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Abstract An extended car following model is presented by considering the effect 
of Multi-Headway Variation Forecast (MHVF) effect in the real world. The model’s 
linear stability criterion was obtained by employing the linear stability theory. Theo-
retical analysis result shows that the new consideration leads to the stabilization of 
traffic systems. By means of nonlinear analysis method, the modified Korteweg-
deVries (mKdV) equation near the critical point was derived, thus the propagation 
behavior of traffic jam can be characterized by the kink-antikink soliton solution for 
the mKdV equation. Numerical simulation is carried out and its results is in good 
agreement with the aforementioned theoretical analysis. Both of them show that 
the MHVF effect can suppress the emergence of traffic jamming and stabilize the 
vehicular system. 

Keywords Multi-headway variation forecast · Car-following model · Anticipation 
driving behavior · Stability 

1 Introduction 

In the past decades, the problem of traffic congestion has been widely concerned 
by scholars at home and abroad. A large number of traffic flow models [1–5] have  
been proposed to reveal the complex mechanism behind traffic congestion. These 
traffic flow models can be roughly divided into macroscopic models [6–8], micro-
scopic models [9, 10], and mesoscopic models [11, 12] according to the modeling 
scale. The microscopic traffic flow model takes the individual vehicle as the research 
object. Generally, it can describe a single vehicle dynamics process in a very simple 
way, and can capture rich detailed characteristics of vehicle flow movement, so it
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plays an important basic role in many traffic flow models. Among a large number 
of microscopic traffic flow models, the most well known one is the optimal velocity 
(OV) model [10]. Hereafter, many researchers have attempted to improve the OV 
model. Since then, by introducing different factors, a series of extended ov models 
have been put forward to be closer to the reality of the transportation system. These 
expansion factors mainly include: negative speed difference information [13], posi-
tive speed difference information [14], multiple information of headway [15] and 
relative velocity [16], backward-looking effect [17], driver’s anticipation [18], curved 
road condition [19], interruption factors [20] and so on. 

All of the above models can reproduce many complex phenomena in actual traffic. 
However, the variables of these models are generally dependent on current infor-
mation and rarely involve the driver’s prediction information about the future traffic 
situation. Recently, the study on the driver’s anticipation effect has attracted consider-
able attention of scholars since it is a universal psychological phenomenon in drivers’ 
behavior. Tang et al. [6, 18] explored how the Driver’s Forecast Effect (DFE) affects 
the stability of traffic flow. By introducing the factor of anticipation driving behavior 
into the car following model, Zheng et al. [21] examined the influence of anticipa-
tion effect upon the traffic flow via linear stability analysis and nonlinear analysis. In 
2019, Wang et al. [22]developed a new car following model that takes into account 
the effect of headway variation tendency (HVT), the results show that HVT can 
improve the stability of traffic stream. By considering the effect of expected traffic 
variation tendencies on traffic flow, Zhang et al. [23] examined the predictive effect 
within a microscopic traffic model. The predictive effect on dynamics of traffic flow 
is also analyzed by employing the lattice hydrodynamic model [24]. Further, Daljeet 
Kaur and Sapna Sharma [25] investigated the predictive effect in the two lane frame-
work on the basis of lattice model in 2020. Although many forms of the anticipation 
effect are incorporated into the traffic flow model to stabilize the traffic flow system, 
the effect of multi-headway variation forecast (MHVF), i.e. the multiple headway 
variation tendencies of local traffic conditions at the future moment resulting from 
the driver’s forecast behaviour of the preceding vehicles group, has not been explored 
in the traffic flow model up to now. 

In fact, with the help of intelligent transportation system platform, drivers can 
effectively perceive and estimate the information of headway variation tendency of 
preceding vehicles group in the next moment (multi-headway variation forecast, 
MHVF effect). Depending on this on-line traffic data, drivers take the appropriate 
measures (accelerate, maintain or slow down) to adjust their driving behavior in 
advance to adapt to downstream traffic conditions. And one can fully expect that the 
MHVF effect will have a noticeable impact on the dynamic characteristics of the 
vehicle following system. However, how does this effect affect the traffic dynamics 
under the ITS environment? This is an interesting but still open problem. 

In view of the above reason, in this paper, we build a new model based on the 
car following theory, trying to reveal the effect of MHVF on the traffic flow. The 
stability and nonlinear characteristics of the new model are studied analytically, and 
the theoretical analysis results are verified by numerical simulation.
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2 Models  

For the single lane vehicle following system, Bando et al. proposed the famous OV 
model [10] as follows:  

dv j (t) 
dt  

= a[V (Δx j (t)) − v j (t)] (1) 

where the subscript j is the vehicle label, t represents the time variable. a represents 
the driver’s sensitivity coefficient, and its value is the reciprocal of the delay parameter 
τ . Δx j (t) = x j+1 − x j is the headway between the leading car j + 1 and following 
car j at time t . variables v j (t) and x j (t) are the velocity and position of the j th car 
respectively. V (·) represents the optimal speed function. Through the comparative 
study with the traffic field data, it is found that the acceleration and deceleration 
parameters of the OV model are not within the normal range. 

In order to improve the OV model’s ability to simulate actual traffic, Helbing 
and Tilch [13] introduced the negative speed difference effect into the OV model 
and proposed the GF model. Further, Jiang et al. [14] investigated the positive speed 
difference effect and proposed the full velocity difference (FVD) model as follows: 

dv j (t) 
dt  

= a[V (Δx j (t)) − v j (t)] +  λΔv j (t) (2) 

where Δv j (t) = v j+1(t) − v j (t) is the relative speed of two consecutive car at 
time t . 

λ = k/τ is the responding factor of the relative speed. The results show that FVD 
model can better describe the dynamic characteristics of the traffic system than OV 
and GF models. However, the defect of unrealistically high deceleration in the FVD 
model has not been eliminated [14]. 

In 2012, by considering the anticipation driving behavior, Zheng et al. [21] estab-
lished a extended anticipation driving car-following (AD-CF) model. The model’s 
dynamics equation is as follows: 

dv j (t) 
dt  

= a{V [Δx j (t) + TΔv j (t)] −  v j (t)} +  λΔv j (t) (3) 

where T represents the driver’s forecast time, TΔv j (t) denotes the estimation of 
space headway in the next moment. 

The AD-CF model can effectively stabilize traffic flow by introducing anticipation 
driving behavior. But the AD-CF model only considers the predictive information of 
nearest front car, and does not considers the effect of Multi-Headway Variation Fore-
cast (MHVF effect), i.e. the prior variation tendency of space headway of multiple 
vehicles ahead in the next moment. In fact, the MHVF effect of preceding vehicles 
group reflects the overall traffic change trend of the downstream area, i.e., whether 
the traffic flow of preceding vehicles on a segment will cluster, dissipate, or simply
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maintain a constant headway. With the help of MHVF traffic data shared by preceding 
vehicles, the following car can sense the downstream traffic situation, then make a 
decision and adjust its velocity to the optimal state in advance. To capture the effect 
of MHVF on the stability of traffic flow, in this paper, we developed an extended 
car-following model (named MHVF model) under ITS environment, the dynamics 
equation reads: 

dv j (t) 
dt

= a{V [Δx j (t) + TΔv j (t)] −  v j (t)} +  λΔv j (t) (4) 

where Δv j (t) = Σn 
l=1 βlΔv j+l−1(t) is the weighted sum of velocity difference 

of the preceding vehicles group, βl is the corresponding coefficient, n denotes the 
number of the vehicles ahead considered. Term TΔv j (t) denotes the predictive 
variation tendency of space headway of downstream traffic flow (consisting of car j 
and its leading car j + 1, j + 2, . . . ,  j + n) in the future time, i.e. the key parameter 
TΔv j (t) represents the MHVF effect. The modeling idea of the new model is that the 
acceleration output of the current jth vehicle at time t in the following system is not 
only affected by the velocity v j (t) and relative velocity Δv j (t), but also determined 
by the driver’s estimation of multi-headway variation tendency TΔv j (t). Therefore, 
the proposed model can be used to explore the dynamic property resulting from the 
MHVF effect under ITS environment. 

It is well known that the effect of the vehicles ahead on vehicle motion decreases 
gradually as the distance between the considered vehicle and that ahead increases. 
So in this paper, we select the weighted function tentatively as βl = (1/3)l−1. 

For the convenience of subsequent analysis, the following formula can be obtained 
by first-order Taylor expansion of variable V [Δx j (t) + TΔv j (t)] in Eq. (4). 

V [Δx j (t) + TΔv j (t)] =  V [Δx j (t) + T 
nΣ

l=1 

βlΔv j+l−1] 

= V (Δx j (t)) + T V '(Δx j (t)) 
nΣ

l=1 

βlΔv j+l−1(t) 
(5) 

Thus, Eq. (4) can be rewritten as follows: 

dv j (t) 
dt  

= a{V (Δx j (t)) + T V '(Δx j (t)) 
nΣ

l=1 

βlΔv j+l−1(t) − v j (t)} +  λΔv j (t) 

(6) 

When T = 0, the new model is reduced to the FVD model [14]. When T > 0, 
n = 1, the new model degenerates into the AD-CF model [21]. 

In this paper, we adopt the following optimal velocity function [10]:
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V (Δx j (t)) = 
1 

2 
vmax[tanh(Δx j (t) − hc) + tanh(hc)] (7) 

where vmax = 2 is the maximum velocity and hc = 4 is the safe distance. 
In order to facilitate the follow-up computer simulation and nonlinear analysis, 

Eq. (6) is rewritten into the form of headway variable:

Δx j (t + 2τ)  = Δx j (t + τ)  + τ [V (Δx j+1(t)) − V (Δx j (t))] 

+ T [V '(Δx j+1(t)) − V '(Δx j (t))] 
nΣ

l=1 

βl [Δx j+l (t + τ)  − Δx j+l (t)] 

+ T V '(Δx j (t)) 
nΣ

l=1 

βl [Δx j+l (t + τ)  − Δx j+l (t) − Δx j+l−1(t + τ)  + Δx j+l−1(t)] 

+ k[Δx j+1(t + τ)  − Δx j+1(t) − Δx j (t + τ)  + Δx j (t)] (8) 

3 Linear Stability Analysis 

In order to investigate the effect of MHVF on jamming transition in traffic flow, the 
linear stability analysis is carried out below. At the initial time, it is assumed that all 
vehicles move on the circular road at a uniform speed with headway b and optimal 
speed V (b). Obviously, at this time, the traffic flow is in an equilibrium state, and 
the coordinates of its steady-state solution can be expressed as: 

x0 j (t) = bj  + V (b)t, b = L/N , (9) 

where, N represents the total number of vehicles, and the parameter L is the length 
of the ring road. In order to study the stability of the traffic flow under the small 
disturbance condition, the small disturbance signal y j (t) is applied to make the 
traffic flow produce motion deviation: 

x j (t) = x0 j (t) + y j (t) (10) 

Substituting Eq. (10) into Eq. (8) and linearizing them yield the following 
equation:

Δy j (t + 2τ)  = Δy j (t + τ)  + τ V '(b)[Δy j+1(t) − Δy j (t)] 

+ T V '(b) 
nΣ

l=1 

βl [Δy j+l (t + τ)  − Δy j+l (t) − Δy j+l−1(t + τ)  + Δy j+l−1(t)] 

+ k[Δy j+1(t + τ)  − Δy j+1(t) − Δy j (t + τ)  + Δy j (t)] (11)
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where V ' = dV  (Δx j )/dΔx j
|
|
Δx j=b and Δy j (t) = y j+1(t) − y j (t). 

By expanding Δy j (t) = Aeik  j+zt , we obtain the following equation for z: 

e2zτ − ezτ − τ V '(eik  − 1) − T V '(b)(ezτ − 1) 
nΣ

l=1 

βl [eikl  − eik(l−1)] 

−k(eik  − 1)(ezτ − 1) = 0 

(12) 

Inserting z = z1ik  + z2(ik)2 +  · · ·  into Eq. (13) and neglecting the higher order 
terms, one has the first order and second order terms of ik  respectively: 

z1 = V ' (13) 

z2 = 
V '

2 
(1 − 3V 'τ + 2T V '

nΣ

l=1 

βl + 2k) (14) 

If z2 < 0, the uniformly steady-state flow becomes unstable for long-wavelength 
models, while the uniform flow is stable when z2 > 0. Thus the neutral stable criteria 
for this steady state is given by 

τ = 
1 + 2k + 2T V ' Σn 

l=1 βl 

3V ' (15) 

For small disturbances with long wavelengths, the homogeneous traffic flow is 
stable in a condition where 

τ <  
1 + 2k + 2T V ' Σn 

l=1 βl 

3V ' (16) 

As T = 0, the result of stable condition is the same as that of the FVD model 
[14]. 

τ <  
1 + 2k 
3V ' (17) 

As T > 0, n = 1, the stable condition is in accordance with the result of AD-CF 
model [21]. 

τ <  
1 + 2k + 2T V '

3V ' (18) 

The result of stable condition for MHVF model is influenced by the parameter T 
and n. This indicates that the stability of traffic is closely related to the prediction 
time step and the number of leading vehicles considered.
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Figure 1 shows the neutral stable curves in the headway-sensitivity space (Δx, a) 
for the MHVF model with T = 0.3, k = 0.1 under different values of n. From Fig.  1, 
it can be seen that each neutral stability curve has a vertex (hc, ac), which is called 
the critical stability point. The neutral stability curve divides the phase space into 
two different regions. Above the neutral stability curve is the stable region, where 
the small interference signals in the traffic flow will evolve and disappear with the 
development of time t. Below the neutral stable is the unstable region, where the 
small disturbance signals will gradually diverge with the movement of traffic flow, 
Finally, it evolves into traffic jam spreading along the upstream of traffic flow. As 
n = 1, the corresponding neutral stability curve is consistent with AD-CF model 
[21]. In addition, Fig. 1 also clearly shows that with the increase of the number 
of vehicles n considered ahead, the corresponding stability area gradually expands, 
which indicates that by considering the MHVF effect of preceding vehicles group, 
the new model has greatly improved the stability of vehicular system. Meanwhile, it 
is easy to find that in Fig. 1 the more vehicles we consider in the effect of MHVF, 
the more stable the traffic will be. However, it should be noted that when n = 3, 4, 
the corresponding curves almost coincides, which shows that just considering the 
information of three vehicles in front (n = 3), the traffic jam can be suppressed 
effectively. That is to say n = 3 is the optimal state for MHVF model. 

Figure 2 is obtained by giving the different values of T when n = 3, k = 0.1. 
It is easy to find that the neutral stability curves move down with the increase of 
forecast time T, which reveals that the estimated duration T in MHVF effect has an 
important impact on traffic flow. What’s more, the stability is gradually improved 
with the increase of forecast time T. Especially, as T = 0, the neutral stability line 
is the same as that in the FVD model [14].

Fig. 1 Phase diagram in headway-sensitivity space (Δx, a) for MHVF model (T = 0.3, k = 0.1) 
under different values of n 
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Fig. 2 Phase diagram in headway-sensitivity space (Δx, a ) for MHVF model (n = 3, k = 0.1) 
under different values of T 

4 Nonlinear Analysis and mKdV Equation 

To investigate the effect of MHVF on traffic flow, nonlinear analysis is conducted 
to study the slowly varying behavior near the critical point (hc, ac). For extracting 
slow scales with the space variable j and the time variable t, the slow variable X and 
T are defined as follows: 

X = ε( j + bt) and T = ε3 t, 0 < ε  ≤ 11 (19) 

where b is a constant to be determined. Given

Δx j (t) = hc + εR(X, T ) (20) 

Bring formulas (19) and (20) into Eq. (8), then expand each item to the fifth order 
of ε by using Taylor expansion method, and sort out the following formula: 

ε2[b − V ']∂X R + ε3 f1∂2 
X R + ε4[∂T R + f2∂3 

X R − f3∂X R3] 
+ε5 f4∂T ∂x R + f5∂4 

X R − f6∂2 
X R

3] =  0 
(21) 

where 

V ' = dV  (Δx j )/dΔx j
|
|Δx j = hcV ''' = [d3 V (Δx j )/dΔx3 j ]

|
|Δx j = hc, 

f1 = 
3b2τ − V ' −  (2T V ' Σn 

l=1 βl + 2k)b 
2 

,



A New Car Following Model Considering the Multi-headway … 553

f2 = 
7b3τ 2 − V ' −  3bk(bτ + 1) − 3bτ T V ' Σn 

l=1 βl (bτ + 2l − 1) 
6 

, 

f3 = 
V '''
6 

, 

f4 = 3bτ − k − T V '
nΣ

l=1 

βl , 

f5 = 
5b4τ 3 

8
− 

V '

24 
− 

k(4b + 4b2τ + 4b3τ 2) 
24 

− 
T V ' Σn 

l=1 βl[4b3τ 2 + 6b2τ(2l − 1) + 4b(3l2 − 3l + 1)] 
24 

, 

f6 = 
V '''

12 
(1 + 2bT 

nΣ

l=1 

βl ). 

Near the critical point (hc, ac), τ = (1 + ε2)τc, taking b = V ' and eliminating the 
second order and third order terms of ε from Eq. (21) result in the simplified equation: 

ε4[∂T R − g1∂3 
X R + g2∂X R3] +  ε5[g3∂2 

X R + g4∂4 
X R + g5∂2 

X R
3] =  00 (22) 

where 

g1 = −  
7b3τ 2 c − V ' − 3bk(bτc + 1) − 3bτcT V ' Σn 

l=1 βl (bτc + 2l − 1) 
6 

(23) 

g2 = −  
V '''

6 
, . . .  g3 = 

3 

2 
b2 τc (24) 

g41 = −  
1 

6 
(3bτc − k − T V '

nΣ

l=1 

βl )[7b3 τ 2 c − V ' − 3bk(bτc + 1) 

−3bτcT V
'

nΣ

l=1 

βl (bτc + 2l − 1)] 
(25) 

g4 = g41 + 
5b4τ 3 c 
8 

− 
V '

24 
− 

k(4b + 4b2τc + 4b3τ 2 c ) 
24 

−T V ' Σn 
l=1 βl [4b3τ 2 c + 6b2τc(2l − 1) + 4b(3l2 − 3l + 1)] 

24 

(26) 

g5 = 
1 

12 
V '''[6bτc − 2k − 2T (V ' + b) 

nΣ

l=1 

βl − 1] (27) 

To derive the regularized equation, the following transformations are performed 
on Eq. (22):
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T ' = g1T R  =
/
g1 
g2 

R' (28) 

The standard mKdV equation with a O(ε) correction term is given as follows: 

∂T ' R' − ∂3 
X R

' + ∂X R'3 + εM[R'] =  00 (29) 

where 

M[R'] =
/

1 

g1 
[g3∂2 

X R
' + g4∂4 

X R
' + 

g1g5 
g2 

∂2 
X R

'3] (30) 

Ignoring the term O(ε) in Eq. (30), we obtain the standard mKdV equation with 
the kink–antikink wave solution. 

R'
0(X, T ') = √

c tanh 

/
c 

2 
(X − cT ') (31) 

With the method described in Ref. [26], we obtain the selected velocity C . 

C = 5g2g3 
2g2g4 − 3g1g5 

(32) 

Hence, we obtain the kink-antikink soliton solution as follows:

Δx j (t) = hc +
/
g1C 

g2 
( 
τ 
τc 

− 1) tanh 

/
C 

2 
( 
τ 
τc 

− 1)[ j + (1 − Cg1( 
τ 
τc 

− 1))t] (33) 

Then, amplitude A of the kink-antikink soliton is given by 

A =
/
g1c 

g2 
( 
τ 
τc 

− 1) (34) 

The kink–antikink soliton solution shows that for the MHVF car following model, 
the traffic congestion is a kind of density wave near the critical point, which can be 
characterized by the free flow phase (low-density traffic flow) and the blocking phase 
(high-density traffic flow), and verifies that the occurrence of traffic jams(density 
wave) are related with both the forecast time duration T and the number n of the 
preceding vehicles considered in MHVF effect. Actually, in Figs. 3, 4, 5 and 6, 
the propagating backward kink–antikink density wave appears, which is in good 
agreement the analytical ones.

Through the linear stability criterion Eq. (16), we get the value of the critical 
sensitivity ac. According to the nonlinear analysis, we obtain the propagation velocity 
C of the kink–antikink soliton solution by using Eq. (32). The computational values
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Fig. 3 Space–time evolution of the headways after t = 10,000 for the MHVF model (a = 1.48, 
k = 0.1, T = 0.3) under the different value of n, where (a) n = 1, (b) n = 2, (c) n = 3 and  (d)  n = 4

of ac and C for MHVF car following model corresponding to the case of different 
parameters are listed in Tables 1 and 2, respectively. Table 1 is obtained by giving 
the different values of n under k = 0.1 and T = 0.3. Table 2 shows the ac and 
C for various values of T when k = 0.1 and n = 3. It can be found clearly that 
with the increase of n or T , the corresponding absolute values of both ac and C 
decrease gradually, which means that the performance of stabilizing traffic flow has 
been improved.

5 Numerical Simulation 

In this section, the computer simulation is conducted to investigate the effect of 
MHVF on suppressing traffic jams, as well as, to check the validity of the above theo-
retical results. Under the periodic boundary condition, the following initial conditions 
are adopted:

Δx j (0) = Δx j (1) = 4.0, for j /= 50, 51, Δx j (1) = 4.0 + 0.1, for j = 50, and
Δx j (1) = 4.0 − 0.1, for j = 51. The total number of cars is N = 100.
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Fig. 4 The headway profile at  t = 10,300 for the MHVF model correspond to the panels in Fig. 3

Figure 3 displays the typical traffic patterns after a sufficiently long time t = 104 
for the MHVF model under the condition a = 1.48, k = 0.1, T = 0.3. The patterns 
(a), (b), (c) and (d) are the space–time evolution of the headway corresponding 
to the cases of n = 1, 2, 3 and 4 respectively. Pattern (a) with n = 1 shows the 
results obtained from AD-CF model [21]. In patterns (a) and (b), due to the linear 
stability condition is not satisfied according to Eq. (16), when the equilibrium traffic 
is disturbed by small disturbance, the traffic flow will fluctuate, and the propagating 
backward kink-antikink density wave appears as traffic jams. However, in comparing 
pattern (a) with (b) under the same sensitivity, traffic congestion is found to be much 
less serious in pattern (b), indicating that the number of preceding cars in the MHVF 
positively affects the stabilization of traffic flow. Besides that, from patterns (b)-(d) 
one can find that as the value of n increases further, small disturbances are quickly 
absorbed. Especially, in patterns (c) and (d), where n = 3,4, the traffic jams disappear 
and the inhomogeneous traffic flow recovers to the uniform state under the same 
sensitivity, which means that just considering the signal of three vehicles ahead is 
enough for suppressing the traffic jams quickly and efficiently. Hence, for the MHVF 
model it means m = 3 is the optimal state. 

Figure 4 indicates that the headway profiles obtained at t = 10,300 correspond 
to the panels in Fig. 3. Similar results can be concluded in Fig. 4. Therefore, the
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Fig. 5 Space–time evolution of the headways after t = 10,000 for the MHVF model (a = 1.6, 
k = 0.1, n = 3) under the different value of T, a T = 0, b T = 0.1, c T = 0.15 and d T = 0.3

results of the simulation are in good agreement with those of the theoretical analysis 
for various value of n, and verifies that considering the effect of multi-headway 
variation forecast (MHVF) in traffic flow system is necessary. 

When the model is in the optimal state (m = 3), the influence of prediction time 
T on the stability of traffic flow is further studied. The simulation inputs are shown 
in Figs. 5 and 6. 

In Fig. 5, the headway of spatiotemporal evolution pattern at time t = 104 for 
different T (a = 1.6, k = 0.1, n = 3) is given. The headway profiles of density waves 
corresponding to Fig. 5 were shown in Fig. 6 at time t = 10,300 s. The patterns (a) 
of Figs. 5 and 6 with T = 0 corresponds to the solution of FVD model [14]. The 
patterns (b), (c), and (d) of Figs. 5 and 6 correspond to T = 0.1, 0.15 and 0.3, 
respectively. Comparing patterns (a) with patterns (b), (c), and (d) In Fig. 6 under 
the same sensitivity coefficient, it can be found that due to the forecast effect are 
considered, the amplitude of the stop-and-go wave in the patterns (a) is wider than 
that of patterns (b–d). The significant differences between pattern (a) and patterns 
(b–d) in Fig. 6 indicate that drivers’ forecast information of has an important effect on 
the traffic stability. In addition, one can find that with the increase of the forecast time 
coefficient T, the amplitudes variation trend of headway is decreased, which means
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Fig. 6 The headway profile at  t = 10,300 for the MHVF model correspond to the panels in Fig. 5

Table 1 The critical sensitivity ac and the propagation velocity C for various n when with k = 0.1 
and T = 0.3 
n 1 2 3 4 

ac 1.6667 1.5000 1.4516 1.4362 

C −18.7813 −17.9760 −16.6285 −14.7859 

Table 2 The critical sensitivity ac and the propagation velocity C under different values of T with 
k = 0.1 and n = 3 
T 0 0.1 0.15 0.3 

ac 2.50 2.0149 1.8367 1.4516 

C 20.7373 −39.6528 −21.7354 −16.6285

the traffic flow system becomes more stable. Especially, setting T = 0.3, because the 
stability conditions are satisfied, the stop-and-go phenomenon disappears and traffic 
flow finally become stable in Fig. 6d as time progresses, further demonstrating that 
there is a positive correlation between the duration of forecast time in MHVF effect 
and the traffic flow stability. The similar results can also be concluded in Fig. 5.
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Combined with the above theoretical analysis and numerical simulation, we can 
draw the following conclusions: 

(1) The results of numerical analysis are in good agreement with those of theoretical 
analysis, and show that the MHVF effect is conducive to enhance traffic stability 
and suppress traffic jams. 

(2) When MHVF effect is considered in the car following process, the stability 
of traffic flow relates with not only the number of leading vehicles n whose 
information is involved, but also the forecast time duration T . 

(3) The stability of traffic system improves with the increase of the number n of 
vehicles considered or the increase of the prediction time T in MHVF effect. 

(4) n = 3 is the optimal state for the MHVF car following model, which means just 
collecting the information of three preceding vehicle is enough to smooth the 
traffic fluctuation and suppress traffic jams effectively, and illustrates there is no 
need to consider more preceding vehicles than three in the proposed model, so as 
to avoid collecting information more than needed and increasing the information 
burden of drivers. 

6 Summary 

In recent years, wireless communication and information technologies have been 
widely applied in ITS environment, and thus much more information is available 
for drivers than ever before. Many traffic flow models have been proposed to study 
the complex traffic phenomena by incorporating other vehicles’ traffic information 
provided by ITS, but few existing car-following models directly studied the multi-
headway variation forecast (MHVF) effect. In this paper, we constructed a new car 
following model that considers the effect of MHVF to effectively curb the traffic 
congestion. Then, the stability judgment conditions of the new model are obtained 
by linear stability analysis. And the results show that the MHVF effect can effectively 
stabilize the car following system. In addition, through nonlinear analysis, the mKdV 
equation describing the propagation law of traffic density wave near the critical point 
of the system was derived, and its kink-antikink soliton solution was obtained. The 
analytical results were in good agreement with the simulation results. 
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