitive genotypes compared with 35% in
heat-tolerant genotypes (Rainey and Griffiths 2005). Different location-based yield
trials—Coachella (USA; 41/25 °C) and Riverside (USA; 36/17 °C)—were used to
screen three groups of cowpea genotypes differing in heat sensitivity (Ismail and
Hall 1999). Yield parameters, mainly seed weight, and seeds/pod, decreased signifi-
cantly as the temperature increased. Tolerant genotypes (H36, H8-9, DLS99)
retained more seed weight (193 mg/seed) at higher temperature (41/25 °C) than
heat-sensitive genotypes (168 mg/seed; CB5, CB3, DLS127). Mohapatra et al.
(2020) reported that heat stress reduced 25-seed weight in pea in heat-susceptible
genotypes (VL-40, KPMR-615, DDR-61, KPMR-557) to a mean value of 4.13 g,
while heat-tolerant genotypes (HUDP-25, IPF-400, HFP-4, DDR-56) had higher
seed weights (4.60 g).

Heat stress accelerates the seed-filling rate but decreases the seed-filling duration.
In cowpea, increasing the temperature from 15.5 to 26.6 °C increased the seed-filling
duration by 14-21 days (Nielsen and Hall 1985). During seed development, heat
stress (>32/20 °C) increased the seed-filling rate in six chickpea genotypes relative
to the optimum temperature, and shortened the seed-filling duration, more so in heat-
sensitive (ICC4567) than heat-tolerant (ICC1356, ICC15614) genotypes (Awasthi
et al. 2014). Thus, reduced seed weight due to heat stress could be related to a decline
in seed-filling processes (Sehgal et al. 2017).

2.5 Pollen Grain Traits

Pollen grains are sensitive to extreme temperatures from early pollen development to
fertilization, including meiosis I and meiosis II of the microspore mother cell, early
dissolution of the tapetum layer, anther dehiscence, pollen shedding, pollen viability,
pollen germination, pollen tube growth, and fertilization (Barnabas et al. 2008;
Hedhly 2011; Kumar et al. 2013). Observations on heat stress-induced arrest of
male gametophyte development revealed the importance of starch accumulation
during pollen development because it gives rise to carbohydrates at maturity (Raja
et al. 2019). Heat stress prevents starch accumulation during pollen development,
which possibly contributes to reduced pollen viability (Pressman et al. 2002). High
temperature during anthesis leads to yield losses due to poor pollen traits such as
pollen viability, pollen production, and pollen tube length in crop plants, including
chickpea (Devasirvatham et al. 2012; Kaushal et al. 2013), common bean (Suzuki
etal. 2001), mung bean (Kaur et al. 2015), lentil (Kumar et al. 2016; Sita et al. 2017),
and soybean (Salem et al. 2007). Heat-tolerant and heat-sensitive common bean
genotypes were identified based on pollen stainability—exposure to high tempera-
ture (>28 °C) for 8—11 days before anthesis decreased pollen stainability and
increased flower abortion, reducing pod yield (Suzuki et al. 2001). Heat-sensitive
genotypes (Kentucky Wonder, Oregon, and Okinawa Local) had <20% pollen
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stainability, while the heat-tolerant genotype (Haibushi) had 60% pollen stainability
under heat-stress conditions. Heat stress (43/30 °C and 45/32 °C) in mung bean
adversely affected reproductive components, reducing pollen viability, pollen ger-
mination, and pollen tube length (Kaur et al. 2015), compared to the controls (>40/
25 °C). Moreover, high temperature during microsporogenesis reduced pollen num-
ber and produced shriveled pollen grains, more so in the heat-sensitive genotype
than the heat-tolerant genotype. Another field study exposed 45 mung bean
genotypes to high temperature (42 °C) during the flowering stage (Sharma et al.
2016).

An in vitro pollen study revealed that heat-tolerant mung bean genotypes
(C693357, EC693358, EC693369, Harsha, ML1299) had better pollen viability
and pollen germination than sensitive genotypes (KPS1, EC693361, EC693363,
EC693370, IPM02-3) (Sharma et al. 2016). Other pollen traits (pollen germination
and pollen load) were used to screen chickpea, identifying heat-tolerant ICC15614,
ICCV92944) and -sensitive (ICC10685, ICC5912) genotypes (Kaushal et al. 2013).
Another study identified tolerant and sensitive chickpea genotypes using pollen traits
(Devasirvatham et al. 2013) under heat stress (>35 °C); pollen grains were more
sensitive to high temperature than stigmas, with genotype ICC1205 identified as heat
tolerant and ICC4567 as heat sensitive. Kumar et al. (2016) screened 334 lentil
accessions for heat tolerance under field conditions (>35/25 °C) and selected heat-
tolerant genotypes (FLIP2009-55L, 1G2507, and IG4258) based on pollen traits. Sita
et al. (2017) revealed that high temperature (>32/20 °C) in the field reduced pollen
viability to a greater extent than control (<32/20 °C), with higher pollen germination
in heat-tolerant genotypes (48-50%; 1G2507, 1G3263, 1G3745, 1G4258, and
FLIP2009) than heat-sensitive genotypes (28—-33%).

Sixteen pea accessions were screened for heat tolerance by exposing plants to 45 °©
C for 2 h; the Ranl line was selected as heat tolerant and R—Af-1, C—Af-2, and Cs—
Af-3 as heat sensitive based on pollen traits (pollen viability, pollen germination,
pollen tube growth) (Petkova et al. 2009). In another study, two pea cultivars were
tested for their differential sensitivity to high temperature (27/18 °C, 30/18 °C,
33/18 °C, and 36/18 °C) based on in vitro pollen germination, pollen tube length,
pollen surface morphology, and pollen wall structure; as a result, CDC Sage was
classified as tolerant and CDC Golden as sensitive genotype based on its higher
pollen germination and stable lipid composition in pollen than the heat-sensitive
genotype at 36 °C (Jiang et al. 2015).

Pollen-based traits were also used to screen 44 soybean genotypes for heat
tolerance at 38/30 °C (Salem et al. 2007). The total stress response index based on
reproductive traits such as pollen germination and pollen tube length was used to
categorize the genotypes. Three of these genotypes, heat tolerant (DG 5630RR), heat
intermediate (PI 471938), and heat sensitive (Stewart III), were selected for pollen
grain morphology; the heat-sensitive genotype had deformed pollen with reduced
aperture. Based on the studies mentioned above, pollen grain structure and function
could be used as a screening tool for heat tolerance in soybean (Salem et al. 2007).
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2.6 Leaf-Based Parameters
2.6.1 Stomatal Conductance

Stomatal conductance is a measure of stomatal opening or the rate of passage of CO,
entering and water vapor releasing through leaf stomata. Stomatal conductance is
affected by many environmental factors, including high temperature. Stomatal
conductance increases with increasing temperature to increase photosynthesis,
which can help plants endure short heat waves (Urban et al. 2017). Moreover, plants
acclimatize to high temperatures by evaporating more water, keeping their canopies
cool despite the presence of fewer stomata (Crawford et al. 2012). Therefore,
regulating stomatal conductance under high temperatures is a useful trait for screen-
ing contrasting genotypes. Stomatal conductance can be recorded with a leaf
porometer and expressed in mmol m 2 s~ ' (Priya et al. 2018). Heat-tolerant chick-
pea genotypes (ICC15614, ICCV92944) had higher stomatal conductance
(265271 mmol H,0 m 2 s~ ') than heat-sensitive genotypes (ICC5912,
ICC10685; 187-210 mmol H,0O m 2 s~ ') under high temperatures (>32/20 °C)
imposed by late sowing (Kaushal et al. 2013). Similarly, for late-sown mung bean
genotypes, the heat-tolerant genotype (SML 868) had higher stomatal conductance
(99 mmol m > sfl) than the heat-sensitive genotype (SML 668; 90 mmol m° sfl)
(Kaur et al. 2015). In another study, five common bean genotypes (SB761, SB776,
SB781, Jaguar, TB1) were screened in the greenhouse at three temperature regimes
(35/30 °C, 40/35 °C, 45/40 °C); stomatal conductance in all genotypes increased
with increasing temperature until 40/35 °C but declined at 45/40 °C except in
genotype TB1, which was identified as heat tolerant (Traub et al. 2018). Similarly,
Sita et al. (2017) identified heat-tolerant (IG2507, 1G3263, 1G3745, 1G4258,
FLIP2009) and heat-sensitive (IG2821, 1G2849, 1G4242, 1G3973, 1G3964) lentil
genotypes based on stomatal conductance—the heat-tolerant genotypes had higher
stomatal conductance values (390497 mmol m > s~ ') than heat-sensitive genotype
(205-313 mmol m ° sfl) in a late-sown environment.

2.6.2 Stay-Green Trait

Heat stress negatively affects photosynthesis by decreasing leaf pigment content and
damaging leaf ultrastructure in heat-sensitive genotypes. Chloroplasts play a vital
role in photosynthesis as one of the most heat-sensitive organelles (Abdelmageed
and Gruda 2009; Krause and Santarius 1975). Decreased total chlorophyll content
and changes in the chlorophyll a/b ratio have been correlated with reduced photo-
synthesis during heat stress due to reduced “antenna (pigment unit)” size that
reduces light harvesting (Blum 1986; Harding et al. 1990; Shanmugam et al.
2013). Chlorophyll retention (chlorophyll content) is an integrative trait and is
considered a good criterion for screening heat-stress tolerance in legume crops.
For example, high-temperature (38/28 °C) stress for 14 days at the flowering stage
in a growth chamber caused anatomical and structural changes, including damaged
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plasma membrane, chloroplast membrane, and thylakoid membranes and reduced
leaf photosynthetic rate, in the leaves of soybean genotype K 03-2897. Plant
chlorophyll maintenance, also known as the stay-green (SGR) trait, is affected by
high temperature. Understanding the physiological and molecular mechanisms of
the stay-green trait is important for controlling photosynthetic ability (Abdelrahman
et al. 2017). The SGR trait, or delayed leaf senescence (DLS), allows plants to retain
leaves in an active photosynthetic state under high temperatures to maintain assimi-
lation and increase crop yield (Gregersen et al. 2013; Kumari et al. 2013). Stay-green
genotypes can carry out photosynthesis for longer than senescent types, often with
yield benefits (Borrell et al. 2014). The development of contrasting F6 and F7
recombinant-inbred lines of cowpea for the DLS trait under heat stress revealed
that the DLS trait increased plant survival and seed size under heat stress (Ismail
et al. 2000). Of ten common bean genotypes, only BRS Expedito, FT-Taruma, and
BAFO71 had the stay-green trait, with higher initial chlorophyll a contents, less
chlorophyll degradation, and higher grain yields under heat stress than the other
genotypes (Schmit et al. 2019).

A field experiment screening 58 chickpea genotypes for high-temperature toler-
ance (25-40 °C) during the reproductive phase identified eight genotypes—Pusa
1103, Pusa 1003, KWR 108, BGM 408, BG 240, PG 95333, JG 14, and BG 1077—
as heat tolerant, with higher chlorophyll contents than the heat-sensitive genotypes
(ICC1882, PUSA 332, PUSA 112, RSG 803) (Kumar et al. 2017). Two heat-tolerant
chickpea genotypes (ICC1356, ICC15614) maintained higher chlorophyll contents
under heat stress (>32 °C/20 °C) in the field than two heat-sensitive genotypes
(ICC4567, ICC5912) (Awasthi et al. 2017). In another study, chickpea genotypes
were grown in the greenhouse to flowering (42 and 46 DAS) and then in a growth
chamber under increasing temperatures (by 2 °C per day from 27/18 °C to 42/25 °C;
day/night) for 8 days (anthesis), which revealed that genotype JG14 (heat tolerant)
had higher total leaf chlorophyll content than genotype ICC16374 (heat sensitive)
(Parankusam et al. 2017). Similarly, heat-tolerant chickpea genotypes Pusa-1103
and BGD-72 had significantly higher chlorophyll contents than heat-sensitive
genotypes Pusa-256 and RSG-991 under high temperatures (25/35 °C) in wooden
polyethylene chambers (Singh et al. 2018). Likewise, Kaushal et al. (2013) identified
two heat-tolerant (ICC15614, ICCV92944) and two heat-sensitive (ICC10685,
ICC5912) chickpea genotypes based on the chlorophyll content, after exposure to
heat stress (>32/20 °C) in the field during reproductive development. A field study
on lentils measured the stay-green trait as the loss of total chlorophyll (Chl) in leaves
under high temperature (>32/20 °C) during the reproductive phase; heat-stressed
plants had lower total chlorophyll concentrations than the control plants, and the
heat-tolerant genotype (IG3263) retained more Chl than the heat-sensitive genotype
(IG4242) (Sita et al. 2017). Similarly, lentil genotypes LL699 and LL931 (heat
tolerant) retained more chlorophyll than genotype LL1122 (heat sensitive) in out-
door conditions (>32/23 °C), which was confirmed in a controlled environment with
plants subjected to 33/15 °C or 35/20 °C during reproductive growth (Bhandari et al.
2016). Heat stress in the field (>30/20 °C) during reproductive growth and seed
filling revealed two lentil heat-tolerant genotypes (1G 2507 and 1G 4258) with high
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leaf chlorophyll concentrations and two heat-sensitive genotypes (1G 3973 and 1G
3964) with lower chlorophyll concentrations (Sehgal et al. 2017). In another study,
common bean genotypes exposed to 32/25 °C at the V4 developmental stage
identified two genotypes (Sacramento and NY-105) with high chlorophyll contents,
indicating their high thermotolerance, relative to the thermosensitive genotype
Redhawk with low chlorophyll content (Soltani et al. 2019). Likewise, in a heat-
sensitive mung bean genotype (SML668), chlorophyll content declined, relative to
the heat-tolerant genotype (SML832), grown under heat stress (43/30 °C and 45/32 °
C) in outdoor late-sown conditions, contributing to an increase in leaf temperature
(Kaur et al. 2015). Mung bean genotypes EC693357, EC693358, EC693369,
Harsha, and ML 1299 produced more chlorophyll content under heat stress than
genotypes EC693363, EC693361, KPS1, EC693370, and IPM02-3 (Sharma et al.
2016). Screening of ten faba bean genotypes for heat-stress tolerance (37 °C)
revealed that genotype C5 tolerated high temperature by retaining more chlorophyll,
while genotype Espan had less chlorophyll and was relatively more sensitive to heat
stress (Siddiqui et al. 2015). In a recent study, 4-week-old seedlings of 15 alfalfa
cultivars were exposed to heat treatment (38/35 °C) for 7 days in a growth incubator;
genotypes Gibraltar, WL354HQ, Golden Queen, Siriver, WL712, and Sanditi had
significantly lower Chl contents (heat sensitive) than genotypes Bara310SC,
WL363HQ, WL656HQ, and Magna995 (heat tolerant) (Wassie et al. 2019).

2,6.3 Chlorophyll Fluorescence

Chlorophyll (Chl) fluorescence (F,/F,, ratio) is used as an indicator of functional
changes in photosynthetic apparatus under abiotic or biotic stress (Yamada et al.
1996). The relationships between essential photosynthetic responses and chlorophyll
fluorescence are pivotal as they provide information on the plant’s photosynthetic
ability and acclimation limit under stress conditions (Kalaji et al. 2018; Lichtenthaler
1987). Chlorophyll fluorescence is a fast, nondestructive, and effective common tool
for determining heat-stress responses as it can reveal damage before visible stress
symptoms appear (Baker 2008; Méthy et al. 1994; Wilson and Greaves 1990). Of the
photosynthetic apparatus, photosystem II (PSII) is the most heat-labile cell structure
(Vacha et al. 2007). Since damage to PSII is often the first response of plants
subjected to thermal stress (Mathur et al. 2011), measuring chlorophyll
a fluorescence is an effective and noninvasive technique for identifying damage to
PSII efficiency (Baker 2008; Baker and Rosenqvist 2004). The ratio between
variable fluorescence (F,) and maximum fluorescence (F.,), or F.,/F,,, reflects the
maximum quantum efficiency of PSII (Butler 1978). When plants are exposed to
abiotic stress, including thermal stress, F,/F,, often declines (Molina-Bravo et al.
2011; Sharma et al. 2012; Willits and Peet 2001). Screening methodologies have
used chlorophyll fluorescence to detect and quantify damage in PSII and thylakoid
membranes in several legume crops under heat stress, including chickpea, ground-
nut, pigeon pea, and soybean (Herzog and Chai-Arree 2012; Srinivasan et al. 1996).
Recent study assessed the response of four chickpea genotypes to a natural
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temperature gradient during the reproductive stage in the field and a climate chamber
using chlorophyll fluorescence. Field experiments were conducted over two winter
seasons; two genotypes (Acc#RR-3, Acc#7) showed tolerance (F,/F,, 0.83-0.85)
and two (Acc#2, Acc#8) showed sensitivity (F,/Fy, 0.78-0.80) to heat stress. The
field results were validated in the climate chamber experiment, where F./Fy,
declined more in the heat-sensitive (0.74-0.75 at 35/30 °C) than heat-tolerant
(0.78-0.81 at 35/30 °C) genotypes when exposed to short-term heat treatments
(30/25 °C and 35/30 °C) (Makonya et al. 2019). In another chickpea study, heat
stress (>30 °C) in the field during the reproductive stage reduced F,/F,, more in two
heat-sensitive genotypes ICC10685 and ICC5912 (0.48, 0.41) than in two heat-
tolerant genotypes ICC15614 and ICCV92944 (0.64, 0.60) (Awasthi et al. 2014;
Kaushal et al. 2013). A similar study, where four contrasting chickpea genotypes—
two heat tolerant (ICC1356, ICC15614) and two heat sensitive (ICC4567,
ICC5912)—were analyzed in the field, revealed that the tolerant genotypes
maintained higher chlorophyll fluorescence (F,/Fy, 0.60) on exposure to heat stress
(>32/20 °C) than the sensitive genotypes (F/F, 0.50) (Awasthi et al. 2017). In
lentils, photosynthetic efficiency was measured as PSII function (F,/F, ratio) in the
field by exposing plants to heat stress (>32/20 °C) during the reproductive stage.
Heat-tolerant genotypes—IG2507, 1G3263, 1G3297, 1G3312, 1G3327, 1G3546,
1G3330, 1G3745, 1G4258, and FLIP2009—maintained higher chlorophyll fluores-
cence (F,/F, 0.71) under stress than heat-sensitive genotypes 1G2821, 1G2849,
1G4242, 1G3973, and 1G3964 (F,/F,, 0.58) (Sita et al. 2017). Similarly, two heat-
tolerant lentil genotypes (1G 2507 and 1G 4258) exposed to heat stress (>25 °C)
during reproductive growth and seed filling in the field had higher chlorophyll
fluorescence (F,/F,, 0.67) than two heat-sensitive genotypes (1G 3973 and 1G
3964; F\/F; 0.57) (Sehgal et al. 2017). Likewise, the screening of 41 mung bean
lines grown outdoors and exposed to high temperatures (>40/28 °C) during the
reproductive stage revealed several promising heat-tolerant lines (EC693358,
EC693357, EC693369, Harsha, ML1299) with high F,/F, ratios (0.73-0.75) com-
pared to sensitive lines (0.61-0.67), which could serve as useful donor/s for breeding
programs and as a suitable base plant source to gain insight into heat stress-induced
effects in cell metabolism (Sharma et al. 2016). Nine common bean lines were
evaluated for changes in chlorophyll fluorescence under heat stress during flowering
(45 °C for 2 h) in a greenhouse; thermotolerant lines 83201007 and RRR46 had
higher F,/F,, values under heat stress than the heat-sensitive line Secuntsa (Petkova
et al. 2009). In another study, 12 varieties and lines of common bean were exposed to
42 °C in the field during the reproductive period; two genotypes (Ranit and Nerine)
maintained their F,/F,, values at 42 °C, relative to the controls at 26 °C, and were
considered heat tolerant. These two genotypes also showed good productivity and
quality and can be used as parental lines in bean breeding programs (Petkova et al.
2007). Screening of 15 alfalfa genotypes by exposing seedlings to 38/35 °C day/
night for 7 days in a growth chamber identified Bara310SC (F\/F,, 0.79) and WL712
(Fy/F, <0.79) as heat-tolerant and heat-sensitive cultivars, respectively (Wassie
et al. 2019), showing that F,/F,, is an effective tool for phenotyping contrasting
genotypes for heat tolerance.
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2.6.4 Photosynthetic Rate

Heat stress affects the stay-green trait, chlorophyll content, and chlorophyll fluores-
cence, which affects RuBisCo activation, decreasing the photosynthetic rate
(Salvucci Michael and Crafts-Brandner 2004; Sharkey 2005). Hence, photosynthetic
rate can be used as a screening parameter for selecting heat-tolerant genotypes.
Variation in photosynthetic rate among plant species in response to heat stress has
been well documented. For example, the response of four chickpea genotypes to a
natural temperature gradient in the field at the flowering stage identified two heat-
tolerant genotypes (Acc#RR-3, Acc#7) with high P, and two heat-sensitive
genotypes (Acc#2, Acc#8) with lower P,; these results were validated in a climate
chamber experiment set at 30/25 °C and 35/30 °C (Makonya et al. 2019). In another
study, 56 chickpea genotypes were exposed to high temperatures in the field from
flowering to crop maturity (maximum temperatures 2540 °C)—the tolerant
genotypes (PUSA1103, PUSA1003, KWR108, BGM408, BG240, PG95333,
JG14, BG) had higher P, than the sensitive genotypes (ICC1882, PUSA372,
PUSA2024) (Kumar et al. 2017). In a similar study in lentil, two heat-tolerant
(1G 2507 and 1G 4258) genotypes had higher photosynthetic rate (P,) than two
heat-sensitive (1G 3973 and 1G 3964) genotypes exposed to heat stress (>25 °C) in
the field during reproductive growth and seed filling (Sehgal et al. 2017).

Soybean cultivars IA3023 and KS4694 and PI lines PI393540 and PI5S88026A
expressed heat tolerance and susceptibility with high and low P,, respectively
(Djanaguiraman et al. 2019). The two cultivars had less thylakoid membrane damage
than the PI lines. In an earlier study on soybean, genotype K 03-2897, exposed to
high temperature (38/28 °C) in a growth chamber for 14 days at the flowering stage,
significantly decreased P, due to anatomical and structural changes (increased
thickness of palisade and spongy layers and lower epidermis) in cells and cell
organelles, particularly damage to chloroplasts and mitochondria (Djanaguiraman
and Prasad 2010).

2.6.5 Sucrose

Leaf photosynthates are transported to sink organs primarily as sucrose, and sucrose
synthase (SS) is a key enzyme for sucrose to enter various metabolic pathways
(Calderini et al. 2006). Downregulation of SS indirectly inhibits carbohydrate
production, eventually reducing yield and quality. Maintaining sucrose levels is
vital during stressed conditions, which depend on its synthesis and hydrolysis.
Heat-stressed plants had significantly lower activities of key enzymes—sucrose
phosphate synthase (SPS) and SS—involved in sucrose synthesis than
non-stressed plants. Sucrose availability to reproductive organs is crucial for sus-
taining their function (Kaushal et al. 2013). Heat-tolerant genotypes can stabilize the
photosynthetic process better than heat-sensitive genotypes. Heat stress disturbs
sucrose production in leaves and impairs its transportation to reproductive organs
(Kaushal et al. 2013; Li et al. 2012). Limitations in sucrose supply to reproductive
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organs, particularly under thermal stress, restrict flower development and function
and pod and seed filling, reducing crop yield (Kaushal et al. 2013; Li et al. 2012).
Measuring sucrose concentrations reveals the photosynthetic status of plants under
heat stress (Awasthi et al. 2014). Sucrose synthase is strongly associated with heat
tolerance in chickpea; heat-sensitive genotypes produced far less leaf sucrose than
heat-tolerant genotypes, which impaired its supply to developing reproductive
organs (flowers, pods, and seeds) in chickpea (Kaushal et al. 2013). Screening a
large core collection of chickpea genotypes for heat tolerance (32/20 °C) in field
condition identified two heat-tolerant (ICC15614, ICCV92944) and two heat-
sensitive (ICC10685, ICC5912) genotypes. The heat-sensitive genotypes had sig-
nificantly greater inhibition of RuBisCo (carbon-fixing enzyme), SPS, and SS than
the heat-tolerant genotypes and thus produced less sucrose than the tolerant
genotypes (Kaushal et al. 2013). Heat-sensitive (ICC16374) and heat-tolerant
(JG14) chickpea genotypes exposed to gradually increasing temperatures (2 °C per
day from 27/18 °C to 42/25 °C; day/night) for 8 days at anthesis in a growth chamber
revealed greater sucrose synthase expression in JG14 than ICC16374 (Parankusam
et al. 2017). Two tolerant chickpea genotypes (Acc#7 and Acc#RR-3) had higher
starch contents and were relatively unaffected by heat-stress exposure compared to
two heat-sensitive genotypes (Acc#2, Acc#8) at high temperature (35/30 °C) in a
control chamber (Makonya et al. 2019). Therefore, an increased abundance of
sucrose synthase in the tolerant genotype reasserted its potential role during heat-
stress tolerance; this may ensure successful fertilization due to sustained pollen
viability under heat stress, enhancing pod set and yield, as reported earlier for the
tolerant genotype (ICC15614) (Krishnamurthy et al. 2011).

In lentil, sucrose production is vital for leaf and anther function and has been
correlated with SPS activity in natural high-temperature environments (>32/20 °C).
Heat-tolerant lentil genotypes (1G2507, 1G3263, 1G3297, 1G3312, 1G3327, IG3546,
1G3330, 1G3745, 1G4258, FLIP2009) produced more sucrose in leaves (65-73%)
and anthers (35-78%) than heat-sensitive genotypes (IG2821, 1G2849, 1G4242,
1G3973, 1G3964), which was associated with superior reproductive function and
nodulation in tolerant genotypes (Sita et al. 2017). Limitations in sucrose supply may
disrupt the development and function of reproductive organs (Prasad and
Djanaguiraman 2011; Snider et al. 2011). In a similar study, two heat-tolerant
(1G 2507 and 1G 4258) lentil genotypes exposed to heat stress (>25 °C) in the
field had higher SS activity and thus higher sucrose contents in leaves and seeds than
two heat-sensitive (1G 3973 and 1G 3964) genotypes (Sehgal et al. 2017). Thus,
sucrose synthase in seeds and leaves is strongly correlated with seed yield; therefore,
reductions in seed size and weight are attributed mainly to reductions in sucrose
content.

Mung bean genotypes tested under heat stress (>40/25 °C day/night) during
flowering and podding outdoors and in a controlled environment showed that two
heat-tolerant genotypes (SML832 and SML668) had more sucrose than the heat-
susceptible genotype (SML832). Thus, sucrose concentrations in leaves and anthers
and SS and SPS activities declined significantly in sensitive genotypes under heat
stress (Kaur et al. 2015). Exposure of common bean genotypes at the V4
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developmental stage to heat treatment (32/25 °C) in a growth chamber significantly
reduced leaf sucrose concentration in genotype Redhawk (most heat-sensitive geno-
type) and increased sugar contents in Sacramento (58%) and NY-105 (most heat
tolerant) (Soltani et al. 2019).

2,6.6 Cell Membrane Thermostability

Under heat stress, protein denaturation, lipid liquefaction, and loss of membrane
integrity are some of the chief physiological, biochemical, and molecular changes in
plant metabolism (Gulen and Eris 2004). Most of the changes that appear during
acclimation to heat stress are reversible, but death can occur if the stress is too
intense (Saelim and Zwiazek 2000). Cell membranes are the principal target of
environmental stresses, including heat stress (Chen et al. 2014; Sita et al. 2017).
Protein denaturation and increased membrane fluidity, enzyme inactivation,
decreased protein synthesis, protein degradation, and alterations in membrane integ-
rity are documented injuries under heat stress (Howarth 2005). By accelerating the
kinetic energy and movement of molecules across membranes, heat stress releases
chemical bonds within the molecules of biological membranes, resulting in mem-
brane fluidity by protein denaturation or increased unsaturated fatty acids
(Savchenko et al. 2002). Decreased cell membrane thermostability or increased
ionic leakage caused by the alteration of membrane protein structure is an important
indicator of heat stress. The increased membrane fluidity caused by protein denatur-
ation and increased unsaturated fatty acids in the membrane under high temperatures
affect membrane structure and function (Wahid et al. 2007), causing symptoms, such
as photooxidation of chlorophyll pigments, impaired electron flow, inhibited carbon
fixation, and water loss from leaves (Prasad et al. 2017; Sharifi et al. 2012; Sita et al.
2017). The relationship between cell membrane thermostability (CMT) and crop
yield changes from plant to plant under high temperatures. Ion leakage from plant
tissues has been used as a membrane damage indicator in plants exposed to heat
stress. Thus, CMT is an indirect indicator of heat-stress tolerance in legumes, such as
soybean (Martineau et al. 1979), lentil (Sita et al. 2017), chickpea (Kaushal et al.
2013), and mung bean (Sharma et al. 2016). Membrane damage occurs under heat
and cold stress, more so under heat stress, as reported for Medicago (Mo et al. 2011).
Cell membrane thermostability (CMT) tends to decline during the late developmen-
tal phase of plants (Ahmad and Prasad 2011).

In addition to conventional breeding techniques, noticeable variations in mem-
brane thermostability among genotypes, combined with biochemical and physiolog-
ical screening methods, could be used to improve the selection for breeding
objectives (Hemantaranjan et al. 2014). Membrane thermostability has been used
to assess thermotolerance in many food crops worldwide. Depending on the growing
season, electrolyte leakage in plants varies among tissues, organs, and growth stages
and is affected by plant/tissue age, sampling organ, developmental stage, growing
season, degree of hardening, and plant species. A significant positive relationship
between CMT and yield was reported in sorghum (Sullivan and Ross 1979). In crop
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plants such as barley (Hordeum vulgare L.), cotton (Gossypium spp.), sorghum, and
cowpea, increased electrolyte leakage decreased membrane thermostability (Wahid
et al. 2007; Wahid and Shabbir 2005). In leguminous crops, electrolyte leakage has
been used to assess thermotolerance. For example, heat stress at 34 °C in lentil
revealed genotypes Ranjan, Moitree, 14-4-1, IC201710, and IC208329 as heat
tolerant and genotypes ICC201655, ICC201661, ICC201662, ICC201670,
ICC201675, ICC201681, ICC201698, ICC201743, ICC201794, ICC248959,
Asha, Sagardeep Local, and UP local as heat sensitive, based on cell membrane
stability in field and growth chamber studies (Choudhury et al. 2012). In another
study, lentil genotypes exposed to high temperature (45 °C) at the flowering stage
revealed Qazvin and B4400 as heat-tolerant and -sensitive genotypes, with 98.13%
and 33.19% CMT, respectively (Barghi et al. 2013). At 38/28 °C and 40/30 °C in a
controlled environment, heat-tolerant lentil genotypes 1G2507, 1G3263, 1G3745,
1G4258, and FLIP2009 had less membrane damage (<20% electrolyte leakage)
than heat-sensitive genotypes 1G2821, 1G2849, 1G4242, 1G3973, and 1G3964
(>30%) (Sita et al. 2017).

Among various legumes (pigeon pea, peanut, chickpeas, and soybean), chickpea
was the most sensitive to high temperature based on CMT (Devasirvatham et al.
2012). Heat-tolerant chickpea genotypes ICCV07110 and ICCV92944 had less
membrane damage (22.6% and 20.6%) than heat-sensitive genotypes ICC14183
and ICC5912 (30.4% and 33.3%) under high temperatures of 40/30 °C and 45/35 °C
(Kumar et al. 2013). In another study, high temperature (>32/20 °C) during the
reproductive stage caused the most membrane damage in heat-sensitive chickpea
genotypes ICC10685 (28.3%) and ICC5912 (26.3%) and the least membrane dam-
age in heat-tolerant genotypes ICC15614 (17.3%) and ICCV 92944 (19.6%)
(Kaushal et al. 2013). A gradual rise in temperature (42/25 °C) at anthesis for
8 days increased electrolyte leakage (EL) by 20-25% greater in heat-sensitive
chickpea genotype ICC16374 compared to heat-tolerant genotype ICCV92944
(Parankusam et al. 2017). At 37/27 °C, electrolyte leakage increased by a maximum
of 16-25% in chickpea genotypes (Pareek et al. 2019), with ICC1205 identified as
heat tolerant (13—14%). Similarly, Dua et al. (2001) reported ICCV88, ICC512, and
ICC513 as heat-tolerant chickpea genotypes under heat stress. Another study on six
chickpea genotypes revealed DG36 (EL: 36.7%) and Pusa 372 (EL: 50.7%) as
heat-tolerant and heat-sensitive genotypes, respectively, when exposed to high
temperature (>38 °C) under field conditions, based on EL (Singh et al. 2004). Of
115 chickpea genotypes screened at high temperature (36.5 °C) in the field, GNG
663 and Pusa 244 were selected as heat tolerant and heat sensitive, with electrolyte
leakage values of 23% and 50%, respectively (Kumar et al. 2012). Among 30 chick-
pea genotypes screened for heat tolerance (>30 °C), Pusa 240 and GG2 genotypes
were identified as heat-tolerant and -sensitive genotypes, respectively, with mini-
mum (45%) and maximum (69%) cell membrane injury (Kumar et al. 2013).

Screening of nine cowpea genotypes exposed to heat stress (33/20 °C) during
flowering and pod revealed less leaf electrolyte leakage in heat-tolerant genotypes
H36, H8-9, and DLS99 (35.8-36.7%) than heat-susceptible genotypes CBS, CB3,
and DLS127 (66.2-79.0%) (Ismail and Hall 1999). In another study at high
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temperature (38/30 °C), cell membrane injury was negatively corelated with yield in
heat-tolerant (CB 27, Prima, UCR 193) and heat-sensitive genotypes (CB 5, CB 46)
(Singh et al. 2010), with less membrane damage in heat-tolerant genotypes.
Screening of 15 Medicago cultivars at high temperature (38/35 °C) using mem-
brane damage revealed “Bara310SC” and “WL712” as heat-tolerant and heat-
sensitive genotypes with 24.07% and 53.2% electrolyte leakage, respectively
(Wassie et al. 2019). Similarly, screening studies on 116 green gram genotypes at
high temperature (45/25 °C) identified EC 3398889 and LGG460 as heat tolerant
and heat sensitive, with minimum and maximum cell membrane damage, respec-
tively (Basu et al. 2019). Gradual exposure to high temperature (35-50 °C) of
4-week-old three common bean genotype seedlings in a growth chamber revealed
“local genotype” and “Ferasetsiz” as heat-sensitive genotypes, while “Balkiz” was a
relatively heat-sensitive genotype (Tokyol and Turhan 2019). Gross and Kigel
(1994) used electrolyte leakage as a criterion for assessing heat tolerance at
32/28 °C during the reproductive stage and reported PI 271998 and BBL 47 as
heat-tolerant and heat-sensitive genotypes in common bean, respectively. High-
temperature studies (>40/28 °C) at the reproductive stage in mung bean showed
high electrolyte leakage (21.8-23.6%) in heat-sensitive lines (EC 693363, EC
693361, EC 693370, KPS1, IPMO02-3) compared to heat-tolerant lines
(16.8-20.4%; EC693357, EC693358, EC693369, Harsha, ML.1299) (Sharma et al.
2016). Another study on mung bean at high temperature (>35 °C) identified
genotype MH 421 as heat tolerant and Basanti as heat sensitive, with low
(34.88%) and high (41.34%) electrolyte leakage, respectively (Jha et al. 2015).
Screening of ten faba bean genotypes exposed to heat stress (37 °C) 60 days after
sowing revealed C5 as heat tolerant and Espan as heat sensitive, based on low
(57.67%) and high (76%) membrane damage, respectively (Siddiqui et al. 2015).

2,6.7 Canopy Temperature Depression

Canopy temperature depression (CTD) is the plant canopy temperature deviation
from the ambient temperature (Balota et al. 2007). At the whole-crop level, leaf
temperature decreases below air temperature when water evaporates. CTD acts as an
indirect measure of transpiration (Reynolds et al. 2001) and plant water status (Araus
et al. 2003) and indicates the relative metabolic fitness of genotypes in a given
environment (Reynolds 1997). CTD is a key trait for assessing the response of
genotypes to low water usage, high temperature, and other stresses (Balota et al.
2007). At high temperatures, transpiration increases for some time, with plants using
more water during growth due to more open stomata and lower CTD. A positive
CTD value [i.e., difference between air temperature (7,) and canopy temperature
(T.)] occurs when the canopy is cooler than the air (CTD = T, — T.) (Balota et al.
2008).

Canopy temperature depression is heritable and can be measured on cloudless
days using an infrared thermometer (Reynolds et al. 1997). To maintain canopy
temperature at a metabolically comfortable range, plants transpire through open
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stomata. Plants close stomata during stress acclimation, increasing the canopy
temperature (Kashiwagi et al. 2008). Canopy temperature can be affected by
biological and environmental factors, such as soil water status, wind, evapotranspi-
ration, cloudiness, conduction systems, plant metabolism, air temperature, relative
humidity, and continuous radiations (Reynolds et al. 2001). Canopy temperature is
an indicator of plant water status or the equilibrium between root water uptake and
shoot transpiration (Berger et al. 2010). CTD can act as a desirable criterion for
selecting heat-tolerant genotypes based on phenotypic variation (Mason and Singh
2014). It can be used to determine yield potential and metabolic fitness of crop plants
under specific environmental conditions (Kumari et al. 2013). It acts as a mechanism
of heat escape and is strongly correlated with yield (Reynolds et al. 2001); affected
by many physiological factors, it is a strong trait for determining genotype fitness.

Epicuticular leaf wax QTL and CTD are strongly interlinked, with wax load
affecting plant canopy temperature (Awika et al. 2017). Stay-green genotypes have
high CTD values and thus low canopy temperature due to transpirational cooling
under heat stress (Fischer et al. 1998; Reynolds et al. 1994). In chickpea, CTD is
negatively correlated with water potential, osmotic pressure, relative leaf water
content, and seed yield (Sharma et al. 2015). Differences in canopy temperature
are not detectable in high-humidity environments because the effect of evaporative
leaf cooling is negligible (de Souza et al. 2012). CTD has been successfully used to
select for heat tolerance in various crop species, including legumes. For example,
heat-tolerant chickpea genotypes ICCVs 95311, 98902, 07109, and 92944 had
higher CTD values than sensitive genotypes ICCVs 07116, 07117, and 14592,
which had negative CTD values (Devasirvatham et al. 2015). Another study
screened 30 chickpea genotypes exposed to temperature >30 °C to reveal Pusa
240 as a heat-tolerant genotype due to its cooler canopy than other genotypes
(Kumar et al. 2013). Similarly, screening chickpea genotypes subjected to 36.5 °C
identified GNG 663 and Vaibhavaas as heat tolerant and heat sensitive, respectively,
with CTD values of 4.8 °C (maximum) and 1.8 °C (minimum) (Kumar et al. 2012).
In a screening study of 56 chickpea genotypes for heat tolerance (40 °C), CTD
values ranged from 5.0 to 7.5 °C; eight genotypes (Pusa 1103, Pusa 1003, KWR
108, BGM 408, BG 240, PG 95333, JG 14, BG 1077) were identified as heat
tolerant, with maximum CTD values compared to other genotypes (Kumar et al.
2017). In mung bean, seed yield positively correlated with CTD, while canopy
temperature negatively correlated with root traits, such as the number of lateral
branches and dry root weight (Raina et al. 2019). In another study, mung bean
genotype MH 421 (CTD 5.78 °C) was selected as heat tolerant compared to Basanti
(CTD 4.37 °C) when tested at high temperature (>35 °C) (Jha et al. 2015). In pea,
CTD is affected by canopy structure, and increased pod number and pod-to-node
ratio associated with CTD (Tafesse et al. 2019).
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2.7 Biochemical Traits
2.7.1 Oxidative Stress and Antioxidants

Heat stress is a major environmental factor affecting vital metabolic processes in
plants, hampering proper growth and development. Disturbances in these metabolic
processes lead to ROS generation, such as hydrogen peroxide, hydroxyl radicals,
and superoxides (Chakraborty and Pradhan 2011). ROS production damages cellular
activity by inactivating enzymes, denaturing proteins, and damaging membranes and
DNA. Plants shield such injuries by activating cascades of enzymatic activities, such
as superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate
peroxidase (APX), and glutathione reductase (GR), and nonenzymatic activities,
such as glutathione (GSH) and ascorbic acid (ASC) (Suzuki et al. 2012). The
selection of contrasting genotypes based on the expression level of these
antioxidants is effective in leguminous plants (Kumar et al. 2013). For example,
chickpea genotypes raised under natural conditions until 50% flowering and then in
a growth chamber for heat treatment (30/20 °C, 35/25 °C, 40/30 °C, and 45/35 °C)
revealed that heat-tolerant genotypes (ICCV92944, ICCV07110) had lower H,O,
and MDA concentrations than sensitive genotypes (ICC5912, ICC14183). Tolerant
genotypes face fewer injuries due to greater expression of antioxidants, such as APX
and GR (Kumar et al. 2013). Similarly, 41 mung bean genotypes were screened, and
contrasting genotypes were selected based on oxidative stress damage and antioxi-
dant activity. Heat-tolerant genotypes (EC693357, EC693358, EC693369, Harsha,
ML1299) experienced less oxidative damage (1.52-2.0-fold increase in MDA;
1.59-1.96-fold increase in H,O,) than sensitive genotypes (2.2-2.4-fold increase
in MDA; 2.21-2.93-fold increase in H,O,) (Sharma et al. 2016). Moreover, heat-
tolerant genotypes increased APX activity (by 1.48—1.77-fold) more than sensitive
genotypes (1.27-1.37-fold). Likewise, of 38 lentil genotypes screened for heat
tolerance (>35/20 °C) during the reproductive phase, heat-tolerant genotypes
(IG2507, 1G3263, 1G3745, 1G4258, FLIP2009) had less oxidative damage (MDA
and H,O, contents increased) and higher SOD, CAT, APX, and GR activities than
heat-sensitive genotypes (IG2821, 1G2849, 1G4242, 1G3973, 1G3964) (Sita et al.
2017). In another study on lentil exposed to heat stress (30, 35, 40, 45, and 50 °C for
4 h) in plant growth chambers, SOD, CAT, and APOX activities initially increased
in four heat-tolerant lentil varieties (IPL 81, IPL 406, Asha, Subrata) at 35, 40, and
45 °C but decreased at 50 °C, and decreased in heat-sensitive genotypes (Sehore and
Lv) at all temperatures, except 30 °C (Chakraborty and Pradhan 2011). Further
accumulation of carotenoids and ascorbate followed a similar trend, indicating the
association of heat sensitivity with antioxidant expression.

2.7.2 Metabolites

Metabolite detection and quantification are an effective and powerful tool for
selecting genotypes in response to environmental stresses (Bueno and Lopes
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2020). Metabolites include low-molecular-weight compounds, including precursors
and intermediate metabolic pathways, which are an indispensable part of plant
metabolism, regulating vital biological processes and involved in stress tolerance
(Wahid et al. 2007). The primary metabolites upregulated during abiotic stress are
amino acids (proline), carbohydrates (sucrose, hexoses, polyhydric alcohols),
polyamines (spermidine, spermine, putrescine), and glycine betaine. Correspond-
ingly, secondary metabolites include terpenoids (saponins, tocopherols), phenolic
compounds (flavonoids, isoflavonoids, anthocyanins), and nitrogen-containing
metabolites (alkaloids and glucosinolates) (Rodziewicz et al. 2014). About one
million specific metabolites varying in chemical structures, polarity, and
physiochemical properties are present in the plant kingdom and can be analyzed
through metabolomics profiling and metabolic fingerprinting. Due to heat stress,
plants reshuffle their metabolites to sustain plant growth (Serrano et al. 2019).
Metabolite production is regulated by genes; thus, the activation of heat-shock
factors, mainly HSFA?2 and HSFA3, increases metabolite content, such as galactinol
(Song et al. 2016). Knowledge on metabolite production is important for developing
metabolite markers to select heat-tolerant varieties.

Chebrolu et al. (2016) raised heat-tolerant (04025-1-1-4-1-1) and heat-sensitive
(DT97-4290) soybean genotypes in a growth chamber, which were maintained
under control conditions (28/22 °C) until flowering. Heat stress [moderate (36/24 °
C) and severe (42/26 °C)] was imposed from flowering to maturity, with metabolite
profiling undertaken on harvested seeds. The seeds of genotypes collected at 42/26 °
C were highly abnormal and small and had high nitrogen levels compared with the
sensitive genotype. Two hundred and seventy-five metabolites were traced and
compared for 36/24 °C and 28/22 °C; 83 metabolites (48 downregulated and
35 upregulated were differentially altered in tolerant than sensitive genotypes)
significantly differed between genotypes at 36/24 °C, compared to 61 metabolites
(=30 and +31 in tolerant than sensitive genotypes) at 28/22 °C. Most traced
compounds were antioxidants belonging to tocopherol, terpenoid, and flavonoid
precursors. The tolerant genotype had more gulono-1,4-lactones (precursor for
ascorbic acid) than the sensitive genotype, which was attributed to its higher
tolerance to heat stress and positively correlated with seed vigor, seed germination,
seed weight, and oil content.

Proline is a multifunctional amino acid involved in plant growth and development
that acts as a compatible osmolyte and ROS scavenger to regulate plant function in
stressed environments (Szepesi and Sz611Gsi 2018). Under stress, proline has diverse
roles, such as stabilizing membranes, proteins, subcellular structures, and energy
sources, thus maintaining cellular homeostasis. Therefore, an increase in compatible
solutes such as proline under stressful conditions is valuable for plants (Kaur and
Asthir 2015). Leaf proline concentrations were measured in four chickpea genotypes
varying in their sensitivity to high temperature (4.5 °C higher than the ambient
temperature for 15 days); heat-treated genotypes had significant higher proline
concentrations than the control, more so in Pusa 1103 and BGD-72 (tolerant
genotypes) than Pusa 256 and Pusa 261 (sensitive genotypes) (Arunkumar et al.
2012). Similarly, a high-temperature treatment (45 °C for 8 h) on 6-day-old common
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bean seedlings increased proline content compared to control plants (25 °C) (Babu
and Devaraj 2008).

2.7.3 Heat-Shock Proteins

Heat-shock proteins are specific proteins accumulated during rapid heat stress. Heat-
shock genes are upregulated for plant survival under heat stress and responsible for
encoding HSPs (Chang et al. 2007). A sudden change in temperature increases HSP
production (Wahid et al. 2007). In all organisms, HSP expression is a general
response to high temperature (Vierling 1991). HSP90, HSP70, and low-molecular-
weight proteins are three classes of proteins according to molecular weight. Under
stress conditions, HSPs perform chaperone-like functions in protein synthesis,
maturation, targeting, renaturation, and membrane stabilization (Reddy et al. 2010,
2016). HSPs also play a role in protein translation and translocation, perform
proteolysis and protein folding, and reactivate denatured proteins (Zhang et al.
2005). Under heat stress, the expression of HSPs protects the machinery of protein
biosynthesis (Miroshnichenko et al. 2005). Membrane lipid composition, membrane
integrity osmoprotectants, and HSPs play important roles in heat tolerance (Blum
2018). HSPs are located mainly in the cytoplasm, nucleus, mitochondria, chloro-
plast, and endoplasmic reticulum (Waters et al. 1996). In plant species such as
potato, maize, soybean, and barley, specific HSPs have been identified in
mitochondria in response to high temperature (Neumann et al. 1994). HSPs maintain
membrane stability and protect PSII from oxidative stress (Barua et al. 2003). In
Medicago truncatula, the role of HSPs was determined by cloning and characteriza-
tion (Li et al. 2016). The roots of some plants also synthesize HSPs to cope with heat
stress (Nieto-Sotelo et al. 2002). The expression profiles of HSPs have been com-
pared in plant species/genotypes contrasting in heat sensitivity. In a comparative
study on cowpea and eight common bean varieties at 40 °C, cowpea showed more
HSP expression than common bean and was thus more tolerant to high temperature.
IPA 7 had the highest HSP expression of the eight common bean genotypes (Simdes-
Aradgjo et al. 2003).

In chickpea exposed to high temperature (42/25 °C) at anthesis, the levels of
HSPs increased in genotype JG14 compared to ICC16374 (Parankusam et al. 2017).
In another study, five chickpea genotypes were assessed for thermotolerance at
30, 35, and 40 °C, with CSJD 884 and RSG 895 identified as heat tolerant and C
235 as heat sensitive (Kumari et al. 2018). In peanut genotypes exposed to 50 °C for
30 min, ICGS 76, COC038, COC050, COC041, and COC068 were identified as heat
tolerant and COC812, COC166, COC115, COC277, COC227, Tamrun OL 02, and
Spanco as heat sensitive (Selvaraj et al. 2011). Heat-tolerant peanut genotype ICGS
44 had higher HSP expression than heat-sensitive genotypes AK 159 and DRG
1 under heat stress (45 °C) (Chakraborty et al. 2018). The level of thermotolerance
positively correlated with HSP accumulation. Thirty varieties of pea seedlings
exposed to high temperature (4649 °C) in growth chambers for different time
intervals (1-3 h) identified Acc#623 and Acc#476 as heat-tolerant and heat-sensitive
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varieties, respectively, with Acc#623 having higher levels of HSP70, HSP90, and
HSP104 than Acc#476 (Srikanthbabu et al. 2002). In soybean under 38/30 °C,
cultivar PI 471938 had higher HSP expression (especially HSP70), conferring heat
tolerance, than R95-1705 (Katam et al. 2020).

2.8 Genes for Heat Tolerance

Diverse genes have been identified using omics analyses (transcriptomics, genomics,
and proteomics) in various plant species for heat resilience mechanisms; these genes
are essential for developing stable cultivars (Singh et al. 2019). A lentil population
was developed by crossing heat-tolerant (PDL-1 and PDL-2) and heat-sensitive
(JL-3 and E-153) genotypes for molecular mapping and genetics studies (Singh
et al. 2017). For this purpose, simple sequence repeat (SSR) marker analysis and
QTL analysis were performed, using 495 SSR markers, which detected seven SSR
markers and two QTLs—qHt_ss and qHt_ps were closely linked with SSR markers
(PBA_LC_1507, PLC_105, PBA_LC_1288, LC_03, PBA_LC_1684,
PBA_LC_1752, PBA_LC_1480). Further, SSR marker PBA_LC_1507 was closely
linked to pod set and seedling survival trait. Another lentil study revealed genetic
diversity for heat tolerance among 119 genotypes using SSR markers (Zhang et al.
2005). High-temperature stress was applied at the seedling (35/33 °C) and anthesis
(35720 °C) stages to study the effects on morphophysiological and reproductive traits
of non-stressed and stressed plants in the field. A set of 209 alleles were identified
using 35 SSR markers. Genotypes were clustered into nine groups based on SSR
markers. Clusters 1 and 6 had significant variation, which could help produce better
segregants for heat tolerance. The genotypes in clusters 2, 3, 4, 5, 7, 8, and 9 were
moderately tolerant or moderately sensitive to heat stress. Significant differences
among clusters were observed for seedling survivability, heat tolerance scores,
membrane stability index, pollen viability, pollen germination, pod and seed set,
and seed yield. The finding suggests that identifying the genetic distances between
clusters will maximize their use for breeding heat-tolerant lentils. Results from the
RT-PCR confirmed differential gene expression in heat-sensitive fescue genotype
PI283316 and heat-tolerant genotype PI297901 (Zhang et al. 2005).

Similarly, in chickpea, phenotyping of RILs developed from a cross between
ICC4567 (heat-sensitive) and ICC156614 (heat-tolerant) genotypes exhibited two
genomic regions (CaLGO05 and CaLLG06) with four QTLs for the number of filled
pods, seed number, grain yield, and pod set. Further, 25 genes responsible for heat
tolerance were reported in these two genomic regions—five encoding HSPs and
heat-shock transcription factors, three responsible for detoxifying ROS, five
encoding proteins like farnesylated protein 6 and ethylene-responsive transcription
factors, and all these genes collectively upregulating other genes like MYB4, AKH3,
and RANT1 that are involved in the mitigation of heat stress in chickpea (Paul et al.
2018). Molecular characterization in mung bean genotype VC1973A revealed
24 VrHsf genes responsible for the synthesis of heat-shock transcription factors
that mediate plant responses under heat stress, suggesting their potential role in
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investigating mechanisms related to heat tolerance (Liu et al. 2019). Similarly, in a
soybean study, 26 GmHsf genes coded for heat-shock transcription factors, with
GmHSsf12, GmHsf28, GmHsf34, GmHsf35, and GmHsf47, highly upregulated during
heat stress (Chung et al. 2013).

29 Scope of Harnessing Germplasm for Designing Heat
Tolerance

Harnessing crop germplasm variability is one of the cheapest and most environmen-
tally friendly approaches for developing abiotic stress, including heat stress tolerance
(Jhaetal. 2014). Like other crops, substantial genetic variation has been harnessed to
develop grain legumes that tolerate heat stress (Craufurd et al. 2003; Jha et al. 2017;
Krishnamurthy et al. 2011). Several breeder-friendly techniques, such as field-based
screening of grain legumes in targeted heat-stress environments, enabled the selec-
tion of potential heat-tolerant grain legumes in chickpea, soybean, common bean,
pea, lentil, and cowpea. Based on the early phenology, an important heat stress,
some important chickpea genotypes, viz., ICC 14346, ACC 316, and ACC
317, showing heat stress escape mechanisms have been reported (Canci and Toker
2009; Upadhyaya et al. 2011). Selection relying on yield and yield-related traits,
such as high pod and seed set, low grain yield reduction, and maintaining high
biomass, has been used to directly identify heat-tolerant lines, including ICC1205,
ICC15614, BG256, and Vaibhav in chickpea (Devasirvatham et al. 2013; Gaur et al.
2012; Jha et al. 2015; Jumrani et al. 2018); G122, P1 163120, P1 271998, G122, A55,
and Cornell 503 in common bean (Miklas et al. 2000; Rainey and Griffiths 2005;
Shonnard and Gepts 1994); TN88-63, Tvu 4552, and Prima in cowpea (Nielsen and
Hall 1985; Warrag and Hall 1983); 55-437, 796, 796, 55-437, ICG 1236, ICGV
86021, ICGV 87281, and ICGV 92121 in groundnut (Craufurd et al. 2003; Ntare
et al. 2001); 72578, 70548, 71457, and 73838 in lentil (Delahunty et al. 2015);
Dieng, IA3023, and KS4694 in soybean (Djanaguiraman et al. 2019; Puteh et al.
2013); C.52/1/1/1 and C.42 in faba bean (Abdelmula and Abuanja 2007); and
JP-625, TARI-2877, PMR-38 II, EC-318760, EC-328758, and IARI-2904 in pea
(Mohapatra et al. 2020). Similar studies based on various physiological parameters,
including cell membrane stability, identified heat-tolerant ILC 482, Annegiri, and
ICCV 10 in chickpea (Srinivasan et al. 1996), PI 271998 in common bean (Marsh
et al. 1985), and SPT 06-07 in groundnut (Singh et al. 2016), and studies based on
pollen germination and fertilization under heat stress identified heat-tolerant ICC
15614, ICCV 92944, and ICC1205 in chickpea (Devasirvatham et al. 2010; Kaushal
et al. 2013), 55-437, ICG 1236, TMV 2, and ICGS 11 in groundnut (Kakani et al.
2002), DG 5630RR, NRC 7, and EC 538828 in soybean (Jumrani et al. 2018; Salem
et al. 2007), and Haibushi in common bean (Tsukaguchi et al. 2003). In addition,
studies based on superior yield performance and genotype x genotype x environment
biplot analysis identified heat-tolerant ICC 4958, RVG 203, RVG 202, JAKI 9218,
and JG 130 in chickpea (Jha et al. 2018, 2019), and studies based on several heat-
stress tolerance indices identified heat-tolerant lines in soybean (Sapra and Anaele
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1991), chickpea (Jha et al. 2018), and common bean (Porch 2006). Harnessing
existing genetic variability in crop wild relatives and landraces should be considered
to broaden the genetic base of grain legumes for higher heat tolerance in the future.

2.10 Genetics of Heat Tolerance

Classical genetics and quantitative genetics approaches, such as generation mean
analysis and diallel analysis, provided preliminary information on heat-stress toler-
ance in chickpea (Jha et al. 2019), cowpea (Marfo and Hall 1992; Patel and Hall
1988), and common bean (Miklas et al. 2000; Rainey and Griffiths 2005) based on
yield and yield-related traits under heat stress. However, this genetic information
does not provide a complete picture of heat tolerance in these grain legumes, as this
trait is governed by multigenes and highly influenced by G x E interactions
(Upadhyaya et al. 2011).

2.11 Genomic Resources for Heat Tolerance

Unprecedented advances in genomic resource development have enabled the precise
mapping of various traits of breeding importance, including heat-stress tolerance in
various grain legume crops (Jha et al. 2021; Paul et al. 2018; Pottorff et al. 2014;
Varshney et al. 2019). In parallel, the availability of reference genome sequences for
major grain legumes has enriched the genomics resources in legume crops. Using a
biparental mapping approach, several QTLs controlling heat-stress tolerance have
been elucidated in chickpea (Jha et al. 2019; Paul et al. 2018), cowpea (Lucas et al.
2013; Pottorff et al. 2014), lentil (Singh et al. 2017), and pea (Huang et al. 2017). In
chickpea, four important QTLs related to yield traits were identified on CaLGO05 and
CaLGO06 from an ICC15614 x ICC4567 RIL population under heat stress (Paul et al.
2018). Jha et al. (2021) reported that 37 major QTLs related to heat tolerance in
chickpea were discovered. Five QTLs were elucidated in cowpea under heat stress
(Lucas et al. 2013). Similarly, an evaluation of IT93K-503-1 x CB46 and IT84S-
2246 x TVul4676 RIL populations identified three QTLs (Hbs-1, Hbs-2, and Hbs-3)
contributing to heat tolerance in cowpea (Pottorff et al. 2014). Many QTLs contrib-
ute to phenological traits, such as days to flowering, with yield-related QTLs
reported in pea under heat stress (Huang et al. 2017).

The availability of high-throughput SNP markers elucidated genomic regions
controlling heat tolerance across the whole genome in a large set of chickpea
germplasm using a genome-wide association mapping approach (Tafesse et al.
2020; Varshney et al. 2019). In this context, several marker-trait associations
(MTAs) for various heat-stress traits have been deciphered in chickpea (Thudi
et al. 2014; Varshney et al. 2019), pea (Tafesse et al. 2020), and common bean
(Lopez-Hernandez and Cortés 2019). In whole genome resequencing derived SNP
markers based GWAS analysis involving a large panel of chickpea germplasm,
several significant MTAs for various physiological and yield traits were unveiled
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under heat stress (Varshney et al., 2019). Likewise, Tafesse et al. (2020) identified
several significant MTAs for chlorophyll content, photochemical reflectance index,
canopy temperature, and pod number in pea under heat stress. In common bean,
GWAS in 78 “geo-referenced” wild common bean accessions revealed several
candidate genes (e.g., MED23, MED25, HSFB1, HSP40, HSP20, phospholipase
C, MBD9, PAP) related to heat-stress tolerance (Lépez-Hernandez and Cortés 2019).
These MTAs could be important in marker-assisted breeding for developing heat-
tolerant grain legumes.

2.12 Transcriptomics for Unfolding Candidate Genes for Heat
Tolerance

In the past decade, technical interventions in functional genomics, especially next-
generation sequencing-based RNA-seq facility, have offered great insights into
gaining function of candidate gene(s) controlling various complex traits, including
heat stress in various grain legumes (Agarwal et al. 2016; Singh et al. 2019; Wang
et al. 2018). Using the RNA-seq technique, Ca_25811, Ca_23016, Ca_09743,
Ca_17680, and Ca_25602 candidate genes were deciphered from heat-treated
reproductive tissues of heat-tolerant and heat-sensitive chickpea genotypes (Agarwal
et al. 2016). In soybean, RNA-seq analysis of contrasting genotypes treated with
combined drought and heat stress revealed several differentially expressed genes,
primarily involved in the defense response, photosynthesis, and metabolic processes
(Wang et al. 2018). RNA-seq analysis of heat-treated soybean leaf tissue at the
reproductive stage revealed a plethora of up- and down-regulatory differentially
expressed genes and unearthed genes involved in flowering, oxidative stress, osmo-
regulation, HSPs, and ethylene biosynthesis (Xu et al. 2020). Transcriptional analy-
sis of heat-treated soybean root tissue revealed numerous differentially expressed
genes involved in regulating the heat-stress response (Valdés-Lopez et al. 2016). In
lentil, transcriptome analysis of contrasting heat-tolerant and heat-sensitive
genotypes (PDL-2 and JL-3) revealed several genes encoding a WRKY transcription
factor, DnaJ homolog subfamily B member 13, and 17.1 kDa class II heat-shock
protein and cell wall (Singh et al. 2019). However, higher expression of NAC and
WRKY transcription factor genes conferred heat tolerance in the PDL-2 genotype.

2.13 Proteomics and Metabolomics Resolving Gene Networks
for Heat Tolerance in Grain Legumes

A proteomics approach could endow us with the whole landscape of proteins
responding to various biotic and abiotic stresses (Ramalingam et al. 2015). A series
of proteins contributing to switching on various complex signal transduction
mechanisms and intricate gene networks associated with adapting the plant response
to heat stress have been investigated (Rathi et al. 2016). However, the role of
proteomics in mediating heat-stress tolerance remains limited in grain legumes.
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Various types of HSPs, such as ClpB/HSP100 and VfHsp17.9-CII (Kumar et al.
2015), EF-Tu protein (Das et al. 2016), tissue-specific proteins (Ahsan et al. 2010),
and early response to dehydration (ERD)-related proteins (ERD10 and ERD14)
(Kovacs et al. 2008), act as chaperones, protecting cells from heat stress-related
injuries. Similarly, heat stress increased HSP expression in chickpea genotype JG14
(Parankusam et al. 2017) and groundnut genotype ICGS 44 (Chakraborty et al.
2018). Further, Das et al. (2016) reported 25 proteins contributing to various cellular
metabolic activities under heat stress in soybean. Furthermore, the participatory role
of dehydrin-like proteins recovered from mitochondria and their plausible role in
safeguarding mitochondrial membrane in yellow lupin under heat stress are worth
noting (Rurek 2010). Valdés-Lopez et al. (2016) reported 30 commonly up- and
downregulated heat stress-responsive proteins involved in cell wall formation,
amino acid and lipid biosynthesis, and ROS reduction in soybean.

Like proteomics, metabolomics is a robust approach for enriching our under-
standing of various primary and secondary metabolites produced in response to
abiotic stresses, including heat stress (Janni et al. 2020; Ramalingam et al. 2015).
Among the various metabolites, tocopherol and its isoforms, ascorbate, flavonoids,
phenolic compounds, proline, polyamines, and glycine betaine help plants adjust to
heat stress (Chebrolu et al. 2016; Kaplan et al. 2004). For example, a heat-tolerant
soybean genotype had a higher abundance of flavonoids and tocopherols acting as
antioxidants than a heat-sensitive genotype (Chebrolu et al. 2016). Further technical
innovations and bioinformatic analysis of metabolomics-derived data could shed
light on the complex gene network of heat-stress adaptation in grain legumes.

2.14 Conclusions

Increasing episodes of heat stress are becoming a serious issue worldwide, challeng-
ing the yield potential of various crops, including grain legumes. Harnessing genetic
resources could be an important approach for sustaining legumes under rising
temperatures. In addition to yield traits, incorporating various physiological traits
could enable plants to adapt and sustain grain yield under heat stress (Reynolds and
Langridge 2016).

As crop wild relatives are the reservoir of novel gene(s)/QTLs for various stress
tolerance including heat-stress tolerance, introgression of heat-tolerance genomic
region into elite legume cultivars using a pre-breeding approach could sustain
legume yields under rising global temperatures (Chaudhary et al. 2020). Likewise,
capitalizing on the various adaptive traits conferring heat tolerance from legume
landraces could assist in developing grain legumes that tolerate heat stress. Further-
more, advances in grain legume genomics, especially molecular markers, and
availability of grain legume genome assemblies have helped pinpoint heat-tolerance
genomic regions in various legumes. Whole-genome resequencing efforts have also
enabled the discovery of novel haplotypes controlling heat tolerance (Varshney et al.
2019). In parallel, progress in functional genomics, including RNA-seq-based
transcriptomics, has enabled the discovery of underlying candidate gene
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(s) involved in heat tolerance and putative functions (Agarwal et al. 2016; Singh
et al. 2019; Wang et al. 2018). Additionally, advances in proteomics and
metabolomics have uncovered various participatory proteins, especially HSPs and
heat stress-responsive metabolites, and various novel signaling molecules in
legumes (Chebrolu et al. 2016; Parankusam et al. 2017). Therefore, leveraging
various breeding, physiological, and “omics” approaches combined with emerging
“speed breeding,” genomic selection, and genome editing technology could help
develop climate-resilient grain legumes to meet the increasing demand for plant-
based dietary protein.
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Abstract

Developments in crop management practices and novel breeding methods are
important to sustain crop productivity for the current and upcoming challenges
caused by drought and high-temperature stresses because the occurrence of these
stresses during crop growth stages is determinantal to crop yield. Direct selection
for yield per se under any abiotic stress conditions is often ineffective because of
the low heritability for yield. One of the ways to increase the selection efficiency
for stress tolerance is to select for any secondary traits which are easy to measure,
presenting high heritability, and correlate highly with grain yield under stress
situations. In this chapter, the secondary traits like plant water status, green leaf
area duration, limited transpiration, canopy temperature depression, root archi-
tecture, early morning flowering, membrane integrity, photochemical efficiency,
stem carbohydrate mobilization, and yield-associated traits are discussed. The
above plant traits can be quantified under both controlled and field environments.
The possibility of converting these traits under controlled environments into a
method of quantification at field scale depends on the advancements in allied
sectors of sciences, like spectroscopy, remote sensing, aeronautics, and high-end
computing facilities. The use of these traits as a selection tool in crop breeding
will pave the way for the development of drought and high temperature stress-
tolerant genotypes.
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3.1 Introduction

Phenotype is defined as the observable effect of a genotype and its interaction with a
given environment. Phenotyping is the application of protocols and methodologies
to measure the traits specifically related to the structure of plant or function to
facilitate the right selection in the breeding program or to complement genotypic
data for the identification of associated genes. Under plant breeding, selection can be
defined as the science of discriminating among the biological variants in a popula-
tion to detect and pick the desirable recombinants. However, the identification of
recombinants that leads to superior phenotype is challenging because of the interac-
tion of genotype with the environment. The major challenge in phenotyping is that it
involves a large workforce, is expensive, and is prone to error if the methodology
was not meticulously followed. Ample literature is available on the mechanisms of
tolerance to drought and HT. However, many of the traits that have been reported to
be promising for stress tolerance are not feasible for screening genotypes in large-
scale or high-throughput mode.

In this chapter, we consider the traits which can be recorded at the lab, controlled
environment, and field level. More information about field-based high-throughput
phenotyping systems can be found in the review article by Cobb et al. (2013).
The innovative use of technology and cautious development of tools to automate
the processes without sacrificing predictive power will be very critical in the
phenotyping platforms. Standardized phenotyping structures are not feasible practi-
cally for all research-related questions, but with thorough consideration and defined
objectives, several techniques can be harnessed to examine specific characters under
high-throughput settings. Agronomically important traits that are observable at the
canopy level can help in discriminating the genotypes based on their capability to
capture and use the natural resources, and these traits serve as a proxy for important
agronomic characters. If traits associated with stress tolerance are identified and
validated in a wide range of crops, then methodologies could be developed to
quantify those traits under high-throughput systems using technologies such as
digital imagery, remote sensing, robotics, thermography, and farm machinery.

3.2  Traits Associated with Drought and High Temperature
(HT) Stress Tolerance and Its Phenotyping Method

3.2.1 Green Leaf Area Duration

Genotypes exhibiting the extended green leaf duration area are referred to as stay-
green phenotypes. In contrast to cosmetic stay green, functional stay-green leaves
supply more photosynthates to developing grains and can thus significantly contrib-
ute to grain yield (Thomas and Howarth 2000). Stay-green genotypes in various
cereals have been reported, and selection of stay green has been targeted to improve
the crop yield under drought and HT stress. Stay green can be studied at basic cell
level, leaf level, or whole-plant level. At the cell level, Western blot analysis of
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proteins from leaves will indicate the integrity of chloroplast-associated proteins. In
stay-green genotypes, delayed degradation of proteins is correlated with the phe-
nomenon of delayed senescence onset (Borrell et al. 2001).

At leaf level, chlorophyll index measured through SPAD meter or chlorophyll
meter is most frequently used to assess the greenness of the leaves. The chlorophyll
index obtained from the SPAD meter is a point estimate (not cumulative), and it
represents a section of the leaf and can be an indicator of the leaf senescence process.
Studies have indicated that there is a strong positive relationship between chloro-
phyll index with actual leaf chlorophyll content (Hebbar et al. 2016). These
phenotyping tools can allow the frequent measurement to assess the rate of leaf
senescence, which is otherwise difficult if conventional spectrophotometric
measurements are employed.

At the plant level, the expression of a stay-green trait can be evaluated using a
stay-green score, or measuring canopy reflectance through a green seeker, and a
spectroradiometer. Spectral reflectance from canopies over the visible and near-
infrared (NIR) regions is mainly influenced by the canopy structure, leaf pigmenta-
tion, protein contents, and leaf water (Homolova et al. 2013). A healthy green
canopy absorbs most of the red spectrum and reflects most of the NIR spectrum
because chlorophyll molecule absorbs blue and red color and mesophyll region
reflects the near-infrared spectrum. The normalized difference vegetation index
(NDVI) is widely used to quantify the leaf senescence process or greenness of the
canopy. The NDVI can be obtained at ground level, and from high, low, and satellite
altitudes. The portable NDVI sensor, namely green seeker, provides rapid informa-
tion on leaf area index and green area index. NDVI = (Ryir — Rred)/(RNIR + RRed)s
where Rypr is the reflectance at the NIR region, and Ry is the reflectance at the red
region. The majority of the portable NDVI sensors have their own sources of light,
which allows the measurements to be made at any time of the day and any light
condition. For NDVI sensor without a light source, measurements can be made on a
bright sunny day with negligible wind, because slight wind or breeze can signifi-
cantly alter the plant canopy structure. The plant surface should be devoid of dew,
irrigation, and rain. Measurements can be made at any of the developmental stages or
regular intervals from the emergence to maturity stage depending on the objective of
the study. If the objective of the experiment is to compare the genotypes,
measurements during heading and anthesis can be avoided because differences in
phenology will confound the result. To identify the abiotic stress-tolerant genotypes,
measurement during and after the stress (recovery) is generally recommended to
discriminate between susceptible and tolerant genotypes. To track the rate of leaf
senescence, NDVI measurements from the anthesis period to physiological maturity
are generally followed. The genotype that maintains greenness, canopy green area,
and duration are mostly associated with a higher yield.

Green leaf area duration in terms of NDVI can also be assessed using unmanned
aerial vehicles or systems (UAV or UAS). Aerial vehicle systems have the capacity
of acquiring images with temporal and spatial resolutions. When compared with
other remote sensing platforms such as manned aircraft and satellites, UAVs can be
deployed effortlessly and even have lower operational costs. Regardless of the class



74 M. Djanaguiraman et al.

of UAV used, a range of customizable cameras and sensors can be integrated for
agricultural studies. The images should be collected around solar noon under clear-
sky conditions. Flight path, speed, and sensor parameters like aperture, exposure
time, frame rate, and sensitivity are important so that there will be adequate overlap
between images for mosaicking. After acquiring the images, preprocessing
operations like mosaicking and radiometric calibration should be adopted for better
results. After preprocessing, the UAV imagery has to be converted to reflectance
data for the extraction of different vegetation indices.

3.2.2 Plant Water Status

Plant water status can be quantified through either psychrometric methods or
pressure chamber methods, but both these methods are time consuming, very
laborious, and less suited for plant breeding or screening genotypes for stress
tolerance (Jones 2007). It is observed that relative water content (RWC) is often a
good surrogate for pressure potential, and predawn water potential is a surrogate for
soil water potential (Jones 2007). RWC evaluates the existing water content of the
sampled leaf tissue relative to the maximal water content it can hold at complete
turgidity. A major disadvantage of the RWC technique is the considerable time lag
between obtaining and sampling the result. Further, the four weighing operations are
required, which is time consuming. To overcome this disadvantage, relative tissue
weight (a ratio between tissue fresh weight to tissue turgid weight) is used because
relative tissue weight is linearly related to RWC (Smart and Bingham 1974).

Loss of water through the transpiration process changes the pattern of canopy
reflectance, which indicates a reduction in the absorption of light by leaf due to both
the radiative properties of water and drought-related changes in the leaf morphologi-
cal properties, and leaf physiological status (Ollinger 2011). The extent of the
increase in canopy reflectance under drought conditions is related to the duration
of stress as well as the response of genotype. Penuelas and Filella (1998) have used
canopy reflectance at specific wavelength bands in the visible and NIR region for
estimating the plant water status. Hyperspectral active or passive sensors provide
measurements of wavelengths in the visible (~400-700 nm) ranges and NIR
(~700-2500 nm) ranges, from which different indices are calculated. The important
NIR-based index is the water index, WI = Rg70/R900, Which is used to quantify
relative leaf water content (Pefiuelas et al. 1993). Based on the WI, Babar et al.
(2006) and Prasad et al. (2007) have developed normalized water indices
NWI-1 = ([Rg70 — Roool/[Ro70 + Ronol)s NWI-2 = ([Ro70 — Rss0l/[Ro70 + Rgsol)s
NWI-3 = ([Rg70 — Rgsol/[Ro70 + Rgsol), and NWI-4 = ([Ro70 — Ro20)/[Ro70 + Ro20])
to screen spring wheat genotypes for drought tolerance. These five indices are now
widely used as a selection tool for grain yield under drought stress in wheat (Prasad
et al. 2007). Apart from the above, the available water absorption bands at 1450,
1900, and 2100 nm, overtones at 750 and 1250 nm, and numerous spectral vegeta-
tion indices for drought have been established for the recovery of crops’ status under
drought stress (Claudio et al. 2006; Cohen 1991; Hunt Jr et al. 1987).
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3.2.3 Canopy Temperature Depression

Among the various traits that are associated with plant water status, the easiest
method is a measurement of canopy temperature depression (CTD), which shows
good correlations with parameters associated with plant water relation parameters
(Mahan et al. 2012). Canopy temperature depression is expressed as the difference
between the air and canopy temperature (CTD = T, — Tcanopy)- Under high-drought
conditions and solar radiation, stomatal conductance gets decreased because the soil
moisture is inadequate to meet the evapotranspiration demands, resulting in an
increase in canopy temperature. Canopy architecture influences the canopy temper-
ature through mutual shading or leaf angle.

Canopy temperature depression is a negative or positive value based on the air
temperature and canopy temperature. The CTD is influenced by both environmental
and biological factors (Bahar et al. 2008). However, studies revealed a significant
correlation between CTD and leaf water potential (Cohen et al. 2005), stomatal
conductance (Rebetzke et al. 2012), and grain yield (Balota et al. 2007; Reynolds
et al. 1994) under drought-stress conditions; therefore, it is used as a criterion for
drought tolerance selection. Genotypes with cooler canopies than other genotypes in
the same environment indicate the drought tolerance ability. Higher transpiration
indicates cooler canopy and higher conductance of stomata, favoring net photosyn-
thesis, and a lower canopy temperature in crops under drought indicates a relatively
higher capacity for consuming soil moisture or for upholding a healthier plant water
status. However, the suitability of CTD as an indicator of yield must be evaluated for
the individual environment and in particular plant species (Blum et al. 1989) as the
genotypes which keep their canopy cooler by deeper root system in the medium to
deep soils may not perform better when grown on shallow soils.

Apart from this, CTD has remained a good estimate for screening genotypes to
HT stress tolerance; measurement by CTD using infrared thermometer has some
common genetic base under both drought and HT stress (Pinto et al. 2010). Under
HT stress, due to the high vapor pressure deficit (VPD), the plants that are well
watered raise their transpiration rate to cool the canopy through the evaporative
cooling process. The cool canopies are associated with an increased rate of stomatal
conductance and root lengths. Increased root length can explore the deeper layer of
soil, and in a situation with higher VPD, it can extract more moisture, and it will be
used to cool the canopy through open stomata. These genotypes are usually referred
to as HT escaper. If subsoil moisture is not available for enhanced transpiration, the
stomata close, leading to yield penalty. Real HT-tolerant genotypes give high yield
under HT stress and also have inherent high leaf temperatures. Mutava et al. (2011)
have studied sorghum [Sorghum bicolor (L.) Moench.] genotypes exhibiting higher
leaf temperature and higher yield in the sorghum diversity panel, which can be used
for improving drought and HT stress tolerance in sorghum.

Infrared thermal imaging is a remote sensing technique commonly used for
quantifying canopy temperature (Jones and Schofield 2008). In earlier days,
thermocouples and mercury thermometers were commonly used to measure leaf
temperature. It was cumbersome and does not represent the canopy temperature
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because it is a point measurement. Hence, principles of thermometry and thermal
imaging have been translated into the most commonly used remote sensing tools
such as infrared thermometer (IRT) and thermal imaging cameras for assessing the
canopy temperature of crop plants. Infrared thermometry can report the subtle
differences in canopy temperature in fields and controlled conditions (Winterhalter
et al. 2011). Thermal imaging has mostly preferred to quantify plant water relations
because of the fast data collection and nondestructive nature, and it can also include a
huge number of individual plants in a single image for calculating the temperature
measurements. For higher accuracy, such measurements should be preferred when
the canopy covers the soil, which otherwise contributes to background noise. These
techniques were successful in differentiating drought tolerance among genotypes
when used for assessing the irrigated crops on windless and cloudless days with high
VPD. One of the most important issues while applying thermal imaging is to filter
out the background soil from the image and get more precise canopy measurements.
Also, the use of thermal imaging is influenced by air temperature, solar radiation,
humidity, and wind speed, which keep one fluctuating under natural conditions.
Repeated measurements can take these influences into account when assessing the
genotypes for tolerance to high temperatures or drought. Hence, recently Internet of
Things (IoT) is being used to replace handheld IRTs and wired IRTs for monitoring
canopy temperature in wireless mode. The sensors are installed at the center position
of each plot/genotype where there are maximum ground cover, uniform growth, and
0.15 m above the plant canopy height. A base station unit will be established at the
edge or corner of the field, which collects the data transmitted by the sensors. Every
sensor collects data from a circular field of view (60°) with a 0.15 m diameter every
minute, and this is auto-averaged to every 15 min and is reported wirelessly to the
base station. The canopy temperature data collected in the base station will be
transmitted to a computer system for archiving process and subsequent analysis.
Such automation in monitoring and assessing the high-temperature responses of crop
genotypes can accelerate selection processes aiming at climate-resilient cultivars.

3.2.4 Limited Transpiration

The limited transpiration trait is usually referred to as a slow-wilting trait. Consider-
able intraspecific variations in the stomatal response to a change in vapor pressure
deficit (VPD) have been reported in soybean (Fletcher et al. 2007), peanut (Arachis
hypogea L., Devi et al. 2010), sorghum (Gholipoor et al. 2010), pearl millet
[Pennisetum glaucum (L.) R. Br., Kholova et al. 2010], and chickpea (Cicer
arietinum L., Zaman-Allah et al. 2011). Measurement of restricted transpiration is
a semi-high-throughput phenotypic technique because it is not quick, but this trait
can be measured simultaneously in a large number of samples. Restricted transpira-
tion under high VPD by partial closure of the stomata may be associated with the
decreased hydraulic conductance of leaf and root in plants, which limits the flow of
water from roots to leaf (Sadok and Sinclair 2010). It has been assumed that the
hydraulic conductivity connected with limited transpiration trait is related to the
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transmembrane transport of water via aquaporins. Therefore, application of
aquaporin inhibitors, namely cycloheximide, mercury, and silver ions, has the
potential to evaluate the expression of restricted transpiration trait.

An indirect approach for the identification of limited transpiration traits in a set of
genotypes is through looking at a delay in canopy wilting under water-limiting field
conditions. However, it cannot be definite because delayed wilting could be
associated with other reasons too. An effective method to evaluate delayed wilting
is to measure the canopy temperature under irrigated field conditions. Genotypes
with higher canopy temperature and high VPD under well-watered conditions could
indicate partial closure of stomata and be associated with limited transpiration rate.
However, the environmental conditions should be unique because the difference in
leaf temperature can be from several possibilities like temperature, light, relative
humidity, and nutrition (Sinclair et al. 2017).

In another case, the expression of restricted transpiration can be quantified by
measuring the transpiration rate and weight of the pot at different VPD in the intact
plants as detailed by Riar et al. (2015), and here more care should be taken to reduce
the evaporation from the soil. An alternate method is to study the stomatal conduc-
tance of plants under field conditions during the natural daily variations in VPD
(Shekoofa et al. 2014). However, it is limited by the weather conditions when the
measurements were made and also the number of lines that are repeatedly measured
throughout a day for stomatal conductance. The LeasyScan platform allows quick
measurement of plant leaf area and pot weight, and by using this platform, pot
weight can be measured every hour to arrive at the transpiration rate. Using 3D laser
scanning, the leaf area can be estimated. By using leaf area and transpiration rate, the
limited transpiration trait can be phenotyped in a large number of genotypes.
Evidence of concept in observing the limited transpiration has been confirmed in
corn (Zea mays L.), pearl millet, cowpea (Vigna unguiculata L.), sorghum, and
peanut (Sinclair et al. 2017).

3.2.5 Root Architecture

Huge phenotypic plasticity of root characters in response to soil physical and
chemical conditions was observed, and lack of cost-effective and high-throughput
screening techniques makes root studies highly challenging. Root architecture
denotes the spatial arrangement of root systems, which determines the plant anchor-
age, ability of roots to absorb nutrients and water, and intra- and interplant competi-
tion. The rooting system of the plant responds to environmental stimuli through
appropriate adaptive changes in morphological, structural, and physiological pro-
cesses, which is referred to as root plasticity, and thus exploiting this through
breeding by integrating the physiological phenes and root architectural traits will
guide in breeding the genotypes for drought tolerance (Kashiwagi et al. 2006; Lynch
2011; Osmont et al. 2007).

Measurement of root system architecture is hindered not only by various
complexities (physical, chemical, biological) of soil medium, but also by lack of
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comprehensive information about the root system architecture and life span of the
root system of a plant (Ahmadi et al. 2011; McCully 1995). A lot of phenotyping and
sampling methods for roots in the field have been suggested, namely monoliths, soil
profiling, rhizotron, nail plates, trenching, probes, shovelomics, visualization, and
digitalization of roots in the field (Costa et al. 2014; Pierret et al. 2003; Trachsel et al.
2011; Wu et al. 2015), to obtain information on root length, dry matter, surface area,
dry weight, diameter, diameter class, and structure.

Spatially dispersed monolith sampling can be used for assessing crop root system
architecture under the field. However, commonly used auger core sampling might
suffer large errors when illustrating spatial distributions of roots. Shovelomics is an
alternate high-throughput method for phenotyping root system architecture in the
field, which provides a rapid sampling and quantification of rooting depth but not
fine details of the root system. The heterogeneity of soil structure and composition
can cause a confounding effect on the root system architecture within the same field.
Several software packages (RootScan, RootNav, DART, GiARoots,
RootSystemAnalyzer, RootReader, 1J Rhizo, RootReader3D, and RooTrak) were
developed for extracting quantitative data and imaging roots from the captured root
images (Lobet and Draye 2013).

Direct measurements of root traits under field conditions can be made by remov-
ing the soil, which can cause the death of the plant, the loss of root material, and the
loss of geometric information. Earlier, digging of a trench close to growing plants to
visualize the whole root was employed. Even though the trench method permits for a
precise in situ observation of roots grown in the field, it is very slow and laborious.
Apart from trench methods, researchers are using excavation techniques like soil
coring to study the root architecture. Soil coring is done by introducing a metal
cylinder down into the soil to obtain a soil core. The soil core is usually divided into
segments with the same length, and each segment is washed over a screen to collect
all the roots. The collected roots are scanned on a flatbed scanner for measuring
subsequent length. The roots can also be dried, weighed, and counted. The soil
coring method is used to estimate the rooting depth and root length density. With the
development of the tractor hydraulic system, now the soil coring method is well
automated.

Another method of excavation technique practiced is root crown phenotyping or
shovelomics because the root crown is considered as the backbone of the root
system. Using a regular shovel, the root crown which is the upper part of the root
structure attached to the shoot is excavated, washed, and analyzed for root architec-
ture. This procedure provides information on root placement in the soil and the
number of roots, and their lengths and angles. Shovelomics is also a destructive
method.

Field rhizotrons are considered as an enhanced version of trenches; in this
method, a trench is dug, a glass window is positioned tightly over the vertical cut
plane, and a roof is installed over the pit. A customized camera is inserted into the
tube to image the soil with the roots around the tube. Through this method, root
initiation, growth, and turnover of individual roots over a period can be assessed. A
major limitation of this technique is low throughput (numbers of samples are small
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per unit time) and is highly influenced by soil properties. To reduce the environmen-
tal variability and increase the throughput, researchers are using rhizobox, which
works similarly to rhizotron. In most cases, the rthizoboxes are maintained at an angle
that forces the root to grow along with the glass so that it can be monitored
frequently. However, in this method, it will be difficult to distinguish between thin
roots and soil. Now researchers are using clear media such as agar (in Petri dishes) to
grow roots, making the roots visible, and the images of the Petri dishes with roots
can be analyzed for obtaining information on root angle.

On the other hand, X-ray computed tomography and magnetic resonance imaging
are the two technologies that can be used for imaging the root systems over some
time without destroying the plant. With X-ray computed tomography, both roots and
soil are imaged, and custom-made software tools are required to segment the roots.
On the contrary, magnetic resonance imaging can be adapted to image only roots in
such a way as to avoid segmentation. However, these two techniques are low
throughput and expensive. In summary, though there are many ways to grow and
observe roots, appropriate methods should be selected based on the experimental
question and ease of use.

3.2.6 Membrane Stability

Maintaining cell membrane stability is one of the adaptation mechanisms under
abiotic stress. Cell membrane stability can be assessed directly through electron
microscopy and indirectly by lipid peroxidation, electrolyte leakage, and chlorophyll
a fluorescence. The level of lipid peroxidation detected as malondialdehyde (MDA)
is an indicator of free radical damage to the cell membranes because lipid peroxida-
tion alters the physiological functions of cell membranes. The traditional technique
to detect MDA content in plants is the thiobarbituric acid-reactive substance
(TBARS) test using the spectrophotometry technique. The TBARS such as
aldehydes and malondialdehyde react with thiobarbituric acid at low pH and form
[TBA]-MDA adduct, which is a pink chromogen having a maximum absorbance at
532 nm; the formed adduct is quantified through a spectrophotometer. The TBARS
test is a standard test and is sensitive for microsomal and liposomal membrane lipid
peroxidation tests. It rarely measures the free MDA content of the lipid system. TBA
reactivity depends on the lipid content of the sample (Bhattacharjee 2014).

Also, high-performance liquid chromatography (HPLC) was used to determine
MDA in plants (Davey et al. 2005). However, the HPLC method requires lots of
time, chemical, and complex sample preparation (utmost care has to be undertaken
to ensure the loss of oxidized material and artificial peroxidation). Kong et al. (2016)
have assessed the feasibility of hyperspectral imaging with 400—-1000 nm to detect
MDA content in crops after herbicide application. The result indicated that the
extreme learning machine model achieved the optimal prediction performance
with 23 wavelengths selected by competitive adaptive reweighted sampling.

Assessment of damage to the thylakoid membrane under stress is a reliable
measure of a plant’s susceptibility to HT stress (Ristic et al. 2008). Impairment in
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the thylakoid membrane can be estimated by determining chlorophyll a fluorescence
trait and measuring the ratio of constant fluorescence (O) and the peak of variable
fluorescence (P) (Ristic et al. 2008). An increase in the O/P ratio represents the
damage in thylakoid membranes; the higher the increase, the greater the damage.
Larcher (1995) has observed a good correlation between chlorophyll fluorescence
and electrolyte leakage (an indicator of membrane damage).

With the recent developments in tracer techniques, fluorescent dyes and nucleic
acid stain (Sytox green) were used as molecular probes to track the membrane
damage. After the brief incubation period with the stain, the nucleic acids of dead
cells will fluoresce bright green. This property makes the stain Sytox green a simple,
quantitative single-step dead cell (compromised membrane) indicator for use with
fluorescence microscopes (Prasad and Djanaguiraman 2011).

3.2.7 Photochemical Efficiency

Chlorophyll fluorescence displays the fate of excitation energy in the photosynthetic
apparatus that has been used as an early, in vivo indicator of stress (Yamada et al.
1996). In most of the studies, dark-adapted chlorophyll a fluorescence parameters
are used to understand the reactions of plants to environmental cues. However, it is
challenging under field conditions, due to time constraints (dark-adaptation time) to
perform the dark-adapted test if the study involves many genotypes or treatments.
Dark-adaptation times vary with a crop from 10 to 60 min, and some researchers use
pre-dawn values for the basal fluorescence (F,). The F, measurement and its light-
adapted equivalent F, are fundamental to the analysis of fluorescence. F,’ is
measured immediately after switching off the actinic light, but accurate measure-
ment of F,' is difficult. Many fluorometers have the ability to apply a weak far-red
light to measure both F,, and F,/. Application of saturating pulse to a dark-adapted
leaf triggers a maximum value of fluorescence by closing the reaction centers. At this
time, in a non-stressed healthy leaf, there is no non-photochemical quenching (NPQ)
since the leaf is dark-adapted leading to a maximum value of fluorescence (F ;). The
F,/F, ratio is an indicator of the maximum quantum yield of PSII photochemistry.
The value of F,/F,, ratio in an unstressed leaf will be >0.80, and the presence of
stress will decrease this ratio through photoinhibition or inactivation of PSII (Long
et al. 1994). Thus, measuring the F,/F, ratio after an appropriate dark adaptation is
the most commonly used technique to quantify stress in leaves. To attain this
precisely in a light-adapted leaf, we need to make sure that PSII is fully oxidized,
and this can be succeeded using a pulse of far-red light. Precise measurements of
basal fluorescence in the field are challenging due to the relaxation kinetics of the
chlorophyll molecule under the dark-adapted state. When a leaf is dark-adapted, the
movement of electrons in the thylakoid should stop almost immediately. However,
NPQ “relaxes” more leisurely because the protective NPQ processes remain active.
Therefore, to obtain the true maximum value of fluorescence, we must allow the leaf
to remain in the dark for a span of time ample for these processes to complete (i.e.,
NPQ to become zero) (Murchie and Lawson 2013).



3 Traits Associated with Drought and High-Temperature Stress and. . . 81

Due to the ease of measurement of the maximum efficiency of PSII photochem-
istry in the light, this is widely used as an indicator of the operating efficiency of PSII
in the light. However, care should be taken in this measurement because PSI may
contribute to fluorescence when measurements are made above 700 nm and the
existence of “multiple turnovers” of PSII during the saturating pulse. From the value
of F,/F,, ratio, the rate of electron transport can be calculated using the photosyn-
thetic active radiation (PAR) value and a fraction of light intercepted by PSII and
PSIL It is difficult to measure the latter, and an assumption of equal absorption is
made. Although these standard values are expected to be constants, they will differ
between the leaves having different optical properties or the same leaf suffering from
stress treatments. For instance, relating the electron transport rate (ETR) values
between control (fully hydrated leaf) with a drought-stressed leaf (low turgor
value) is not appropriate.

Similarly, leaf samples with different pigment contents or photosystem stoichi-
ometry will vary for a light interception, causing inaccuracies in ETR calculation
(Walters 2005). The measurement of F,’ can be open to error if the far-red light
applied does not sufficiently oxidize Q4 and if the relaxation of NPQ causes F,' to
rise quickly after the actinic light has been switched off. Thus, care should be taken
during measuring the PSII quantum yield to assess the impact of stress on the plants.
Now, imaging chlorophyll fluorescence as a diagnostic tool is becoming increas-
ingly popular for screening germplasm. Chlorophyll fluorescence imaging has been
combined into many phenotyping platforms for high-throughput analysis. Imaging
provides additional evidence on the spatial and temporal heterogeneity of measured
parameters. Now, chlorophyll fluorescence imaging is integrated with infrared gas
exchange techniques, thermography, and hyperspectral imaging to explore and
integrate various traits to understand the stress response (Bauriegel et al. 2011).

3.2.8 Yield-Forming Traits

Grain yield is the final product of many processes, and in cereals, for example, it is
primarily determined by yield-associated traits like the number of spikes/panicles per
plant, number of grains per spike/panicle, and individual grain weight. Seed numbers
are a function of seed set, and the decrease in seed set percentage under stress is
linked with early or delayed flowering, asynchrony of male and female reproductive
development, and impairments in parental tissues, in male and female gametes (Zinn
et al. 2010). Estimation of seed set percent is a more accurate estimation of the
response of gametes to HT stress. However, data from marked floret instead of whole
spike/panicle will provide a good estimate because within a spike each floret will
have a different developmental stage or day of anthesis (Aiqing et al. 2018). During
estimating seed set percentage, researchers may consider ill-filled seeds/grains as a
seed, because the formation of seed indicates the function of gametes. However, it
will be wise to discard the ill-filled grains during calculating the seed set percentage
because it will overestimate the seed yield potential of the genotype. A strong
positive correlation between seed set and pollen availability, and seed set and seed
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yield, was established (Prasad et al. 2017, 2019). Limited gamete functions may be
considered the most important factor for seed set under drought and HT stress
environments. Gamete functions depend on its viability, which can be evaluated
by viability assays like staining and in vitro and in vivo germination.

The choice of pollen viability method depends on the crop or species. Viability
has been defined as having the ability to dwell, nurture, germinate, or develop, and
the loss of viability is a constant variable. Thus, the viability of pollen grains has
been used to define the ability of pollen grains to germinate on the stigmatic surface,
germinating in vitro, picking up certain stains, and effective seed set following
pollination. Viable pollen grains cannot germinate under in vitro or in vivo
conditions if the circumstances are not favorable (environment and pistil response).
Therefore, assessment of pollen viability based on seed set indicates the response of
both male and female gametes. Methods of determining pollen viability are enor-
mous, and the method of determining pollen fertility (ability to set the seed) is
through quantifying seed set percentage.

All the methods of assessing pollen viability depend on factors like cytoplasm
content, enzyme activity, plasmalemma integrity, and environmental conditions.
However, none of the methods can be able to confirm that the pollen is inviable
and unable to fertilize and set seed. Therefore, it gives a likelihood estimate. The
approaches used to evaluate the pollen viability are measuring the respiration rate
(very rarely used), staining techniques (vital stain to indicate membrane integrity,
presence of the cytoplasm, respiration rate, enzyme activity, and starch content),
in vitro germination, and capacity to set seeds. In vitro pollen germination method is
rapid, fully quantitative, and reasonably simple, and it is highly correlated with seed
set percent in many species (Prasad et al. 2019). The results depend on the time of
pollen collection, the composition of the medium, the temperature of the growth
medium, and the duration of the test. Low germination under in vitro conditions
indicates that the pollen is still fertile and able to set seed. The in vivo method is
more valid than the in vitro method. However, it must be accompanied by a stigma
receptivity test. The major drawbacks are that vital stains tend to stain old and dead
pollen, overestimation of viability, pollen with cytoplasm or starch is not necessarily
fully fertile, and immature or aborted pollen grains also pick the stains (Dafni and
Firmage 2000). The important elements that showed up during assessing pollen
viability are (1) information about the test environment, (2) freshly collected pollen
preferred for the assay, (3) testing in parallel the dead pollen as a negative control,
(4) testing hydrated vs. dehydrated pollen to understand the effect of moisture level,
and (5) running several tests simultaneously to understand which method is best for
the test species.

Cardinal temperatures (Tmin, Topt, and Tinay) for pollen grain germination are used
to screen germplasm for HT stress tolerance, and this proved to be a good screening
tool. Results from in vitro studies on peanut, sorghum, pearl millet, rice, and coconut
(Cocos nucifera L.) presented that genotypes varied in response to temperature for
cardinal temperatures, and the differences in cardinal temperatures were mainly
responsible for the tolerance/susceptibility level of genotypes to HT stress
(Djanaguiraman et al. 2014, 2018; Hebbar et al. 2018). The genotypes having higher
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ceiling temperature (7y,,x) for pollen germination values tend to be HT tolerant in
most cases. However, research also indicated that there is no relationship between
cardinal temperature and tolerance/susceptibility to HT stress because the cultivars
which had a higher optimum temperature (7o) for pollen germination did not
always have a Ty, or vice versa (Kakani et al. 2002).

To evaluate the effect of HT on seed abortion (postfertilization stage), the number
of seeds per pod and number of locules are used. The weight of individual grain is a
product of the rate and duration of grain filling. Grain-filling duration can be
expressed as the time between anthesis and physiological maturity; beyond this
point, there will be no significant increase in grain dry matter. The average for grain-
filling rate was calculated from the ratio of maximum grain weight to grain-filling
duration, which was estimated from quadratic or cubic polynomial curves. Linear
regression has been employed to find out the grain-filling rate, and the intersection of
two regression lines has been used to attain the grain-filling duration. Among
genotypes, genetic variability exists for grain-filling rate and duration and can be
exploited for developing high-yielding cultivars.

3.3 Conclusion

Selection for grain yield per se under drought and HT stress is limited by the low
heritability of grain yield under stressful conditions. This situation requires the
identification of highly reliable secondary traits that are closely related to grain
yield under stress and having high heritability. The traits like plant water status,
canopy temperature depression, green leaf area duration, root architecture, mem-
brane stability, gamete viability, and stem reserves are key traits among those listed
in this chapter that are highly associated with stress tolerance. The relative impor-
tance of each trait under drought and HT stress was provided in Table 3.1. Regarding

Table 3.1 A subjective classification of the relative value of different trait measures for stress
tolerance

Stress
Traits Drought High temperature
Green leaf area duration +++ ++
Plant water status 4+ +
Canopy temperature depression ++ +
Limited transpiration ++
Root architecture +4+ ++
Membrane stability + -
Photochemical efficiency ++ ++
Early-morning flowering — +
Stem reserve mobilization +++ +++
Yield-forming traits ++++ ++++

More +s indicates greater value, while (—) indicates limited value
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quantification of the above traits, they are semi- to high throughput in nature. The
advent of high-throughput genotyping technologies urges us to gather high-quality
phenotypic data for marker-based selection in crop breeding. However, a collection
of phenotypic data is laborious and highly influenced by the genotype, environment,
and management. Therefore, the development of the high-throughput phenotypic
platform is critical for accelerating the breeding programs. Field-based high through-
put increases the accuracy of the estimation and reduces the time, leading to the
selection of genotype and the identification of genetic loci with high precision.
Despite major improvements in phenotyping, there are still large shortcomings,
namely quality of data collection, management of digital data, image resolution,
and accurate analysis. Robust computational skills will be needed to handle the
phenotypic data collected from the phenotypic platform. Care should be taken to
phenotype at the target environment with standardized protocols. The field
phenotyping process must go hand in hand with the methodologies to characterize
and control the field variations, and user-friendly data management. Imaging and
spectroscopy techniques can provide nondestructive measures of traits like chloro-
phyll fluorescence and green leaf area duration, and this technique can be extended
to quantify other traits through surrogate parameters. All these advances in
phenotyping are likely to accelerate genomics application for enhancing crop pro-
ductivity under drought and HT environments.
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Abstract

Epigenetic modifications are known to alter the activation pattern of some genes
and not the per se DNA sequence. Stress to the plant causes epigenetic alterations
in the plant either as hyper- or as hypo-methylation of certain DNA sequences. To
overcome or to counter the various abiotic stress conditions, the plant’s defense
machinery including cellular signaling pathways gets regulated by several stress-
responsive genes, which in turn are regulated by various mechanisms including
DNA and chromatin modifications, and also through different small RNA-based
mechanisms. There is a sudden spurt in the epigenetic studies aiming to find their
role in the imposition of various types of abiotic stress tolerance in different plant
species, mainly due to the quick advancements in the high-throughput NGS
technologies. Many reports associating the DNA methylation response with
that of various abiotic stress adaptations are available in many legume species
like soybean, chickpea, pigeon pea, Medicago, lotus, peanut, and common beans
using these techniques. These legumes have shown tolerance to several abiotic
stresses because of unique epigenetic variations, which are present in the natural
populations. Understanding the epigenetic mechanism regulating the tolerance to
the abiotic stresses will help plant breeders in the development of more resilient
and climate-smart varieties, giving higher yields under varied abiotic stresses.
This chapter covers the current status of a novel and promising field of
epigenetics in legume crops, especially for the imposition of different abiotic
stress tolerance.
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4.1 Introduction

Legumes are unique in the sense that they can enhance soil fertility through natural
nitrogen fixation ability and thereby help in the overall agricultural sustainability.
Several grain legumes are the staple food and the key protein source, especially for
the poor residing in developing and underdeveloped countries (Mishra et al. 2021).
Ironically, most of the legumes suffer heavily due to the negative impact of many
abiotic stresses like heat, cold, drought (water-deficit stress), and salinity (Bhalani
et al. 2019; Sarkar et al. 2014, 2016). Thus, to sustain such important crops, there is a
need to opt for novel approaches like epigenetics to develop the climate-resilient and
abiotic stress-tolerant varieties in the legumes. Next-generation sequencing (NGS)
technologies are giving an option for rapid and cost-effective omics technologies in
many legumes including chickpea, mung bean, lentils, pigeon pea, peas, soybean,
Medicago, etc. for the identification of key genes and regulatory pathways involved
with different abiotic stress tolerance (Dasgupta et al. 2021; Mishra et al. 2020;
Nawade et al. 2018). Various studies have proved the associations between methyl-
ation levels and different abiotic stresses, suggesting the pronounced role of epige-
netic mechanisms in plant adaptability (Malabarba et al. 2021; Windels et al. 2021).
Thus, understanding their role in the abiotic stress tolerance mechanism is very
important to have improved productivity (Ramu et al. 2016).

In general, epigenetics (meaning above genetics) is being referred to as any
heritable alteration which is unable to modify the DNA sequence(s) or genetic
code yet causes modified gene expression and altered phenotype. However, the
concept of epigenetics is constantly changing, and its exact definition is always
debated (Deans and Maggert 2015). Epigenetic change results in the modification of
the chromatin structure, which in turn affects the transcription pattern of the cells.
Epigenetic regulation mechanisms can be largely classified into three groups, viz.,
DNA methylation, histone modification, and RNA interference (RNAi) (Saraswat
et al. 2017).

Plants being sessile in nature are exposed continuously to the environmental
vagaries and experience stresses of different kinds such as availability of water
and nutrient, temperature and light regimes, and salinity (Patel et al. 2016, 2017,
Reddy et al. 2020). Adaptation to these stressors needs constant dynamic changes in
the plants at both morphological and molecular levels. To overcome such environ-
mental vagaries, plants have developed several strategies including epigenetic regu-
lation for better survivability (Saraswat et al. 2017; Shanker and Venkateswarlu
2011). Several epigenetic mechanisms including abiotic stress responses were
identified mainly from the model plants like Arabidopsis (Pecinka et al. 2020) and
rice (La et al. 2011). The knowledge derived from these species is being used to
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understand the similar phenomenon in legumes too (Chinnusamy and Zhu 2009;
Gutzat and Scheid 2012). Also, reports mentioning the changes in the DNA methyl-
ation pattern in different plant species are available for different stresses such as
water-deficit stress (Kapazoglou et al. 2013), temperature stress (Naydenov et al.
2015), and continuous cropping (Liang et al. 2019).

The most deeply studied model legumes at the genomic levels include soybean,
Medicago truncatula, and lotus (Canas and Beltran 2018; Mochida et al. 2010;
Ramesh et al. 2019). Lately, a few other legumes like Phaseolus vulgaris (common
bean), chickpea, and cowpea are also being deeply investigated at the genomic level
(Lobaton et al. 2018; Mishra et al. 2021, 2022; Timko et al. 2008; Varshney et al.
2013). Recently, many legume crops like pigeon pea, lentil, mung bean, peas, beans,
Medicago, lotus, peanut, chickpea, and soybean have been sequenced, and the
amount of genomic sequence data is increasing with each passing year (Ahmad
et al. 2020; Bosamia et al. 2020; Garg et al. 2014; Mishra et al. 2020). Further, due to
the rapid increase in the relatively cheap genomic technologies (including
epigenome analysis), such studies even in the non-model organism have also been
possible.

Under abiotic stress, plants respond differently involving multiple mechanisms
through massive differential gene expressions and nuclear organizations including
epigenetic changes (Budak et al. 2015). Nevertheless, studies delineating the role of
epigenetics in the imposition of abiotic stresses in legumes are not very deeply
understood, to date (Niederhuth and Schmitz 2014). Epigenetic variations in the
DNA have been reported in response to many abiotic stresses (Pandey et al. 2016).
Yet, the precise role of various enzymes catalyzing the active DNA methylations or
other modifications has not been thoroughly understood.

Legumes generally have large genome sizes, many TEs, repeat regions, and
numerous high-copy-number genes, and to understand their functions, legume
breeding should include novel -omics technologies including the use of epigenetic
approaches while going for the development of new high-yielding and climate-
resilient varieties (Bosamia et al. 2015; Mishra et al. 2015; Salgotra and Gupta
2019). With this backdrop, this chapter gives an in-depth overview of various
epigenetic studies in different legume species with a detailed focus on the role of
epigenetics in abiotic stress responses in legumes.

4.2  Epigenetics and Major DNA Methylation Mechanisms

The “epigenetic landscape” and ‘“‘epigenetics” terms were coined by Conrad
Waddington way back during the early 1940s. Gene expression can be regulated
through various epigenetic mechanisms like chromatin modifications (e.g., histone
acetylation, methylation, phosphorylation, and ubiquitylation) and DNA
modifications (e.g., cytosine methylation) (Gibney and Nolan 2010). These epige-
netic modifications are prompted by various developmental and/or environmental
reasons, which then modify the chromatin architecture without changing the DNA
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Epigenetic mechanisms (Methylation & Demethylation)
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Fig. 4.1 Outline of DNA methylation and demethylation operating in the plants

sequence(s) (Chinnusamy and Zhu 2009). The detailed understanding of the role of
epigenetic factors regulating various abiotic stresses is still very limited.

Among various epigenetic mechanisms, DNA methylation and posttranslational
histone modifications (PHM) are the deeply studied DNA modification mechanisms.
In the case of DNA methylation, a methyl group gets added from S-adenosyl-L-
methionine to the fifth C of the cytosine ring, which results in the formation of
5-methylcytosine (SmC). In plant system, DNA methylation is reported to occur in
three sequence contexts, viz., (1) symmetric CG, (2) symmetric CHG, and (3) asym-
metric CHH, where H can be A, T, or C base or except G any other base (Malabarba
et al. 2021). Process-wise DNA methylation can be of three types, viz., (1) de novo
methylation, (2) maintenance of methylation, and (3) demethylation, which involves
several enzymes (Fig. 4.1).

4.2.1 De Novo Methylation

The process uses domains rearranged methyltransferase-2 (DRM?2), which gets
controlled by RNA-directed DNA methylation (RADM) pathway (Law and Jacobsen
2010; Matzke and Mosher 2014), wherein Pol IV (RNA pol IV) transcribes single-
stranded RNAs (ssRNAs) which then form double-stranded RNA intermediates
(dsRNAs) by RNA-dependent RNA polymerase 2 (RDR2). Afterward, DCL3
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(RNase IIl-class DICER-LIKE 3) cleaves the dsRNAs to form 24-nt small
interfering RNAs (siRNAs), which get incorporated into AGO4 (ARGONAUTE
4) and base-paired with Pol V and produce scaffold RNA and use DDR protein
complex. This comprises proteins such as defective in RNA-directed DNA methyl-
ation 1 (DRD1), RNA-directed DNA methylation 1 (RDM1), and defective in
meristem silencing 3 (DSM1) that stabilize the Pol V and chromatin interaction
using MORC protein complex. Pol V then guides the AGO4 to the chromatin
(Wierzbicki et al. 2009). These ultimately result in the DRM2 recruitment, which
is followed by methylation of specific DNA base(s) (Matzke and Mosher 2014;
Huiming Zhang and Zhu 2011). The precise function of the RdADM pathway indirect
gene methylation and regulation is still not very clear. Rather, this pathway targets
some repetitive sequences and transposable elements (TEs), which then controls the
activation and repression of close-by gene(s) (Sigman and Slotkin 2016). The
methylation of CHH context (de novo) of mostly heterochromatin regions especially
that of TEs was regulated by the CMT2-dependent pathway (Zemach et al. 2013),
which acts in a siRNA-independent way and is dependent on decreased in DNA
methylation 1 (DDM1) chromatin remodeler.

4.2.2 Maintenance of Methylation

This is very much dependent on the sequence contexts; for example, methylation of
CG context is reportedly maintained by methyltransferase 1 (MET1) and decrease in
DNA methylation 1 (DDM1), whereas CHG by chromomethylase 2 and 3 (CMT2
and CMT?3), and CHH by DRM2 and CMT?2 (Chan et al. 2005).

4.2.3 DNA Demethylation

Demethylation can be through either active or passive ways, wherein passive
demethylation denotes loss of methylation during DNA replication due to the
inactivity of the demethylating enzyme (Zhu 2009). This process is being regulated
by four bifunctional SmC DNA glycosylases, viz., repressor of silencing 1 (ROS1),
Demeter (DME), DME-like 2 (DML?2), and DML3, which removes the SmC using
base excision repair (BER) pathway (Zhang and Zhu 2012). Due to the antagonistic
effect of RADM and ROSI activity, some sort of coordination has been reported
between DNA methylation and demethylation, which in turn stops the
hypermethylation of certain loci (Tang et al. 2016). A 39-nt regulatory element or
MEMS (DNA monitoring methylation sequence) is the ROS1 promoter and
functions as a putative sensor of MET1 and RdDM pathway. Very high activity of
MET1 and RdDM results in the hypermethylation of MEMS, which causes activa-
tion of ROS1 demethylase activity and regulates DNA methylation at the whole-
genome level (Lei et al. 2015).
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4.3  Methylation of Various Regions of the Gene

Gene expression also gets regulated by the methylation in the promotor region via
inhibition of transcriptional activators/repressors. This may completely inhibit the
tissue-based gene expression (Johnson et al. 2007; Zhang et al. 2006), or this may
also regulate specific processes like gene imprinting during seed development or
immune-responsive gene regulation (Matzke and Mosher 2014; Zhang et al. 2018a).
However, the function of DNA methylation within the gene bodies is still not very
clear, and two hypotheses have been proposed about their role, viz., (1) masking of
the cryptic transcription sites, which will assist in its isoform splicing (Neri et al.
2017), and (2) reduction in the gene expression variations via exclusion of H2A.Z
from the nucleosome (Zilberman et al. 2008). The function of methylation in the TE
activity regulations is thoroughly studied, wherein it mainly functions as either TE
silencing or a repressor of the transposition by hypermethylation of all the sequence
contexts (Sigman and Slotkin 2016).

4.3.1 Histone Modifications

Chromatin accessibility in the gene’s promotor region is observed through histone
modifications, especially through methylation or acetylation (Berger 2007
Kouzarides 2007) (Fig. 4.2). A nucleosome consists of eight histone proteins (two
copies each of H2A, H2B, H3, and H4 proteins), which are wrapped by 147 bp DNA
(Peterson and Laniel 2004) and function through epigenetic modification of various
genes by controlling the access and binding of regulatory elements (Berger 2007).
Modification of the amino acids present at the N-terminal tails of histone proteins
(H3 and H4) is reported, which can either activate the genes via acetylation,
phosphorylation, and ubiquitination or repress the genes mainly via methylation
(with some exceptions) (Zhao et al. 2019). Even though histones are considered as
highly conserved proteins, plants do possess structurally and functionally discrete
classes of H2A (H2A.X, H2A.Z) and H3 (H3.3) forms (Deal and Henikoff 2011).
Increased H3K9ac (in the heterochromatic chromatin knobs) was found to be
associated with an increase in the transcription, while increased H3K9me2 was
found to be correlated with a decrease in the transcription of certain stress-responsive
genes (Yong Hu et al. 2012). The stress-responsive genes in the plants show
transient modifications in the histones under varied stress conditions (Zong et al.
2013).

4.3.2 Noncoding RNAs and Epigenetic Regulation Under Abiotic
Stress

Noncoding RNAs (long ncRNA or small ncRNAs) regulate the opening and closing
of the chromatin and are associated with both gene silencing and activation at both
transcriptional and posttranscriptional levels. The ncRNAs which are associated
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Fig. 4.2 Schematic representation of epigenetic mechanism and marks operating in plants

with epigenetic regulation (i.e., heterochromatin formation, histone modification,
DNA methylation, and gene silencing) are of two major types, viz., the short
ncRNAs (<30 nts) and the long ncRNAs (>200 nts). The short ncRNAs are grouped
into three major types: (1) microRNAs (miRNAs), (2) short interfering RNAs
(siRNAs), and (3) piwi-interacting RNAs (piRNAs) (Salgotra and Gupta 2019).
Sequence-specific methylation is known to be caused by ds-RNA and RdDM (Law
and Jacobsen 2010), while RNAi was reportedly associated with the RADM causing
cytosine methylation (Meister and Tuschl 2004; Wassenegger et al. 1994). In plants,
miRNAs are known to cause RNA silencing and posttranscriptional gene regulation
(Lee et al. 1993; Maxwell et al. 2012). Various classes of siRNAs (i.e., antisense
siRNAs, heterochromatic siRNAs, trans-acting siRNAs) were known to enable gene
silencing through methylation of histone and RdADM (Mosher et al. 2008; Xu et al.
2013).

Several reports have proved the role of ncRNAs in the regulation of gene
expression under abiotic stress conditions. Zeller et al. (2009) reported the accumu-
lation of various novel antisense transcripts under abiotic stress situations in the
plants, which were the source of siRNAs. Downregulation of certain siRNAs such as
Hc-siRNAs (heterochromatic siRNAs), siR441, and siR446 has been reported under
abiotic stress situations, which seems essential for the gene regulation, especially
under stress conditions (Yan et al. 2011). The miRNAs are known to have a major
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role under different abiotic stress-like conditions, especially under cold, heat, salin-
ity, etc. (Salgotra and Gupta 2019).

In mung bean, among different sequence contexts, the proportion of mCHH DNA
methylation was very high, while in soybean (Schmitz et al. 2013), mCG is the most
commonly methylated sequence context. Both mung bean and common bean had
maximum cytosine methylation in the CHH sequence context (Do Kim et al. 2015).
These two species were known to have diverged nearly 8.0 Ma (million years ago),
whereas soybean is considered to have diverged from the mung bean nearly 19.2 Ma
(Lavin et al. 2005). Thus, the traces of mCHH-enriched DNA methylation in both
mung bean and common bean might have come from their common ancestor (Kang
et al. 2017).

The role of the RADM pathway has been observed regulating the seed parameters
(size and weight) in chickpea during the seed development stage, which showed a
gradual increase in the methylation of CHH context of TEs along with increased
frequency of small RNAs in hypermethylated TEs (Rajkumar et al. 2020).
Kurdyukov et al. (2014) have studied a 2HA seed line of Medicago truncatula
which was highly embryogenic, and microarray showed downregulation of an
ethylene insensitive 3-like gene in 2HA callus. Ethylene is reportedly linked with
several developmental processes such as somatic embryogenesis (SE) and various
types of stress responses. The Medicago truncatula EILI gene (MtEIL1) was found
to be epigenetically silenced in the 2HA line, which could be due to the increased
level of miRNA targeting its 3’'UTR and also due to the methylation of MrEILI
(Kurdyukov et al. 2014). A plant-specific gene MutS HOMOLOGI (MSH1I) has been
used for the RNAi suppression in several plant species including soybean for the
production of developmental changes including abiotic stress response along with
methylome repatterning. Therefore, RNAi can be a direct means of exploitation of
epigenetic variations associated with abiotic stress tolerance in plants (Raju et al.
2018).

4.4  Epigenetics and Abiotic Stress Tolerance in Legumes
4.4.1 Temperature-Stress Tolerance

Climate change induced by various factors including excessive greenhouse gas
(GHG) emission has caused many negative impacts on crop plants primarily in the
form of heat stress due to global warming. The mean temperature of the earth is
reportedly increased to the tune of 0.35 °C from 1979 to 2003 (Venterea 2014;
Walther et al. 2002). An increase in the temperature or heat stress is known to cause
early flowering (Pefuelas et al. 2009), modified plant architecture (Wahid et al.
2007), poor seed development, decreased dormancy, reduced size, and poor grain
yield (Folsom et al. 2014; Long and Ort 2010), and shifting of plant establishment to
higher altitudes (Pauli et al. 2012). For the transcriptional machinery, chromatin
conformation plays a major role by allowing the access of DNA sequences (Li et al.
2008). Several studies have proved the role of histone acetylation and methylation in
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the plant’s response to abiotic stresses (Stgpinski 2012). In the root meristem of the
soybean, changes were recorded for the DNA methylation, histone methylation, and
histone acetylation when grown under different temperature regimes.

4.4.1.1 Heat Stress

In response to abiotic stress like heat, the heat-stress factors (HSF) and secondary
metabolites have been found to have a great role in managing such stress response
(McClung and Davis 2010). In addition, even by the transcriptional reprogramming
like by upregulation of kinases and various transcription factors (TF) and
downregulation of growth-related genes, such stresses were also managed (Popova
et al. 2013). ROS1 was reported to be demethylating all the DNA methylation
contexts as in the rosl mutants all the DNA methylation contexts get
hypermethylated (Tang et al. 2016). Heat stress is also known to affect DNA
methylation in different plant species as increased global methylation and homolo-
gous recombination frequency (Boyko et al. 2010).

Various methylation process proteins [e.g., DRM2, nuclear RNA polymerase D1
(NRPD1)] also show upregulation upon high-temperature stress and increased DNA
methylation (Naydenov et al. 2015). The RADM pathway is also reported to partially
regulate the transcriptional response to high-temperature stress (Popova et al. 2013).
Interestingly, global DNA methylation induced by heat stress is species and tissue
specific. In addition, the result of the impact of heat stress on transgenerational
memory was recorded as phenotypic changes over generations by different
researchers (Migicovsky et al. 2014; Suter and Widmer 2013). During repeated
heat-stress conditions, methylation of histone H3K4 was found to be associated
with the persistent expression and hyper-induction of high temperature-responsive
genes (Lamke et al. 2016).

In the changing environmental scenario, an increase in the temperature is a major
focus of various studies that are involved in unfolding the temperature-dependent
genes and pathways (Arya et al. 2017). Temperature is a key factor affecting
significantly the flowering in the plant system. Genome annotation has identified
four copies of the PIF4 gene in soybean, which were found expressing abundantly
under short-day conditions (Wong et al. 2013). Also, eight copies of the SVP gene
were identified in soybean, of which high expression of Glyma0l1G02880.1 and
Glyma02G04710.1 has been recorded in shoot apical meristem during the floral
transition phase (Wong et al. 2013). In soybean, miRNA 156 and miRNA 172 have
shown upregulation during the floral transition stage, when plants were exposed to
high temperatures (Li et al. 2015). H3K56ac and H3K4me3 methylation marks are
usually recorded in class 3 SDGs, which showed differential expression in shoot
apical meristem (SAM) in soybean, during the floral transition (Liew et al. 2013).
Besides, several RNAi genes like RNA pol, dsRNA binding (DRB), Dicer-like,
AGO, DNA methyltransferase, and DNA glycosylase were upregulated in SAM
during the floral transition (Liew et al. 2013).



98 G. P. Mishra et al.

4.4.1.2 Chilling Stress

More of 5SmC and H3K9me?2 were recorded through immunostaining in the hetero-
chromatin region of the soybean genome during chilling stress than during the
recovery phase. However, indicators of permissive chromatin (i.e., H3K9ac,
H4K12ac, and H3K4me) showed weak labeling in the euchromatin region (under
stress) over recovered plants (Stepifiski 2012). Ivashuta et al. (2002) reported
transcriptional activation of specific retrotransposons in Medicago sativa under
cold-stress conditions. Hypermethylation was recorded in Cannabis sativa
genotypes when exposed to different levels of cold acclimation (Mayer et al.
2015). Epigenetic factors are known to regulate cold-stress tolerance in hemp.
Under cold-stress conditions, soluble sugars are found to accumulate and be
maintained in higher concentrations in the tolerant hemp genotypes. These
genotypes expressed more of COR gene transcripts, which is associated with the
de novo DNA methylation. Also, significantly higher methylcytosine levels at COR
gene loci were recorded in the tolerant genotypes when deacclimated, thereby
confirming the function of locus-specific DNA methylation (Mayer et al. 2015).
Relatively more methylation over demethylation was recorded in the cold stress-
tolerant genotypes over susceptible chickpea genotype. This could be due to the
comparatively higher activation of cold stress-responsive genes in the tolerant
genotypes (Rakei et al. 2016).

4.4.2 Drought-Stress Tolerance

Overall increased DNA methylation or hypermethylation has been recorded in both
tolerant and sensitive genotypes of faba bean (Abid et al. 2017) and pea (Labra et al.
2002) under drought or water-deficit stress situations. In groundnut, the regulation of
the AhDREBI gene (of AP2/ERF family TF) through acetylation of H3 helped in the
positive regulation of water-deficit stress tolerance genes when exposed to the
PEG-induced water-deficit stress conditions. Higher AhRDREBI gene expression
was recorded when an inhibitor of histone deacetylase (HDAC), i.e., trichostatin
(TSA), was used, which then showed water-deficit stress tolerance in the peanut
plant (Zhang et al. 2018b). In chickpea, drought stress was able to induce the
CaHDZ12 (an HD-Zip TF) activation, and its expression was found to be correlated
with that of H3K9ac acetylation in the promoter region (Sen et al. 2017). Cytosine
hypomethylation has been reported in the soybean roots under heat-stress conditions
(Hossain et al. 2017). Reduced metabolic activity has been recorded in pea plants
due to the drought-induced hyper-methylation of some key genes (Labra et al. 2002;
Salgotra and Gupta 2019), while higher methylation was recorded in the drought-
sensitive horse gram (Macrotyloma uniflorum) genotype than the tolerant genotype
(Bhardwaj et al. 2013).

Epigenetic changes such as histone modifications, SRNAs, methylation of DNA,
and IncRNAs were known to be associated with gene regulation in faba beans
(Meyer 2015). A high degree of association between DNA methylation and gene
expression under drought conditions in faba bean suggests the involvement of DNA
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methylation in the imposition of drought-stress tolerance (Abid et al. 2017). Several
water-deficit stress-associated differentially methylated regions (DMRs) were
identified by Abid et al. (2017), which became the basis for further understanding
the epigenetic regulation of drought stress in faba bean.

In addition, a number of drought-responsive miRNAs are identified in various
legumes (Mantri et al. 2013). Under drought and salinity stress, 259 differentially
expressed miRNAs have been identified from the root tip tissue of chickpea. Many
of these were found to have auxin and other abiotic stress-responsive cis-elements in
their promoter region, which in turn imparted abiotic stress tolerance through various
phytohormone syntheses (Khandal et al. 2017). In chickpea, under water-deficit
stress, miR408 was found to be accumulated (Hajyzadeh et al. 2015), while similar
results were also reported for Medicago (Trindade et al. 2010). Interestingly,
24 novel miRNA families have been reported in water-deficit stress-tolerant and
-sensitive cowpea genotype (Barrera-Figueroa et al. 2012), and of these, 22 families
were reported from soybean too (Kulcheski et al. 2011). Most of the iso-miRNAs
showed upregulation during water-deficit stress in sensitive genotypes, while
downregulation in tolerant genotypes. miRNAs were known to play a key role in
the abiotic stress tolerance in cowpea, and much water-deficit stress-associated
microRNAs have been identified (Barrera-Figueroa et al. 2011). Inconsistent
miRNA expression was reported in the studied cowpea genotypes and nine recorded
predominant or exclusive expression in one of the two studied genotypes, while a
few were found regulated under water-deficit stress in only one genotype (Barrera-
Figueroa et al. 2011).

The genome sequencing of common bean has generated a lot of information that
can provide the much-needed evidence about future PTGS studies (Vlasova et al.
2016). Posttranscriptional regulation in common bean under water-deficit stress is
reportedly regulated via a legume-specific miR1514a, which targets the NAC family
of TF and generates secondary phasiRNAs (Sosa-Valencia et al. 2017b). The
miR1514a showed differential expression levels in the roots of the common bean
when exposed to water-deficit stress conditions. In addition, an RNA-seq study has
also identified the role of NAC 700 TF in the water-deficit stress, while degradome
analysis revealed the two NAC TFs (Phvul.010g121000 and Phvul.010g120700) as
the target of miR1514a. In addition, small RNA-seq data indicate the role of only
Phvul.010g120700 in the generation and accumulation of phasiRNAs under water-
deficit stress conditions (Sosa-Valencia et al. 2017b).

4.4.3 Salinity-Stress Tolerance

In the pigeon pea shoot tissues, a global decline in the methylation levels of DNA
has been reported under salinity-stress conditions (Awana et al. 2019). Similarly,
imposition of continuous stress for a relatively longer duration has resulted in an
increase in the overall DNA demethylation in soybean, mainly in the tolerant
genotypes, and this increase corresponded well with that of increased expression
of various DNA demethylases (e.g., DML and ROS1). Further, different
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demethylation studies could identify that the regulatory genes having CG and CHG
contexts were more crucial than the CHH for their adaptation to salinity stress (Liang
et al. 2019). The salinity stress in Medicago truncatula revealed variations to the
tune of 77% in CHH, while CHG and CG showed 9.1% and 13.9% changes,
respectively.

Interestingly, no such correlation has been recorded between DNA methylation
pattern and level of transcripts for other salinity-stress tolerance-associated key
genes, which means that these genes might be regulated by other epigenetics
processes (Yaish et al. 2018). On the contrary, four TFs showed induced response
under salinity stress in soybean, and of these three showed demethylations in CG and
non-CG contexts and also active enrichment of histone marks (H3K4me3 and
H3K9ac) along with a reduction in the repressive mark H3K9me2. Thus, the
possible interplay was recorded between methylation of DNA and histone
modifications when exposed to salinity stress (Song et al. 2012). In the plants of
salinity-stressed soybean, cross talk has been reported between histone methylation
and acetylation (Liu et al. 2010; Stepiriski 2012). The soybean plants under salt-
stress condition showed the binding of GmPHDS5 (a homeodomain TF) with
H3K4me2 marks (salt-induced), which then recruits a complex associated with
gene activation having GmISWI (a type of nonhistone proteins and a chromatin
remodeling factor) and GmGNAT1 (an acetyltransferase), which selectively
acetylates H3K14 for the activated expression of salinity-induced genes (Wu et al.
2011).

The methylation-sensitive amplified polymorphism (MSAP) and enzyme-linked
immunosorbent assay (ELISA) showed significantly more methylation in mCG
under salinity stress in M. truncatula (Al-Lawati et al. 2016; Yaish et al. 2014). A
comparative whole-genome bisulfite sequencing (WGBS) on the DNA isolated from
the root tissues of Medicago truncatula under salinity stress and control has revealed
higher methylation levels in all sequence contexts, ranging from 3.8% to 10.2%.
However, qPCR-based gene expression studies did not find any stable association
between mCG methylation levels and transcript abundance of some key genes
involved in the imposition of salinity tolerance. Thus, it seems that some other
epigenetic controllers are regulating the gene expression under salinity stress (Yaish
et al. 2018).

The role of MTases regulating different aspects of plant development including
different abiotic stress responses has been unfolded in different legume species using
expression analysis. Garg et al. (2014) have identified 16 members of the DNMT2
family in several legume species, and increased expression of DNMT (CaDNMT2)
was observed in chickpea shoots under both salt- and drought-stress conditions,
suggesting the role of DNMT in abiotic stress response. Overall, under abiotic stress,
more transcript was recorded for CMT and DRM genes, signifying the role of stress-
induced methylation in chickpea (Garg et al. 2014). In chickpea, salinity stress was
found inducing the CaHDZ12, which also showed a correlation with that of H3K9ac
acetylation in the promoter region (Sen et al. 2017). Preferential transmission of
salinity tolerance and DNA methylation was reported through the female germline.
However, paternal dme mutants recorded restoration of paternal memory, indicating



4 Epigenetics of Abiotic Stress Tolerance in Legumes 101

that the active DNA methylation in male gametes is essential for the inhibition of
paternal inheritance of hyperosmotic priming response (Wibowo et al. 2016). The
details of epigenetic response in various legumes during abiotic stress-associated
processes are presented in Table 4.1.

4.4.4 Abiotic Stress Tolerance and DNA Demethylation

Several reports are aimed to analyze the changes which occur in the DNA
demethylase gene when exposed to various abiotic stresses, and only some mention-
ing the detailed analysis involving loss-of-function mutations are available (Parrilla-
Doblas et al. 2019). Interestingly, some recent studies showed the function of active
demethylation of DNA in the inter-generational transmission of “stress memory”
helping rapid adaptation to short-term environmental variations called “priming”
(Parrilla-Doblas et al. 2019). In addition, the response of a plant to abscisic acid
(ABA) has also shown active demethylation of DNA under abiotic stress conditions.
Still, various factors regulating such demethylation during abiotic stress response are
superficially known to the scientific community. Additionally, miRNAs are now
found to have some role in the active demethylation of DNA of certain genes
(Parrilla-Doblas et al. 2019). This has been generally observed during gametophyte
development (Slotkin et al. 2009). However, active demethylation of DNA considers
enzyme-based elimination of methylated cytosine, by a family of DNA glycosylases
(such as DME, ROS1, DML2, and DML3), which was followed by the base excision
repair (BER)-dependent process (Penterman et al. 2007; Zhu 2009). This does not
only alter genome-wide epigenetics, but also regulate locus-specific genes with
abiotic stress tolerance (Hsieh et al. 2009).

4.4.5 Abiotic Stress Tolerance and Epigenetics-Based Breeding
Strategies in Legumes

Till now, we have compiled several ways that can be used for the enhancement of
abiotic stress tolerance in various legumes. The use of epigenetics and epigenomics
in improving the adaptation to abiotic stresses needs a combination of technical and
biological innovations so that the breeders can go for the targeted gene-specific
modifications of the epigenome for the desired trait improvement. Besides positive
impact, stress-based memory may also have a negative impact on yield (Chinnusamy
and Zhu 2009). Thus, care must be taken while going for an epigenetic-based
approach for the abiotic stress improvement of the crops. We can use the impact
prediction models for the epigenetic variations on a plant’s phenotype and perfor-
mance (Colicchio et al. 2015; Yaodong Hu et al. 2015). Identification of epialleles
having an impact on the abiotic stress tolerance traits can result in epigenetic-based
breeding of crop plants like the use of mutant lines, recurrent epi-selection,
epigenomic selection, and editing (Greaves et al. 2014; Hauben et al. 2009; Lamke
and Béurle 2017; Oakey et al. 2016; Yang et al. 2015).
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In soybean, Raju et al. (2018) have proposed a breeding strategy using the MSH]
gene system for the improvement of yield and stability by inducing epigenetic
variations. The soybean memory lines (wild type and mshl acquired) were crossed
to develop the epi-lines having wide variations for various yield-related traits. The
identified epi-types showed low epi-type x environment (e x E) interactions and thus
more stability under varied environments expressing different abiotic stresses
(Varotto et al. 2020). The novel epigenetic variations induced by the MSH suppres-
sion were found to be inherited for at least three generations and can be used for
enhancement and stabilization of the overall yield of soybean crops. In addition,
several metabolic pathway genes regulating improved adaptation and plasticity
(across generations) of the plant are also identified (Fujimoto et al. 2012; Raju
et al. 2018; Robertson and Wolf 2012).

In association with classical genetic approaches, the novel sequencing
technologies have helped in understanding the epigenetic process at the whole-
genome level. Epigenome profiling and epigenome editing will help in the creation
of novel epiallelic variants through DNA methylation and chromatin modifications
(Springer and Schmitz 2017). Breeders are now preferring to use the mapping of
epigenetic marks at genome-wide level (epigenomics), and also identification of
epigenetic targets to modify the plants’ epigenomic variability to make them more
resilient and climate smart (Lane et al. 2014). There is a need to do large-scale cross-
species generation and comparison of epigenetic data in legumes, especially in
response to abiotic stresses (Lane et al. 2014). Epigenetic modifications can be
attempted either globally or at a specific locus using emerging techniques like
CRISPR/Cas9 and dCas (Hilton et al. 2015; Moradpour and Abdulah 2020). The
knowledge about the activation and repression of specific chromatin regions (using
DNA-binding domains like Zn fingers, TALEs, dCas9) under specific abiotic stress
can be used for the gene-specific activation or repression as per the need for the
imposition of abiotic stress tolerance in crop plants (Bilichak and Kovalchuk 2016).
In addition, a sound prediction model about the impact of epigenetic variations on
the plant’s overall performance is needed (Colicchio et al. 2015; Yaodong Hu et al.
2015).

4,5 Conclusions and Future Prospects

In legumes, the epigenetic studies are still in infancy and are mainly targeting the
identification of key epigenetic factors in the plant’s developmental and stress-
related processes. A major reason for this could be the poor annotation of most of
the legume genomes, which are incidentally full of numerous high-copy-number
genes having overlapping or distinct functions (Windels et al. 2021). However, in
times to come, we expect tremendous growth in legume epigenetic studies for
various traits including abiotic stress tolerance. Stably inherited natural or induced
epigenetic variations can be used to create climate-smart crops (Vriet et al. 2015).
Otherwise, most stress-induced epigenetic modifications show reversion once there
is no stress. Still, some of the modifications do show stable inheritance as



4 Epigenetics of Abiotic Stress Tolerance in Legumes 105

epigenetic-mediated stress memory does result in long-term adaptations (Sudan et al.
2018). However, detailed studies are needed to find the factors regulating the
epiallele stability in crop plants for their further use in a breeding program
(Hofmeister et al. 2017). There is a need to develop various mathematical models
for the identification of heritable epigenetic phenotypes, for the enhanced efficiency
of the breeding program (Tal et al. 2010). Besides, epi-genotyping procedures can be
developed for the identification of newly formed epialleles and their inheritance
pattern (Hofmeister et al. 2017). Also, more precise epi-mutagenesis and targeted
epigenome editing are needed for targeted epigenome editing (Johnson et al. 2014;
Springer and Schmitz 2017).

The regions associated with the transposable elements are more prone to methyl-
ation under abiotic stress situations. Thus, these regions should be targeted to
understand the trend of epigenetic changes at the whole-genome level through
cytosine methylation studies (Bruce et al. 2007). Differential DNA methylation
has been recorded in different tissues of the soybean (Song et al. 2013), but it is
unclear whether the differences were spontaneous or developmentally controlled by
differentially methylated regions (DMRs) (Salgotra and Gupta 2019). We expect an
increase in the functional studies of various key epigenetic factors that can be
enhanced by the recent developments in the CRISPER technologies via the genera-
tion of several epigenetic mutants at least in major legume crops. Thus, a better
understanding generated about the epigenetic mechanism along with the identifica-
tion of epialleles will potentially boost the plant’s ability to cope with various abiotic
stresses.

There is a need to modify the active DNA demethylation through CRISPER/Cas9
technology to the genes involved in the demethylation pathway. In the future, we
need very precise control on the DNA methylation and demethylation of specific
genes as epigenome engineering, for targeted abiotic stress tolerance breeding in the
legumes (Springer and Schmitz 2017; Stricker et al. 2017). In soybean, most of the
DNA methyltransferase genes were found to be expressed at low levels in seed and
seem to contribute to the silencing of certain mC genes in the seed tissues. There is a
need to do deep analysis about the mC pattern in different tissues under various
abiotic stresses to gain an insight into the role of gene methylation, resulting in novel
epigenetic gene regulation (Garg et al. 2014). The details of abiotic stress manage-
ment strategies in legumes using epigenetic approaches are presented in Fig. 4.3.

Although several legume crops (viz., mung bean, lentil, peanut, chickpea, cow-
pea, pea, Medicago, pigeon pea, lotus, soybean, beans, etc.) have been sequenced,
epigenetic studies concerning abiotic stress tolerance are limited to a few species like
soybean, chickpea, pigeon pea, cowpea, and beans. There is an urgent need to study
more legumes for abiotic stress tolerance using epigenetic approaches. For this, a
joint research platform may be developed by various national and international
organizations like the International Crops Research Institute for the Semi-Arid
Tropics (ICRISAT, India), the International Center for Agriculture Research in the
Dry Areas (ICARDA, Lebanon), the International Center for Tropical Agriculture
which is an international research and development organization (CIAT, Colombia),
and Indian Agricultural Research Institute (IARI, India), working for the
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Abiotic stress management strategiesin legumes using
epigenetic approaches

Development & characterization of epigenetic RILs
(epiRILs) for epiallele identification

4

Targeted RNAi suppression of plant-specificgene(s)

Studies on epitype-by-environment (e x E) interaction
in various epi-populations for yield stability

Transcript profiling of epi-lines & identification of
factors imparting abiotic stress tolerance

_ Development of impact prediction models for
epigeneticvariations on plants overall performance

. Creation of novel epiallelic variants through Epigenome
profiling & epigenome editing

Genome-wide mapping of epigenetic marks &
epigenetictarget identification

L4

Fig. 4.3 Comprehensive abiotic stress management strategies in legumes using epigenetic
approaches

improvement of various legume crops for targeted improvement using epigenetic
approaches. In the initial stage, crops like mung bean, lentil, peanut, and pea can be
targeted, and at a later stage depending on the availability of whole-genome infor-
mation, more legumes can be added.
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5.1 Introduction

Mung bean [Vigna radiata (L.) Wilczek], also known as green gram, golden gram,
green bean or mash bean, is an important fast-growing, highly economical, nutritive,
multipurpose leguminous crop cultivated in tropical and subtropical regions of Asia
(Tah 2006; Yang et al. 2008). It is a self-pollinating species belonging to the genus
Vigna of Fabaceae family. The crop is mainly grown in frost-free regions from Asia
to Africa, South America and Australia (Nair et al. 2012). India is one of the largest
producers of mung bean and shares about 50% of global annual production (Nair
et al. 2012).

Being a leguminous crop, mung bean is an important source of amino acids,
proteins, dietary fibre and unsaturated fatty acids (Hou et al. 2019). It is easily
digestible, produces low flatulence as compared to other legumes and contains
higher folate and iron (Keatinge et al. 2011). The crop makes the soil fertile and
improves its texture (Graham and Vance 2003). Similarly, it has also been observed
that the cereals intercropped with mung bean have a lesser incidence of pest
infestation and have a higher yield due to the availability of nitrogen fertilizer
(Yaqub et al. 2010).

Owing to higher vitamin, calcium, iron and phosphorus content as compared to
other leguminous crops, mung bean is a preferred nutritive food. The presence of
amino acids, proteins, polyphenols and oligosaccharides in the crop has been
exploited for antioxidant, antitumor, anti-inflammatory and antimicrobial activities
(Anjum et al. 2011; Randhir et al. 2004). Mung bean has also been reported to
contain several phytochemicals, viz., steroids, triterpenoids, glycosides, flavonoids,
alkaloids, polyphenols, tannins, saponins, daidzin, daidzein, ononin, formononetin,
isoformononetin, quercetin, kaempferol, myricetin, rhamnetin, etc. (Priya et al.
2012; Ramesh et al. 2011; Tang et al. 2014).

Mung bean has also been reported to contain a good amount of antifungal
proteins (Solanki et al. 2018) that can be used against human and plant pathogens.
Mung bean seeds possess alkaloids, coumarin and phytosterol that support the
physiological metabolism in human beings. The seeds are also free from anti-
nutritional factors, viz., trypsin inhibitors, phytohemagglutinins and tannins (Xin
et al. 2003).

Mung bean has been used as a model crop for physiological studies (Musgrave
et al. 1988) and for understanding the beginning and expansion of adventitious roots
(Norcini et al. 1985; Tripepi et al. 1983). The rooting bioassay of this plant has also
been used to assess the root-promoting potential of growth regulators (Kling et al.
1988). Mung bean is used globally for human consumption, cattle feed and medici-
nal purposes (Jo et al. 2006). Its sprouts and splits are very nutritious, and as a
component of soups, noodles, cake or ice cream fillings, it is commonly used in
human foods. Its haulm, green and dry fodder are used as nutritious animal feed
(Garg et al. 2004). Studies have revealed its importance in the treatment of hepatitis,
gastritis, etc., and it has antihypertensive, antidiabetic and anticancer properties
(Kumar and Singhal 2009). Keeping in view the importance of the crop, the
consumption of mung bean has increased considerably along with its production
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(Shanmugasundaram et al. 2009). Therefore, mung bean is considered among cash
crops and has attracted the interest of researchers.

5.2  Origin

Mung bean has diploid (2n = 2x = 22) chromosome numbers. Vavilov (1951)
proposed Central Asian regions as the basic genetic centre of mung bean and India as
the centre of its domestication (Singh et al. 1970; Smartt 1985). The diversity data
and archaeological confirmations also suggested India to be the origin place of mung
bean (Fuller and Harvey 2006; Jain and Mehra 1980), although the wild relatives of
mung bean have been reported from the subtropical and tropical provinces of
northern and eastern Australia (Lawn and Cottrell 1988). Studies carried out based
on protein and enzyme variability suggest that modern mung bean has several series
of domestication (Lambrides and Godwin 2007; Vifia and Tomooka 1994).

5.3 Genetic Resources

Availability of germplasms having superior alleles and wide genetic diversity is one
of the prerequisites for a sustainable breeding programme. Therefore, numerous
organizations have collected mung bean germplasm to sustain the genetic resources.
To facilitate the effective utilization and easier access to genetic resources,
germplasms have been conserved in China, India, Korea and the USA. Asian
Vegetable Research and Development Center has established a core collection of
about 1700 mung bean accessions. These accessions have been morphologically and
molecularly characterized (Shanmugasundaram et al. 2009). Germplasms having
variable characteristics are the most important resource for crop improvement and
play an important role in widening the genetic background of cultivars.

54 Cultivation

Mung bean is a short-day crop and is generally grown during the rainy seasons. It
takes about 90-120 days to mature. It is the third most important leguminous crop
after chickpea and pigeon pea cultivated in India (Ahmad and Belwal 2019). Mung
bean is globally cultivated on nearly seven million hectares and is mostly limited to
Asian countries (Nair et al. 2019). The total production of the crop in India from
2018 to 2019 was 2455.37 thousand tonnes with an average productivity of 516 kg
per hectare (Anonymous 2020), suggesting that India is one of the largest producers
of mung bean.

The production and partitioning of dry matter potential in mung bean are an
outcome of several growth stages of the plant. The changes in the growth stage
mainly depend upon the temperature and photoperiod. Manipulation in the process
of the growth stage in context to the environmental conditions may lead to grain
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yield improvement. The time taken for mung bean crop to mature is an important
yield factor. The duration may change with the environmental conditions, sowing
time and cropping season. It helps to determine the suitability of crops under various
cropping systems. Mung bean is sensitive to photoperiod, and flowering in the crop
is influenced by the duration of light (Aggarwal and Poehlman 1977). It has been
reported that short days lead to early flowering, while long days result in delayed
flowering (Aggarwal and Poehlman 1977). A higher yield can be realized from the
crops grown under proper drainage conditions in sandy loam soil, while higher
humidity and excessive rainfall may lead to several diseases and lower yields in
mung bean (Oelke et al. 1990). The determinants influencing the crop duration in
mung bean have been discussed by several workers (Robertson et al. 2002;
Summerfield and Lawn 1987).

Mung bean has broad and trifoliate leaves that overlap horizontally bounding the
light into the canopy. It has been noticed that the mung bean plants having narrow
leaves capture maximum light and give comparatively higher yields (Lee et al.
2004). Mung bean has epigeal germination, and cotyledons have to arise from the
soil for the growth of the seedling. However, low-moisture conditions and crusting
of soil under higher temperatures may limit this type of germination (Cook et al.
1995), resulting in poor germination and simultaneously poor establishment (Harris
et al. 2005). Seedling vigour may be important under such conditions, but no relation
could be noticed between seedling vigour and crop yield in mung bean (TeKrony
and Egli 1991). A plant stand of about 30 plants under each square meter is
considered significant to provide higher yields in mung bean (Rachaputi et al. 2015).

The flowering and pod maturity in mung bean do not take place evenly, and
differences between these two incidences are higher (Tah and Saxena 2009), leading
to non-synchronous maturity and yield losses (Alam Mondal et al. 2011). Early and
uniform maturity of a crop has a positive effect on the grain yield; however, this
important characteristic is not known in the case of mung bean (Chen et al. 2008).
High-yielding, uniform-maturity and disease-resistant varieties are of choice for the
successful cultivation of mung bean (Tomooka et al. 2005), while low-yielding
potential, poor harvest index and vulnerability to diseases and biotic and abiotic
stresses (Srinives et al. 2007) are some of the major challenges in its cultivation.
Wild species of mung bean may serve as a better genetic material as the cultivated
germplasm may have lost many alleles during the process of domestication and/or
breeding programmes (Hyten et al. 2006). Therefore, beneficial alleles from unculti-
vated species have been accustomed to the crop improvement in mung bean (Nair
et al. 2012).

5.5  Genetic Variability

Self-pollinated crops generally have composite floral structures and low natural
variability. Therefore, the selection of such plants for crop improvement becomes
difficult; nevertheless, estimation of the phenotypic coefficient of variation (PCV),
genotypic coefficient of variation (GCV), heritability estimates and genetic advance
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(GA) provides immense opportunity to choose better genotypes. Estimation of these
variabilities reveals the influence of several gene effects operating towards total
variability for the desired traits. Several studies reported the importance of GCV,
PCV, heritability and GA in the improvement of traits in different crops (Denton and
Nwangburuka 2011; Johnson et al. 1955; Kim et al. 2015a). Evaluation of pheno-
typic or genotypic variability offers better insight into the utilization of available
germplasm resources (Bisht et al. 1998; Schafleitner et al. 2015). Wide variation in
morphological traits, viz., number of pods per plant, yield per plant, 100-seed
weight, fruit-setting capacity, flowering period, maturity, number of pod-bearing
peduncles, plant height, primary branches, length of branches, nodule and leaf
pattern, has been observed in mung bean (Bisht et al. 1998).

The study on the inheritance of narrow trifoliate leaves in mung bean revealed the
inheritance of larger leaflets over smaller leaflets (Dwivedi and Singh 1985). Lobed
leaf shape was found dominant over the entire leaf shape, while pentafoliate leaf was
reported to be an inherited characteristic in mung bean (Chhabra 1990). The inheri-
tance of dullness and shininess of leaf surface suggest that it is governed by a digenic
interaction (Bhadra et al. 1991) with the dominance of dullness over shininess.
Inheritance of plant and flower bud colour in mung bean suggested that the dark
purple colour of the plant was dominant over the green plant colour; similarly, purple
flower buds showed dominance over the green flower buds (Khattak et al. 2000). It
was found that black and green seed colour is governed by similar genes; however,
black seed is dominant over green seeds (Chen et al. 2001). The occurrence of
anthocyanin is a dominant character so is the black-colour seed coat over the green
colour (Chen et al. 2001). The study also revealed that the genes responsible for
purple petiole and black seed colour have higher lineages. Single recessive gene was
observed to control mung bean yellow mosaic virus resistance in the crop with
susceptible behaviour being dominant over the resistant behaviour (Win et al. 2021).

PCV and GCV along with heritability estimates provide an insight into the
improvement of requisite characters (Burton and de Devane 1953). Mung bean has
been reported with higher PCV and GCV for seed yield and pod numbers (Makeen
et al. 2007), plant height, pod numbers and grain yield, while it was low with respect
to days to 50% flowering (Anand and Anandhi 2016). Primary branches, pod
numbers, seed yield and clusters showed higher GCV and PCV in mung bean
(Asari et al. 2019). Higher PCV and GCV were reported for 100-seed weight,
flowering period, seed length and seed breadth (Tripathi et al. 2020). The number
of pods, seed yield and number of clusters have been recorded with high PCV and
GCV in mung bean (Salman et al. 2021), suggesting the presence of higher
variabilities for these traits, and therefore, there are more opportunities for further
improvement using several genetic influences.

Heritability is the amount of phenotypic variance among different genotypes due
to the effect of inherited genes. The estimation of heritability is done to find the
similarity between the genotypes (Falconer and Mackay 2005). It also explores the
association between phenotypic and genotypic variance (Lourenco et al. 2017).
Heritability in combination with genetic advance gives better insight into the desired
genotype (Nwangburuka and Denton 2012). The traits presenting higher heritability
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along with higher genetic advance in mung bean may be enhanced by the selection
method (Degefa et al. 2014) because these characteristics are under the influence of
additive gene action. The influence of both additive and non-additive gene effects
has been reported for several traits in mung bean (Khattak et al. 2002). Days to first
pod maturity (Khattak et al. 2001) and seed yield (Sharma 1999) exhibited higher
heritability. It has also been reported that the additive gene effect governs the seed
yield in mung bean (Joseph and Santhoshkumar 2000).

The number of pods, plant height and test weight had a high value of heritability
coupled with a higher genetic advance in mung bean, suggesting the influence of
additive gene effect in their manifestation (Makeen et al. 2007). Higher variability
was recorded during the assessment of genetic diversity among yield-attributing
traits comprised of 9 qualitative and 21 quantitative characters among 340 cultivated
mung bean collections (Yimram et al. 2009). Several yield-attributing traits showed
higher genetic variability and heritability (Yimram et al. 2009). The number of
seeds, seed yield and biomass yield exhibited higher heritability coupled with higher
genetic advance, suggesting their importance in the selection of mung bean for better
yield potentials (Degefa et al. 2014).

Genetic architecture of synchronous pod maturation and yield-related traits in
mung bean were studied, and domination of additive and environmental components
for days to flowering, pod maturation, synchrony in pod maturation and yield-related
characters were recorded (Igbal et al. 2014). The study suggested that inter-crossing
of F2-generation plants having earliness and synchronized pod maturation along
with high-yielding potential and their subsequent selection may be useful for
manipulation of complex inherited characters in the development of mung bean
lines for plant improvement (Igbal et al. 2014). Seed yield, plant height and number
of pods exhibited high values for heritability (Anand and Anandhi 2016).

High heritability coupled with higher genetic advance was reported for plant
height, number of primary branches, number of clusters, number of pods and seed
yield, signifying the dominance of additive gene action (Asari et al. 2019). Higher
heritability was reported for seed dimension-related traits, days to 80% maturity,
100-seed weight, days to 50% flowering, pod length and days to initial maturity,
suggesting that these traits are appropriate for mung bean breeding (Tripathi et al.
2020). Pod numbers, seed yield, clusters, number of branches, seeds and height had
high heritability coupled with high genetic advance, suggesting the influence of
additive genes in the inheritance of these morphological characters (Salman et al.
2021).

5.6 Mutation

Mutation is an unexpected genetic modification caused by variation in the gene
sequences, leading to alteration in several plant characteristics including height,
branches, flowers, pods, etc. It may occur naturally or may be induced artificially.
The natural mutation is sudden, and its frequency is very low; therefore, it cannot be
considered realistic. Hence, artificial methods of mutation were discovered to create
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variability in the crops. The introduction of mutations has played an important role in
the field of genetic studies and plant breeding (Raina et al. 2016). The mutation is
considered a promising tool for evolution, and induced mutagenesis is an ideal
methodology for the creation of required genetic variability in crops (Auti 2012;
Dubinin 1962). It may be induced using physical and chemical mutagens either
individually or in combination. Various physical and chemical mutagens have been
recognized in various crops (Pathak 2015; Shah et al. 2008). X-rays and gamma rays
are generally applied as physical mutagens, while ethyl methane sulphonate (EMS),
diethyl sulphonate (DES), sodium azide (SA), methyl methane sulphonate (MMS),
nitrosoguanidine (NG), nitroso-methyl urea (NMU), etc. are the chemical mutagens
used for creating variability. The genetic material generated through mutagenesis
and the mutants with better desired characteristics may be included in the breeding
programmes. Several attempts have been undertaken to improve the genetic
variability in mung bean using different mutation techniques. The variability lost
during the adaptation or evolution of a crop can be refurbished or renewed with the
help of induced mutations. Selection of morphologically varied mutants, viz., plant
type, chlorophyll, leaf, flower and seed-type mutants, has enhanced genetic
variability and showed higher level of resistance towards abiotic and biotic stresses
(Mounika 2020).

5.6.1 Mutations Induced Through Physical Factors

Physical mutagenesis is an effective method for creating variability for crop
improvement in self-pollinated crops including mung bean (Sarkar and Kundagrami
2018; Shah et al. 2008). Irradiation with ionizing or non-ionizing rays is used to
induce physical mutation. It was started with X-rays, but at the later stage, gamma
rays got more popular (Auerbach and Robson 1946) due to better effects over plant
growth and development by stimulating cytological, genetical, biochemical, physio-
logical as well as morphological variabilities (Gunckel and Sparrow 1967). The
influence of gamma irradiation on morphological and cytological changes in mung
bean was recorded, wherein decreased seed germination, seedling survivability and
growth rate were observed with increased doses of gamma rays (Subramanian 1980).
Dosage of 10-30 kR gamma rays was reported to be appropriate to obtain earliness,
synchrony in the maturity and resistance towards yellow mosaic disease in mung
bean (Singh and Chaturvedi 1982). Substantial variability for the number of clusters
was recorded with 10, 30 and 40 kR gamma radiation in different mung bean
genotypes (Tah 2006), and a 16-20% increase was observed over the control.
Mung bean varieties treated with 1040 Gy gamma rays resulted in mutants having
synchronous maturity (Tah and Saxena 2009).

Gamma rays were applied to create synchrony in the pod maturity, and the
obtained mutants exhibited synchronous pod maturity along with variegated leaves
(Sangsiri et al. 2007). The shallow rooting system of high-yielding and MYMV-
resistant mung bean variety (Samrat) was improved using 450 Gy gamma rays, and a
long-root mutant possessing a root length of 71 cm was identified in the M,
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generation (Dhole and Reddy 2010). The mutant showed better performance in
terms of water uptake as compared to ‘Samrat’ and survived better under drought
conditions. Gamma rays (300, 400 and 500 Gy) and EMS (10, 20 and 30 mM) were
applied to screen the yellow vein mosaic virus disease-resistant mutants in mung
bean, and several disease-resistant mutants were identified in M3 generation (Vairam
et al. 2016). Gamma radiation was applied to advance the genetic constitution of
mung bean, and 20 mutants from M5 progeny having an early maturing period and
high yield potential were identified (Sarkar and Kundagrami 2018). Four doses of
gammarays (100, 200, 300 and 400 Gy) were applied to improve genetic variation in
mung bean varieties, and mutants showing higher harvest index were isolated in M7
generation from 200 and 400 Gy dosages of gamma rays (Dewanjee and Sarkar
2018). The mutants having potential characteristics may be released as a variety, or
the potential character may be transformed in other varieties to get better yields in
mung bean (Pratap et al. 2020).

5.6.2 Mutations Induced Through Chemical Factors

Mutations carried out by irradiation of ionizing rays may lead to chromosomal
aberrations; therefore, chemical mutagens were taken as a substitute to create
variabilities. Chemical mutagens have become more popular as no specific equip-
ment is involved during their applications, and it is comparatively easy to induce.
Compared to physical mutagens, it induced point mutations causing single base pair
changes (Sikora et al. 2011). Two important groups of chemical mutagens, viz.,
alkylating agents and base analogues, are usually applied for creating mutations.
However, out of these chemical mutagens, alkylating agents such as EMS and NMU
are generally used to induce mutation in crops. Various chemical mutagens, viz.,
ethyl methane sulphonate (EMS), sodium azide (SA) and hydrazine hydrate (HZ),
have been used in mung bean (Auti and Apparao 2009; Khan and Goyal 2009; Wani
2006). Variation in seed size of mung bean was observed when it was treated with
EMS and nitroso-methyl carbamide (Singh and Chaturvedi 1982). Higher seed yield,
fertile branches and pods were reported in mung bean mutant lines acquired after the
application of EMS and HZ (Wani 2006). EMS induces mutations more efficiently
in mung bean as compared to gamma rays (Singh and Rao 2007). The crop duration
in the M2 generation of mung bean was reduced with the help of SA mutagen
(Lavanya et al. 2011).

5.6.3 Mutations Induced Through Physical and Chemical Factors

Physical and chemical mutagens individually have several advantages and induce
random changes in the genome. However, the genetic variability induced by the
combination of physical and chemical mutagens is comparatively more efficient, and
the possibility of obtaining the required characteristics is significantly higher (Raina
etal. 2017). A combination of lower doses of physical and chemical mutagen is more
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acceptable for artificial mutation (Medina et al. 2004). Both effectiveness and
efficacy are important parameters for mutagens. The effectiveness and efficacy
give information regarding the rate of point mutations concerning dosage and
other biological effects, respectively, induced by the mutagen (Konzak et al.
1965). It relies upon the genotype and the mutagen. Varied effectiveness and
efficiency of mutagens have been reported in several crops including mung bean
(Wani et al. 2017). EMS and gamma rays were applied to create variability in mung
bean and subsequently for the development of novel cultivars having higher yields
and resistance towards insect pests (Khan and Goyal 2009; Wani 2006). Mung bean
seeds treated with different concentrations of SA and EMS and different doses of
gamma radiation were grown to study mutagenesis in mung bean (Auti and Apparao
2009), and several viable morphological and physiological mutants were obtained.
Seeds of mung bean were treated with gamma rays (1060 KR) and EMS
(0.1-0.4%) alone and in various combinations, and several chlorophyll and morpho-
logical mutants were identified in the M2 generation (Kumar et al. 2009).
Chlorophyll-deficient mutants are considered genetic markers and are used to
study the photosynthesis process (Rungnoi et al. 2010). Maximum mutations were
recorded with EMS followed by gamma rays and their combinations. Higher
numbers of albina-, chlorina- and viridis-type chlorophyll mutants were observed
with the treatment of EMS, MMS and SA in mung bean (Khan and Siddiqui 1993).
Similarly, albina, xantha, viridish, sectorial and chlorina mutants have also been
recognized by Singh and Rao (2007) in mung bean. Chlorophyll mutation in mung
bean has also been observed with gamma radiations and EMS alone and in its
combinations (Kumar et al. 2009), wherein maximum frequency was recorded
with EMS followed by gamma rays and their combinations. A higher number of
chlorophyll mutation was observed when 300 Gy gamma rays were used in combi-
nation with 10 mM EMS in M2 generation (Vairam et al. 2016). Bifoliate,
tetrafoliate and pentafoliate leaves have been reported in mung bean with the
treatment of EMS (Auti and Apparao 2009). Mutation in flower colour has also
been reported by various workers. Comb-like flowers having pollen sterility have
been reported in mung bean upon mutation (Sangsiri et al. 2005). Variations in seed
shape, seed size and seed colour were observed in mung bean mutants developed
through treatment with gamma rays, EMS and SA (Auti and Apparao 2009).

5.7 Genotype x Environment Interaction and Stability

Improvement in the quality and quantity of crops coupled with enhanced stability
over the varied environmental conditions is the most important requirement in the
breeding programme. The best varieties always have higher yields along with better
stability (Eberhart and Russell 1966). Genotype x environment (G x E) interaction
suggests the variable responses of a trait of genotypes evaluated under different
environments. It also reveals the comparative suitability of a genotype within a
particular environmental situation (Allard 1960). The genotype may acquire stability
alone or may be due to the buffering effect of the population; however, the yield is



124 R. Pathak et al.

validated due to the effect of G x E interactions (Allard and Bradshaw 1964).
Nevertheless, the comparison of varieties in a chain of environments provides
relatively different positions resulting in difficulties to identify superior varieties
(Eberhart and Russell 1966). The comparative performance of genotypes differs
from one environment to another, and it can be articulated as a linear function of an
environmental variable (Pathak 2015; Tan et al. 1979). Therefore, to assess the
stability of a variety for the desired trait, an understanding of G x E interactions is
essential. Stable varieties have great significance in several crops including mung
bean for cultivation in variable environmental conditions (Verma et al. 2008).
Variable performance of a variety towards different environmental conditions
compels to search novel breeding materials under multi-environmental trials for
years to evaluate their stability for desired traits (Fehr 1987; Kang 1993). A decrease
in the interactions between genotype and environment is necessary to find a stable
genotype that has less interrelation with the environment wherein it is cultivated.
Significance of genotypes upon environment and adaptation of varieties towards
yield and yield-attributing traits with respect to stability has been thoroughly
underlined by several workers in mung bean (Abbas et al. 2008; Dwivedi 2006;
Mahalingam et al. 2018). While highlighting the importance, it was suggested that
the environment and G x E interactions must be considered during the designing and
selection of materials for breeding in mung bean (Singh et al. 2009).

Stable varieties of mung bean have been identified over the years under varied
environmental conditions by several researchers (Abbas et al. 2008; Baraki et al.
2020; Raturi et al. 2012b), and the prominence of some genotypes over the environ-
ment was also observed (Mahalingam et al. 2018). The environment imposes a
higher impact on several characteristics of mung bean including flowering time, pod
formation as well as yields. Kamannavar and Vijaykumar (2011) assessed G x E
interactions in mung bean cultivars grown in different agro-climatic zones and
reported that genotype, environment and G x E interaction were significant for all
the characters signifying the existence of variabilities for genotype and environment
along with non-linear influence of genotypes over the environment. However, the
partitioning of interaction into linear and non-linear components suggests the
involvement of both predictable and unpredictable sources of variables.
Non-significant G x E interaction was recorded for 100-seed weight, suggesting
the variable response of genotypes towards variable environmental conditions
(Revanappa and Kajjidoni 2004). On the basis of stability analysis and their
influences, Henry and Mathur (2007) categorized the genotypes for favourable,
adverse and variable environmental conditions.

Raturi et al. (2012a, b) reported significant G x E interactions for 1000-seed
weight, days to 50% flowering, number of seeds per pod and number of primary
branches revealing varied responses of genotypes to varied environments. Signifi-
cant G x E interactions have been recorded for seed yield among genotypes of mung
bean grown under varied environmental conditions (Baraki et al. 2020). A crossover
G x E interaction is usually observed if genotypes are evaluated under multi-location
trials. Studies suggest that the variation in the seed yield of mung bean due to G X E
interactions is inherited, and the genotypes perform differently to the varied
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environmental situations of the site of sowing (Baraki et al. 2020; Waniale et al.
2014). Therefore, mung bean genotypes may essentially be tested at multi-locations.

5.8 Correlation and Path Analysis

The morphophysiological characteristics of a genotype depend on several factors,
and therefore, several aspects are taken into account during the selection of a
genotype including the fact related to the association of characters and the influence
of direct and indirect effects of each trait. Correlation provides the information with
respect to the association between the traits, but it does not reveal the cause and/or
consequence of association (Roy 2000), while the path coefficient analysis gives a
better insight into the influence of one trait on another during identification of a
predictor variable (Akanda and Mundt 1996). Thus, path analysis informs about the
cause and reveals the comparative influence of the traits, while correlation analysis
just provides reciprocal relation of traits (Dewey and Lu 1959).

The findings on correlation coefficient in mung bean recommend that a plant with
more number of branches, clusters, pods and higher number of seeds in a pod is
anticipated to provide higher seed yields. Thus, an increase in the number of
branches and pods may be culminated into higher seed yield as branches bear
pods and pods bear seeds. The association between seed yields was significantly
positive with the number of branches, number of pods and total biomass in mung
bean (Nawab et al. 2001), indicating the influence of these traits on the seed yield.
The number of pods and plant height had a significantly positive association with
seed yield (Makeen et al. 2007; Upadhaya et al. 1980); similarly, these traits along
with test weight showed a maximum direct effect on the seed yield (Makeen et al.
2007). A significant positive association was observed between seed yield and days
to 50% flowering, primary branches, secondary branches, clusters, pods, pod length,
seeds, pod mass, pod wall mass, seed mass, shelling percentage, seed and harvest
index (Singh and Kumar 2014), suggesting that these traits may be useful for
selecting genotypes for yield improvement in mung bean. Seed yield had highly
significant and positive correlations with pods, clusters and seed numbers (Singh and
Kumar 2014), whereas days to maturity had a negative association with seed yield.
The study also showed that seed yield had no significant association with protein
content.

Number of clusters and number of pods showed a significantly positive associa-
tion with seed yield, suggesting that these are the most important components for
crop improvement in mung bean (Anand and Anandhi 2016; Asari et al. 2019).
Similarly, the study also revealed a positive and direct impact of days to 50%
flowering, test weight, number of clusters, number of pods and number of primary
branches on seed yield (Asari et al. 2019), suggesting that emphasis may be given on
these traits during the crop improvement in mung bean. Seed weight was reported to
be negatively associated with seed roundedness, days to first flowering, days to 50%
flowering, flowering period and days to maturity (Tripathi et al. 2020), while pod
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length showed a positive correlation with seed weight, seed area and seed
dimensions.

5.9 Genetic Divergence

Quantification of divergence within the characters required to be improved gives the
understanding to find suitable parents for breeding programmes (Mahalanobis
1936). It was suggested that the measurement of the metric distance between
population centroids may help in the consideration of high-yielding parents having
wider genetic divergence that are found beneficial in the development of high-
yielding hybrids (Murty and Arunachalam 1966). The analysis also measures
the magnitude of divergence and simultaneously provides an understanding of the
evolutionary patterns in terms of the comparative influence of various traits on the
entire divergence functioning at intra- and inter-cluster levels. Genetic divergence
studies help in the identification of suitable parents for hybridization during crop
improvement (Mohammadi and Prasanna 2003) as the involvement of genetically
different parents brings gene constellation in the progressive generations.

Several studies have been carried out to find the nature and extent of genetic
divergence in mung bean using Mahalanobis D? statistics (Goyal et al. 2021; Rahim
et al. 2010; Ramana and Singh 1987; Ramanujam et al. 1974; Sen and De 2017), and
it was concluded that the genotypes grouped in different clusters with higher
statistical distances may be utilized in the hybridization programmes for crop
improvement in mung bean. The comparative influence of each character on the
total genetic divergence, the clusters having the highest statistical distance and the
collection of at least one genotype from such clusters are some of the most signifi-
cant points for the identification of parents using D? statistics. It has been observed
that there is no relation between geographic and genetic diversity in mung bean
(Naidu and Satyanarayana 1991; Raje and Rao 2000; Tripathi et al. 2020).

5.10 Plant Protection

Mung bean is susceptible to several viral, bacterial and fungal diseases leading to
major economic losses to the crop (Mbeyagala et al. 2017; Pandey et al. 2018; Singh
et al. 2000). Cercospora leaf spot, powdery mildew, anthracnose, dry root rot, web
blight, fusarium wilt and Alternaria leaf spot are major fungal diseases (Pandey et al.
2018); halo blight, bacterial leaf spot and tan spot are the important bacterial
diseases; while mung bean yellow mosaic disease (MYMD) is a major viral disease
(Nair et al. 2017) found in mung bean. Maximum yield losses in mung bean have
been reported due to MYMD (Karthikeyan et al. 2014) followed by several fungal
diseases (Bhat et al. 2014; Maheshwari and Krishna 2013; Shukla et al. 2014). Effect
of several bactericides and fungicides in the seed treatment and foliar spray along
with the influence of good agronomic practices have been reported to combat these
infections (Pandey et al. 2018). The use of disease-resistant varieties and the
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employment of integrated disease management are the best cost-effective ways to
control the incidence of diseases in mung bean.

5.10.1 Viral Diseases

Mung bean yellow mosaic virus (MYMYV) is a major threat to mung bean cultivation.
The reference genome of this virus is available (Morinaga et al. 1993). The virus is
comprised of two DNAs of about 2.7 kb. There are several views concerning genetic
resistance associated with MYMV. It was suggested that it is controlled by a solo
recessive gene (Reddy 2009), a dominant gene (Sandhu et al. 1985), while others
reported that it is controlled by two recessive genes and a complementary recessive
gene (Ammavasai et al. 2004; Dhole and Reddy 2012; Pal et al. 1991). The infected
plant shows yellow-coloured spots on the young leaves that become yellow mosaic
shape in the later stage, and simultaneously drooping of leaves takes place after the
entire yellowing and drying of the leaves. Presently, fully resistant varieties to
MYMYV are unavailable. However, resistant varieties exhibit high variability and
depend on climatic conditions (Nair et al. 2017) as the virus is transmitted through
whitefly. The occurrence, distribution and transmission of this vector are well known
that may help to cope with the spread of the virus. The variation in pathogen because
of several other factors makes its control more cumbersome (Alam et al. 2014).

5.10.2 Fungal Diseases

Cercospora leaf spot (CLS) disease caused by fungus Cercospora canescens is one
of the important foliar diseases in mung bean. The disease may reduce the yield up to
40%. There is chaos on the genetic basis of CLS-resistant gene, whether it is
monogenic or multigenic. It has been reported that CLS resistance is governed by
a single dominant gene (Lee 1980); besides this, studies also suggest the presence of
quantitative genetic control (Chankaew et al. 2011) and a single recessive gene
influence (Mishra et al. 1988) in respect to CLS resistance in mung bean. Variability
among C. canescens strains is a major problem in crop breeding as it varies in the
same region and within the same host including mung bean. Variable mycelial
characteristics have also been reported with CLS (Joshi et al. 2006).

5.10.3 Bacterial Diseases

Blight caused by Xanthomonas axonopodis is a distressing bacterial disease in mung
bean. Seeds are the primary source of bacteria, and therefore proper treatment of
seeds before sowing is the best practice to control the disease (Baker and Smith
1966). A bacterial disease showing symptoms of marginal and veinal necrosis of
leaves caused by Curtobacterium flaccumfaciens subsp. flaccumfaciens has been
reported (Wood and Easdown 1990). The pathogen does not cause any wilting. The
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disease can be generally seen in rainfed crops suffering with water stress. Another
bacterial disease showing the symptoms of necrotic spots on the leaves and collaps-
ing of the upper part of the stem was observed in mung bean, and it was reported that
the disease is caused by Pseudomonas syringae pv. syringae (George and Tripepi
1990). Besides this, irregular necrotic spots encircled with slender chlorotic and
water-soaked radiance are seen on the leaves of mung bean that may result in blight.
The disease is caused by X. axonopodis pv. phaseoli and may lead to severe loss to
the crop (Osdaghi 2014). Necrotic spots surrounded with yellow halo caused by
P. syringae pv. phaseolicola have been observed in China (Sun et al. 2017). A foliar
disease caused by P. syringae pv. tabaci showing resemblance to wildfire has also
been reported in mung bean (Sun et al. 2017). The disease initially appears in the
form of small rounded light green patches that becomes brown from the centre
during later stage due to necrosis of parenchymatic tissues. The necrosis proceeds
quickly, and the brown spot encircled with watery lesion increases in length and
width. The severity of infection may lead to deformation and drooping of leaves.

5.10.4 Nematodes

Nematodes have destructive effect on agriculture. Several nematodes, viz.,
Rotylenchulus  reniformis, Meloidogyne incognita, Bitylenchus vulgaris,
Basirolaimus indicus, B. seinhorsti, Helicotylenchus indicus, H. retusus,
Tylenchorhynchus mashhoodi and Tylenchus sp., have been reported to infest
mung bean (Ali 1995). Heterodera vigni is also known to infect mung bean crops,
resulting in higher yield loss and dry matter content. Population-monitoring system
(Saxena and Reddy 1987) and oil extracted from herbs (Sangwan et al. 1990;
Siddiqui and Mahmood 1996) are considered better approaches to getting rid of
nematodes in mung bean.

5.10.5 Insect Pests

Several insect pests are known to infest mung bean from its sowing to storage and
lead to severe yield losses. Some of the insect pests found on mung bean are stem fly,
thrips, aphids, whitefly, pod borer complex, pod bugs and bruchids (Swaminathan
et al. 2012). They may directly attack the crop or work as vectors of diseases. Bean
fly (Ophiomyia phaseoli) is the important pest found on mung bean. Besides
O. phaseoli, other species of bean flies such as Melanagromyza sojae and
O. centrosematis also infest mung bean crops (Talekar 1990). The flies attack the
crop within a week after the germination, and under severe conditions, it may lead to
complete loss of the crop (Chiang and Talekar 1980). Whitefly (Bemisia tabaci) is
another pest that affects the crop directly and indirectly. It feeds on phloem and
excretes honeydew on the plant that becomes black sooty moulds; besides this, it is
the well-known vector of MYMYV. Thrips also infest the crop at different stages.
Several thrips, i.e., seedling thrips (Thrips palmi and Thrips tabaci) and flowering
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thrips (Caliothrips indicus or Megalurothrips spp.), are found on the crop. Spotted
pod borer (Maruca vitrata) is also an important pest found on mung bean crops
grown in tropical and subtropical regions. The larvae of this pod borer attack the
flower, stem, peduncle and pod of mung bean (Sharma 1999). Azuki bean weevil
(Callosobruchus chinensis) and cowpea weevil (Callosobruchus maculatus) are
some of the most serious pests of mung bean in the field, while bruchids are the
serious pests found in storage conditions (Somta et al. 2007; Tomooka et al. 1992).

5.11 Physiology and Abiotic Stresses

Abiotic stresses have an adverse effect on plant growth and productivity, leading to
major economic losses (Ye et al. 2017). These stresses may include several atmo-
spheric issues along with drought, flooding, radiation, salinity, temperature, etc. The
effect of climatic aberrations over the periods also reduced crop yields (Boyer et al.
2013; Rosenzweig et al. 2014). Mung bean is highly sensitive to salinity, drought
and fluctuating temperatures during the flowering and pod formation stages, leading
to severe yield losses. Understanding of physiological limits influencing the seed
yield in mung bean is critical, and it should be properly identified before devising
solutions.

5.11.1 Water Stress and Drought

Mung bean is generally grown under limited soil moisture conditions and does not
require any additional input. Nevertheless, its growth is highly influenced by the
availability of moisture in the field. However, it is highly susceptible to waterlogging
conditions (Singh and Singh 2011). It was observed that water stress during the
flowering stage resulted in 50-60% yield reduction (El Nakhlawy et al. 2018) in
mung bean, and the study also revealed that seed formation was the most sensitive
stage to water stress. Further, studies also suggest that the extreme drought
conditions may lead to a reduction of plant biomass, pod numbers and consequently
great toll on seed yield (Kumar and Sharma 2009). A decline in the pace of pod
initiation, its development (Begg 1980) and flower shedding (Moradi et al. 2009) are
the significant impacts of water stress during the reproductive growth of the crop.
Drought condition during the reproductive stage has a negative effect on flowering
and simultaneously leads to a reduction in the yield (Raza et al. 2012).

Drought conditions during flowering and podding stages may lead to 31-57%
and 26% yield reduction, respectively (Nadeem et al. 2019). Drought condition leads
to the production of destructive superoxide molecules that damages cells, and this
oxidative stress depends mainly upon the level of ascorbic acid and glutathione pools
(Anjum et al. 2015). Heat and cold stress are highly dangerous to different growth
stages and may result in higher yield losses. The optimum temperature for plant
growth is 28-30 °C. Higher temperatures (>45 °C) during the flowering stage may
lead to flower shedding. Several developmental stages of mung bean including
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germination, seed emergence, vegetative phases, flowering stage and pod/seed
setting stage are highly sensitive to temperature extremity (HanumanthaRao et al.
2016). Crops grown during February or March months face major problems of water
stress due to insufficient or no rainfall; hence, sowing of short-duration varieties may
be preferred to avoid the stress (Pratap et al. 2013). Mung bean varieties/lines having
tolerance against several abiotic stresses, viz., drought, heat and salt, have been
identified over the period (Bindumadhava et al. 2018; Dutta et al. 2016; Dutta and
Bera 2008; Manasa et al. 2017; Sharma et al. 2016).

5.11.2 Salt Stress

Salt stress adversely affects seed germination, biomass and shoot and root growth
along with several yield-attributing traits (Ahmed 2009; Promila and Kumar 2000).
Lesser seed germination was observed in mung bean with the increasing salinity
levels (Kandil et al. 2012; Maliwal and Paliwal 1982). It may be due to the fact that
salinity evades water uptake or causes toxic effects, resulting in a reduction of seed
germination (Murillo-Amador et al. 2002). Salt stress is usually exhibited as a
general stunning of plant growth. Symptoms of salt injury such as chlorosis and
necrosis have also been reported in mung bean due to increased levels of salinity
(Reddy 1982; Wahid et al. 2004). Significant variability was observed for growth,
yield, yield components and chemical composition in mung bean seeds under
different salinity levels (Mohamed and El-Kramany 2005). Mung bean plants have
been reported to have higher proline content in the root and shoot due to increased
salinity and or salinity stress (Misra and Gupta 2006). It was suggested that salt stress
may affect the filling of seeds in the pods of mung bean, leading to a reduction in the
number of seeds in the pods and simultaneously a reduction in the yield potential
(Ahmed 2009). Yield variability in mung bean upon salt stress has also been noticed
by various workers (Hossain et al. 2008; Jahan et al. 2020). It has been observed that
salt-stressed plants of mung bean had a higher concentration of sodium and chloride
ions in their leaves, roots and shoots and a lower concentration of potassium and
calcium ions as compared to the non-stressed plants (Mohammed 2007). Owing to
this condition, the electrolyte leakage in mung bean was comparatively higher
(Alharby et al. 2019). A decrease in seed germination, plant height, shoot and root
length, dry matter, biomass, and root, stem and leaf weights has been reported in
mung bean due to an increase in salt stress (Mohamed and El-Kramany 2005;
Mohammed 2007). It has been observed that 50 mM NaCl significantly affected
the yield of mung bean (Saha et al. 2010). Accumulation of a higher quantity of salt
leads to a reduction of the osmotic ability of soil sap, resulting in water stress in
plants and consequently nutritive deficiency and oxidative stresses (Tavakkoli et al.
2011) along with reduction in photosynthesis rate. This may also stimulate physio-
logical and metabolic pathways (Misra and Dwivedi 2004) of the cells. Reduction in
root length due to salt stress impedes the uptake and supply of nutrients. Number of
nodules also reduced with the increase in salinity; however, their size increased due
to salinity (Naher and Alam 2010). Pre-treatment of mung bean with sub-lethal
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dosage of sodium chloride may help in adaptation of the crop to the lethal levels of
salinity (Saha et al. 2010). There is comparatively little work available on the
development of salt-tolerant varieties of mung bean. Decline in relative water
content, cellular dehydration and osmotic stress have been observed in mung bean
due to salt stress (Singh et al. 2021). The biometric, morphophysiological, biochem-
ical and biophysical characters in mung bean were highly affected due to salt stress
(Kumar et al. 2012). It suggests that salt stress imposes water insufficiency in plants
and may cause physiological drought. It has been reported that salinity tolerance
depends on the genotype and different growth stages; hence, salt tolerance at
seedling stage may not suggest that it may show tolerance at maturity stage
(Sehrawat et al. 2013). Salinity has different responses in the plant, which can be
manifested at tissue, canopy, physiological or molecular level (HanumanthaRao
et al. 2016).

5.11.3 Other Abiotic Stresses

Rising application of synthetic fertilizers and higher human interference along with
the mixing of contaminated industrial effluents have deteriorated the cultivated land,
and indirectly the crops are grown on it. The water or air pollutants are significant
threats to crop cultivation as they have a higher concentration of heavy metals
(Lagerverff and Specht 1970). The metal accretion in the soil is increasing continu-
ously due to uncontrolled usage of fertilizers, pesticides, industrial waste and sewage
(Harland et al. 2000). Soil pollution due to heavy metals is very hazardous because
heavy metals cannot be despoiled naturally and may remain in the ecosystem for a
longer time and simultaneously in the food chain (Igwe et al. 2005). Lethal impacts
of heavy metals have been observed on the soil microflora (Pawlowska and Charvat
2004) along with amendment of the variability, quantity and entire activity of the
microbial communities (Smejkalova et al. 2003). Besides heavy metal contamina-
tion, air pollution has higher concentration of sulphur dioxide, nitrogen dioxide and
ozone, which also have deleterious effects on biomass, seed quality and yield
potential of crops including mung bean (Agrawal et al. 2003, 2006). The toxic effect
of heavy metals on mung bean seed germination was studied, and delayed germina-
tion was observed with a higher concentration of lead (Ashraf and Ali 2007). The
study also suggests that silver was more toxic followed by lead and zinc. A decrease
in the biomass and quality of seeds was reported due to air pollutants such as sulphur
dioxide, nitrogen dioxide and ozone in mung bean (Agrawal et al. 2006). Heavy
metal nickel adversely influences the photosynthetic pigments and yield in mung
bean (Ahmad et al. 2007). It also supports the deposition of sodium, potassium and
calcium ions.

An increased level of proline in the plant is suggestive of abiotic stress. The level
of proline was tested in mung bean under cadmium, cobalt, lead and zinc stress
(Saradhi 1991), and cadmium was found as the most poisonous metal triggering
proline production. Cadmium increases glutathione reductase activity (Gill and
Tuteja 2010), inhibits photosynthetic activity (Wahid et al. 2008) and affects the
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activity and structure of chloroplast (Wahid et al. 2007) in mung bean. Cadmium and
lead induce changes in growth, biochemical attributes and mineral accumulation
(Ashraf et al. 2016), while mercury induces changes in germination and biochemical
attributes (Saminathan 2013) in mung bean, suggesting that heavy metal-
contaminated soil exhibits negative impacts on the development, production and
protein content in the crop. Sharma et al. (2021) observed that cadmium had
amended several morphological and biochemical characteristics of mung bean. It
also affected the chlorophyll, carbohydrate, protein, polyphenol and antioxidant
profile of the crop.

5.12 Tissue Culture and Genetic Transformation

The development of plants through the tissue culture technique permits the transfer
of genes into plant cells (Chandra and Pental 2003). The transgenic exploration in
mung bean is sluggish owing to its recalcitrant behaviour towards tissue culture and
lower frequency of regeneration after transformation (Eapen 2008; Varshney et al.
2015). However, regeneration protocols for mung bean have been developed
through embryogenesis (Sivakumar et al. 2010), organogenesis (Himabindu et al.
2014) and axillary bud proliferation using cotyledonary node explants (Sagare and
Mohanty 2015; Yadav et al. 2010). Successful transformation in mung bean has also
been reported in which transgenes were effectively inherited and conceded to the
following generations (Baloda and Madanpotra 2017).

Genetic transformation in mung bean was initially carried out in hypocotyls and
primary leaves (Jaiwal et al. 2001), and a binary vector (selection marker: neomycin
phosphotransferase and reporter gene: beta-glucuronidases) was successfully
incorporated. Later, Saini et al. (2007) developed morphologically normal and fertile
transgenic plants of mung bean comprising two transgenes, bialaphos resistance and
alpha-amylase inhibitor, using cotyledonary node explants. A pathogenesis-related
gene (bjnprl) isolated from mustard was introduced into mung bean, and it was
observed that the transgenic mung bean plants exhibited resistance against fungal
diseases (Vijayan and Kirti 2012). Similarly, annexinlbj gene was successfully
incorporated into mung bean, and the consequently developed transgenic plants
revealed better tolerance against drought stress (Yadav et al. 2012). Transformation
of mung bean plants for salt and drought tolerance was carried out by introducing a
gene for an osmoprotectant glycine betaine (Saraswat et al. 2017), and transforma-
tion and expression of the transgene (codA gene) were realized. Modification in the
DNA structure of food crops is usually unacceptable; therefore, genetically
engineered food crops have always been viewed with a question mark despite
several advantages.
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5.13 Genetic Markers and Biotechnology

Several molecular markers, viz., restriction fragment length polymorphism (RFLP),
random amplified polymorphic DNA (RAPD), simple sequence repeat (SSR) and
single nucleotide polymorphism (SNP) markers, have been employed to study the
genetic diversity in mung bean. The molecular markers have also been used for the
construction of linkage maps focusing on yield, nutritional aspects and disease
resistance.

Mung bean has a smaller (~600 Mb) genome and takes a lesser period to complete
its life cycle; therefore, it is comparatively more suitable to apply other approaches
for crop improvement. It was observed that maximum genes found in mung bean
showed synteny with the genes found in soybean (Kang et al. 2014). Vigna radiata
variety VCI1973A was genetically sequenced, transcriptome sequences of
22 accessions were obtained (Kang et al. 2014) and relatedness of two homologous
genomes of V. reflex-pilosa (a wild species) was outlined. The study enhanced the
understanding of the evolution of Vigna species that may enable crop improvement
in mung bean. The molecular markers facilitate the identification of loci linked to the
desirable characteristics, and their tracking is more accurate and effective as com-
pared to traditional breeding (Collard and Mackill 2008).

Bruchid resistance in mung bean was analysed using RFLP markers (Young et al.
1992), and 153 RFLP markers were categorized into 14 linkage groups having an
average interval of 9.3 cM. Further, RFLP markers were used to prepare a linkage
map of mung bean comprising 11 linkage groups, and an interspecific hybrid
population between V. radiata ssp. radiata and V. radiata ssp. sublobata was
obtained (Menancio-Hautea et al. 1992). Humphry et al. (2002) exploited RFLP
markers to construct a genetic map using recombinant inbred populations of
80 mung bean accessions derived from a cultivated variety and V. radiata subsp.
sublobata. The map included 13 linkage groups with an average distance of 3 cM,
and a highly conserved marker order was reported between mung bean and Lablab
purpureus. Transfer of bruchid beetle resistance allele (Somta et al. 2008; Tomooka
etal. 1992) and yellow mosaic disease resistance allele (Basak et al. 2005; Gill et al.
1983) from wild mung bean is an example of marker-assisted breeding in
mung bean.

RAPD markers were applied to assess the genetic diversity among uncultivated
and cultivated Vigna species, namely V. angularis, V. umbellata, V. radiata,
V. aconitifolia and V. mungo (Kaga et al. 1996). A genetic map was prepared
using RFLP and RAPD markers using F2 populations obtained by crossing
V. radiata ssp. radiata and V. radiata ssp. sublobata. Lambrides et al. (2000)
grouped all the 67 accessions in 12 linkage groups having 691.7 cM intervals.
Kaga and Ishimoto (1998) also used RFLP and RAPD markers to prepare a linkage
map and identified the genes accountable for bruchid resistance. Genetic maps
showing the information on several morphophysiological and agronomic traits of
cultivated and wild accessions of mung bean have been constructed (Isemura et al.
2012; Wang et al. 2016) that will facilitate the understanding of important traits of
interest in both cultivated and wild mung bean accessions. RAPD and inter-simple
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sequence repeat (ISSR) markers were used to assess genetic diversity in mung bean
germplasm (Chattopadhyay et al. 2005), wherein ISSR markers were found to be
competent as compared to RAPD markers. Yu et al. (1999) employed simple
sequence repeat (SSR) to assess microsatellite efficacy as genetic markers in mung
bean and 61 simple repetitive DNA sequences having 23 motifs were recognized as
prospective microsatellites.

Mung bean gene pools comprising 415 cultivated, 189 wild and 11 intermediate
accessions were assessed to study the presence of genetic diversity using 19 SSR
markers (Sangiri et al. 2008), and wide polymorphism was recorded among wild and
cultivated pools. The study suggested that Australia and New Guinea were the
diversity core for wild mung bean. In view of the higher diversity in mung bean
accessions from South Asia, it was suggested that the crop may have been
domesticated in South Asia (Sangiri et al. 2008). SSR markers linked to Cercospora
leaf spot (Yundaeng et al. 2021) and powdery mildew diseases (Chankaew et al.
2013; Kasettranan et al. 2010) have been identified, and quantitative trait loci (QTL)
maps were prepared using these markers. A genetic linkage map was constructed,
and a genetic analysis of domestication-related traits in mung bean was done using
430 SSR and EST-SSR markers (Isemura et al. 2012). The markers were grouped
into 11 linkage groups with a total distance of 727.6 cM, and 105 QTLs including
38 domestication-related gene traits were distinguished. The study also revealed
some useful QTLs for seed size, pod dehiscence and pod maturity in mung bean.

With the developments in next-generation sequencing, the attention of
researchers has shifted to finding single nucleotide polymorphisms (SNPs). SNP
markers are biallelic, codominant and universally distributed across the entire
genome (Brumfield et al. 2003). Mung bean cultivars were sequenced to search
for resistance to Riptortus clavatus and Callosobruchus chinensis (Moe et al. 2011),
and 2098 SNPs were reported. Raturi et al. (2012a) characterized 44 genotypes of
mung bean based on nuclear ribosomal DNA and RAPD polymorphism to assess the
genetic diversity and relationships and reported 82% polymorphism with wide
intraspecific variations. The study also revealed internal transcribed spacer (ITS)
length variations, SNPs and insertions/deletions at the number of sites in nuclear
rDNA region. Genome sequence of mung bean and its comprehensions into evolu-
tion within Vigna species were carried out (Kang et al. 2014), and genomic evidence
of allopolyploid event was reported on the basis of de novo assembly of a tetraploid
Vigna species (V. reflexo-pilosa var. glabra).

EST-based SSR markers have been exploited to study functional genomics in
mung bean (Chavan and Gacche 2014; Chen et al. 2015; Moe et al. 2011). SSR
motifs were recognized in 1848 EST sequences in mung bean, and it was observed
that about 45% and 55% of these motifs were situated in coding and untranslated
regions, respectively (Moe et al. 2011). Biotin-labelled oligo-probes and
streptavidin-coated beads were applied to prepare an SSR-enriched library from
mung bean genotypes, and 308,509 SSR motifs were identified (Wang et al. 2016).
Ilumina paired-end sequencing technology was used for transcriptome sequencing
of mung bean genes, and identification of EST-SSR markers (Chen et al. 2015) and
more than 103 million high-quality cDNA sequences was done.
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Mung bean genome has been characterized using translational genomics to obtain
genomic information from well-studied species (Isemura et al. 2012; Kim et al.
2014). The flowering gene in mung bean was recognized with the help of genome-
wide evaluation between mung bean and Arabidopsis. It was observed that out of
207 genes that were related to flowering in Arabidopsis, 129 were homologous to
mung bean genes (Kim et al. 2015b). In another study, it was also observed that these
genes were near to the SSR markers on a genetic map (Isemura et al. 2012). Mung
bean genome was also compared to the soybean genome, and it was noticed that five
flowering-related genes in mung bean were homologous to soybean flowering genes
(Kim et al. 2015b). The studies may lead to the functional characterization of genes
of interest in mung bean. Application of several biotechnological tools may facilitate
the introduction of beneficial genes in promising mung bean lines to increase genetic
variability.

5.14 Conclusion and Prospects

Being an important leguminous crop owing to its high nutritional contents, several
studies have been carried out in mung bean addressing yield-related traits including
resistance to different diseases and domestication-related traits. The lack of genomic
information has led to stagnation in mung bean breeding. However, after the
publication of the reference genome sequence of mung bean in 2014, breeders
have got a better opportunity to understand the genomic and genetic background
of several agronomically important traits of the crop. Preparation of wild mung bean
pool from diverse origins and environmental conditions is essentially required to
conserve the genetic diversity of the crop. The yield of more than 20 quintals per
hectare, maturity period between 60 and 75 days, higher harvest index, photoperiod
insensitivity, resistance to major insect pests/diseases, compact canopy and synchro-
nous maturity are some of the important objectives for crop improvement in mung
bean. The inclusion of the ideotype approach may also be considered to attain
sustainable yield.
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Abstract

Legumes play a vital role in agriculture and food security. Biotic and abiotic
stresses are major hurdles for legume production and lower the current produc-
tivity per unit area. There is an obligation to accelerate genetic improvement of
most food legumes by introducing alleles conferring resistance to pests and
pathogens, adaptation to abiotic stresses, and high yield potential. The tapping
of potential resistance alleles present in the landraces and wild relatives and its
exploitation in legume resistance breeding programs with the aid of next-
generation molecular breeding approaches are the quickest ways to develop
high-yielding elite legume varieties with long-lasting resistance. This chapter
attempts to explore the advanced molecular approaches in germplasm characteri-
zation, marker-assisted genomic selection, molecular mapping of biotic stress
resistance gene(s)/QTLs using single nucleotide polymorphism (SNP) markers,
mining of SNPs using various next-generation sequencing (NGS) platforms,
marker-assisted selection, and marker-assisted pyramiding of resistance genes
in elite germplasm. This chapter also highlights major qualitative/quantitative
resistant trait/loci and linked SNP markers, and recently published highly
saturated SNP(s) linkage/consensus map information of 13 important food
legumes. Genetic, genomic, and marker information elucidated in this chapter
will be a guide to the researchers and students who are interested in advanced
molecular plant breeding and to address the global challenge of ensuring food
security in the face of scarce natural resources and unpredicted climate change-
induced stress.
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6.1 Introduction to Legumes

There is an 80% probability that the world population will hit 9.6 billion in the year
2030, and 12.3 billion in 2100 (Gerland et al. 2014). Therefore, the continuously
increasing population constantly demands to increase the current food production by
2% every year to double food production in 2050 (Janni et al. 2020). The land under
cultivation is limited, and the only option is to increase the productivity of rice,
wheat, and food legumes per unit land area through intensive cultivation of geneti-
cally improved high-yielding varieties.

Legumes belonging to the family Leguminosae/Fabaceae are important food
crops all around the globe. Legumes containing over 18,000 species are divided
into three subfamilies Mimosoideae, Caesalpinioideae, and Papilionoideae
(Varshney et al. 2007, 2009). A variety of essential amino acid-rich domesticated
food legumes have been cultivated, for centuries, to satisfy the 33—35% of human’s
dietary protein requirement (Sharma et al. 2013; Van Kessel and Hartley 2000;
Vance et al. 2000). Due to the richest nutritional value, legumes contribute 27% of
the world’s primary crop production with a cultivation extent of more than 15% of
the total arable land (<180 million hectares) (source: FAO Database). Therefore,
legumes are cultivated as the third-rank crop next to cereals and oilseeds and play a
vital role in the sustainability of the environment, agriculture, and animal production,
and human health and food security (Kudapa et al. 2013; Vance et al. 2000;
Varshney et al. 2007).

Among the food legumes, soybean (Glycine max), common bean (Phaseolus
vulgaris), pigeon pea (Cajanus cajan), peanut or groundnut (Arachis hypogaea),
cowpea (Vigna unguiculata), chickpea (Cicer arietinum), pea (Pisum sativum),
mung bean (Vigna radiata), lentil (Lens culinaris), faba bean (Vicia faba), and
lupin (Lupinus luteus) constitute important components of the human diet in devel-
oping countries (FAO 2010). Despite having an important role in food security, the
majority of these legume crops demonstrate low productivity due to biotic and
abiotic stresses (Dwivedi et al. 2017). For example, drought is an important abiotic
stress constraint, and major biotic stresses include cyst nematode in soybean,
anthracnose, angular leaf spot, bean rust, bacterial blight in common bean,
Ascochyta blight, and Fusarium wilt in chickpea (Fritsche-Neto et al. 2019; Garg
et al. 2018). Thus, it is necessary to enhance our genetic knowledge of specific
aspects of defense/stress responses of germplasm to improve crop productivity.
Towards this aim, emerging genomics technology can be applied to identify candi-
date genes or key loci controlling stress tolerance or resistance (Kankanala et al.
2019). Subsequently, these genes can be used in genetic modification or molecular
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breeding programs to develop improved varieties with enhanced resistance/tolerance
to stress (Kudapa et al. 2013).

The narrow genetic base of cultivars coupled with low utilization of genetic
resources is the major factor limiting grain legume production and productivity
globally (Sharma et al. 2013; Upadhyaya et al. 2010; Varshney et al. 2009). It is
therefore important to identify genes in food legumes conferring resistance to biotic
stresses and tolerance to abiotic stresses that can be used both to understand
molecular mechanisms of plant response to the environment and to exploit new
and diverse sources for the genetic enhancement of grain legumes (Pandey et al.
2012, 2016; Varshney et al. 2007). Wild progenitors with enhanced levels of
resistance/tolerance to multiple stresses provide important sources of genetic diver-
sity for crop improvement (Varshney et al. 2007, 2019). However, their exploitation
for cultivar improvement is limited by cross-incompatibility barriers and linkage
drags. Pre-breeding provides a unique opportunity through the introgression of
desirable genes from wild germplasm into genetic backgrounds readily used by the
breeders with minimum linkage drag (Upadhyaya et al. 2010; Varshney et al. 2017).
To overcome these bottlenecks, pre-breeding activities using promising landraces,
wild relatives, and popular cultivars have been initiated at the International Crops
Research Institute for the Semi-Arid Tropics (ICRISAT) to develop new gene pools
in food legumes with a high frequency of useful genes, wider adaptability, and a
broad genetic base (Sharma et al. 2013). The availability of genomic and molecular
marker information will greatly assist in reducing linkage drags and increasing the
efficiency of introgression (Sharma et al. 2013). Recent advances in genomics offer a
range of approaches such as the sequencing and resequencing of genomes and
transcriptomes, gene expression microarray as well as RNA-seq-based gene expres-
sion profiling, and map-based cloning for the identification and isolation of biotic
and abiotic stress-responsive genes in several crop legumes (Kudapa et al. 2013;
Pandey et al. 2016; Varshney et al. 2020). These candidate biotic stress-associated
genes should provide insights into the molecular mechanisms of gene expression
when host-pathogen interact, exact gene location, and tightly linked SNP markers to
develop resistance gene(s)-introgressed legume varieties to reduce pesticide use and
increase productivity.

6.1.1 Stress Resistance in Legumes

Biotic and abiotic stresses are major hurdles of crop legume cultivation. Plant
tolerance and plant resistance are ways that plants deal with stressors in their
environment. Resistance and tolerance are plants’ best defense mechanisms. At the
most basic level, the difference between tolerance and resistance is related to how the
plant defends itself. Tolerance means plant’s strategies that help it to survive despite
dangers within their local environment. Contrastingly, plant resistance starts at the
environmental or genetic level (Agrios 2005).
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6.1.2 Tolerance

Tolerance is a plant’s ability to grow and produce an acceptable yield despite a pest
attack. Tolerance is typically attributed to plant vigor, regrowth of damaged tissue,
and a plant’s ability to produce additional stems/branches—factors that enable a
plant to avoid, tolerate, or recover from damage from inclement weather, pests, or
herbivores, under conditions that would typically cause a greater amount of injury to
other plants of the same species (Acquaah 2007).

6.1.3 Resistance

It means that a plant is immunized from a particular stressor—typically, a biotrophic
pathogen infection. The host (i.e., the plant) has a resistance gene that prevents the
proliferation of the pathogen, while a pathogen typically contains an avirulence gene
that triggers plant immunity. Two main types of resistance exist: ecological
resistance/pseudo-resistance [host evasion, induced resistance, escape] and genetic
resistance: (a) resistance based on the number of genes [monogenic, oligogenic,
polygenic] and (b) resistance based on the biotype reaction [vertical resistance and
horizontal resistance] (Agrios 2005).

6.2  Breeding Strategies for Characterization of Stress
Resistance Genes

6.2.1 Germplasm Characterization

Breeding for crop improvement in resistance/tolerance involves the transfer of genes
from one genetic background to another, or combining genes from different sources
with the hope that the new cultivar will combine the best of both parents while being
distinct from both. When a plant breeder has decided on the combination of traits that
are to be incorporated in a new cultivar to be developed, the next crucial step is to
find donor sources consisting of an appropriate gene(s) for desired characters
(Varshney et al. 2009). In the early conventional crop domestication and breeding,
breeders targeted to improve the only yield component of the cultivars; therefore,
early improved cultivar’s genetic diversity is narrowed for the specific traits
governing biotic and abiotic stresses (Pandey et al. 2012).

Since the sixteenth century, individual or group botanists have collected 7.4
million germplasms with diversified characters that are being conserved and man-
aged in more than 1750 national and international “gene banks” (germplasm
repositories/germplasm banks) (FAO 2010). Among the collections, 13% are in
the 11 of the CGIAR centers’ germplasm collections such as Biodiversity Interna-
tional, CIAT, CIMMYT, CIP, ICARDA, the World Agroforestry Center (formerly
ICRAF), ICRISAT, IITA, ILRL INIBAP, IRRI, and AfricaRice (formerly WARDA)
and are managed on behalf of the world community (FAO 2010). Among the total
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accessions collected, 17% are food legumes (Table 6.1). ICRISAT maintains the
world’s largest collections of chickpea (20%) and groundnut (12%), and ICARDA
houses the world’s largest collections of lentil (19%), faba bean (21%), and vetches
(16%) (Pandey et al. 2012; Upadhyaya et al. 2010). CIAT is responsible for the
world’s largest collections of beans (14%). The nature of the accessions (for example
whether they comprise advanced cultivars, breeding lines, landraces, wild relatives,
etc.) is known for about half of the material conserved ex situ, and of these, about
17% are advanced cultivars, 22% breeding lines, 44% landraces, and 17% wild or
weedy species (FAO 2010).

The tapping of those conserved ancestors, wild types, and tribes consisting of rich
sources of diverse alleles may be vital for future crop improvement. From conserved
germplasms, <2% has been characterized, and few uses have led to major crop
improvements due to the limited or no availability of potential trait or other genetic
information (Upadhyaya et al. 2010; Varshney et al. 2020). Since the economic
value of a cultivar is determined by its phenotypic characteristics, to identify the
desired gene of interest present in those germplasms, mass-level in situ and ex situ
screening is expected, and good knowledge of the genetic constitution of the sources
showing clear phenotypic differences is further taken into consideration in genetic
evaluation/genotyping to facilitate crop breeding (Leng et al. 2017; Saeed and
Darvishzadeh 2017). In the OMICs era, with the availability of closely linked
marker(s), there are possibilities to characterize the desired allele or locus without
mass-level in situ or ex situ screening. The available genomic information and
genome-wide association studies facilitate to precisely dissect the genetic architec-
ture of plant traits, and mining and genome-wide search of SNP markers, large-scale
mapping of agronomically important quantitative trait loci, gene cloning and char-
acterization, mining of elite alleles/haplotypes, and exploitation of natural variations
(Leng et al. 2017).

In the absence of the desired trait in diversified germplasm, mutation is an
indispensable option to create new stress resistance allele(s) in the germplasms.
Most mutations are recessive, so the selection is made in M2, and for polygenic
traits, the selection is done in M3. Beneficial mutations occur at very low frequencies
(Tran et al. 2020). Natural mutations are randomly induced and are recurrent.
Mutations have mostly pleiotropic effects (Johannes and Schmitz 2019). Mutations
are also being created artificially using both radiation and chemical mutagens.
Mutation through radiation can be categorized into, 1. Particulate radiation: Germ-
plasm are mutated using alpha rays, beta rays, and fast and thermal neutrons;
2. Non-particulate radiation: X-rays, gamma rays, and Non-ionizing ultraviolet
(UV) rays are used to mutate the germplasm. In the chemical method of mutation,
a) Alkylating agents: sulfur and nitrogen mustards, epoxides, ethyl methane
sulphonate (EMS), methyl methane sulfonate (MMS), etc.; b) Acridine dyes: acri-
flavine, proflavine, Acridine orange, Acridine yellow, ethidium bromide, Base
analogs: 5-bromouracil, 5-chlorouracil; c) Others chemical agents: nitrous acid,
hydroxylamine, sodium azide are used as chemical mutagens (Acquaah 2007).
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6.3  Genetic Analysis and Selection Methods for Stress
Resistance in Legumes

Natural variation present in plants is a precious and sustainable resource of the
phenotypic and genetic diversity within plant species that provides beneficial traits
for plant breeding (Alqudah et al. 2020). Legume breeding for pest and disease
resistance is a continuous process because the quick evolution of new virulent
pathotypes can overwhelm the characterized resistance if selection pressure is high
(Bansal et al. 2008). To overcome the risk, various long-term conventional breeding
strategies are being applied to breed cultivars with multiple biotic resistance
(Bakhtiar et al. 2014; Sharma and Sharma 2014). But in conventional plant breeding,
genetic variation is usually identified phenotypically (Xu 2010). Therefore, the
postulation of resistance genes through phenotypic evaluation is a method to screen
the unknown resistance (Collard et al. 2005; Liu et al. 2013a).

6.3.1 Screening Methods

In the conventional breeding, screening of phenotypic variation(s) achieved through
various selection methods may be pedigree: for selection for resistance to biotic
stresses; bulk method: used for the development of high-yielding and short-duration
varieties; modified bulk method: for selection of traits such as abiotic stresses, seed
size, earliness, and plant type; and single seed descent method: for selection of traits
such as biotic and abiotic disease resistance (Bansal et al. 2015). The weakness of the
conventional method of characterization is it being time consuming and laborious
(Singh et al. 2017). Moreover, primitive breeding approaches for stress resistance in
legumes are rigorous and wrathless under field condition, and uttermost care has to
be taken to minimize the deleterious effect; for example, selection of resistance
against one pathogen may lead to the susceptibility to another (Janni et al. 2020;
Johnsson et al. 2019; Varshney et al. 2020).

6.3.2 Marker-Assisted Genomic Selection

Genetics advancement after the discovery of DNA as a hereditary material and its
sequence on chromosomes opened a new era in the field of molecular genetics.
Thereafter, breeders started to chase molecular breeding to characterize the stress
resistance cultivars quickly through various forms of marker-assisted selection
(Bohra et al. 2014). Marker-assisted genomic selection (MAGS) is a very important
pre-molecular breeding step, but its success is dependent on how much genomic
information is available related to that germplasm (Pavan et al. 2017). In the
pre-genomics era, with the poor genetic knowledge, the mass-level field screening
method was the only technique to select quality germplasm by assessing through
obvious phenotypic variation which leads to genetic drift, and the primary gene pool
has been narrowed (Pandey et al. 2016). Recent advances in molecular genetics
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generated vast genomic information (Table 6.1) with the help of bioinformatics tools
ends up with a rapid characterization of single or multiple QTL, mapping of desired
gene/QTLs, cloning (Setia et al. 2008).

The success of the marker-assisted genomic selection (MAGS) depends on when
the marker should be closely linked with the target gene and express the high level of
genetic polymorphism, co-dominance (differentiate the heterozygous and homozy-
gous), clear distinct allele features, even distribution on the entire genome (high
genome coverage), neutral selection without pleiotropism, easy detection, low cost
for marker development and genotyping, and high duplicability (Eagles et al. 2001;
Kumar et al. 2019). Different forms of marker-assisted genomic selection methods
are being used in nonconventional plant breeding. Each method has its own
advantages in which purpose crop is planned for breeding. Marker-assisted genomic
selection has reduced the unwanted mass-level field or nursery or greenhouse
screening time and cost. Next-generation plant breeders need to utilize this novel
MAGS technique to develop stress-resistant high-yielding elite legume varieties/
cultivars quickly (Kumar et al. 2019).

6.3.3 Gene Postulation

Gene postulation is a classical method of detecting the presence of a particular
qualitative gene(s) in crop cultivar with the aid of NILs (Admassu et al. 2012). It
is a fast and simple method of all gene analysis (Li et al. 2011). Great knowledge in
the identification of previously characterized resistance gene(s), which are confer-
ring resistance against different pathotypes, is playing an important role in the
accuracy of gene postulation (Singh et al. 2001) as well as gene pyramiding
(Mebrate et al. 2008). The principle behind gene postulation is the gene-for-gene
interaction between the host and the pathogen genotypes to determine the probability
of the presence of the resistance gene (Kolmer 1996). A well-characterized collec-
tion of pathotypes with diversified avirulence gene combinations is used to postulate
resistance genes in the host (Qamar et al. 2008) on the basis of phenotypic expres-
sion as infection types (Soliman et al. 2012; Vanzetti et al. 2011). Most probably, a
single-gene cultivar or near-isogenic lines (NIL) carrying a known gene is used as a
comparison with cultivars consisting of unknown single or polygenic resistance
(Mebrate et al. 2008). The success of gene postulation depends on the availability
of diversified pathotypes and hosts (Li et al. 2011). Multi-pathotype testing is highly
recommended to postulate the all-stage resistance (ASR) in greenhouses. The
postulation of adult plant resistance is difficult using this method. To determine
the level of resistance as disease index or disease severity, pathogen/host-specific
indexing methods are used. In the absence of well-characterized pathotypes in most
legumes, the current application of this technique is very minimal, but well devel-
oped in wheat and barley (Randhawa et al. 2016).
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6.3.4 Genetic Analysis

Genetic analysis is commonly practiced to determine the number of gene(s)/QTLs
segregated in a cultivar or germplasm. For conducting genetic analysis, resistance
parent is crossed with susceptible parent and F; plants are selfed to get F, population
or backcrossed with a susceptible parent to produce BCF1. The number of
segregating resistance genes can then be determined by phenotyping the F; or
BCF2 families with specific pathotypes in seedlings and also evaluating the
segregating families for adult-plant resistance in field tests using a representative
mixture of rust pathotypes (Kolmer 1996). If a population is segregating for more
than one gene, then isolation and characterization of single-gene F; families are the
most important steps. The major advantages of using BCF, populations compared to
F; families are that smaller population sizes are required, and resistance genes can be
isolated within families that are segregating in single-gene ratios (1:2:1). In these
families, plants with the lowest infection type can be progeny tested to obtain lines
that are homozygous for resistance. Homozygous lines can be tested with a collec-
tion of isolates to determine if the resistance is a previously identified gene or an
uncharacterized resistance gene. An additional advantage of the backcross method is
that segregating resistances can be evaluated in the background with 75% of the
susceptible recurrent parent. This can be very helpful in evaluating adult plants in
field tests from crosses in which the two parents vary for maturity or vernalization
response (Kolmer 1996).

6.4 Population Development
6.4.1 Development of Mapping Population

In legumes, the conventional method of gene transfers or gene combinations is by
crossing or sexual hybridization. This procedure causes genes from the two parents
to be assembled into a new genetic matrix. It follows that if parents are not
genetically compatible, gene transfer by sexual means cannot occur at all or, at
best, may be fraught with complications (Acquaah 2007). The product of
hybridization is called a hybrid. Sexual hybridization can occur naturally through
agents of pollination, but artificial sexual hybridization is the most common conven-
tional method of generating a segregating population for selection in the breeding of
flowering species. Hybridization involves single cross: used to transfer resistance
against biotic and abiotic stresses; three-way crosses: the progenies of three-way
crosses are more variable with a wide genetic base than single crosses; and multiple
crosses: the cultivars developed from multiple crosses are expected to have wider
adaptation for a range of environments (Acquaah 2007; Collard et al. 2005).

For the phenotyping and construction of a genetic map, the development of a
mapping population is essential. Mapping population means, for self-pollinated
crops, the segregating population developed from the crossing of two homozygous
contrasting parents showing polymorphism for the trait of interest (Collard et al.
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2005; Reynolds 2001). These genotypes, although should be having sufficient
polymorphism, should not be distantly related because it causes sterility of progenies
and segregation distortion (Kumar et al. 2010). The number of lines used for
mapping will vary from 50 to 250, and it depends on whether we are going to use
it for preliminary mapping or high-resolution mapping and the number of targeted
traits segregated in the mapping population (Collard et al. 2005; Mohan et al. 1997,
Xu 2010).

Two different types of mapping population are commonly used for oligo-gene/
QTL mapping, such as doubled haploid: generating plants by chromosome dou-
bling (Kumar et al. 2010), and recombinant inbred lines (RIL): germplasms
(parents) showing contrast phenotypic variation for a particular trait are crossed to
get F; plants. The F; plants are harvested individually to get F, seeds. Seeds from a
single F, plant are space planted in the field, and seeds from every individual line are
harvested (F; population) separately (Fig. 6.1). Single seeds from individual F;
family are planted, the single spike is harvested to get F, generation, the process is
repeated for further two to three generations, and seeds from individual plants are
harvested as bulk in F; generation [recombinant inbred lines (RILs)] (inbreeding
from individual F, plants until Fs—Fg are obtained) (Collard et al. 2005; Kumar et al.
2019).

MutMap population: Conventional gene mapping is a rigorous process and
requires large mapping population and a lot of molecular markers spanned across
the entire chromosome or linkage group. Generating population by crossing parent
carrying the desired allele with the same parent carrying muted desired allele is
called “MutMap population” (Tran et al. 2020; Tribhuvan et al. 2018). This is made
possible by generating a backcross population of the mutant genotype with the
parent (wild type), thereby removing the false SNPs and retaining only the SNPs
linked to the mutant phenotype. With the emergence of re-sequencing techniques,
quick mapping of genes has become possible with reduced time and cost by using
approaches like SHOREmap, NGM, and MutMap methodologies. Among these,
MutMap is widely used because it is more focused on causal SNPs (Tran et al. 2020;
Tribhuvan et al. 2018; Yuan et al. 2017). Improved and specialized methods of
MutMap like MutMap-Gap and QTL-Seq have also emerged to expand the horizon
of application of the MutMap approach. All these methods are akin to bulked
segregant analysis popularly employed for mapping simply inherited traits. These
methods escape the requirement of genotyping all the individuals of the mapping
population and generation of high-density linkage maps for mapping of the gene for
the trait of interest (Tribhuvan et al. 2018; Yuan et al. 2017). However, in most
situations, the F; is selfed (to give an F,) to generate recombinants (as a result of
recombination of the parental genomes) or a segregating population, in which
selection is practiced.

Legume genomics is advancing quickly, but, due to the large genome size of
many legume species, accurate positioning of QTL governing resistance to pest and
diseases is still difficult in the biparental mapping population. To overcome this
problem, association studies using multiparent advanced generation intercross
populations (MAGIC) and nested association mapping population (NAMP) are
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currently being popular to identify the QTL and marker of a complex trait
(s) (Varshney et al. 2006).

6.5 Molecular Breeding of Legumes in Genomics Era

Integration of molecular technology is indispensable for quick identification of allele
adaptation to various stresses, and its successful exploitation in elite germplasm is
essential to ensure food security for the rapidly increasing world population (Jacob
et al. 2016). The success of any molecular breeding depends on the selection of
appropriate genetic material and the application of suitable molecular tools. The fast
development of NGS technologies has facilitated swift sequencing and
re-sequencing of several hundred potential lines, development of haplotype map
(HapMaps), high-density SNP-based genetic maps, a range of marker genotyping
platforms, and identification of markers associated with a variety of agronomic traits
in these legume crops. Due to the need-based accurate application of these OMIC
tools in legume resistance breeding programs, many improved varieties have been
released throughout the globe over the past decade through marker-assisted selec-
tion, marker-assisted backcrossing, marker-assisted pyramiding, and gene-editing
approaches (Varshney et al. 2020). Molecular breeding further emphasizes indepen-
dent or a combination of parental selection, enhancing genetic diversity in breeding
programs, forward breeding for early generation, and genomic selection using a
sequence-based breeding approach (Varshney et al. 2020).

Moreover, next-generation powerful statistical genetic methods and crop breed-
ing technology, genomic selection, transcriptome mapping (expressed sequence
tags—ESTs, serial analysis of gene expression—SAGE, massively parallel signature
sequencing—MPSS, microarray), genomics (whole-genome sequencing, NGS, and
genotyping-by-sequencing), and allele mining approaches have been proposed to
identify gene/s, transcription factors (TF), microRNA (miRNA), and quantitative
trait loci (QTLs) responsible for stress resistance (Varshney et al. 2020). Genome-
wide association study (GWAS) is one of these useful methods, and it is successfully
used to identify candidate genes for many important traits in many crops as it tests
the association between the marker type (e.g., SNP) and the phenotype of a target
trait (Alqudah et al. 2020).

6.5.1 Molecular Markers for Selection of Stress-Resistant Genes

Molecular markers (markers are characters) used in legume breeding programs can
be classified into morphological, biochemical, and DNA-based markers (Collard
et al. 2005; Eagles et al. 2001). Morphological markers or classical markers are used
to postulate the presence of the gene by phenotypic characterization or visual
observation (Collard et al. 2005; Xu 2010). But its application in legume’s resistance
breeding program is limited. Biochemical markers are actually proteins (isozymes).
These isozymes are structural variants of enzymes and can be used as markers in
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gene mapping. But their application is also limited to legume breeding. DNA
markers are very prominent compared to other marker types because of their
abundance and high polymorphism. DNA markers are selectively neutral, located
in noncoding regions of the DNA, and not affected by the environment (Collard et al.
2005; Eagles et al. 2001). A variety of molecular markers are being used in
molecular breeding, but depending on the detection and throughput, molecular
markers can be classified as low-throughput hybridization-based markers like
RFLP; medium-throughput PCR-based markers such as RAPD, AFLP, and SSR;
and high-throughput sequence-based markers like SNPs (Davey et al. 2011;
Mammadov et al. 2012). DNA molecular markers, especially simple sequence
repeats (SSRs) and single nucleotide polymorphisms (SNPs), are used widely for
the construction of linkage maps, mapping of quantitative trait loci (QTL),
map-based gene cloning, marker-assisted selection, exploration of population diver-
sity, etc. in all major crops.

6.6 High-Throughput Technology and SNP Discovery
6.6.1 Sequencing for SNP discovery

SNP available in the organism is discovered through sequencing and comparing of
genomic DNA or cDNA (complementary or copy DNA) or in silico alignment of
sequenced data from two or more individuals of a species. The determination of the
base sequence of a DNA fragment is called sequencing. Methods used for the
sequencing of DNA can be broadly classified into first-generation sequencing and
NGS (Singh and Singh 2015).

6.6.2 First-Generation DNA Sequencing

In this method, chemical or E. coli DNA polymerase / is used to modify the bases at
the breakpoints of the DNA fragment. This method of DNA sequencing was also
called Sanger—Coulson method. This method is useful for sequencing 15-200
nucleotides but is more laborious and needs the preparation of template, enzyme,
and gel electrophoresis. Therefore, the application of this technique was not suitable
for sequencing an organism with a higher ploidy level like faba bean (Sanger et al.
1977).

6.6.3 Next-Generation Sequencing (NGS)

NGS opened a pathway for discovery, sequencing, and genotyping of thousands to
hundred thousands of markers through parallelized library preparation of genomic
DNA without using restriction enzymes (Davey et al. 2011). The development of
high-throughput genotyping platforms for the screening of millions of SNPs was
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difficult and lengthy and involved high costs for crops with a large genome
(Gb) (Sonah et al. 2013). Therefore, the application of NGS had limitations for
species with large complex genomes such as barley and wheat. To overcome this
problem, several sequencing techniques were emerged using NGS as a base platform
by combining restriction enzymes as a versatile tool such as reduced representation
libraries (RRLs), complexity reduction of polymorphic sequences (CRoPS), restric-
tion site-associated DNA sequencing (RAD-seq), sequence-based polymorphic
marker technology (SBP), low-coverage multiplexed shotgun genotyping (MSG),
and genotyping-by-sequencing (GBS) (Davey et al. 2011; Yang et al. 2012). Among
them, GBS is now being widely used in legume research as a molecular tool.
Initially, GBS has been developed as a tool for association studies and genomic-
assisted breeding in a range of species including those with complex genomes. GBS
uses restriction enzymes for targeted complexity reduction followed by multiplex
sequencing to produce high-quality polymorphism data at a relatively low
per-sample cost of the desired population (Sonah et al. 2013). Continuous optimiza-
tion has led to innovative third- and fourth-generation platforms such as single-
molecule real-time (SMRT) sequencing by PacBio, nanopore sequencing, etc.
(Meera Krishna et al. 2019). As a consequence, there has been a sharp increase in
the number of genomes being published and other genome-based studies since 2012.
Many of these platforms, e.g., microarray-based GS, involve the partial representa-
tion of the genome, and these can be utilized even in the absence of prior knowledge
on WGS.

6.6.4 SNP Genotyping and Validation

Many NGS platforms, for example, NGS-derived transcriptome sequences, have an
option for parallel sequencing of many germplasms from different populations, and
through which millions of genome-wide SNPs are being discovered in many crops
including food legumes (Sim et al. 2012). At the same time, advancement in modern
chemistries developed diversified typical genotyping platforms for SNP validation
such as Illumina’s BeadArray technology-based Golden Gate (GG) and Infinium
assays, Life Technologies’ TagMan assay coupled with OpenArray platform
(TagMan OpenArray Genotyping system, Product bulletin), and KBiosciences’
Competitive Allele Specific PCR (KASPar) combined with the SNP line platform
(SNP Line XL; http://www kbioscience.co.uk). The choice of chemistry and
genotyping platform varies with the length of SNP context sequence, the overall
number of SNPs to genotype, and the number of SNPs that need validation, but most
of these chemistries still remain cost effective (Mammadov et al. 2012). By using
one or more of the NG platforms, recently developed SNP bead chip arrays with
genome-wide validated SNPs for 12 food legumes are summarized in Table 6.1.
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6.7 Molecular Mapping of Stress Resistance
Gene(s)/QTL(s) Using SNP Markers

6.7.1 Genetic Maps of Legumes

When two parents with distinct alleles at many loci are crossed, variation can be
created by crossover events during meiosis. These novel variations yield
descendants with unique phenotypes different from their parents. However, when
two loci are located closely on the same chromosome, the probability of crossover
events between them falls, and the recombinant genotype becomes relatively rare.
The crossover rate increases in proportion to the distance between genes, so cross-
over rate data allow the estimation of loci distances on the chromosome. Plant
biologists use three distinctive types of “maps” such as cytological or cytogenetic
maps, linkage/genetic maps, and physical maps for OMIC studies (Rana et al. 2019).
In conventional genetics, chromosomes were identified cytogenetically only in the
availability of deletion stocks. Once the chromosome was identified, the location of a
particular gene was confirmed and mapped using the nullisomic or haploid method.
Chromosome deletion, translocation, trisomic, monosomic, and nullisomic lines
serve as valuable tools for cytogenetic mapping (Endo and Gill 1996). In a physical
map, the genes/molecular markers are depicted in the same order as they occur in the
chromosomes, but the distances between adjacent genes/markers are depicted in
terms of base pairs. Physical and genetic maps are a collection of genetic markers
and gene loci. The distance between locus is based on the genetic linkage informa-
tion in genetic maps, while physical maps use actual physical distances usually
measured in the number of base pairs (Singh and Singh 2015). While genetic maps
often offer insights into the nature of different regions of the chromosome, the
physical map could be a more “accurate” representation of the genome. A genetic
map constructed by this way shows the relative locations of morphological or
molecular markers in a particular chromosome (Collard et al. 2005). On such
maps, one map unit is defined as having a crossover rate of 1% and is called a
centimorgan (cM). If a genetic map is available, the genotype/phenotype correspon-
dence of individuals in a segregating population can be calculated by comparing the
phenotype and the marker genotype (Singh and Singh 2015).

The construction of consensus/genetic map(s) of plants was highly dependent on
a variety of abovementioned DNA-based molecular markers (Song et al. 2005). In
the twenty-first century, with the discovery of SNP as minimum single base pair
variation in all organisms through the human genome project, genome-wide SNP
discovery and mining were started using NGS technology (Elshire et al. 2011).
Revolutionized genomic and transcriptomic approaches further boomed with
automated NGS platforms and bioinformatics tools (Varshney et al. 2011). Several
modified NGS methods, such as reduced representation sequencing using reduced
representation libraries (RRLs) or complexity reduction of polymorphic sequences
(CRoPS) and restriction site-associated DNA sequencing (RAD-seq), for genome-
wide SNP marker development and genotyping use restriction enzyme digestion of
target genomes to reduce the complexity of the target. Identified SNP markers
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through modified NGS methods are more cheaper, abundant, amenable, and reliable
and have reduced the complexity in genotyping whether draft-sequenced genome is
available or not (Davey et al. 2011). Now, whole/partial genome of many legume
crops, such as soybean (Glycine max), peanut or groundnut (Arachis hypogaea),
chickpea (Cicer arietinum), cowpea (Vigna unguiculata), common bean (Phaseolus
vulgaris), pigeon pea (Cajanus cajan), pea (Pisum sativum), lentil (Lens culinaris),
faba bean (Vicia faba), mung bean (Vigna radiata), and lupin (Lupinus luteus), have
been sequenced and SNP-rich consensus maps are available for public use (Alqudah
et al. 2020; Davey et al. 2011). The genetics, genomic, transcriptomic marker, and
map sequence data can be accessed through one of the web portals summarized in
Table 6.2.

6.8 Mapping a Gene or QTL

To use marker-assisted selection, marker-assisted backcrossing/introgression, and
marker-assisted pyramiding in conventional breeding programs, markers tightly
linked to the gene(s) controlling target trait must be identified first. Therefore,
different molecular mapping approaches and efforts have been used to find out the
genetic distance between molecular markers and genes controlling qualitative and
quantitative traits of interest (Kumar et al. 2011; Rafalski 2010).

6.8.1 Oligo-Gene Mapping (Single-Gene Mapping)

The one or few genes present in plants showing larger phenotypic effects are called
“qualitative traits,” and its phenotypic expression is relatively little affected by the
environment. The purpose of mapping an oligo-gene(s) with molecular markers is to
identify closely linked marker(s) to the oligo-gene(s) for marker-assisted selection
for the concerned trait (Collard et al. 2005; Collard and Mackill 2008).

In the last century, chromosome location was determined by studying the
progenies of crosses developed by crossing test cultivars with monosomic series
(Endo and Gill 1996). But the recent advances in NGS technology, transcriptome
sequencing, and whole-genome sequencing/re-sequencing of many food legume
crops have been partially or fully completed. This NGS technology has opened up
to construct chromosome-wise highly saturated SNP maps. With the aid of this
genomic information, the chromosomal location of an unknown gene or QTL can be
detected by genome-by-sequencing/genotyping-by-sequencing rapidly. Moreover,
for the oligo-gene mapping, to reduce the genotyping work, and to facilitate identi-
fication of markers that are most likely to be closely linked to the targeted locus/gene
(s) governing the target trait, bulk segregant analysis (BSA) (Michelmore et al.
1991), selective DNA pooling (Darvasi and Soller 1994; Lee et al. 2014), bulked
segregant RNA-seq, chromosome-targeted selective genotyping, MutMap, etc. are
currently being used by researchers. In all methods, contrasting phenotypes carrying
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Table 6.2 Genomic, marker, map, sequence, and bioinformatics databases for grain legumes

Database Description URL

GenBank General public http://www.ncbi.nlm.nih.gov/
sequence repository genbank/

EMBL General public http://www.ebi.ac.uk/embl/
sequence repository

DDBIJ General public http://www.ddbj.nig.ac.jp
sequence repository

UniProt Protein sequences and http://www.uniprot.org/
functional information

NCBI Biomedical and http://www.ncbi.nlm.nih.gov/

genomic information

Gene Index Project Transcriptome http://compbio.dfci.harvard.edu/tgi/
repository

GOLD Repository of genome http://genomesonline.org/cgi-bin/
databases GOLD/bin/gold.cgi

Phytozome Genomic plant http://www.phytozome.net/
database

PlantGDB Genomic plant http://www.plantgdb.org
database

CropNet Genomic plant http://ukcrop.net/
database

Pulse Crop Database Pulse https://www.pulsedb.org/

Phytozome 10.2

Glycine max

http://phytozome.jgi.doe.gov/

LIS—Legume Information

System

Cajanus cajan

http://legumeinfo.org/gbrowse
cajcal.0
http://cicar.comparative-legumes.
org/
http://plantgenomics.snu.ac.kr/
https://genebank.ciat.cgiar.org/
genebank/

International Initiative for
Pigeonpea Genomics (IIPG)

Pigeon pea (Cajanus
cajan)

http://www.icrisat.org/gt-bt/IIPG/
home.html

CicArVarDB Chickpea SNP-indel http://cicarvardb.icrisat.org/
database
ACPFG Bioinformatics SNP discovery http://autosnpdb.
appliedbioinformatics.com.au/
Crop Genomics Lab Mung bean http://plantgenomics.snu.ac.kr/

mediawiki-1.21.3/index.php/Main_
Page

bulks or lines are screened with previously mapped markers in the consensus or
highly saturated linkage maps (Singh 2015).

6.8.1.1 Bulked Segregant Analysis (BSA)

It is a simple technique to screen the polymorphic markers for the two parental lines
carrying contrasting phenotypes for a particular locus of interest (Michelmore et al.
1991). To carry out the BSA, DNA of homozygous resistant (HR) and homozygous


http://www.ncbi.nlm.nih.gov/genbank/
http://www.ncbi.nlm.nih.gov/genbank/
http://www.ebi.ac.uk/embl/
http://www.ddbj.nig.ac.jp/
http://www.uniprot.org/
http://www.ncbi.nlm.nih.gov/
http://compbio.dfci.harvard.edu/tgi/
http://genomesonline.org/cgi-bin/GOLD/bin/gold.cgi
http://genomesonline.org/cgi-bin/GOLD/bin/gold.cgi
http://www.phytozome.net/
http://www.plantgdb.org/
http://ukcrop.net/
https://www.pulsedb.org/
http://phytozome.jgi.doe.gov/
http://legumeinfo.org/gbrowse%20cajca1.0
http://legumeinfo.org/gbrowse%20cajca1.0
http://cicar.comparative-legumes.org/
http://cicar.comparative-legumes.org/
http://plantgenomics.snu.ac.kr/
https://genebank.ciat.cgiar.org/genebank/
https://genebank.ciat.cgiar.org/genebank/
http://www.icrisat.org/gt-bt/IIPG/home.html
http://www.icrisat.org/gt-bt/IIPG/home.html
http://cicarvardb.icrisat.org/
http://autosnpdb.appliedbioinformatics.com.au/
http://autosnpdb.appliedbioinformatics.com.au/
http://plantgenomics.snu.ac.kr/mediawiki-1.21.3/index.php/Main_Page
http://plantgenomics.snu.ac.kr/mediawiki-1.21.3/index.php/Main_Page
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susceptible (HS) lines of segregating population derived from the single cross is
pooled separately. Moreover, artificial F; bulk is also prepared by mixing of DNA
from randomly selected lines of the same cross. These three bulks (HR, HS, and F;)
are genotyped with a large number of markers using high-throughput NGS platform.
Generated data will be analyzed using GenomeStudio. The sequence of SNPs which
showed strong linkage will be converted to develop PCR-based markers, e.g.,
Kompetitive allele-specific PCR (KASP) primers. In legumes, different high-
throughput platforms mentioned in Table 6.1 are used to achieve this task, for
example, BARCBean6K_3 BeadChip containing 6000 SNPs (Song et al. 2015b)
and Diversity Arrays Technology (DArTSeq) seg high-density SNP for common
bean BSA (Valdisser et al. 2017). By using the BSA approach, countable number
resistant gene(s) and closely linked SNP markers for the resistant traits have been
identified (Vuong et al. 2016).

6.8.1.2 Selective Genotyping

Selective genotyping is defined as genotyping of the selected individuals carrying
contrasting phenotypes from the segregating population to identify the genomic
location of the trait of interest and markers (Darvasi and Soller 1994). This technique
selects genotypes to act as true representatives of the population and remarkably
decreases the number of individuals to be genotyped, cost, and time. Selective
genotyping is suitable for mapping a quantitative trait or qualitative trait (Bariana
et al. 2016; Lee et al. 2014). By using the selective genotyping approach, a
considerable number of resistant gene(s), closely linked SNP markers for the
resistant traits (Table 6.2), and chromosomal location of the crops have been
identified as well as mapped for example I gene resistance to bean common mosaic
virus resistance in common bean (Bello et al. 2014), soybean seed protein and oil
QTLs (Phansak et al. 2016), and soybean rust (Vuong et al. 2016).

6.8.1.3 Bulked Segregant RNA-Seq (BSR-Seq)

Bulked segregant RNA-Seq (BSR-Seq) is also the quickest method to map a gene or
QTL showing larger phenotypic variation. This is a modified method of BSA, and
instead of DA, high-quality RNA is isolated from bulks showing contrasting pheno-
type from the F, population and sequenced by RNA-seq technology (Varshney et al.
2019). RNA sequence data provides information about the approximate number of
copies of each RNA sequence present in the sample assuming that the numbers of
reads of various sequences reflect their relative concentrations in the sample. The
RNA sequence data are used to mine or discover a large number of polymorphic
SNP markers present in that progeny. By using this technique, several resistance
genes in legumes have been located on the chromosome as well as mapped on a
particular chromosome such as rust and late leaf spot resistance in the groundnut
(Hyten et al. 2009; Pandey et al. 2017a).

6.8.1.4 Single-Gene Mapping Procedure
Linked markers identified by BSA or selective genotyping are converted into
PCR-based markers checked on a few homogenous and heterogeneous lines of
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that particular mapping population to check the parental polymorphism (Fig. 6.2).
Polymorphic markers are genotyped in the mapping population (Bansal et al. 2014,
2015; Randhawa et al. 2014, 2015). Then the marker and trait association is analyzed
with the LOD value of 3 through sophisticated software such as MapManager QTX
(Manly et al. 2001) and MapDisto (Lorieux 2012) to calculate the recombination
fraction using the Kosambi mapping function (Kosambi 1944). The genetic linkage
map is drawn with the help of MapChart software (Voorrips 2002) to show the
graphical representation of map order, and marker distance is defined in centimorgan
(cM). If the markers are not closed, new markers will be designed using different
marker designing software (e.g., Primer 3).

6.9 QTL Mapping

Quantitative trait locus (QTL) means the region within the genome where the gene
responsible for the particular quantitative trait is located. Individual QTL may be
called as “minor” (R2 < 10%) or “major” (R2 > 10%) based on the proportion of
phenotypic variation explained as “R2” value, and for instance, major QTL may be
called as QTL if the phenotypic variation is constant over the different environment
(Collard et al. 2005). In another way, QTL can be classified into “suggestive,”
“significant,” and “highly significant” to ensure the “true hints of linkage” and to
eliminate a “flood of false-positive claims” (Center 1995). Detection of QTL was
impossible by conventional phenotypic evaluation and was possible after the dis-
covery of genetic markers. QTL analysis means examining the association between
the genotype (markers) and the phenotype. Therefore, accurate phenotypic evalua-
tion is very important (Collard et al. 2005). The principle behind the QTL analysis is
that during the chromosome crossover, the targeted trait and the closely linked
marker(s) are co-segregated together into the progeny, thus allowing analysis in
the progeny. Three methods are widely used to detect the QTLs, such as single
marker scan, simple interval mapping, and composite interval mapping. Composite
interval mapping is becoming popular because it allows the analysis of linked QTLs
as well as additional markers in the linear statistical system. Nowadays, statistical
packages QTL Cartographer (Wang 2007), MapManager QTX (Manly et al. 2001),
and MapChart (Voorrips 2002) are publically available to perform the QTL analysis
and allow to discover more QTLs very easily in a short period.

6.9.1 Mapping a QTL(s): Procedure

Marker data generated from genotyping-by-sequencing or genome-by-sequencing
(using one of the abovementioned NG platforms) will be cleaned by removing
markers that show the same calls for the parents (monomorphic markers), more
than 10% missing data, and segregation distortion (Fig. 6.2). Markers that are not
assigned to any chromosome will be distributed to the best matching chromosome
by using the option “distribute” in MAP MANAGER Version QTXb20 (Manly et al.
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2001). Thereafter, redundant markers will be taken out by using the command “hide
redundant loci.” A genetic linkage map will be constructed with the help of MAP
MANAGER Version QTXb20 (Manly et al. 2001) or MapDisto (Lorieux 2012)
using Kosambi mapping function to convert recombination fraction into centimor-
gan (cM) (Kosambi 1944). QTL Cartographer 2.5 (any QTL mapping software) can
be used to analyze marker-trait associations using a composite interval mapping
function. To declare the significant QTL, the LOD threshold value is calculated by
1000 permutations at a P = 0.05, and walking speed is set at 1 cM. The proportion of
phenotypic variance explained (R2) by the QTL is used to determine the effective-
ness of QTL. Thereafter, QTL figures will be drawn by using any map drawing
software.

Legumes encounter multiple stresses including wilt, Ascochyta blight (lentil,
chickpea), rust (pea and lentil), powdery mildew (pea), terminal drought, heat and
salinity (chickpea, lentil, pigeon pea), and waterlogging (pigeon pea) during their life
cycle (Kumar et al. 2011). There are lots of QTL discovery and mapping research in
legumes that have been published over the decades using RFLP, AFLP, RAPD,
SCAR, and SSR (Kumar et al. 2011; Varshney et al. 2013). After the discovery of
SNP as a single base pair variant, SNPs have become the dominant marker for
detailed characterization of many QTLs associated with the biotic resistance in many
crops including food legumes with the aid of GBS (Dwivedi et al. 2017).
Characterized QTL(s) governing biotic stresses using the NGS platform and
peaked/linked/flanking SNP(s) are summarized in Table 6.2, which will be helpful
for further mapping studies and formal naming.

6.10 Marker-Assisted Backcrossing and Gene Pyramiding

Once these are identified, the next approach is to transfer them into elite cultivars. In
modern plant breeding, a molecular technique that uses molecular markers to track
genes from germplasm or to select trait of interest indirectly is called marker-assisted
selection (MAS) (Goutam et al. 2015). Markers that are linked with genes are used as
flags to help breeders select the best gene combinations, and breeders are now using
these markers to pyramid genes into the new varieties to provide more durable
resistance (Kumar et al. 2019). With the use of markers, varieties are selected faster
without infecting lines and without the confound influence of the environment
(Tyagi et al. 2014). The transgenic approach is feasible to engineer traits that are
controlled by one or a few major genes and QTLs not easily amenable through
transformation. For this purpose, we can use high-throughput technology, marker-
assisted selection (MAS), marker-assisted backcrossing (MABC), and gene
pyramiding to elucidate thousands of genes or even entire genomes (Rana et al.
2019; Taran et al. 2013; Varshney et al. 2020).
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6.10.1 Marker-Assisted Backcrossing

Marker-assisted backcrossing aims transfer of targeted desired one or two traits
without disturbing the remaining all other native traits of target cultivar (Kumar
et al. 2010). During the past two decades, in nonconventional wheat breeding, usage
of molecular markers as the most effective tools proved to be easy, quick, and
important to avoid unnecessary delays and helped to identify, isolate, stack, and
map several genes simultaneously (Ali et al. 2010; Asad et al. 2012; Liu et al. 2013b;
Reynolds 2001; Reynolds et al. 2012). With the availability of diagnostic polymor-
phic SNP marker(s), marker-assisted backcrossing is suitable to track the major gene
conferring resistance, and for minor or complex traits that are generally controlled by
QTL with major phenotypic effects. Marker-assisted recurrent selection (MARS) is a
highly preferred method to deploy well-characterized resistance genes in elite
legume cultivars (Todorovska et al. 2009). There are several success histories of
MARS introgression in food legumes, and for example, Varshney et al. (2014)
successfully backcrossed Fusarium wilt race / and Ascochyta blight resistance
genes in C 214 (an elite cultivar of chickpea). Several SNPs summarized in
Table 6.3 are already being used for marker-assisted selection and marker-assisted
backcrossing.

6.10.2 Gene Pyramiding

However, genetic improvement for single biotic stress using single-gene-based
resistance does not result in permanent gains in productivity because of the emer-
gence of increasingly more virulent races/biotypes in nature (Ali et al. 2003).
However, genetic improvement for single biotic stress using single-gene-based
resistance does not result in permanent gains in productivity because of the emer-
gence of increasingly more virulent races/biotypes in nature (Kumar et al. 2011).
Genetic improvement for a single biotic or abiotic stress using single-gene-based
resistance does not result in permanent gains in productivity because of the time-to-
time emergence of highly virulent races/biotypes in nature (Ali et al. 2003). Once
resistance gene/QTL is characterized or postulated with closely linked SNP markers,
breeders prefer gene pyramiding as the best strategy to stack multiple resistance
genes in elite germplasm to extend the durability of the characterized resistance gene
(s) (Bansal et al. 2011; Simons et al. 2011).

Gene pyramiding means the stacking or encompassing of more than one resis-
tance gene/QTL characterized or mapped in different parents into a cultivar to
express the polygenic/multigene resistance (Collard and Mackill 2008; Joshi and
Nayak 2010). Pyramiding of resistance genes through traditional phenotypic based
technology is difficult when different resistance genes produce similar infection
types (Khan et al. 2005; Suresh and Malathi 2013). However, marker-assisted
selection facilitates the identification of the successfully pyramided genes into the
target cultivars with multiple target genes (Bin et al. 2012; Joshi and Nayak 2010;
Simons et al. 2011). Moreover, success in pyramiding of genes that are resistant to
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more than one stress depends on the number of genes to be transferred, the close
linkage between transferred gene(s) and markers, the number of genetic sources used
in breeding, and the nature of the germplasm (Joshi and Nayak 2010). So far,
resistance genes have been successfully pyramided into elite food legume varieties
to provide durable resistance, for example pyramiding respective Rsv genes from
different loci (RsvI, Rsv3, and Rsv4) through marker-assisted selection (MAS)
(Saghai Maroof et al. 2008).
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