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Abstract

Despite successive advancement of genome
editing technology with zinc finger nucleases
(ZFNs) and transcription activator-like effec-
tor nucleases (TALENs), the recent break-
through in the field has been related to
clustered regularly interspaced short palin-
dromic repeats/associated proteins (CRISPR/
Cas). The high efficiency and convenience of
CRIPSR/Cas systems dramatically accelerate
pre- and clinical experimentations of
dyslipidemia and atherosclerosis. In this chap-
ter, we review the latest state of genome
editing in translational research of
dyslipidemia and atherosclerosis. We high-
light recent progress in therapeutic develop-
ment for familial dyslipidemia by genome
editing. We point to the challenges in
maximizing efficacy and minimizing safety
issues related to the once-and-done therapy
focusing on CRISPR/Cas systems. We give
an outlook on the potential gene targets
prioritized by large-scale genetic studies of
cardiovascular diseases and genome editing

in precision medicine of dyslipidemia and
atherosclerosis.
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1 Dyslipidemia
and Atherosclerosis

Atherosclerosis represents the major cause of cor-
onary artery disease and thereby mortality world-
wide [1]. The complex etiology of atherosclerosis
is initiated by dysfunctional endothelial cells lin-
ing the arteries that are no longer capable of
appropriately regulating vascular tone and perme-
ability for molecules and cells [2]. Progressive
infiltration of lipoprotein particles carrying cho-
lesterol into the vessel wall triggers an inflamma-
tory response mediated by cholesterol-loaded
macrophages. Proliferation of smooth muscle
cells causes vascular remodeling and ultimately
leads to narrowing of the vessel and obstruction
of blood flow. Dyslipidemia, a common and
strong risk factor for atherosclerosis, describes
elevated plasma levels of low-density lipoprotein
cholesterol (LDL-C), lipoprotein(a) (Lp(a)),
and/or triglyceride-rich lipoproteins (TRLs,
VLDL, and IDL) [3] and/or decreased levels of
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high-density lipoprotein cholesterol (HDL-C)
[4]. In addition to lifestyle and environmental
influences, dyslipidemia is largely determined
by genetic factors. Its extreme forms are
manifested as familial dyslipidemias caused by
gene mutations, including hypercholesterolemia
(e.g., LDLR, APOB, PCSK9, LPA, and
ANGPTL3) [5–7], hypertriglyceridemia (e.g.,
LPL, APOC3, APOC2, APOA5, ANGTPL4,
GPIHBP1, and LMF1), dysbetalipoproteinemia
(e.g., APOE), analphalipoproteinemia (e.g.,
ABCA1), LCAT deficiency [8], and combined
hyperlipidemia (e.g., USF1) [9, 10]. Familial
hypercholesterolemia (FH), the most common
form of the overall rare dyslipidemias, occurs in
1 out of 200,000–250,000 people heterozygously
and in 1 out of 160,000–320,000 people homozy-
gously [11, 12]. To fulfill the pressing need of
precision medicine, efforts have been increas-
ingly committed to developing targeted therapies
for dyslipidemia and atherosclerosis.

2 Current Therapies
of Dyslipidemia
and Atherosclerosis

2.1 From Traditional Pharmacology
to Targeted Therapy

Pharmacological treatment of dyslipidemia and
atherosclerosis predominantly focuses on choles-
terol lowering [4]. For many years, statin
(inhibiting cholesterol synthesis), ezetimibe
(suppressing intestine uptake of cholesterol), and
bile acid sequestrants have been the major
treatments of the conditions [13, 14]. However,
a significant proportion of patients do not achieve
guideline-recommended cholesterol levels with
these medications. Recently approved bempedoic
acid further reduces LDL by about ~20%
[15]. PCSK9 monoclonal antibodies [16], another
new drug type, enable effective LDL reduction in
addition to statin therapy but with high costs,
hampering the general use. While small
molecules targeting PCSK9 are under investiga-
tion to bring down the cost, drugs lowering other
causal lipids and their inflammatory responses are

on the way to treat the residual cardiovascular risk
[17]. Revolutionary discoveries of human genet-
ics in the past decade have been a nutritious
ground for novel drug developments [18–
20]. Genetic studies of atherosclerosis, coronary
artery disease [1], and myocardial infarction
(MI) not only nominated but also validated causal
genes, pathways, and risk factors for the
conditions. For instance, genetic studies
supported Lp(a) and TGs as causal risk factors
for atherosclerosis, which led to intensive
investigations of related genes, such as LPA,
APOC3, ANGPTL3, and ANGPTL4 [3, 21–
23]. Based on a better understanding of the
affected mechanisms, these genes evolved as
novel targets for biological drugs, monoclonal
antibodies, and nucleic acid-based therapies [24].

2.2 Nucleic Acid-Based Therapy

Nucleic acid-based therapies were initially
designed as replacement for dysfunctional genes
by delivery of the correct coding sequence
[25]. Recently, this concept has been expanded
to include gene silencing by antisense
oligonucleotides, or short interfering RNAs
(siRNA), transcriptional modulation by
microRNAs, and long noncoding RNAs
(lncRNA), as well as modification of epigenetics
and genome editing [25–27]. For instance, gene
supplementation of LDLR is currently
investigated in a phase 1/phase 2a first-in-man
trial (NCT02651675) for homozygous FH due
to function loss of the gene [28]. AON (antisense
oligonucleotide)- and/or siRNA-based therapies
targeting several dyslipidemia genes have been
intensively tested in large-scale clinical trials for
treating atherosclerotic CAD, such as APOA,
PCSK9, APOC3, and ANGPTL3 [29–
34]. LncRNA BM450697 was reported to regu-
late LDLR via epigenetic-dependent mechanism,
and siRNAs targeting the lncRNA enhanced
hepatic cholesterol uptake [35]. These novel ther-
apeutic strategies not only expand the druggable
genome that previously was largely limited to
enzymes, membrane proteins, and circulatory
factors but also potentially have advantages of
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specificity, efficacy, and safety. However, limited
half-lives of nucleic acids, requirement of fre-
quent injection, and medication compliance are
general limitations. The limitations are not appli-
cable for gene editing-based therapies that could
introduce permanent therapeutic changes to spe-
cific gene targets. It is conceivable that in the
future, a single administration of such drugs
mediates durable cure of dyslipidemias and
atherosclerosis.

3 Genome Editing

3.1 Evolution of Genome Editing
Technology

Genome editing generally refers to the specific
modification of nucleotide sequences (mainly
DNA) by enzymic activities (e.g., nucleases and
nickase) [36]. In a broader sense, it also includes
RNA editing. Nucleases usually cut a nucleotide
sequence and create damage (typically a double-
strand break (DSB)), whereas nickases introduce
single-strand breaks (SSB) [37]. Both DSB and
SSB in turn trigger natural genetic repair
mechanisms, such as nonhomologous end joining
(NHEJ) and homology-directed repair (HDR)
enabled by a homologous-armed template
[38]. The cellular repairing machinery is hijacked
to install precise nucleotide manipulations.

In the late 1970s, the first generation of gene
editing tools was engineered based on hybrid
proteins including zinc finger nucleases (ZFNs)
and transcription activator-like effector nucleases
(TALENs) [39–41]. Both types of nucleases rely
on a recombinant recognition domain to bind the
target DNA sequence. Target-specific ZFN and
TALEN engineering involves in tedious design-
ing and screening of the optimal recombinant
protein with high binding accuracy and affinity.
Of note, TALENs have reached clinical experi-
mentation to generate universal allogeneic CAR
T-cells for B-cell lymphoma [42, 43].

Ever since 2012, genome editing has become
easier, faster, and more economic, due to the
discovery and engineering of RNA-guided gene
rewriting technology—the CRISPR/Cas system

[44]. The new system holds promise to cure
genetic diseases through (1) inactivating detri-
mental or aberrant gene expression, (2) amending
disease-causing or associated mutations, or
(3) targeted insertion of therapeutical DNA
(Fig. 2a–c). CRISPR/Cas harnesses the marriage
of two independent components, the small guide
RNA (sgRNA) and a Cas protein. The allocation
of two functions of the traditional recombinant
nucleases into the nucleotide sequence recogni-
tion by a sgRNA and the enzymic cutting by a
Cas nuclease dramatically simplified the design
and construction of the editing tools. The classic
CRISPR/Cas9 system creates DSB and relies on
NHEJ for gene knockout and HDR for an error-
free DNA retyping. For newer types of CRISPR
tools, the nuclease activity of a Cas protein was
either inactivated to only bring transcriptional
activators or suppressors to the targeted genomic
site [46–48] or transformed into nickase tandem
to other enzymes, such as deaminases in base
editors (BEs) [49]. By directly triggering chemi-
cal reaction (deamination) on DNA and
converting C to T (CBE) or A to G (ABE), BEs
allow gene knockout without DSB and individual
nucleotide(s) rewriting independent of a template,
which hold promise for therapeutic gene editing
with minimum off-target effects. In fact, point
mutations represent the most common genetic
variations associated with human diseases
[50]. Recently, more types of Cas proteins, such
as Nme2Cas9 and Cas13, have been discovered,
extending the coverage of editable genome and
enabling RNA manipulation [51, 52].

3.2 In Vivo Delivery of Genome
Editing Systems

Intracellular delivery of gene editing tools has
been the most challenging step in vivo. Adeno-
associated virus (AAV)-, adenovirus-, and
lentivirus-mediated delivery systems have been
tested for CRISPR-based gene therapy
[53, 54]. Due to lower immunogenicity,
non-integrative and high efficiency, AAVs are
widely used in CRISPR-based ex vivo and
in vivo biological research and therapeutic
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development. However, the packaging limit of
AAV (~4.7 kb) often hampers its applications.
Thus, instead of spCas9 (~4.1 kb), saCas9 (~3.2
kb) is usually employed for AAV-based gene
editing, which allows all-in-one CRISPR therapy
carrying both saCAS9 and sgRNA sequences on
the same vector [55]. Generally, immunogenicity
and potential transgene integration are of high
concern when viral vectors were chosen for ther-
apeutic development. Therefore, efforts have
been exerted in seeking nonviral carriers for
CRISPR-mediated gene [53].

Another promising in vivo delivery method
involves the encapsulation of CRISPR/Cas into
nanocarriers, in the forms of RNA-protein com-
plex (RNP) or coding nucleic acids (DNA
plasmids or mRNAs). In particular, delivery by
lipid nanoparticles (LNP) achieves efficient
targeting of specific tissues and protects the
loaded proteins and nucleic acids [56–
58]. Advanced LNP technologies for gene editing
include self-assembled DNA nanoclews [59], cat-
ionic LNP and lipoplexes [60–62], gold
nanoparticles [63–65], and zeolitic imidazole
frameworks [66]. Most approaches harness elec-
trostatic interactions between guest and host.
Despite the promise, delivery of RNPs has been
the most challenging due to the strong negative
charge of sgRNA, the large size of Cas proteins,
and the sensitivity of RNPs to denaturation and
degradation during formulation and delivery. To

date, the development of stable and organ-specific
nanoparticles for delivery of CRISPR toolkits
remains elusive.

4 Genome Editing
in Dyslipidemia
and Atherosclerosis

4.1 Genome Editing: A Driving Force
for Dyslipidemia
and Atherosclerosis Research

Ever since the applicable invention of CRISPR/
Cas9 system in 2012 [67], it has been increasingly
used in cardiovascular research (Fig. 1) and
fosters delicacy of cellular and animal models
for dyslipidemia and atherosclerosis research.
Patient-induced pluripotent stem cell (hiPSC)
line of carrier of heterozygous p.C310R (c.928
T > C) mutation in LPL, encoding lipoprotein
lipase, has been reprogramed to model familial
hypertriglyceridemia (FHTG). In parallel,
researchers generated a mutation-corrected iso-
genic iPSC line (AHQUi001-A-1) using
CRISPR/Cas9 technology [68]. The isogenic
pair could differentiate into relevant cell types,
such as adipocyte and endothelial cells, and test
therapeutic modifications for the patient. Cell
banks, such as WiCell, provide as precious
resources of isogenic hiPSCs for dyslipidemia
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Fig. 1 PubMed search of
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indicated, figure adapted
from PubMed statistics
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and coronary artery disease. Given that the
CRISPR/Cas system relies on open chromatin to
screen the matched gene code, the efficiency of
the gene editing heavily depends on the prolifera-
tion and transcription activity of cells. Hyperpro-
liferative cells, such as stem cell and cancer cell,
are relatively easy to target with high efficiency.
Therefore, gene editing in hiPSC has been valu-
able in cardiovascular research. It comes with
high efficiency for differentiation of many disease
relevant cell types that are challenging to access
or target, such as hepatocytes, adipocytes,
immune cells, endothelium cells, and vascular
smooth muscle cells [69].

CRISPR/Cas systems have substantially
reduced the time and cost to generate animal
models of germline gene knockouts or somatic
targeting in vivo. The high efficiency of CRIPSR/
Cas allows genetic modification of multiple genes
at any time points of an animal’s lifespan. The
diverse CRISPR tools allow the flexibility in
duration of editing, conditional alleles, tissue-
specific targeting, and directions of modulation.
Yang and Jaenisch et al. have established a proto-
col to create gene-modified mice by piezo-driven
injection of Cas9 mRNA and sgRNA into
zygotes. The authors showed that, beginning
with target design, the time frame for generation
of transgenic mice can be as short as four weeks
[70]. Currently, this method and similar others are
commonly used for cardiovascular research. For
example, Yu and Cowan et al. generated G
protein-coupled receptor 146 (GPR146) defi-
ciency mice and showed that the deficiency
protected against hypercholesterolemia and ath-
erosclerosis [71]. To establish atherosclerosis
mouse models using CRISPR in adult mice,
Jarrett et al. performed somatic knockout of Ldlr
via AAV8 medicated delivery of all-in-one
AAV-CRISPR. The approach robustly disrupted
Ldlr and resulted in severe hypercholesterolemia
and atherosclerotic lesions in the mouse aorta
[72]. Although the cholesterol increase induced
by the somatic Ldlr knockdown was not as high
as by germline Ldlr knockout, it might better
model the chronic condition of atherosclerosis
which usually develops at higher age [72]. Similar
approaches were adopted to generate

atherosclerosis animal models in rabbit, pig, and
hamster by knocking out Ldlr, Apoe, or Lcat
(lecithin-cholesterol acyltransferase) [73–
76]. The success of the transgene models, on the
other hand, suggested the effectiveness of in vivo
CRISPR/Cas system in testing novel gene
functions in dyslipidemia and atherosclerosis.
Indeed, the novel role of CCC(COMMD-
CCDC22-CCDC93) complex in hepatic choles-
terol metabolism was explored and confirmed by
somatic CRISPR/Cas targeting of Commd and
Ccdc22 in mice [77, 78].

However, as for point mutation correction, the
editing efficiency of CRISPR/Cas remains low.
Omer et al. attempted to correct the loss-of-func-
tion mutation E208X in Ldlr gene of the mouse
liver by AAV-CRISPR/Cas system. The
HDR-mediated correction only achieved 6.7%
efficiency but resulting in, to some extent, lower
serum lipid levels and decreased lesion area
[79]. The coming waves of newer types of
CRISPR technologies, such as base editor and
prime editor, hold potential to improve in this
regard.

4.2 Preclinical Investigation
of Genome Editing
for Dyslipidemia
and Atherosclerosis

Gene editing in adult humans, that is, somatic
editing, holds the promise to permanently modify
one’s risk of dyslipidemia and atherosclerosis. In
light of the compliance issue with statins, high
costs of PCSK9 monoclonal antibodies, and dis-
comfort of lifetime injection of RNA therapies,
such once-and-done strategy is attractive. A poll
about the acceptance of the gene editing therapy
indicated the support from the majority of the
participants [80, 81]. Several gene editing
strategies against dyslipidemia and atherosclero-
sis have been intensively investigated in preclini-
cal settings to inactivate pathogenic gene
expression, correct disease-causing mutations,
mimic atheroprotective effects of natural genetic
variations, or insert beneficial transgenes.
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The most intensive testing focused on PCSK9,
given the well-studied biology and rare side effect
as a therapeutic target. Gene editing-based
therapies allow permanent modification of the
culprit and therefore are advantageous as a one
shot and one cure for dyslipidemia, especially for
FH. Disruption of Pcsk9 in mice by CRIPSR/
Cas9 has been evaluated by AAV- and
nanocarrier-based delivery of spCas9 or saCas9
systems [55, 82–87] (Fig. 2d). All led to signifi-
cant reduction of circulating Pcsk9, plasma total

cholesterol (TC), and LDL-C levels. The thera-
peutic target was further assessed by inactivating
the gene using base editing, which result in com-
parable atheroprotective outcomes [88–91]. A
head-to-head comparison of Pcsk9 gene and
base editing in a humanized mouse model showed
that the latter introduced no chromosomal
translocations, fewer indels, and less new forms
of peptides, indicating that it might be a safe
strategy for clinical applications [89]. Other
gene editing approaches to lower LDL-C level
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Fig. 2 Therapeutic genome editing of PCSK9 by
CRISPR/Cas and base editing. (a, b) General overview
of DNA editing by CRISPR/Cas9, cytosine base editor
(CBE), and adenine base editor (ABE). (a) Editing mech-
anism of CRISPR/Cas9. Cas9 nucleases create double-
strand break (DSB) within the guide RNA (gRNA) pairing
sequence, usually at 3–4bp ahead of 50-protospacer adja-
cent motif [45]. DSB will be fixed through nonhomolo-
gous end joining (NHEJ) to create gene knockout or
homology directed repair (HDR) to install a genotype or
transgene of interest. (b) Mechanism of CBE. Cas9
nickase (Cas9n) nicks the top strand, while the cytidine
deaminase domain of CBE convers C to U. Uracil
glycosylase inhibitor (UGI, an optional component)
protects the U intermediate from excision by uracil DNA

glycosylase to boost efficiency of base pair editing assisted
by nature DNA repair, which ultimately converts a C•G
pair to T•A base pair. (c) Mechanism of ABE. After DNA
nicking, adenosine deaminase domain converts A to ino-
sine intermediate, which will be substituted by G in the
subsequent DNA repairing process. ABE replaces A•T to
G•C pair. gRNA, guide RNA. (d) Overview of strategies
investigated to decrease Pcsk9 or PCSK9 in vivo. The
editing tool is shown above the arrow line and the delivery
approach is described below the line. WT, wild type; LNP,
lipid nanoparticle; Adenine BE-Split, ABE separated to
two domains (split-ABE-Rma573 and split-ABE-
Rma674) for virus package, KRAB Kruppel-associated
box (transcriptional repressor)
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are pursued, such as CRISPR-/Cas9-based
targeting of Apob in Ldlr-/- mice [55, 72] and
replacement of FH mutation of LDLR E208X in
somatic cells of transgenic mice [55, 79], both of
which reduced plasma TC level and atherosclero-
sis development in mice.

Given that existing lipid-lowering therapies
are centered on optimizing cholesterol levels,
drugs to reduce levels of non-LDL lipids includ-
ing TGs and Lp (a) are of an urgent need, partic-
ularly for the dyslipidemia patients suffering from
obesity, diabetes, or insulin resistance, whose
primary risk of atherosclerosis is often related to
elevated TGs and other forms of lipids. The
attempts beyond LDL-C lowering by gene editing
focus on APOC3 and ANGPTL3 for reducing TG
levels and LPA for decreasing Lp(a).

As naturally occurring loss-of-function (LoF)
mutations in ApoC3 and ANGPTL3 have found to
be atheroprotective [92, 93], CRISPR-/Cas9-
mediated inactivation of the two genes was tested
to treat hyperlipidemia and atherosclerosis.
APOC3, a secretory glycoprotein primarily pro-
duced by the liver, inhibits LPL- and hepatic
lipase-mediated hydrolysis process of
triglycerides in circulation and therefore increases
TRL levels. In a human-like animal model (ham-
ster), inactivation of ApoC3 by CRISPR-Cas9
significantly decreased triglyceride level with no
statistical differences in total cholesterol and
HDL-C levels, phenocopying APOC3-deficient
humans [94]. ApoC3 knockout hamsters also
had less atherosclerotic lesions in both thoracic
and abdominal arteries, suggesting clinical rele-
vance of APOC3 targeting for the treatment of
hypertriglyceridemia and atherosclerosis [95]. In
the case of ANGPTL3, an inhibitor of LPL and
endothelial lipase, base editing was employed to
introduce LoF mutations at Gln-135 site of
Angptl3 in the liver of Ldlr-/- mice. This
resulted in a median editing rate of 35% in the
liver as well as substantially reduced triglycerides
(56%) and cholesterol (51%) [96], suggesting a
method to treat combined hyperlipidemia and
atherosclerosis [96, 97].

LPA, expressed in the liver, encodes for apo
(a) that could covalently bound to APOB100, an

essential component for both LDL and Lp
(a) [98]. Genetic variation of LPA was estimated
to explain 91% of the variation in Lp(a) levels
[22, 99]. Serum Lp(a) level could not be
modulated by dietary and lifestyle factors, further
necessitating the therapeutic intervention
[100]. Lp(a) was also shown as a major carrier
of oxidized phospholipids and to induce plaque
progression [101–103]. An earlier pioneer study
of RNA editing was explored to transform
apoB100 mRNA into its truncated form apoB48
by a recombinant adenovirus encoding cytidine
deaminase complex (apoBEC-1) to reduce both
atherogenic lipoproteins in humanized apoB/apo
(a) transgenic mice. This resulted in hepatic
editing of human APOB mRNA and reduced
plasma levels of human APOB100 and Lp(a).
Similar result was observed when the apoB
mRNA was edited accordingly in rabbit. These
studies demonstrate mRNA editing by apoBEC-1
as a novel approach for lowering plasma
concentrations of the atherogenic lipoproteins
LDL and Lp(a) [104]. Furthermore, ongoing pre-
clinical studies are investigating the use of base
editing to reduce Lp(a) level by inactivating
LPA gene.

These proof-of-concept studies demonstrated
the feasibility of in vivo gene editing in reducing
phenotypes of dyslipidemia and atherosclerosis
and triggered industrial interests in developing
these further in clinical experimentations. Cur-
rently, base editing of LPA, PCSK9, and
ANGPTL3 are under pharmaceutic development,
and ABE-PCSK9 has entered the preclinical toxi-
cology studies. So far, all the tested gene targets
address familial dyslipidemia. CRISPR-based
therapies could provide personalized treatment
for the diseases, which currently cannot be
cured. However, whether it could be cost effec-
tive to treat nonfamilial forms of dyslipidemia
and atherosclerosis should be further
investigated. Concerns about its advantage over
traditional medications and long-term on- and
off-target effects need to be addressed before
clinical use. Pilot applications might be firstly
available for individuals at high risk for
myocardial infarction.
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4.3 Further Target Discovery
for Dyslipidemia
and Atherosclerosis

4.3.1 Gene and Variant Targets Inspired
by Human Knockout

Phenotypically healthy humans carrying
knockouts of a gene provide evidence that phar-
macological knockout of this gene may be safe.
For example, LoF variants of PCSK9 were
associated with strikingly low plasma levels of
LDL-C, reduced CAD risk [105], and but no
apparent adverse health consequences, thus
providing reassurance that therapeutic neutraliza-
tion of PCSK9 may be safe [106, 107]. Likewise,
human knockouts of ANGPTL3 and APOC3 led
to the development of pre- and clinical drugs for
lowering serum levels of cholesterol and
triglycerides, and the corresponding alleles
related to hypolipidemia are under investigation
for treatments using base editing. Increasing
discoveries of such “experiments of nature” will
be empowered by exome or whole genome
sequencing in large-scale biobank cohorts
[3]. More gene and allele targets relevant to
dyslipidemia and atherosclerosis will emerge
[3, 108–111].

4.3.2 Candidate Genes and Variants
from Large-Scale Genetic Studies

Genome-wide association studies (GWASs) have
discovered over 300 CAD loci and more than
900 loci of blood lipid traits including LDL-C,
HDL-C, non-HDL-C, total cholesterol and
triglycerides, unveiling novel variants, and
genes and pathways underlying dyslipidemia
and atherosclerosis with unprecedented speed
and mechanistic complexity [20, 112,
113]. GWASs also rediscovered rare variants for
dyslipidemia and atherosclerosis, suggesting that
beyond these, drug targets are tagged by novel
GWAS variants and gene candidates at the many
loci associated with lipids and atherosclerosis,
especially those loci overlapping for the two traits
(Fig. 3). When we explored gene loci shared for
CAD and lipids including LDL, TGs, TC, and
HDL using the latest statistics of GWAS catalog,

EMBL-EBI (2021), we identified 83 loci and
classified the mapped genes into related patho-
physiological pathways (Fig. 3). Surprisingly,
other than the largest portion (~30%) of the
genes directly involved lipid metabolism, many
genes play roles in known pathways linked to
CAD, such as inflammation, angiogenesis, and
vascular remodeling. Genes for insulin resistance
and glucose metabolism were also identified in
our analysis, suggesting that novel genes and
pathways for the disease are secondary to
dysglycemic regulation. The convenience of
CRISPR-based technologies will allow investiga-
tion of the novel genetic findings in a high-
throughput manner.

Furthermore, by testing causality harnessing
genetic information, Mendelian randomization
(MR) could identify specific genes as potential
therapeutic target and assure efficacy and, impor-
tantly, safety before the initiation of drug devel-
opment [114, 115]. Another genetic approach
alerting adverse effect is termed phenome-wide
association study (PheWAS), which tests
associations of a genetic variant or a gene with
hundreds of clinical phenotypes linked to all the
organ systems [116, 117]. Using integrative data
of individual’s genome and electronic health
record from large biobank cohort, PheWAS
could assess for desirable and adverse clinical
outcomes linked to variant and gene of interest.
MR and PheWAS provide reassurance for novel
gene target selection in pre- and clinical
investigations.

4.3.3 Driver Genes and Variants
of Systems Genetic Studies

Although compelling efforts have been made to
prioritize disease-associated genes utilizing
approaches from molecular biology to GWAS,
the genetic landscape of atherosclerosis and
CAD is not fully elucidated. In the past decade,
systems biology based on omic technologies
accelerates the understanding of mechanisms
underlying complex traits [118, 119]. Systems
biology networks, genetic variations, and gene
expression with other higher biological layers
identify driver variants and genes for complex
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diseases. Targeting of the key drivers to modulate
disease-associated gene or protein networks
might enable correction of multiple pathogenic
pathways in parallel. Genome editing
technologies will play a crucial role in testing
related hypothesis and therapeutic
potentials [119].

5 Concluding Remarks
and Future Perspectives

The possibility of manipulating DNA and RNA
has advanced cardiovascular medicine, including
understanding gene functions and genetic

diseases, as well as the development of novel
drug targets. Although the field is still in its
infancy, the potentials are exemplified by clinical
trials to treat sickle cell disease, to improve effec-
tiveness of chimeric antigen receptor T-cell
(CAR-T), or to reverse eye diseases [120]. A
clinical trial of base editing targeting PCSK9 to
treat heterozygous familial hypercholesterolemia
(HeFH) started in July 2022 (clinicaltrials.
gov_NCT05398029). Beyond these examples,
many rare genetic disorders, in principle, will be
treatable with CRISPR-based therapies.

Despite the exciting progress, many
challenges should be tackled before its broader
applications. First, tissue-specific delivery of
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genome editors has been a long-standing issue.
Although AAV systems could allow relatively
specific targeting in the liver, brain, muscle, and
eye with low immunogenicity [121, 122], they
should be further optimized, and many more
tissues need to be considered. A new field of
research exploiting nanoparticle-based delivery
could provide alternative solutions. Second, cur-
rent genome editing tools strictly rely on specific
recognition sequences as well as specific binding
sites on the target, such as the protospacer adja-
cent motif sequences for Cas proteins [45]. The
absence of the assisting recognition sequence
limits the targeting capability. Therefore, many
research teams focus on discovering or engineer-
ing editing tools independent of such sequences.
Third, substantial variability of editing efficacy
depending on genetic loci and cell types was
observed, which are partially caused by
differences in chromatin accessibility and DNA
repairing mechanisms throughout phases of cell
cycle. Forth, off-target mutagenesis, although
being rare, were detected within sequences of
high similarity. While well-designed gRNAs are
critical to minimize off-target events, advanced
methods have been established to assess
unwanted editing in a genome-wide fashion,
such as BLISS, GUIDE-Seq, and DISCOVER-
seq [123–125]. Finally, a long way has to be gone
to fulfill regulatory guidelines and define cost
reimbursement for these once-in-a-lifetime
therapies. Of note, ongoing therapeutic testing
of CRISPR aims to treat patients by modifying
their somatic genome. The scientific and social
challenges related to human germline editing are
discussed elsewhere [126].

Nevertheless, gene editing therapies have to be
evaluated carefully case-by-case in extensive pre-
and clinical experimentations. Given the recent
progress and efforts around the globe to tackle
the related issues, genome editing will certainly
expand into a new class of therapy to treat many
diseases, including dyslipidemia and
atherosclerosis.
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