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Abstract

In the midst of a plethora of nanomaterial-based drug delivery platforms,
liposomes have been predominantly successful with several products conceded
into clinical applications. Liposomes are well-established and effective drug
delivery systems, extensively used in cancer therapy including breast cancer. In
this chapter nanoliposomes designed with the breast cancer targeting feature and
drug release triggering functions are emphasized. The chapter also highlights the
recent advances in the nanoliposomes-based therapeutic system for breast cancer,
including gene and theranostic delivery perspectives. The challenges associated
with the development of liposome-based products for future clinical settings are
also discussed.
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10.1 Introduction

Subsequent to skin cancer, breast cancer (BC) is the most common cancer diagnosed
in women in the United States. Breast cancer can occur in both men and women, but
it’s far more common in women. BC is also one of the leading causes of cancer-
related deaths. Every year, one million women are diagnosed with breast cancer,
with approximately one new case diagnosed every 18 seconds (Bray et al. 2018). It
has been estimated that the breast carcinomas cases could rise to 2.50 million by
2025, with 768,646 people dying as a result of this disease. An in-depth study of BC
pathophysiology at the molecular level confirms the heterogeneous nature of this
carcinoma. If detected in its early stage, then BC can be cured. The metastatic
progression is the most challenging aspect in the alleviation of BC. In the current
scenario, the therapeutic intervention has been drastically improved as reflected in
increased patient survival rates. However, an advanced form of breast cancer that has
spread to other organs could not be cured with current chemotherapeutics. BC is
usually characterized by uninhibited and excessive cell growth that affects other
nearby healthy tissues and organs (Nosrati et al. 2018). Nonetheless, breast cancer
alleviation is very difficult to deal with despite the tremendous efforts and develop-
ment in this field. Until now, chemotherapy, in addition to surgery, has been the
foremost strategy to treat BC. There are serious concerns with most of the chemo-
therapeutic drugs such as they exert a toxic effect on normal cells and tissues (Zhu
et al. 2016). In addition, multidrug resistance caused by chemotherapeutics drugs
could lead to failure of treatment upon the recurrence of carcinomas (Lu et al. 2016).
At the present, therapeutic intervention of BC lays stress upon biologically directed
therapies, personalized treatment, and de-escalation of chemotherapy. Although the
5-year survival rate of advanced or metastasized BC is low (28%), the primary goal
of targeted therapy is to prolong survival, control symptoms, and reduce cytotoxic
drug toxicity, thereby improving the quality of life of BC patients (Harbeck et al.
2019).

Studies at the molecular level revealed that mutated genes’ expression substan-
tially contributes to the development and progression of BC (Yang et al. 2018).
Therefore, gene therapy is a promising approach that can revolutionize the BC
treatment paradigm (Cardoso et al. 2012). Nevertheless, gene therapy is also very
challenging owing to the issue of the safety and efficient delivery of therapeutic
genes or gene-regulating products into the nucleus of mammalian cells.

Various drug and gene delivery systems, including viral and nonviral vectors, are
being explored currently (Huo et al. 2017; Li et al. 2019; Maggio et al. 2020).
Liposomes (ZununiVahed et al. 2017), polymeric (Zuris et al. 2015; Chen et al.
2017), and inorganic nanomaterials (Ma et al. 2015) are examples of nonviral
vectors. The clinical application of viral vectors is hampered due to safety concerns
and cargo size limitations. On the other hand, liposomes are well-established
potential nanocarriers for drug/gene delivery with high loading capacity, ease of
preparation, and excellent physiological compatibility (Zylberberg et al. 2017, Zuris
et al. 2015; Chen et al. 2017).
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Liposomes are established and absolute nanomaterials for drug/gene delivery
(Pattni et al. 2015; Zylberberg et al. 2017). The predominant merits of liposomes
are high loading capacity, convenient preparation, and excellent biocompatibility
(Zuris et al. 2015; Wang et al. 2017a, b, c). Liposomes are chiefly composed of
phospholipid molecules having hydrophobic tails and hydrophilic heads, forming
the amphiphilic vesicle structures in aqueous solutions. Structurally, liposomes are
alienated into small unilamellar vesicles (~ 100 nm) and large unilamellar vesicles
(200–800 nm) with a single bilayer, and multilamellar vesicles (500–5000 nm)
containing multiple bilayers. Owing to their amphipathic nature, liposomes can
successfully encapsulate both hydrophilic and hydrophobic compounds (Olusanya
et al. 2018a, b; Yang et al. 2021).

The mitigation of adverse effects of anticancer drugs for the patients can be
accomplished via targeted liposomes (Federman and Denny 2010). The liposomes’
surface can be adapted by apt ligands to target the specific receptors of BC or its
microenvironment to attain selective delivery. Triggering is one more approach that
allows to control the local dose of the drug and, for example, initiate the drug release
at a certain time point after accumulation of a required dose, depending upon the
sensitivity of the tumor (Moussa et al. 2015). Nonetheless, liposomes represent a
promising nanoparticle-based delivery system in cancer therapy including breast
cancer.

In this chapter, we first discuss characteristics of breast cancer followed by recent
achievements in liposome-based drug delivery for therapeutic intervention in breast
cancer. The key challenges that need to be addressed to improve the utility of
liposomes in clinical settings are also discussed.

10.2 Breast Cancer Characteristics and Novel Targets

The molecular mechanisms involved in BC pathophysiology, invasion, and metas-
tasis are explicitly studied (Allred et al. 2001). The profound understanding of
molecular events in BC resulted in novel targeted therapies. The different targets
and receptors expressed on breast cancer cells along with their endogenous ligands
and drugs that bind to them are summarized in Table 10.1.

Nonhormonal targets regulate the process of cell progression and mobility,
cellular communications between cancer cells, and the microenvironment of the
tumor. Hormonal targets primarily regulate cell differentiation. Steroid receptors and
nonsteroid receptors are among the possible hormone targets. Signal transduction
mediators, cell-cycle mediators, and angiogenesis mediators are the three categories
of nonhormonal targets. There are five different types of steroid hormone receptors
that have been implicated in the pathophysiology of breast cancer. Estrogen
receptors (ERs), progesterone receptors (PRs), androgen receptors (ARs), glucocor-
ticoid receptors (GRs), and mineralocorticoid receptors (MCRs) are some of them.
The importance of estrogen receptors and progesterone receptors in breast cancer
upregulation is well established. Vitamin D’s biological actions are mediated by the
Vitamin D receptor (VDR) (Haussler et al. 1998), which plays a key role in the
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Table 10.1 Different class of targets and receptors

Target class Receptor Natural ligand Synthetic ligand

Steroids Estrogen receptor Estrogen Tamoxifen

Progesterone receptor Progesterone Medroxyprogesterone
acetate

Androgen receptor Dihydrotestosterone Hydroxyflutamide

Glucocorticoid receptor Cortisol CP-409069

Nonsteroids Thyroid receptor Tri-iodothyronine –

Vitamin D receptor 1a,25-(OH)2
D3

1a-(OH)2
D5, EB1089

Retinoic acid receptor Retinoic acid All-trans retinoic acid

Retinoic-X receptor Retinoic acid All-trans retinoic acid,
9-cis retinoic acid

Peroxisome proliferators
activated receptor

15-deoxy-D12,14-
Prostaglandin

Troglitazone

Farnesoid X-activated
Receptor

Bile acid SR-45023A

Constitutive active
receptor

Phenobarbital None

Signal
transduction
Modulators
Cell-cycle and
apoptosis
Modulation

Endothelial growth factor
Receptor (EGFR)

Endothelial growth
factors

Gefitinib, Erlotinib

HER2/neu – Trastuzumab

c-kit Ras family Kit ligand, steel
factor

Imatinib mesylate p53 -
CP-31398

Angiogenesis
modulation

VEGF receptor Growth factors Bevacizumab, Imatinib

PDGF receptor PDGF Tanomastat

Integrins – RGD peptide

Matrix metalloproteinases MMP substrate
peptide

Anti-MT1-MMP

regulation of cell growth and differentiation. The VDRs are ligand-dependent
nuclear receptors that regulate gene expression. In about 80–90% of breast cancer
cases, VDR expression has been identified (Colston et al. 1989). Cellular retinol-
binding proteins control the actions of every member of this family (Mangelsdorf
et al. 1995). During breast carcinogenesis, RAR loss has been observed (Ariga et al.
2000). Thyroid hormones (tri-iodothyronine (T3) and the prohormone thyroxin)
have also been studied in the context of breast cancer. T3 receptors are abundant
in normal mammary epithelial cells, but how T3 acts on mammary epithelial cells at
the cellular or molecular level is still unknown. The nuclear receptor superfamily
includes three members (Tontonoz et al. 1994). PPARγ are transcription factors that
belong to the nuclear receptor superfamily (Selliti et al. 1983). PPARγ is found
primarily in adipose tissue and is expressed in both primary and metastatic breast
cancers. Changes in gene expression occur when PPARγ is activated in breast cancer
cells (Mueller et al. 1998). Natural prostaglandin (PGJ2) and synthetic antidiabetic
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thiazolidinediones are PPARγ ligands (Schwartz 1997). Hence, PPARγ serves as an
interesting target for the prevention and treatment of breast cancer.

Signal transduction moderators perform as a messenger to control the cell cycle
and communication between the cell’s intracellular and extracellular compartments
(Aaronson 1991). The constituents of signal transduction could be categorized into
cell surface receptors, growth factors, and intracellular signaling pathways.

Breast cancer has also been linked to members of the human EGFR family,
particularly HER1 and HER2 (Bacus et al. 1994). HER2 is established as a
promising therapeutic target for metastatic breast cancer as its activation results in
neo-angiogenesis (Cobleigh et al. 1999; Viloria Petit et al. 1997).

The C-kit receptor tyrosine kinase expresses structural similarities with the
macrophage colony-stimulating factor and the PDGF receptor (PDGFR) (Qiu et al.
1988). The appearance of c-Kit is critical for the maintenance of normal hematopoi-
esis as well as several other functions. Several studies have shown that c-Kit is
expressed in both malignant and benign breast epithelia (Matsuda et al. 1993;
DiPaola et al. 1997). Cancers of mesenchymal origin like human breast carcinoma
have been linked to the PDGFR (Lokker et al. 2002; Bhardwaj et al. 1996). Ras is a
membrane-bound GTP/GDP-binding (G) protein that converts signals from the cell
surface to the nucleus (Valencia et al. 1991). Breast cancer has also been shown to
regulate the expression of Rho C and RAC1. Rho C expression may also be a
determinant of recurrence in axillary negative node breast cancer in patients, even in
lesions just under 1 cm in length (Kleer et al. 2002).

The ability to regulate cell proliferation and apoptosis is crucial for the growth
and development of cancer cells. Cyclins and CDKs have been linked to cell-cycle
control (Sherr and Roberts 1999). TNF and the TNF-receptor family are two
components of apoptotic cell death. Cell-cycle control and apoptosis are impossible
without p53 working properly. The activation of p53 is essential for cells to respond
effectively to stress stimuli like DNA damage and hypoxia (Giaccia and Kastan
1998). Growth arrest, senescence, or apoptosis are examples of the response (Asker
et al. 1999). There is a link between p53 abnormalities and more aggressive tumors,
early metastasis, and lower overall survival (Pharoah et al. 1999).

Angiogenesis is the formation of blood vessel networks to transport nutrients and
oxygen to the tumor cells, as well as waste products. Many proangiogenic and
antiangiogenic factors are involved in angiogenesis that can be used as molecular
targets in the treatment of breast cancer. (Carmeliet 2000). Vascular endothelium
cells are activated by angiogenesis factors such as b-FGF and VEGF, which secrete
and activate MMPs and plasminogen activators. There are several factors involved in
the expression of VEGF, a vascular endothelium cell-specific mitogen, which tends
to increase tumor growth and angiogenesis. When VEGF binds to its receptor
proteins, recognized as VEGF receptors 1 (Flt-1) and 2 (KDR/fek-1), signaling
pathways that control cellular functions involved in new blood vessel formation
are initiated (Ullrich and Schlessinger 1990). Small molecules with tyrosine kinase
inhibitory activity or neutralizing antibodies (rhuMab-VEGF) are explored in the
testing of BC for therapeutic VEGF targeting. Several proteinases, including MMPs,
serine, and cysteine proteinases, are critical in the progression of cancer (Fox et al.
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2001). High levels of uPA in the primary tumor have been found to have prognostic
significance, including axillary node-negative breast cancer (Malmstrom et al.
2001). It has been discovered that uPA system antagonists impede tumorigenesis
(Rabbani and Gladu 2002). In the integrin family, there are transmembrane subunit
pairs and that is chosen from at least 16a and 8a subunits to form more than
20 heterodimeric receptors on the cell surface. Integrins a3 1 and a6 4 have been
linked to the invasion and spread of mammary carcinoma (Mercurio et al. 2001).
When it comes to cancer metastasis and invasion, specific modulators may be used to
target members of the interleukin (IL) family, particularly a6 4 (and possibly a3 1).
Another intriguing component of the angiogenesis process involves prostaglandins,
which appear to be involved in cell proliferation, migration, and the ability to form
new vessels (Rozic et al. 2001).

10.3 Different Types of Nanoliposomes-Based Drug Delivery
in Breast Cancer

Liposomes represent an ideal approach with desirable characteristics prerequisite for
targeted delivery of anticancer agents in BC therapeutic intervention. Examples of
commercially available liposomes include Doxil® (PEGylated liposomal doxorubi-
cin; Centocor Ortho Biotech Inc., USA), DaunoXome® (non-PEGylated liposomal
daunorubicin; Diatos, France), and Myocet® (non-PEGylated liposomal doxorubi-
cin; Sopherion Therapeutics, USA) (Misra et al. 2010). Liposomes can efficiently
incorporate both lipophilic and hydrophilic compounds within the lipid bilayer and
aqueous core phase, respectively. Liposomes possess good biocompatibility and a
high drug loading capacity. Liposomes can be easily customized to achieve desirable
attributes such as prolong blood circulation time and receptor-mediated site-specific
dissemination (Wang et al. 2017a, b, c).

Recently, a plethora of research studies are being carried out to explore different
aspects of liposomal-based therapeutic delivery to cancer cells. Functionalized
liposomes are being explicitly explored at present to reap the benefits of biochemical
and physiological differences between normal and cancerous tissue. The most
promising strategy in tumor therapy is active targeting combined with a conjunction
of other strategies, such as the stimuli-responsive targeting approach. Liposomes are
transplanted with a variety of targeting ligands including peptides, dendrimers, and
monoclonal antibodies employing apt surface engineering technology. Surface
functionalization has played a remarkable role in the development of a liposomal
delivery system for efficient targeting, endocytosis, and producing an optimal
therapeutic response. Additionally, other advantages of liposomes include avoiding
lysosomal degradation, high accumulation at the tumor site, and stimuli-responsive
drug release at the desired location. Moreover, simultaneous diagnostic and thera-
peutic functions can be incorporated in liposomes (Durymanov et al. 2015). A
typical structure of liposomes with their advantages is shown in Fig. 10.1.
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Fig. 10.1 Typical structure of conventional liposomes with advantages of nanoliposomes

Fig. 10.2 Characteristic
attributes of conventional and
novel surface-engineered or
stimuli-responsive liposomes

Conventional 
Liposomes

• Bilayer phospholipid vesicles loaded with 
hydrophilic and/or hydrophobic drug

Novel targeted 
Liposomes

• Bilayer phospholipid vesicles conjugated 
with antibody, PEG, aptamer, and/or 
receptor-targeted peptide

• Trigger drug release by different stimuli 
such as pH, temperature, light, and 
ultrasound

Conventional Liposomes It is constituted of phospholipid bilayers (Fig. 10.1) and,
when injected intravenously, are prone to be engulfed by the reticuloendothelial
system (RES), resulting in short circulation times.

They are destroyed by phagocytes because opsonin recognizes them as foreign
substances.

To enhance circulation time, the outer layer of the liposomes was coated with a
hydrophilic polymer, namely polyethylene glycol (PEG), and termed as PEGylated
or stealth liposomes (Hatakeyama et al. 2013). It improved the electrostatic repulsive
between the liposomes and serum components. Stealth liposomes prevent
opsonization and hence, extended circulation half-life. Caelyx® (liposomal doxoru-
bicin; Merck & Co., Whitehouse Station, New Jersey, USA) is an indicator of the
effective use of stealth liposomes in the chemotherapeutic agent. Figure 10.2
highlights the basic characteristic attributes of conventional and novel surface-
engineered targeted liposomes.

Surface-engineered Liposomes A diverse range of therapeutics, together with
bioactives, have demonstrated potential anticancer efficacy via multiple
mechanisms, including angiogenesis, tumor growth, invasion, and metastasis sup-
pression. Despite their potential antitumor activity, they showed limited applications
in cancer therapy (Liu et al. 2020; Feng et al. 2017). Perhaps the key reason is that
their low hydrophobicity results in poor cellular uptake and devastated
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physicochemical stability. Furthermore, in animals, several bioactive constituents
undergo a series of reactions that transform them into water-soluble metabolites,
which are then excreted in urine and bile, and some drugs are also excreted in their
original form. Because of their hydrophilic nature, they generally show low serum
protein binding and are rapidly cleared up by the reticuloendothelial system (RES)
(Zhan et al. 2014). Novel liposomal formulations are being developed that are
surface-modified with a low molecular weight lipid conjugate and can be used in
place of PEG. The formulations had very good stability characteristics in ion- and
protein-rich mediums. Adsorption of proteins to the liposomal surface did not affect
the cellular interaction. The limitation of PEGylation includes its potential to cause
impaired cellular interactions, allergic reactions to be triggered, and an increase in
IgM production after repeated dosing.

Multifunctional Liposomes The multifunctional liposomes transport therapeutic
molecules with excellent targeting and imaging properties. Liposomes with a single
functionality face numerous challenges, and multifunctional liposomes have the
potential to solve these problems. The formulation of nanoscale liposomes with a
wide range of functions was made possible by combining surface-functionalization
and modification techniques. Liposomes with two ligands, such as two peptides
(Yuan et al. 2015), two ligands, and two anticancer drugs (Zhang et al. 2017),
targeting ligand and an imaging agent (Erdogan and Torchilin 2017; Portnoy et al.
2011; Al-Jamal et al. 2008), have been reported by various studies (Fig. 10.3).

Liposomes containing iron-oxide or metal have therapeutic and imaging
properties in one package. The imaging in core and ligand on the liposome surface
of a multifunctional carrier are decorated. HER-2 overexpressing breast cancer was
imaged using an immunoliposome-encapsulated nitroxide sensor developed by
Burks and coworkers (Burks et al. 2010). These multifunctional liposomes have
been shown to preferentially generate an intracellular EPR signal in the cells
overexpressed with HER-2. High nitroxide concentrations resulted in greatly
reduced EPR spectral transmissions and endocytosis of liposomes produced by a
cell-activated contrast-generating technique.

Stimuli-responsive Liposomes The slow release of drugs from liposomes could be
attributed to passive diffusion as the main mechanism of release from them. Stimuli-
responsive liposomes can modulate the release rate of encapsulated drugs.
Liposomes do not release their contents unless structural changes are induced by
an endogenous or exogenous stimulus. These liposomes provide rapid release of
drugs at the desired target sites and reduce the risk of the emergence of MDR tumors.
Endogenous stimuli include pathological changes in the target cancer tissues, such as
reduced pH (Karanth and Murthy 2007), overexpression of specific enzymes, and
abundance of reducing agents (Deshpande et al. 2013).

Temperature-sensitive liposomes Encapsulated bioactives are released near the
liposome’s phase transition temperature, where the lipid membrane transitions
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Fig. 10.3 Liposomes and characteristics of its different types: Conventional liposomes are made of
phospholipids (a); PEGylated/stealth liposomes contain a layer of polyethylene glycol (PEG) at the
surface of liposomes (b); targeted liposomes contain a specific targeting ligand to target a cancer site
(c); and multifunctional such as theranostic liposomes, which can be used for diagnosis and
treatment of breast tumors (d). (Reproduced from Riaz et al. 2018)

from its gel to liquid crystal phase (Yatvin et al. 1978). Lipid bilayer transient pores
are created by the incorporation of lysolipids into the liposomal membrane. These
transient pores allow the rapid release of the encapsulants. Hyperthermia is the
medical term for heating a tumor to a temperature that is slightly higher than normal
(40–43 �C). Hyperthermia increases liposome uptake by two to three times (Leopold
et al. 1992). Celsion Corporation has developed a thermoresponsive liposomal
formulation of DOX, i.e., ThermoDox® for the treatment of various cancers,
including breast cancer. ThermoDox®, when given intravenously and combined
with hyperthermia, exhibited a potentially inhibiting effect on tumor growth.

Enzyme-Responsive Liposomes Several enzyme concentrations are elevated in
several pathological conditions, including cancer. Enzyme-responsive liposomes
were developed using this approach (de la Rica et al. 2012; Yan and Boyd 2007).
Secreted phospholipase A2 (sPLA2) levels increase substantially of various inflam-
matory conditions, atherosclerosis, and cancer. Prostate, breast, and pancreatic
cancer exhibited elevated levels of sPLA2 (Dennis et al. 2011; Dong et al. 2006;
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Graff et al. 2001). Hence, sPLA2 responsive liposomes loading Doxorubicin were
formulated with 1,2-distearyl-sn-glycero-3-phosphocholine (DSPC), 1,2-distearyl-
sn-glycero-3-phosphoethanolamine (DSPE), cholesterol, and DSPE-PEG. The
developed enzyme responsive liposomes exhibited a higher (2.5 times) decrease in
tumor growth than conventional liposomes in a mouse model of prostate cancer.
MMPs play a significant role in tumor growth, invasion, and metastasis (Curran and
Murray 2000; Chambers and Matrisian 1997). Zhu et al. (2012) described enzyme
MMP responsive liposomes comprising two kinds of components: TATp-PEG
�1,2-dioctadecanoyl-sn-glycero-3-phosphoethanolamine and mAb 2C5-PEG-
MMP2 cleavable peptide-1,2-dioleoyl-sn-glycero-3-phosphoethanolamine to target
hepatocellular tumor; PEG was attached to the phospholipid DOPE via an MMP-2
cleavable peptide linker. These MMP-sensitive peptides act as a linkage between the
lipids and the polymer. The conjugated liposomes with polymer prevent liposome
uptake. The peptide is cleaved when it comes into contact with MMPs at the target
site, resulting in the dissociation of the polymer and finally uptake of liposomes.
Liposomes’ galactose ligand is protected from cellular uptake by the PEG group,
which forms a barrier on their surface. MMP-2 overexpression in HCC, on the other
hand, cleaves the linker and releases PEG. The exposed galactose ligand then binds
to HCC cells’ asialoglycoprotein receptors. Gal-PEG-DOPE (0.5 percent) liposome
uptake was significantly enhanced in the presence of over 5 mcg/mL hMMP-2 in
HepG2 cells, according to Terada et al. (Terada et al. 2006). An elevated level of a
serine protease known as urokinase plasminogen activator (uPA) is reported in
several human cancers, including breast, colon, bladder, and ovarian (Liu et al.
2001). Tumor angiogenesis, progression, and metastasis are aided by uPA (Duffy
2002). In peptides containing the consensus sequence Ser-Gly-Arg-Ser-Ala, the
enzyme cleaves the Arg-Ser bond. Liposomes encapsulating uPA-cleavable peptides
could thus discharge their encapsulated payload while they come into contact with
uPA at tumor sites. It was discovered by Basel et al. that uPA-responsive liposomes
in a hyperosmotic medium can be stabilized with a copolymer cage on their surface
(Basel et al. 2011).

pH-sensitive Liposomes Because of lactic acid production and ATP hydrolysis, the
pH around the tumor cells is lower than healthy tissue (Gerweck and Seetharaman
1996). The endosomal or lysosomal partitions of tumor cells have low pH, which can
be utilized to construct pH-responsive liposomal delivery models. The pH-sensitive
liposomes systems are fabricated for extracellular or endosomal/lysosomal triggered
release. The pH-responsive liposomes have been optimized so that they can trans-
form at various stages between pH 7.4 and 5.0 to efficiently deliver anticancer agents
at target sites. If pH is low because of pathological conditions like inflammation,
infection, or malignancy, the pH-sensitive liposomes become soft and leaky
(Torchilin et al. 1993). The pH-sensitive liposomes are intricately fabricated to
circumvent the obstacles such as recognition and endocytosis by the RES, so that
they could efficiently release their anticancer agents in the endosome and partially
into the cytosol (Budker et al. 1996). Antitumor drugs, antigens, antisense
oligonucleotides, and plasmid DNA have been delivered in vitro cytoplasmically
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using these methods (Legendre et al. 1992). Liposomal systems encoded with
specific ligands can bind to and be taken up by cells, allowing for pH-mediated
intracellular drug delivery (Harel and Kato 2007). Accumulation in low pH
compartments, such as endosomes and lysosomes, can be utilized to trigger drug
release after internalization in tumor cells. Karve and associates reported
pH-sensitive immunoliposomes encapsulating DOX for site-specific delivery
(Karve et al. 2009). The study demonstrated that pH-sensitive liposomes prevent
the growth of cancer cells in a much better way than simple immunoliposomes, and
hence, could potentially enhance the therapeutic prospect via liposomal
chemotherapy.

10.4 Advances in Nanoliposomes-Based Drug Delivery
for Therapeutic Intervention in Breast Cancer

Cationic liposomes are being investigated as a possible efficient method for gene
delivery. The complex formed between encapsulated plasmids DNA (Kaneda et al.
1989) and cationic lipids of liposomes is termed as lipoplex (Alino et al. 1996;
Crystal 1995). The lipoplex can be fused with the plasma or endosome membrane to
transport into cells (Sharma and Sharma 1997). The lipid composition, lipid/DNA
ratio, and particle size of the liposome–DNA complex greatly impact their transfec-
tion efficiency (Zou et al. 2000). The limitation of cationic liposomes is their poor
specificity. This limitation can be addressed by modifying cationic liposomes with
cell-specific targeting moieties. For direct cytosolic delivery of liposomes, several
cell-penetrating peptides have been implicated. For breast cancer gene therapy,
antiangiogenesis strategies involve nonviral vectors (Feldman and Libutti 2000).
Angiostatin and endostatin gene therapy is one way to deliver angiogenic polypep-
tide inhibitors. Previously, liposomes complexed with plasmids encoding
angiostatin (PCI-Angio) or endostatin (PCIEndo) exhibited successful inhibition of
angiogenesis in BC cells (Chen et al. 1999). Such liposomal delivery of
antiangiogenic genes could represent promising therapeutic prospects. The wild-
type p53 gene was also included in a liposome–plasmid complex used to treat naked
mice injected with breast carcinoma cells (Lesoon-Wood et al. 1995). Xu et al.
investigated a cationic immunoliposome tagged with single-chain antibody Fv
fragment (scFv) for systemic p53 tumor suppressor gene therapy for treating BC
(Xu et al. 2001). The scFv-tagged immunolipoplexes significantly improved trans-
fection efficiency and extended the animals’ survival time. However, the scFv-
targeted immunoplex’s expression was found to be low. A new expression strategy
for anti-TfRscFv was reported by Xu and colleagues (Xu et al. 2002). In this,
the scFv was covalently coupled to the liposome via a cysteine at the 30 end of the
protein and a maleimide group on the liposome. According to the findings, the
immunological activity and targeting ability of the scFv were not affected by this
conjugation. The scFv-cys-targeted tumor cells with a cationic liposome–DNA
complex (lipoplex) markedly improved transfection efficiencies in BC models. BC
cells overexpress the human HER-2/neu oncogene, and research has shown that the
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E1A gene acts as a tumor inhibitor gene by reducing HER-2/neu transcription.
tgDCC-E1A, a stable E1A lipid complex, was developed by Yoo and coworkers
using cationic liposomes and plasmid DNA encoding E1A (Yoo et al. 2001). In
accordance with the results of preliminary tests carried out on animals as well as on
humans, researchers moved forward with clinical trials to see if delivering the E1A
gene via liposomes would be safe and would have an effect on tumor response when
administered to cancer patients with an advanced form of BCs. Recent
advancements in the use of liposomes as a diagnostic tool underscore the use of
imaging techniques and the recognition of diverse molecular targets. There are
numerous medical imaging techniques that make use of liposomes as
nanomedicines. Some of these methodologies encompass ultrasound, nuclear imag-
ing, fluorescence, and magnetic resonance.

Fluorescence imaging is the most commonly used diagnostic tool. Imagining the
position of the biomolecule, enzyme activity as well as gene expression is also
possible in living cells or tissues. Functionalized quantum dot–liposome (f-QD-L)
was developed by encompassing quantum dots by PEG (QD) for cancer diagnosis
(Chen et al. 2000). There has been a lot of interest in NIR fluorescence imaging
because of the low photon absorption and scattering (Min et al. 2014). Rare-earth-
doped nanoparticles are one material under consideration for use in NIR fluores-
cence (Eliseeva and Bunzli 2010; Bunzli 2010). Using a liposome-nanoparticle
hybrid, Soga and coworkers found that it has a strong NIR fluorescence component.

Radiofrequency pulses are commonly used in MRI for whole-body imaging (Sun
et al. 2008). Liposomes can encapsulate a wide range of contrast agents like
fluorophores, enabling efficient implementation and controlled release of probes
for better image analysis (Kamaly et al. 2009; Soenen et al. 2011). Studies have
been reported in which liposomes were concomitantly loaded with the MRI contrast
agent Gd-DTPA and doxorubicin (DOX) (Tagami et al. 2011). The simultaneous
delivery of Gd-DTPA and DOX allows controlled drug release in a tumor’s micro-
environment where localized heating could potentially trigger the release of a drug.
Another paramagnetic MRI contrast agent is ferrimagnetic iron oxide (FMIO)
nanoparticles, which have been used in the preparation of liposomal MRI probes
(Mikhaylov et al. 2011). An external magnetic field was used to target the liposomal
FMIO nanoparticle cluster at tumors and the tumor microenvironment.

Medical ultrasound, which is defined as sound waves with frequencies greater
than 20,000 Hz, is another commonly used noninvasive diagnostic imaging tech-
nique. (Cheng et al. 2010) Ultrasound imaging is performed by directing ultrasound
pulses into tissue and measuring the echoes caused by the tissue at various reflection
angles. Contrast agents for ultrasound imaging, like MRI, have the ability to label
specific tissue types or tumors. Acoustic liposomes (ALs), which contain
perfluoropropane gas, can be used as ultrasound imaging probes (Deckers and
Moonen 2010). For passive tumor tissue localization, high-permeability/high-reten-
tion acoustic liposomes can be used because of their small diameter (100 nm) and
high retention effect (90% retention). With the help of high-frequency ultrasound
(HF-US), acoustic liposomes can be used to test both drug delivery efficiency and
antitumor efficacy (Ferrara et al. 2009). Using HF-US imaging, a cisplatin-loaded
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AL was evaluated for its antitumor effects (Kodama et al. 2011). Nuclear imaging is
another noninvasive imaging technique that uses small molecule radioactive tracers
(Srivatsan and Chen 2014). PET (positron emission tomography) works by detecting
gamma rays emitted from the destruction of positrons of radioactive materials.
SPECT (single-photon emission computed tomography) is able to detect gamma
rays directly emitted from isotopes such as 99mTc (Rahmim and Zaidi 2008).
Various research studies have been reported indicating that liposomes can encapsu-
late radionuclide tracers inside their aqueous compartment or within a chemically
engineered lipid bilayer (Henriksen et al. 2015; Ogawa et al. 2014; Seo et al. 2008;
Petersen et al. 2011). Ferrara and colleagues designed temperature-sensitive
liposomes using a combination of PET and fluorescence imaging (Paoli et al.
2010). They used 18F- or 64Cu-labeled lipids in liposome preparations, which
embody the fluorophore Alexa Fluor 750 as a hydrophilic model drug. The tumor
fluorescence images correlate well with PET and ex vivo fluorescence images when
using a stable liposome formulation. Hence, a combination of PET and optical
imaging techniques could be very beneficial for alleviating tumors.

188Re-labeled DSPC-based liposomal doxorubicin was fabricated and evaluated
their targeting efficiency and antitumor effects in a C26murine tumor model by
SPECT imaging (Chang et al. 2010). In in vivo micro, SPECT/CT imaging was used
to assess the liposomes tumor targeting by measuring their biodistribution and
pharmacokinetics. The bimodal radiochemotherapeutic 188Re-liposome-DOX
showed greater tumor inhibition and a longer median survival time than either
single-functionalized 188Re-liposomes or liposome-DOX.

10.5 Challenges in Translation of Nanoliposomes-Based Drug
Delivery in Clinical Settings

The advancements in the development of liposome delivery systems are progressing
at a fast pace, in light of the demand for the new stratagems for breast cancer therapy.
However, a well-built understanding or road map on the design of the new liposome
formulation for BC is lacking somewhere. Selection of the targeting and triggering
modalities depends on the molecular subtypes of the tumor and the ongoing conven-
tional treatments. Although the conventional liposome-encapsulated chemothera-
peutic drug-based formulation is being frequently used in the clinical practice in BC
treatment, still there are countless obstacles in the clinical implementation of these
novel and advance versions of liposome formulations (Yang et al. 2021). With
triggerable liposomes, the triggering mechanisms need to be further explored
while designing such liposome formulations. For example, the selection of the
phospholipid component for light-triggered liposomes needs to be in accordance
with desired photo-induced mechanisms. In a photochemical pathway, for instance,
photooxidative reaction, unsaturated phospholipids should be used in the formula-
tion (Yang et al. 2021). Furthermore, active ingredients employed in the triggerable
liposome formulation should be optimized to weigh up their benefits and risks to
healthy tissues (Yang et al. 2021). From the perspective of the clinical applications,
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the far-reaching development of liposome technology will ultimately benefit BC
patients. Recent studies confirmed that various liposome constructs loaded with
drugs can reduce the intensities of cardiotoxicity, address drug resistance, and
improve the overall drug release profile. Modification of the liposome surface with
targeting ligands offers surplus opportunities for designing site-specific therapy and
curtailing the nonspecific effect of conventional chemotherapeutic drugs. The new
genera liposomes with triggering features also allow efficient control of payload
release and thus substantially augmenting the therapeutic outcomes for BC patients.
Advance forms of liposome formulations could magnify the assortment of drug
delivery options for the treatments of BC by efficaciously addressing the critical
problems of drug toxicity and limited therapeutic effects.

10.6 Conclusion

The liposomes represent a promising approach as efficient and targeted delivery
of anticancer agents to various tumor sites in BC alleviation. The advantages of
encapsulating the drug in the nanoliposomal carrier are improved solubilization of
the drug, increased half-life, prolonged circulation, selective accessibility of the drug
to the target site, and substantially overcoming of multidrug resistance. The
advanced and modified versions of liposomes as discussed in this chapter curtail
the highly desirable characteristic features of tumor cell recognition and internalizing
that could contribute substantially to the therapeutic intervention of BC. Precise
molecular targeting can be accomplished with these smart generations of
nanoliposomes, besides enhanced pharmacokinetic and biodistribution of anticancer
agents. The integrated approaches such as theranostic liposomes or antibody-
targeted ones can be efficiently employed for targeting small molecule drugs as
well as biological agents with anticancer activity and can provide a new landscape in
the liposomes-based BC therapeutic front. Earlier, PEGylated liposomes have
addressed critical pharmacological concerns accompanied with the conventional
drug delivery system, such as disruption by blood lipoproteins, uptake by RES,
and rapid clearance from blood circulation. Now PEGylated liposomes are approved
by regulatory authorities and have successfully reached the market. However, the
clinical success of PEGylated liposomes is hampered by some grave limitations,
such as a lack of tumor cell specificity. Therefore, to increase the target specificity
and the amount of released therapeutic agent at the tumor site, stimuli-sensitive
liposomes and multifunctional carriers such as theranostic liposomes have been
designed. The increasing complexity of advanced versions of liposomal formulation
needs rigorous in vitro and in vivo preclinical studies for their translation to the
clinics. Certainly, recent research studies demonstrate that new generation liposomes
could be a viable anticancer therapeutic tool in the treatment of BC.
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