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Abstract

Congenital heart disease (CHD) has a strong
genetic etiology, making it a likely candidate
for therapeutic intervention using genetic
editing. Complex genetics involving an
orchestrated series of genetic events and over
400 genes are responsible for myocardial
development. Cooperation is required from a
vast series of genetic networks, and mutations
in such can lead to CHD and cardiovascular
abnormalities, affecting up to 1% of all live
births. Genome editing technologies are
becoming better studied and with time and
improved logistics, CHD could be a prime

therapeutic target. Syndromic, nonsyndromic,
and cases of familial inheritance all involve
identifiable causative mutations and thus have
the potential for genome editing therapy.
Mouse models are well-suited to study and
predict clinical outcome. This review
summarizes the anatomical and genetic time-
line of myocardial development in both mice
and humans, the potential of gene editing in
typical CHD categories, as well as the use of
mice thus far in reproducing models of human
CHD and correcting the mutations that
create them.
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1 Overview

The heart is the first visceral organ to be formed
during organogenesis [1]. Myocardial develop-
ment involves orchestrated series of genetic
networks turning on and off cooperatively to exe-
cute molecular, cellular, and morphogenetic
events to form a normal heart [2, 3]. Mutations
in these genes result in congenital heart disease
(CHD) at birth or cardiovascular abnormalities
later in life [1, 2]. CHD is the most common
congenital abnormality, which occurs in about
1 in 100 live births [4] and in 10% of aborted
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fetuses [5]. More than 400 genes have been
associated with CHD [6]. Oyen and associates
[7, 8] investigated the overall CHD risks among
family members of the proband and found that the
risks for concordant [7, 8] and discordant [8, 9]
defects among the first-degree relatives are 3–80
[7, 8] and 2 [8, 9], respectively. This is indicative
of the genetic and genomic underpinning of CHD
[2, 10] (Excellent recent reviews please see
Williams et. al. [6, 11], Zaidi and Brueckner
[6, 11]).

Should the enormous scientific, logistical, clin-
ical, ethical, and regulatory issues regarding the
use of therapeutic genome editing technologies be
resolved, CHD would be prime targets. The
syndromic CHDs are typically due to large chro-
mosomal defects, such as microdeletions and
microduplications, and associated with significant
abnormalities apart from the cardiovascular sys-
tem. Nonsyndromic CHD cases outnumber
syndromic cases, and are mainly due to mono-
genic or digenic mutations, which are small
(point mutations mostly), and vis-à-vis state-of-
the-art genome editing, correctable.

Familial inheritance of most CHD cases favors
the use of genome editing in treatment. The caus-
ative mutated gene is often known or can be
easily identified, particularly as the list of genes
associated with CHD increases (for comprehen-
sive gene lists, see [6]). As well, phenotypic
abnormalities of nonsyndromic cases are usually
confined to the heart, their developmental onset
and progression may be known, and the severity
of the anomaly and thus the need for some form
of intervention predictable. Lastly, the position of
the heart in the vascular system may mean the
delivery of editing tools and their effectiveness
would be outstanding.

Mouse models of CHD would be essential to
formulating a CHD gene editing plan of known
efficacy and a strong prediction of a beneficial
clinical outcome. Mice are a favorable model
system as many of their genes, gene modifiers,
and molecular pathways are conserved with those
of humans. Biological processes, anatomy, and
physiology are likewise conserved with humans,
examples being four-chambered hearts, vascular

systems, and visceral organs, which share similar
structure and function [12–15].

Mouse models of specific human molecular
variants can be easily constructed to determine
the best developmental time and approach to
intervene and correct the gene defect.

This review begins with a discussion of the
anatomical development of the human and mouse
hearts (Table 1 and Figs. 1 and 2), including a list
of the genes (Table 2) and their roles at
anatomical positions and gestational times. We
follow this with a discussion of the potential
roles of gene editing in different traditional
categories of CHD. We complete our review
with examples of how mice have been used so
far, both in generating models of human CHD and
in correcting mutations in orthologs of human
CHD genes.

2 Cardiac Development

2.1 Early Development and Cardiac
Crescent

Heart development begins [20] when cells in the
anterior lateral mesoderm move from the primi-
tive streak and give rise to cardiomyocytes,
beginning the process that allows the heart to
form and contract. These mesodermal cells gather
in shape known as the cardiac crescent, made of
the first and second heart fields. It is thought that
this movement is facilitated by an influx of tran-
scription factors and secreted molecules
[10]. Cells in the first heart field go on to form
the linear tube; meanwhile, cells in the second
heart field, which is medial and dorsal to the
first heart field, become the right ventricle, out-
flow tract, and parts of the atria [16].

2.2 Cardiac Looping

One of the first cells to be specified are cardiac
muscle cells, which quickly find their way to the
ventral midline of the embryo and form a beating
heart tube. This tube has an endocardial and
myocardial layer with a layer of extracellular
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matrix (ECM) in between. [2]. The following
process to occur is known as cardiac looping
and it takes place around embryonic day E9.5
and E10.5 in mice and weeks 6 4/7 and 7 5/7 in
humans [17]. In the lateral mesoderm, uneven
gene expression will cause the linear heart tube
to loop to the right. This event is essential for
heart chamber formation, and the proper align-
ment between heart chambers and vasculature
[2]. Structurally on the left side, blood will go
from, what at this point is made up of the atrial

cavity, atrial ventricular junction, and what will
be the left ventricle to the interventricular fora-
men. On the right side, blood will flow from the
early right ventricle to the truncus arteriosus. In
addition, the arterial ventricular junction is
enveloped in endocardial cushion tissue [18]. Dur-
ing this time of development, the ventricular and
atrial chambers grow in size and start to become
distinct on the left and right. Along with this
distinction, the interventricular foramen narrows
as the ventricles grow, allowing the ventricles to

Table 1 Cardiac development in humans and mice

Cardiac
development stage Milestones

Human
embryonic
weeks

Mouse
embryonic
days

Establish left–
right body axis

Breaking symmetry around the midline organizer, the node E7

Establish cardiac
fate

Perinodal signaling to the lateral plate mesoderm for cardiac
differentiation

Gastrulation Cardiac progenitor cells migrate to the splanchnic mesoderm
Cardiac crescent Cardiac progenitor cells form first heart field (FHF) and second

heart field (SHF)
2 weeks
(Fig.1)

E7.5 (Fig.2)

Linear heart tube Heart tube formation, first heartbeat, anterior–posterior segmental
patterning for committing precursors for future aortic sac,
conotruncus (outflow tract), atria, pulmonary and systemic
ventricles.

3 weeks
(Fig.1)

E8.0 (Fig.2)

Cardiac looping Rightward looping, forming inflow track at the arterial pole and
inflow track and the primitive atria at the venous pole

4 weeks
(Fig.1)

E8.5–E10.5
(Fig.2)

Chamber
formation

Common atrium has moved superior to the ventricles and is
separated by atrio-ventricular canal, trabeculation, cushion
formation, outflow track separation, and early conduction
formation

4.5 weeks E9.5 (Fig.2)

Cardiac neural
crest cell
migration

Cardiac neural crest cells from the dorsal neural tube migrate to
the cardiac outflow track

4.5 weeks E10.5
(Fig.2)

Node formation Sino atrial and atrioventricular nodes detectable 5 weeks E10.5–
E11.5

Atrial septation Growing two septa: the septum primum and septum secundum 6.8–8.0
weeks

E10.5–
E13.5

Outflow track
septation

The truncus arteriosus septation into two separate arterial
channels.

7.1–7.7
weeks

E11.5–
E13.5

Interventricular
Foramen

The interventricular foramen changes from wide and open to
become narrow with distinct opening.

7.4–8.8
weeks

E10.5–
E11.5

Ventricular
septation

Forming muscular, inlet, and outlet interventricular septa 7/4–9.1
weeks

E11.5–
E13.5

Valve formation Forming mitral valve, tricuspid valve, aortic valve, and
pulmonary valve

8.0–9.4
weeks

E12.5–
E13.5

Mature four-
chamber heart

The mature heart formed. 8 weeks to
birth (Fig. 1)

E15.5
(Fig.2) to
birth

Information based on [2, 3, 6, 10, 11, 16–19]
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continue communicating. Also, the atrial ventric-
ular junction becomes denser [18].

2.3 Atrium, Sino Atrial Node,
and Atrial Ventricular Node
Development

Beginning in the primary heart tube, the atrial
septum divides into the septum primum and the
septum secundum and looks similar in both mice
and humans. The process spans E10.5 to E13.5 in
mice and days 48–56 in humans [17]. Starting at
the posterior wall of the atrium, the septum
primum extends out and eventually meets the
endocardial cushions surrounding the atrial ven-
tricular junction. This spine that extends from the
wall of the atrium is made of mesenchymal cells

that later become muscle cells. This process helps
to close the interventricular foramen [18]. Later,
the septum secundum formation begins in the
dorsal wall of the atrium, when it in folds and
grows to the right of where the pulmonary vein
will develop [17].

In addition to septation, between E10.5 and
E11.5 in mice and around week 5 in humans,
some atrial mesenchymal cells will become the
sinoatrial node. The comma-shaped node’s char-
acteristic head and tail regions develop indepen-
dently, in order of functions. As it develops, the
left-sided sinoatrial node joins the surrounding
myocardium and begins to look like characteristic
working myocardium. But unlike the left-sided
atrial node, the right side does not look like its
working myocardium surroundings. Instead, it

Fig. 1 Schematic of human cardiac morphogenesis.
Illustrations depict cardiac development with color coding
of morphologically related regions, seen from a ventral
view. Cardiogenic precursors form a crescent (left-most
panel) that is specified to form specific segments of the
linear heart tube, which is patterned along the anterior–
posterior axis to form the various regions and chambers of
the looped and mature heart. Each cardiac chamber
balloons out from the outer curvature of the looped heart
tube in a segmental fashion. Neural crest cells populate the
bilaterally symmetrical aortic arch arteries (III, IV, and VI)
and aortic sac (AS) that together contribute to specific

segments of the mature aortic arch, also color coded.
Mesenchymal cells form the cardiac valves from the
conotruncal (CT) and atrioventricular valve (AVV)
segments. Corresponding days of human embryonic
development are indicated. A atrium, Ao aorta, DA ductus
arteriosus, LA left atrium, LCC left common carotid, LSCA
left subclavian artery, LV left ventricle, PA pulmonary
artery, RA right atrium, RCC right common carotid,
RSCA right subclavian artery, RV right ventricle,
V ventricle. (Re-use with copyright permission granted
from [2])
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keeps a more primitive function, enabling it to be
tracked even in late development [19].

2.4 Ventricular Development

Like atrial development, ventricular development
looks very similar between mice and humans. It
begins on day E11.5 in mice and week 8 in
humans, near the end of the looped heart stage
[17]. During ventricular development, the ven-
tricular septum protrudes from the ventral part
of the ventricular chamber floor and grows
toward the atria. Closing the ventricular septum

is thought to be mediated by cells moving from
the secondary heart field in the dorsal direction.

2.5 Atrioventricular Valve
Development

Atrioventricular valve development spans over
E10.5-E17.5 in mice and days 48–66 in humans.
The valves’ structure is complete by E12.5 and
day 56, in mice and humans, respectively, but
continues to develop into their polished versions
until E17.5 and day 66 [17]. Endocardial
cushions, or extracellular matrix areas, that line

Fig. 2 Mouse cardiac development. The heart originates
from mesodermal cells in the primitive streak. During
gastrulation, cardiac progenitors migrate to the splanchnic
mesoderm to form the cardiac crescent. At E7.5 in the
mouse, the cardiac crescent can be divided into two heart
field lineages based on differential gene expression and
their respective contribution to heart, a first heart field
(red) and a second heart field (yellow), which is located
posteriorly and medially to the first heart field. At E8.0, the
linear heart tube is present. At E8.5, the looping is
associated with uneven growth of cardiac chambers. The

outflow tract is at the arterial pole and the inflow tract and
primitive atria are at the venous pole. By E9.5, the com-
mon atrium has moved superior to the ventricles and is
separated by a distinct atrio-ventricular canal. By E10.5,
cardiac neural crest cells from the dorsal neural tube
migrate via the pharyngeal arches to the cardiac outflow
tract. Further cardiac development involves a series of
septation events and myocardial trabeculation that result
in a mature four-chambered heart integrated with the cir-
culatory system depicted at E15.5. (Re-use with copyright
permission granted from [16])

Genome Editing and Myocardial Development 57



the atrial ventricular canals divide this area into
left and right, and create the atrial ventricular
valves. There forms the mitral valve on the left
and the tricuspid valve on the right, though at this
stage they are thick. In the next 10 days of human
gestation, these valves thin and are developed. In
mice though, the tricuspid valve takes until E17.5
to develop, and even further development occurs
postnatally [17].

2.6 Outflow Track Development

The truncus arteriosus is the site of many events
in cardiac development. Cells from the second
heart field interacting with neural crest cells will
create a septum and become arteries [18]. In
humans and mice, at days 50 and 11.5, respec-
tively, neural crest cells facilitate the formation of
two ridges. As the truncus arteriosus cushions

Table 2 Genes involved in cardiac development and congenital heart disease

Name Human phenotype/role

MYBPC3 ASD, PDA, VSD, MR
SCN5A Long QT syndrome
HRAS PS, ASD, VSD, PDA, other structural heart disease, hypertrophy, rhythm disturbances
TNNT1/
TNNT2

HCM

LDB3 LVNC
MYPN RCM
LMNA LVNC
CASQ2 CPVT
KCNH2/
KCNQ1

Long QT syndrome, short QT syndrome

TAZ LVNC
Structural proteins
MYH7 EA, LVNC, HCM, DCM
FBN1 Marfan syndrome
Receptors and ligands
RyR2 CPVT
Transcription factors and co-factors
GATA5 AVSD, DORV, LVNC, BAV, CoA
GATA4 Dextrocardia, AVSD, DORV, TOF, BAV, CoA, AR, PAPVR, PDA, PS, ASD, VSD,
GATA6 AVSD, TOF, PDA, PTA, PS, ASD, VSD, OFT defects
NKX2-5 ASD, AVSD, VASD, BAV, CoA, Dextrocardia, DORV, Ebstein’s anomaly, HTX, HLHS, IAA,

LVNC, Mitral valve anomalies, PA, PAPVR, PDA, PS, SVAS, TA, TAPVR, TGA, TOF, PTA, VSD
TBX5 AVSD, TOF, BAV, CoA, ASD, VSD, Holt-Oram syndrome, PDA
PBX1 CAKUTHED syndrome
Signaling
JAG1 Aortic dextroposition, TOF, BAV, CoA, PS, VSD, Alagille syndrome, peripheral pulmonary

hypoplasia
NOTCH2 AVSD, TOF, BAV, CoA, PS, Alagille syndrome, peripheral pulmonary hypoplasia
TGFB2 VSD, Loeys-Dietz syndrome
TGFB3 Loeys-Dietz syndrome
TGFBR1 BAV, Myxomatous mitral valve, TAAD, Loeys-Dietz syndrome, Marfan syndrome

Information taken from [2, 3, 6, 10, 11, 16, 19]
ASD atrial septal defect, AVSD atrioventricular septal defect, BAV bicuspid aortic valve, CoA Coarctation of the aorta,
CPVT catecholaminergic polymorphic ventricular tachycardia, DORV double outlet right ventricle, HCM hypertrophic
cardiomyopathy, HLHS hypoplastic left heart syndrome, HTX heterotaxy, IAA interrupted aortic arch, LVNC left
ventricular noncompaction, OFT outflow tract, PAPVR partial anomalous pulmonary venous return, PDA patent ductus
arteriosus, PS pulmonary stenosis, PTA persistent truncus arteriosus, TA tricuspid atresia, TAAD thoracic aortic aneurysm
and dissection, TAPVR total anomalous pulmonary venous return, TGA transposition of the great arteries, TOF tetralogy
of Fallot, VSD ventricular septal defect
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begin twisting, they separate into the aorta and
pulmonary arteries. At least this is true distally. At
this point, proximally the truncus arteriosus is still
connected as one [18]. By day E12.5 in mice, the
outflow tracts are separate proximally as well. In
general, the development of the outflow tracts
looks similar between humans and mice
[17]. This process is delicate in that 30% of con-
genital heart defects are due to this neural crest
cell process. ET-1, dHAND, and neurophilin-1
are known to regulate neural crest cell develop-
ment [2]. Neural crest cells are proven to be
needed to properly close the ductus, separate the
outflow tract, form the aortic arch, and form the
ventricular septation [10]. Neural crest cells are
also thought to induce the development of the
cardiac conduction system, though it is not
known precisely how [19].

The semilunar valve is made in a process sim-
ilar to that of the atrial ventricular valves, in that it
comes from cushion tissue, this time truncal, and
is thick to start. Semilunar valves then thin out
over time. This process begins in mice at day
E12.5 and week 8 in humans [17].

2.7 Conductance System

Development of accessory pathways, or acces-
sory bundles of cardiomyocytes, are essential as
the atria and ventricles develop, because they
conduct action potentials in both the atrial ven-
tricular direction and the ventricular-atrial direc-
tion. When the atrial ventricular junction forms,
conduction between the atria and ventricles is one
of the only connections the two areas have. They
are located both endocardially and epicardially to
start, and thus have different cellular
morphologies. However, it is also imperative
that these decrease in number and size as the
heart, specifically the atrioventricular junction,
develop, or else it can lead to cardiomyopathies
later on in development [19].

When it comes to the cardiac conduction sys-
tem, the posterior end of the heart field will give
rise to the sinoatrial node. Some suspect it will
also contribute to the formation of the atrioven-
tricular node. However, it is still debated

[19]. Furthermore, at E9.5 in mice, epicardial
cells from the venous pole of the heart migrate
over the developing heart to create the outer layer
of the epicardium. Epicardium-derived cells go
on to help form smooth muscle cells, coronary
vasculature, the atrial ventricular valves, and the
compact myocardium. Still, they are also thought
to play a role in developing the peripheral con-
duction system through Purkinje fiber cells
[19]. When it comes to the atrioventricular node,
it starts to develop at week 5 in humans and day
E11.5 in mice. The atrioventricular node develops
from the myocardium and begins as an anterior
and posterior node, the posterior node eventually
playing the more significant role. After all, it is
the node that connects to the His bundle. Ulti-
mately, the anterior and posterior atrioventricular
nodes fuse [19]. There are many theories as to
which cells exactly give rise to the atrioventricu-
lar node, but for now, it is only agreed upon that it
has multiple cell sources [19]. During early devel-
opment, the atrioventricular canal conducts
slowly, which is known as the atrioventricular
delay. As the heart continues to develop, the
annulus fibrosus forms and interrupts the
myocardial continuity, which would interrupt
conduction to the ventricles. As a result, the com-
mon bundle begins conducting the electrical
impulse to the now working ventricular myocar-
dium and, these electrical impulses speed up [19].

3 Genetic Archetypes in Cardiac
Development

As a beginning step, the heart tube formation
initiates with the help of the progenitor cells
within the anterior lateral plate mesoderm,
which becomes committed to a cardiogenic fate
around embryonic day (E) 15 in humans. Specific
signaling molecules such as bone morphogenetic
proteins, fibroblast growth factors (Fgfs), and
Wnts are responsible for this step [21–23]. Car-
diac precursors bilaterally come together and fuse
at the cephalic portion of the primitive streak and
forms the cardiac tube. This straight heart tube
contains an outer myocardium and an inner endo-
cardium separated by an extracellular matrix
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(ECM) known as the cardiac jelly. This process is
shown to be under GATA transcription factors
control [24]. The tubular heart initiates rhythmic
contractions at approximately E23.0 in humans.
The linear heart tube is segmentally shaped along
the cranial (arterial pole) to caudal (venous pole)
end into precursors of the aortic sac, conotruncus
(outflow tracts), and primitive ventricle, primitive
atria, and sinus venosus. The original upside-
down heart tube lies in the cranial part of the
embryo and needs to be curved. This critical
development is called cardiac looping. In all
vertebrates, the linear heart tube at first undergoes
rightward, C shape looping and next S shape
looping, which is essential for proper orientation
of the pulmonary (right) and systemic (left)
ventricles, and remodeling of the heart chambers
with the vasculature [25]. With this looping pro-
cess, the heart tube changes its orientation. From
cranial to caudal direction, the structures lie as the
aortic sac, primitive atrium to the primitive ven-
tricle, and bulbus cordis.

The molecular mechanisms controlling the
cardiac looping remain unknown but
transforming growth factor-ß (TGF-ß) seems to
be playing the role. The creation of a looped heart
tube then enables the structure of four chambers
and the arterial venous poles. After proper
looping, the heart tube is ready to be divided
into four chambers. This is followed by symmet-
rical atrial septation into the left and right atria,
which governs NKX2.5 and TBX5 genes. The
formation of heart valves and sequential ventric-
ular septation into the left and right ventricles
with a formation of the primitive interventricular
septum between them, is mainly controlled by the
TBX5 gene [2]. As we improve our understand-
ing of cardiac development and the role of genet-
ics in this process, the more underlying
pathological processes depend on genetic
abnormalities. We have enough evidence to
assume that a significant portion of the CHD’s
originates from errors or disruption in heart
development’s genetic control.

The etiology of congenital heart defects is
recently becoming a more interesting topic in
the literature. When we look at the genetic
determinants of CHD, we can identify almost

30% of the genetic abnormalities behind CHD’s.
The majority of the genetic determinants, nearly
70%, are still unrecognized [11]. However, as we
improve our understanding of the genetic contri-
bution to heart development and improve genetic
technology, the undetermined portion will be less
in the near future. Gene therapy is becoming a
compelling treatment option when genetic etiol-
ogy is apparent in many diseases. In this review,
we will divide the genetic archetypes behind the
CHD, and we will review the gene therapy
options based on the genetic model of the CHD.

4 Genetic Archetypes
for Syndromic Congenital
Heart Defects

This subset of CHD cases has an exact genetic
etiology, including various chromosome
abnormalities, microdeletion/microduplication
syndromes or, single-gene disorders, some of
which are syndromic and some of which are
nonsyndromic. Recurrence risk estimation is
much easier for these cases with a clear genetic
etiology; the magnitude of the risk depends on the
specific cause. Except for the nonsyndromic
single-gene causes of CHD, genetic causes of
CHD often involve clinical or developmental
features in addition to CHD. People with Down
syndrome often have a higher than average num-
ber of abnormalities, such as intellectual
disabilities, hypotonia, dysmorphic features, and
other extracardiac symptoms [26]. Deletion 22q
syndrome is commonly associated with oral
clefting, velopharyngeal insufficiency, learning
disabilities, calcium regulation issues, and thy-
mus hypoplasia [27]. People with Holt–Oram
syndrome due to mutations in TBX5 are often
characterized by abnormalities in the limb and
heart, such as atrial and ventricular septal defects
[28]. Costello syndrome occurs due to HRAS
mutations and can cause pulmonary stenosis and
hypertrophic cardiomyopathy in the heart. People
with Alagille syndrome typically have bile duct
paucity, typical facies, and vertebral and heart
anomalies. In this syndrome, the mutations are
generally in JAG1and NOTCH2, and most
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cardiac defects are pulmonary stenosis, hypopla-
sia, and Tetrology of Fallot [29]. Currently, pre-
vention and treatment for this group have not
been the focus of the current era. We are doing
an excellent job counseling the recurrence risk
and diagnosing them prenatally to inform the
patients.

5 Genetic Archetypes
of Nonsyndromic Isolated
Congenital Heart Defects

In recent years, we have learned about several
single genes that, when mutated, are associated
with nonsyndromic familial CHD. Unlike
syndromic CHD, where individuals often have
various other medical and developmental
concerns in addition to their cardiac problems,
nonsyndromic familial CHD is associated with
isolated heart defects. Many point mutations of
NKX2.5 have been found in families with atrial
septal defects and arrhythmias [30]. Sporadic
mutations of the NKX2.5 can cause tetralogy of
Fallot, an outflow tract alignment defect, and
tricuspid valve defects. The exact mechanism of
these mutations resulting in cardiac defect is not
precise yet. The linkage of particular loss of func-
tion with mutations in some distinct abnormalities
suggests that different aspects of NKX2.5
functions can be altered in other developmental
portions of the heart. Typically, these conditions
exhibit both reduced penetrance and variable
expressivity. For example, some people in a fam-
ily who inherit an NKX2.5 mutation will have
completely normal hearts, some will have Tetral-
ogy of Fallot, some may have atrial septal defects,
etc., but everyone who inherits the mutation,
regardless of their phenotype, can transmit that
mutation to the next generation [31]. Mutations in
GATA4 can cause atrial septal defects, atrioven-
tricular septal defects, and great artery
abnormalities, specifically pulmonary artery
abnormalities. NOTCH1 mutations go with the
bicuspid aortic valve, aortic stenosis, aortic coarc-
tation, and hypoplastic left heart syndromes
[32]. The currently known genes to cause
nonsyndromic familial CHD’s are listed in

Table 2. These new developments demonstrate
that single-gene defects can lead to isolated con-
genital heart disease and reveal more about
molecular pathways important in cardiac
morphogenesis.

6 Genetic Archetypes for Left–
Right Patterning

The left-right asymmetry of the heart is required
for proper oxygenation of the body, with the left
side of the heart holding the responsibility of
systemic circulation in order to provide
oxygenated blood throughout the body. In con-
trast, the right side of the heart is responsible for
pulmonary circulation to the lung for gas
exchange. The abnormal left-right patterning, or
laterality defect, is highly associated with CHD
[33, 34] indicating the importance of left-right
patterning in cardiac development.

This left-right asymmetry established with the
rightward cardiac looping (the 4th week of human
gestation and E8.5-E10.5 in mice) reflects the
left–right body axis. The human body is highly
asymmetric, with the body plan following the
three axes (anteroposterior [A/P], dorsoventral
[D/V], left-right [L/R]) that are established very
early in embryonic development (human embry-
onic day E23 and mouse embryonic day E8.5)
[35]. The major visceral organs are packed into
the human body with a striking left-right asym-
metry. The vast majority of the human population
has developed this asymmetric thoracoabdominal
organ arrangement, known as the normal situs,
called situs solitus (SS). Comparative studies
revealed that this directionality of the situs asym-
metry is vertebrate-conserved, from fish, frog,
mouse, to higher mammals, including humans
[36]. However, when the asymmetry fails to
develop correctly, it results in a pathogenic con-
dition, heterotaxy, also known as situs ambigu-
ous, which is generally associated with a
spectrum of intra-cardiac defects, found in 1 of
10,000 births, and is associated with at least 3%
of CHD cases [37]. Over the past few decades, it
has been recognized that cilia, the highly
conserved microtubule-based structures found in
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almost all cell types, play central roles in left-right
asymmetry in development. Ciliary abnormality,
primary ciliary dyskinesia (PCD) [38], accounts
for a host of human diseases such as cystic kidney
disease, retinal degeneration, and Bardet-Biedl
and Meckel-Gruber syndromes [39–46]. The
left–right patterning [47] is established by nodal
motile cilia rotating clockwise to generate a left-
ward flow of morphogens resulting in an asym-
metrical gradient around the node, thus breaking
the initial embryonic symmetry and establishing
left and right asymmetry [41, 45]. Intra-ciliary
calcium oscillation dynamics [41–43, 48] are
identified as a key signaling pathway that initiates
cascades of subsequent events in left–right devel-
opment. Growing numbers of genetic analyses in
both humans [37, 49–52] and mice [53–58] have
uncovered arrays of PCD genes. Among all the
PCD patients examined [49], about 48% devel-
oped SIT, 6% heterotaxy, and 46% had normal
SS. How the bodily left–right axis established
during nodal development affects the left–right
patterning in the heart is not completely clear. A
recent discovery of intrinsic cellular chirality [59]
showed that the developing chick cardiomyocytes
are intrinsically chiral and exhibit dominant
clockwise rotation in vitro. Furthermore, the
developing myocardium is chiral as evident by a
rightward bias of cell alignment and a rightward
polarization of the Golgi complex, correlating
with the direction of cardiac looping. It is possible
that the intrinsic cellular chirality regulates the
left–right patterning from a cellular level, cardiac
looping, to the overall body plan.

7 Genetic Archetypes
of Inherited Arrhythmias

The most common inherited primary arrhythmia
syndromes are Long QT syndromes, catechol-
aminergic polymorphic ventricular tachycardia,
Brugada syndromes, and short QT syndromes.
The inherited primary arrhythmia syndromes are
mainly caused by cardiac channelopathies.
Genetic mutations that cause inherited primary

arrhythmia syndromes are mostly in genes
encoding ion channels and associated regulatory
proteins in the heart [60]. The inheritance pattern
for primary arrhythmia syndromes is usually
Mendelian. The onset of the disorders appears
early in life. Epidemiological studies on the spec-
trum of etiologies of sudden cardiac death (SCD)
indicated that the primary arrhythmia disorders
are one major culprit of SCD among young and
healthy individuals [61]. However, clinical
features and phenotypical expression of the
inherited primary arrhythmia syndromes resulting
from cardiac channelopathies can be variable
[62]. The complex interplay of the mutation
characteristics, epigenetic, and environmental
factors can influence the vulnerability to
arrhythmias as well as the disease progression
[63]. Many of these diseases exhibit overlapping
symptoms. Therefore, precise genetic testing can
be of merit in diagnosis, prognosis, guiding clini-
cal management and more specific therapy [62].

7.1 Long QT Syndromes

The congenital long QT syndrome (LQTS) is one
of the most common inherited arrhythmias in
structurally normal hearts. It is usually diagnosed
with prolongation of the QT interval on the elec-
trocardiogram (ECG). Clinically it can cause syn-
cope, seizures, polymorphic ventricular
tachycardia (VT) (torsades de pointes), cardiac
arrest, and sudden death.

To date, 16 genes have been associated with
LQTS. The most common genes seen in 90% of
all genotype-positive cases are KCNQ1 (LQTS1),
KCNH2 (LQTS2), and SCN5A (LQTS3). The
diagnostic yield of these mutations is high. It
allows us to understand the penetrance type and
determine the risk for the upcoming generations
in the same family before being discovered by
their clinical symptoms. As a treatment option,
the type of mutation will help us start prophylac-
tic treatments, which have already been proven to
reduce cumulative mortality [64].

62 S. Turan et al.



7.2 Catecholaminergic Polymorphic
Ventricular Tachycardia (CPVT)

Catecholaminergic polymorphic ventricular
tachycardia (CPVT) is an inherited arrhythmic
disorder. It is characterized by adrenergic
mediated polymorphic or bidirectional ventricular
tachycardia (VT) that may degenerate into ven-
tricular fibrillation (VF) which can cause cardiac
arrest or sudden cardiac death in patients with
structurally normal hearts. As indicated by Drs.
Asatryan and Mederios-Domingo [65], for
patients with clinical CPVT is suspected, the
presence of pathogenic mutations of RyR2 or
CASQ2 can be diagnosed by genetic testing,
which can have almost 60% diagnostic yield.
Besides confirming the diagnosis, a positive
result is very useful to identify other affected
family members at risk for sudden cardiac death
[65, 66].

7.3 Brugada Syndromes (BrS)

Brugada syndrome (BrS) is characterized by a
typical ECG pattern of coved-type ST-segment
elevation with successive negative T waves in
the right precordial leads with or without cardiac
conduction delays. Ventricular tachyarrhythmias
and sudden death in sleep are the most common
clinical findings and manifest between 30 and
40 years of life. The prevalence is higher in
males. Although it is rare compared to Long QT
syndrome, it is a silent killer due to silent course
and intermittent ECG patterns. Although the
genetic test’s diagnostic yield is around 30%,
mutation-specific genetic testing is recommended
for family members after identifying a causative
mutation. It allows for presymptomatic diagnosis
in relatives at risk who need further clinical
follow-up, prophylactic treatment, etc. At least
20 genetic mutations have been found to account
for 30–35% of BrS cases [65, 67], with loss-of-
function mutations in SCN5A contributing to
about 30% of said cases [65, 68, 69]. Therefore,
global as well as specific SCN5A genetic testing
is an expected course of action for any patient

suspected of having BrS. It is generally
recommended that family members of BrS
patients have genetic testing as well in order to
allow for early diagnosis and presymptomatic
clinical and treatment plans.

7.4 Short QT Syndrome (SQTS)

While exceedingly rare, short QT syndrome
(SQTS) is a heritable, grave, deadly cardiac
channelopathy. ECG reveals short QT intervals
in these patients, making them increasingly vul-
nerable to atrial and ventricular arrhythmias and
sudden death [65, 70]. While some patients pres-
ent first with these arrhythmias in the form of
heart palpitations or syncope, 40% of cases pres-
ent cardiac arrest as their first symptom, with any
survivors showing a high rate of recurrence.
KCNH2 (SQTS1) was the first gene discovered
in relation to SQTS, with about an 80% pene-
trance, though data is limited. Therefore those
with any clinical suspicion or family history of
SQTS should undergo genetic screening for three
major genes associated with SQTS, KCNH2,
KCNQ1, and KCNJ2, the yield of which is
around 40% [65, 71, 72].

8 Genetic Archetypes
of Inherited Cardiomyopathy

Cardiomyopathy is a form of heart disease affect-
ing the cardiac muscle and can cause major
cardiac-related morbidity in almost all ages. A
significant portion of them has a genetic origin.
Advances in molecular genetics allowed us to
identify multiple genes responsible for
cardiomyopathies. Surprisingly, different
mutations in the same gene can cause different
types of cardiomyopathies. Cardiomyopathies
can be classified as dilated, hypertrophic,
arrhythmogenic right ventricular, restrictive, or
left ventricular non-compaction
cardiomyopathies. As a neuromuscular disorder,
especially Duchenne and Becker muscular
dystrophies, cardiomyopathy is also characterized
by skeletal myopathy [73].
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8.1 Dilated Cardiomyopathy (DCM)

Dilated cardiomyopathy (DCM) is characterized
by left ventricular dilatation and abnormality in
systolic function. DCM is the most common indi-
cation for cardiac transplant. Inheritance patterns
are generally autosomal dominant in 30–50% of
cases. Small percentages can be autosomal reces-
sive, X-linked, and mitochondrial inheritance.
More than 40 genes have been described in
DCM. Defects with LMNA-encoded lamin
mutations, myosin heavy chain beta mutations,
ribonucleic acid-binding protein mutations, and
many other complex molecular deficits have
been implicated in the pathogenesis of DCM
[74]. Most genetic mutations associated with
DCM have extremely low prevalence and high
heterogeneity. Therefore, it is often necessary to
sequence large numbers of genes in order for
effective genetic testing. If the DCM is together
with conduction disease and/or arrhythmia and
strong family history, then focused testing for
LMNA, desmosomal, and SCN5A mutations
may have a substantial clinical impact. Identifica-
tion of a genetic mutation in the setting of family
history allows early screening, appropriate moni-
toring, and prophylactic treatments [75].

8.2 Hypertrophic Cardiomyopathy
(HCM)

The inheritance pattern of hypertrophic cardio-
myopathy (HCM) is autosomal dominant,
characterized by concentric hypertrophy of the
left ventricle and the septum [76]. The genes
that encode sarcomeric proteins are involved in
the pathogenesis of HCM. The most common of
them that accounts for 20–30% of the HCM is
mutations in MYH7 (encoding the β-myosin
heavy chain), MYBPC3 (encoding the cardiac
myosin binding protein C), and cardiac troponin
T (TNNT1and 2) [77]. These mutations, in gen-
eral, cause decreased myocyte relaxation and
increased myocyte growth with prominent
involvement of the interventricular septum.
Approximately 10% of the patients may carry

multiple sarcomeric mutations, presenting with
more severe diseases at younger ages. This
indicates the need for detailed genetic evaluation
of the family for early diagnosis and treatment.
The genetic diagnosis can go up to 70% if there is
a family history of HCM. The yield is lower when
sporadic diseases are considered. For effective
screening, it is important to know the pathogenic-
ity of the mutation. Many mutations that cause
HCM can be unique to the individual family;
therefore, careful genetic counseling and family
assessment are needed in this type of inherited
cardiomyopathy [78].

8.3 Arrhythmogenic Right
Ventricular Cardiomyopathy
(ARVC)

The arrhythmogenic right ventricular cardiomy-
opathy (ARVC) is a form of heart disease
characterized by fibrosis and fatty infiltration of
the myocardium, mainly in the right ventricle.
The inheritance pattern for ARVC is autosomal
dominant with incomplete penetrance. Mutations
in the genes cause encoding desmosomal proteins
are the main etiology. These mutated genes disor-
ganized desmosomal integrity, making muscle
fibers more fragile, sensitive to tearing, fragmen-
tation, and eventually cell death in the course of
the cardiac cycle. As a result, the desmosomal
function, the gap junction remodeling, sodium
channel function, and electrocardiographic
parameters in cardiomyocytes are also
compromised. Besides, disturbance of desmo-
somal proteins promotes adipogenesis in
mesodermal precursors by suppressing the
Wnt/β-catenin signaling pathway. This particular
pathway is known for its role in cardiac
myogenesis [79].

As a consequence of this abnormal process,
the fibro-fatty replacement of the ventricular
myocardium becomes more prominent in the
RV. Multiple variants in the mutation cause
early presentation and more severe presentation
of the disease. The presence of more than one
variant was associated with a nearly fivefold
increase in odds of penetrant disease. This
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information is essential during the genetic evalu-
ation, and recommendation is usually needed to
sequence all five desmosomal genes [80].

8.4 Restrictive Cardiomyopathy
(RCM)

Restrictive cardiomyopathy (RCM) is a form of
heart disease in which the heart chambers gradu-
ally become stiff over time. The initial findings
are increased ventricular stiffness that impairs
ventricular filling without ventricular hypertrophy
or systolic dysfunction [81]. The most common
inheritance is autosomal dominant. Alterations in
genes encoding for sarcomeric proteins (e.g.,
TNNT2), Z-disc proteins (e.g., MYPN), or
transthyretin (TTR) have been identified in
patients with RCM [82]. Familial RCM is
increasingly recognized as a specific phenotype
within the HCM spectrum and can be seen in
those who share mutations expressed as classic
hypertrophic cardiomyopathy in other family
members.

8.5 Left Ventricular Non-compaction
Cardiomyopathy

This is a heterogeneous disorder characterized by
prominent trabeculae, a thin compacted layer, and
deep intertrabecular recesses most evident in the
left ventricle apex. Non-compaction may involve
the right ventricle, presenting as either a
biventricular or isolated right ventricular
non-compaction phenotype. The genetic form is
commonly inherited as an X-linked recessive or
autosomal dominant condition [83]. Mutations
that affect the compaction of the endomyocardial
layer progress from the base to the apex of the
heart during embryogenesis. The genes encoding
for sarcomeric (e.g., MYH7), Z-disc (e.g.,
LDB3), nuclear envelope (e.g., LMNA), mito-
chondrial (e.g., TAZ), and ion channel proteins
(e.g., SCN5A) are found to be responsible for this
type of cardiomyopathy.

8.6 Cardiomyopathy in Other
Disorders

Duchene muscular dystrophy (DMD), Beker’s
muscular dystrophy, Marfan syndrome, and
Barth syndrome are the other disorders where
different types of CMP can be observed. In
DMD, three stages are present, usually starting
with hypertrophic CMP and some diastolic dys-
function with no heart failure symptoms. Later
the heart dilates and accumulates fibrosis and, as
the last stage represents, the end-stage heart fail-
ure findings such as diastolic dysfunction and
arrhythmias. The female carriers of DMD
mutations may also manifest dilated cardiomyop-
athy. This has the potential to progress to heart
failure in some cases; therefore, the appropriate
genetic counseling and close monitoring of the
carriers are also needed. Marfan syndrome is
caused by mutations in the FBN1 gene that
codes for fibrillin-1. The inheritance is autosomal
dominant [84]. Fibrillin-1 is an extracellular pro-
tein that plays a role in microfibril formation and
provides elastic properties to tissues [85]. Dilated
cardiomyopathy is typically associated with
Marfan syndrome. The Barth syndrome is an
X-linked autosomal recessive disorder is caused
by mutations in the tafazzin (TAZ) gene [86]. The
loss of tafazzin and increased cardiolipin results
in changes in energy stores decreased contractil-
ity, and increased heart damage. Barth syndrome
cardiomyopathy is usually dilated cardiomyopa-
thy, but cases of hypertrophic and left ventricle
non-compaction cardiomyopathies have been
described.

9 Genome Editing in Modeling
Inheritable Heart Diseases
in Model Organisms

Model organisms, such as mice, are indispensable
tools for understanding the etiology of inheritable
heart diseases and gene functions [87]. Clustered
regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated Cas9-based gene
editing technology [88–90] allowing efficient
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generation of mutant mice in one step [91],
mutant mice can be systematically generated for
interrogating and modeling human inheritable
heart diseases, as well as for dissecting
mechanisms for gene functions.

Pre-B cell leukemia factor 1 (PBX1) is a tran-
scription factor essential for development and
associated with CAKUTHED syndrome,
characterized by multiple congenital defects
including CHD. Alankarage and associates
identified a de novo missense variant, PBX1:
c.551G>C p.R184P, in a syndromic CHD patient
with tetralogy of Fallot with absent pulmonary
valve [92]. Using CRISPR-Cas9 gene editing to
generate a mouse model with this mutation,
Alankarage et al. [92] conducted functional and
phenotypical analysis of Pbx1 in mice to show
that p.R184P is disease-causal. Wnt/β-catenin
signaling cascade [93–95] is important transcrip-
tional regulation for morphogenesis. Combining
zebrafish and mouse genetics, Cantù et al. [96]
used CRISPR-Cas9 gene editing to demonstrate
that tissue-selective perturbation of Bcl9 and
Pygo as selective β-catenin cofactors in a subset
of canonical Wnt responses caused severe CHD.

Sufficiently sizeable cohorts of probands when
searching for causative genes in CHD can be
challenging to assemble [8] because of large num-
bers of causative variants, low frequency of caus-
ative variants for individual genes, and diverse
genetic backgrounds of the human population.
Forward genetic screening with N-ethyl-N-
nitrosourea (ENU) mutagenesis [97] in model
organisms, such as inbred mouse strains, with
very highly induced rates of mutation throughout
the genome in the homogeneous genetic back-
ground, is therefore invaluable to uncover causa-
tive genes in CHD [53, 55, 98, 99]. However,
ENU mutagenesis can cause point mutations in
~100 genetic loci per genome; consequently, it is
imperative to rule out non-causative mutations for
the CHD phenotypes. Gene editing to knock in or
knock out specific gene mutations in the inbred
wild-type (WT) background can authenticate the
causality of the gene in question. Leveraging
forward genetic screening with ENU mutagene-
sis, Liu et al. [98] have identified causative
digenic mutations in Sap130 and Pcdha9 that

can synergistically cause hypoplastic left heart
syndrome (HLHS) in double homozygous
mutants with incomplete penetrance and
non-mendelian complex genetic inheritance
[98, 99]. Gene editing using the CRISPR/Cas9
system to generate the same point mutations in
these two genes in the WT background produced
identical phenotypes with similar penetrance and
substantiated that Sap130 and Pcdha9 are causa-
tive genes for HLHS.

Furthermore, the CRISPR/Cas9 system has
shown tremendous potential to correct genetic
defects in zygotes or postnatal mice
[100]. Using adeno-associated virus (AAV9 or
AAV8) to deliver CRISPR/Cas9-mediated gene
editing components, in vivo somatic genome
editing has been shown to correct the disease-
causing gene mutation of Duchenne muscular
dystrophy (DMD) in mice and improve pheno-
typical outcomes in postnatalmice [101, 102]. Sar-
coplasmic reticulum Ca2+-ATPase 2a
(SERCA2a) and its inhibitory protein called
phospholamban (PLN) are pivotal for Ca2+

handling in cardiomyocytes. Their expression
levels and activities were changed in heart failure
patients. Using the CRISPR-cas9 system, Kaneko
et al. [103] showed that PLN inhibition could
significantly improve cardiac function and sur-
vival in calsequestrin overexpressing mice, a
severe heart failure mouse model, suggesting
PLN deletion could be a promising approach to
improve both mortality and cardiac function in
the heart failure.

One challenge for using the gene editing
approach to dissect functional mechanisms for
cardiac development and CHD is the presence
of functionally redundant genes in the genetic
network for cardiac development. It is necessary
to knock out multiple genes in the same func-
tional network to exhibit phenotypes. Conven-
tionally, mutant mice carrying multiple genetic
mutations were generated by time-consuming
intercrossing of mice with different single genetic
mutations. Wang et al. [104] have shown the
feasibility of multiplex gene editing with the
CRISPR/cas-9 system. Coinjection of Cas9
mRNA and single-guide RNAs (sgRNAs)
targeting both Tet1 and Tet2 genes into zygotes
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generated mice with biallelic mutations in both
genes with an efficiency of 80%. The CRISPR/
Cas system allows the one-step generation of
animals carrying mutations in multiple genes, an
approach that will accelerate the in vivo study of
functionally redundant genes and epistatic gene
interactions [104].

With the availability of the Mouse Genome
Database (MGD) [105, 106], large-scale efforts
such as the Knockout Mouse Project (KOMP)
[107] and the European Conditional Mouse
Mutagenesis (EUCOMM) Program [108] are sys-
tematically generating knockout mice for
dissecting mechanisms for gene functions. Inter-
national collaborations combining European
Mouse Mutant Archive (EMMA), Infrastructure
for Phenotyping, Arching and Distribution of
Mouse Diseases Models (IPAD-MD), and Inter-
national Mouse Phenotyping Consortium (IMPC)
[109, 110] are pursuing efforts for detailed phe-
notypic characterization to gain mechanistic
insights into gene function. The challenges
remain that over 30% of the genes in mice are
essential for development and cause embryonic
lethality or neonatal survivability when deleted
[109], consequently, it is not feasible to analyze
postnatal gene functions. Conditional knockouts
[111] with Cre/loxP system can overcome the
embryonic lethality by knocking out the gene
later in life. Conditional knockouts with
CRISPR/cas systems [112, 113] can facilitate
efficient conditional knockouts for dissecting
gene functions in viable adult animals.

10 Other Considerations

Although strong genetic underpinning regulates
cardiac development and CHD, extreme locus
heterogeneity, incomplete penetrance, and lack
of a genotype-phenotype correlation [114, 115]
indicate other non-genetic factors [116] can
impede cardiogenesis and contribute to the devel-
opment of CHD. The penetrance of CHD is
incomplete and highly variable. Probands [8]
and their relatives carrying the same genetic
variants can exhibit different cardiac outcomes,
ranging from nearly normal to complex CHD

with different CHD lesions. Mechanical
perturbation [115, 117–123] of ventricular pre-
load pressure and shear stress, as well as exposure
to alcohol [124] and environmental toxins [125]
can cause CHD. Epidemiology studies have
identified maternal risk factors associated with
CHD, such as cardiometabolic disorders, stress,
preeclampsia, obesity, and diabetes mellitus
[126–129]. The risk of congenital anomalies in
infants of diabetic mothers is estimated to be
between 2.5 and 12%, with an over-
representation of CHD [130]. Better understand-
ing of the gene–environment interactions in
myocardial development and the pathogenesis of
CHD is needed to facilitate effective genome
editing as a therapeutic intervention. Addition-
ally, ethical concerns of germline genome editing
to correct developmental diseases need to be
addressed before the genome editing technologies
can treat curable CHD and other cardiovascular
diseases [131–133].

11 Conclusions

Reverse and forward genetics will continue to
enhance and refine our models of heart develop-
ment, associate mutated genes with abnormal
phenotypes, be used to screen embryos, fetuses,
parents, and family for mutations in these genes,
and provide highly informed genetic counseling.
If and when gene editing is available for treatment
of inheritable disorders, the accumulated knowl-
edge of heart development and disease will guide
details on when, where, and how to apply gene
editing.
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