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Abstract Slot filling is a fundamental task in spoken language understanding that
is usually formulated as a sequence labeling problem and solved using discrimina-
tive models such as conditional random fields and recurrent neural networks. One
of the weak points of this discriminative approach is robustness against incomplete
annotations. For obtaining a more robust method, this paper leverages an overlooked
property of slot filling tasks: Non-slot parts of utterance follow a specific pattern
depending on the user’s intent. To this end, we propose a generative model that
estimates the underlying pattern of utterances based on a segmentation-based for-
mulation of slot-filling tasks. The proposed method adopts nonparametric Bayesian
models that enjoy the flexibility of the phrase distribution modeling brought by the
new formulation. The experimental result demonstrates that the proposed method
performs better in a situation that the training data with incomplete annotations in
comparison to the BiLSTM-CRF and HMM.

1 Introduction

Slot filling is a task that estimates the speaker’s intent in the form of slot representa-
tion. For example, the utterance “Remind me to call John at 10 to 9 am tomorrow”
contains two pieces of information that the system is required to extract for setting
a reminder; {time: “10 to 9 am tomorrow”} and {subject: “call John”}. We use the

K. Wakabayashi (B)
University of Tsukuba, Tsukuba, Japan
e-mail: kwakaba@slis.tsukuba.ac.jp

J. Takeuchi
Honda Research Institute Japan Co., Ltd., Saitama, Japan
e-mail: johane.takeuchi@jp.honda-ri.com

M. Nakano
Honda Research Institute Japan Co., Ltd. (Currently with C4A Research Institute, Inc.),
Saitama, Japan
e-mail: mikio.nakano@c4a.jp

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
S. Stoyanchev et al. (eds.), Conversational AI for Natural Human-Centric Interaction,
Lecture Notes in Electrical Engineering 943,
https://doi.org/10.1007/978-981-19-5538-9_2

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-5538-9_2&domain=pdf
mailto:kwakaba@slis.tsukuba.ac.jp
mailto:johane.takeuchi@jp.honda-ri.com
mailto:mikio.nakano@c4a.jp
https://doi.org/10.1007/978-981-19-5538-9_2


18 K. Wakabayashi et al.

Fig. 1 Sequence labeling formulation of slot filling

Fig. 2 The segmentation-based approach. Detecting slot parts are formulated as a task that finds
the best partition in terms of the joint probability of both the slot and non-slot phrases. The proposed
method prefers the segmentation in case (b) than in (a) because it gives a higher joint likelihood

term slot to refer to variables such as time and subject that are filled by substrings
in an utterance.

Slot filling is usually formulated as a sequence labeling task with IOB tagging
scheme, which is generally used in phrase extraction tasks such as named entity
recognition [10]. Figure 1 shows an example of the sequence labels. On the basis of
this formulation, the existing studies have applied discriminative models including
conditional random fields (CRFs) [18] and neural networks [13, 17, 29].

One of the weak points in the supervised learning approach is the robustness
against incomplete annotations [7]. In practice, obtaining high-quality annotation
for phrase extraction is expensive and not scalable [24]. When there is a missing
annotation on a substring, themodel will be trained to assignO tags for the substrings
since we have no way to know if it is missing or truly a non-slot part.

In this paper,we explore an approach that leverages an overlooked characterization
of slot filling that is not shared with other phrase extraction tasks: Non-slot substrings
also follow a specific pattern. For example, when a user has an intent of setting a
reminder, her utterance likely starts with “remind me” to show her intent. On this
idea, the slot filling can be formulated as a task that splits an utterance into segments
and estimates the role of each segment as Fig. 2 shows.

To this end,wepropose agenerativemodel that allowsus to induce the roles of non-
slot substrings in a similar way to unsupervised grammar induction methods [8, 16].
The proposed model adopts Pitman-Yor Chinese restaurant processes (PYCRPs),
which reflects the power-law property inhered in natural language phrases [4],
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for defining phrase probabilities. Instead of the word-by-word generative process
assumed by conventional models such as hidden Markov models (HMMs), the pro-
posed generativemodel fully enjoys the flexibility of the phrase distributionmodeling
brought by the new formulation. In the experiment, we will show that the proposed
model is capable of capturing the latent structure of utterances, and therefore, more
robust against missing annotations in training data.

The contribution of this paper is summarized as follows:

• We propose a new representation of slot filling task, particularly for a better gen-
erative modeling. We also propose a Bayesian model that leverages the flexibility
of modeling provided by this formulation by adopting a nonparametric Bayesian
model for phrase distribution.

• We empirically show that the generative methods on this formulation are more
robust than neural networks when the annotation is highly incomplete. We also
show the proposedmodel has good interpretability thanks to this formulation based
on segment-wise pattern recognition.

2 Related Work

Although the sequence labeling formulation is the dominant approach in recent years,
there have been different ways to formalize slot filling tasks, including formulation
as machine translation task [12], decoding problem with finite-state transducers [3,
9], parsing task with context-free grammar [22]. When we can fix the set of possible
values that can be put in each slot, we can formulate a slot filling task as a value-
based classification task [6]. Wakabayashi et al. [27] extend the classification-based
slot filling method by considering the likelihood of non-slot phrases. To define the
likelihood of phrases, they proposed a probabilistic model based on nonparametric
Bayesianmodels that are similar to ours. However, their formulation is classification-
based; therefore, it requires candidates of slot filling output fed by the N-best results
of another discriminative model such as CRF.

While the discriminative modeling based on neural networks is extensively stud-
ied [18, 30], the generative approach still has an advantage when we have incom-
plete and noisy annotated sentences as training data. When we use crowdsourcing
to obtain labeled sentence, we need to handle the training data that includes erro-
neous annotation [15, 19]. In this situation, HMM-based generative models achieve
a better accuracy compared to methods that are based on discriminative models [14].
Simpson et al. [23] further improve the accuracy by integrating prior distribution
into the generative models. These methods treat the true labels as latent variables
and estimate them in a Bayesian estimation manner in the representation of word-
by-word sequence labeling formulation. Applying the proposed segmentation-based
formulation to these models for crowdsourced annotations will be a subject of future
work.
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The proposed method can be viewed as a kind of grammar induction [8, 16]
since the method attempts to induce the roles of non-slot parts in an unsupervised
manner. From this viewpoint, the proposed method is characterized as follows: (i)
Flat (non-hierarchical) latent structure is assumed. (ii) Partial supervision on slot
part is available instead of inducing fully model-driven grammatical units. Ponvert
et al. [16] proposed an unsupervised shallow parsing (i.e., chunking) method that
induces labeled segmentation, which is compatible with the characteristics (i) of
ours, In comparison to Ponvert’s method, our proposed method uses nonparamet-
ric Bayesian language modeling to handle longer phrases than grammatical units
with a partially supervised training algorithm. Some language models developed for
unsupervised morphological analysis [4, 26] adopt the Pitman-Yor process, which
inspires our model. However, these models are designed to find the morphologi-
cal units by embedding n-gram probability over segments. Our proposed method is
designed to capture patterns of non-slot phrases supposing that partial supervision
on slot part is available, which is novel even in the context of grammar induction.

3 Segmentation-Based Formulation of Slot Filling Task

The proposed formulation regards a slot filling task as a labeled segmentation of
a given sentence. For example, the case (b) in Fig. 2 divides the sentence into four
segments, “remind me to”, “call john”, “at” and “10 to 9 am tomorrow”, and attaches
labels “non-slot 2”, “subject slot”, “non-slot 4” and “time slot”, respectively. Let
x1:T = x1, . . . , xT be a sequence of tokens1 and b1:K = b1, . . . , bK be indices of
the last token of each segment where bk < bk+1. The segmentation in Fig. 2b is
represented as b1 = 3, b2 = 5, b3 = 6, and b4 = 11. We denote the sequence of the
segment labels by y1:K = y1, . . . yK . The subsequence of tokens that represents the
k-th segment is denoted by sk = xbk−1+1:bk . bK equals T because the last segment
ends with the last token. We also define b0 = 0 for convenience.

For slot filling tasks, a set of slotsZ (e.g., {time, subject}) and a set of training
data are given. The instance of the training data is a pair of a sentence and a slot
annotation. For example, the annotation for the sentence in Fig. 2 is { subject: “call
john”, time: “10 to 9 am tomorrow” }. In the proposed method, we assume that the
non-slot parts also have latent segments. For these segments, we assign a non-slot
label that reflects a pattern of non-slot parts. We denote a set of the non-slot labels
by U and assume that each non-slot label in U is associated with its particular
phrase distribution. Consequently, the set of labels is defined as Y = Z ∪ U . We
emphasize that the training data only have slot annotations so that the non-slot labels
are latent variables. In the proposed method, the non-slot labels are estimated by
Gibbs sampling as we present later.

1 In the experiment, we used word as a token for English and character as a token for Japanese.
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3.1 Definition of Generative Models

We consider a generative model in the following form.

p(x1:T , y1:K , b1:K ) = p(x1:T , b1:K |y1:K )p(y1:K ) (1)

We assume that p(y1:K ) follows aMarkovmodelwith a parameter� = θ1, . . . , θ|Y |.

p(y1:K ) =
K∏

k=1

pcat (yk |θyk−1) (2)

pcat (yk |θyk−1) is a transition probability that follows a categorical distribution with
parameter θyk−1 . θy follows a Dirichlet distribution of a hyperparameter γ . The joint
distribution p(x1:T , b1:K |y1:K ) is assumed to be decomposable into segments.

p(x1:T , b1:K |y1:K ) =
K∏

k=1

Pyk (xbk−1+1:bk ) (3)

Given the label yk , a sequence of characters in the k-th segment is generated by a
slot modelPy , which we present in the following subsections. In the slot model, we
represent a phrase as a sequence of characters s = c1, . . . , cL where cl is a character,2

instead of the sentence-dependent representation xbk−1+1:bk [31].Py is a probabilistic
model over the infinite set of token sequences V represented below.

V = {c1, . . . , cL |cl ∈ C , L ≥ 0}

whereC is the set of characters that potentially appear in the input sentences, includ-
ing the whitespace character. We call an element of V as a phrase.

3.1.1 N-Gram Slot Model

One of the simplest ways to define a distribution on V is to adopt an N-gram model.
We also explicitly formulate the probability of the phrase length to define a distribu-
tion such that the sum of the probability is 1 over V [31]. The probability of phrase
s = c1, . . . , cL is defined as the product of the n-gram probability of the character
sequence and the probability that the phrase length is L .

2 We can formulate the language models for phrases based on token sequence representation, but
we prefer the character sequence modeling because the model can get more flexibility. This choice
does not affect the overall framework of the proposed method.
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pngsm(s = c1, . . . , cL |ψ, ξ) = pcat (L|ψ)

L∏

l=1

pcat (cl |ξcl−n+1:l−1)

pcat (L|ψ) is defined as a Lmax -dimensional categorical distribution. pcat (cl |ξcl−n+1:l−1)

is a categorical distribution of a character depending on the n-gram context cl−n+1:l−1.
Dirichlet distributions with parameter η1, η2 are assumed as the priors of ψ and ξ ,
respectively. We call this model n-gram slot model (NGSM).

3.1.2 Pitman-Yor Process Slot Model

In slot filling tasks, users tend to use specific common phrases. For example, the
time slot only takes the expressions of time and date, and as a result, a small number
of expressions are expected to be used repeatedly. To reflect this observation, we
present Pitman-Yor process slot model (PYPSM) for modeling the phrase distribu-
tion. PYPSM adopts a Pitman-Yor Chinese restaurant process (PYCRP) that entails
power-law distributions over V [11, 20].

PYPSM is a model that generates phrases s1, . . . , sN where si = ci1, . . . , ciLi

based on the generative process shown in Fig. 3 (Left). The PYPSM has two latent
variables; φ = {φ1, . . . , φM } (φm ∈ V ) that is a series of phrases that have been seen
before3 and a1:N = a1, . . . , aN (1 ≤ ai ≤ M) that associates each observation si to
one of the elements of φ. Initially, φ is empty and M = 0. For each step to generate a
phrase si , the process draws ai depending on a1:i−1 from the following distribution.

p(ai = m|a1:i−1) =
{

nm−β

i−1+α
1 ≤ m ≤ M

Mβ+α

i−1+α
m = M + 1

(4)

nm is the frequency of m in a1:N , i.e., nm = ∑N
i=1 δai=m where δp is an indicator

function that returns 1 if the proposition p is true and 0 otherwise. α and β are
hyper-parameters of PYCRP that controls the strength of the power-law property. If
ai = M + 1 is drawn from the distribution above, the process generates a new phrase
for si from the NGSM pngsm , which is known as base distribution [31]. If ai ≤ M ,
the process generates si as the same phrase generated before, φai .

The PYPSM assigns a large probability to “memorized” phrases in φ but does
not fix a set of possible phrases predefined in advance, which matches the tendency
of slot filling tasks. When all the latent variables a1:N and φ1:M generated up to the
N -th observation are given, the predictive distribution of the next phrase sN+1 can
be described as follows by marginalizing out aN+1 and φM+1.

ppypsm(sN+1|a1:N , φ1:M , ψ, ξ)=
M∑

m=1

nm−β

N + α
δφm=sN+1 +

Mβ+α

N + α
pngsm(sN+1|ψ, ξ) (5)

3 In contrast to the major usage of CRP that constitutes an infinite mixture model [25], φai is not a
parameter for another distribution but an observable phrase (si = φai ).
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Fig. 3 (Left) Generative process of PYPSM. (Right) Lattice for forward-backward sampling and
Viterbi algorithm on the segmentation-based formulation. The emphasized nodes correspond to a
slot annotation in training data (subject: “call john”) that is available in the training phase

This distribution predicts the next phrase as either (i) a phrase that has been observed
at least once in s1:N for probability N−Mβ

N+α
, or (ii) a phrase that is newly generated by

the NGSM for probability Mβ+α

N+α
. We use ppypsm as the language model Py .

3.2 Training of PYPSMs by Collapsed Gibbs Sampling

The annotation provided in training data consists of multiple pairs of (slot, value) to
be extracted from a given utterance. For example, the annotation for the sentence in
Fig. 2 is { subject: “call john”, time: “10 to 9 am tomorrow” }. This supervision
partially determines y and b in the proposed model, but the boundaries and the labels
for non-slot parts are still hidden. In this paper,we present a collapsedGibbs sampling
method to make an inference on these latent variables.

Let X = x (1)
1:Ti , . . . , x

(N )
1:TN be a set of training sentences and Z = z(1), . . . , z(N ) be

the corresponding annotation. The set of latent variables that the collapsed Gibbs
sampler draws is {y, b, a}. When y, b, and a\i are given,4 the sample of ai can be
obtained from Eq. (4) easily. However, y and b involve the sequence structure, so that
we need an efficient sampler. The conditional distribution of y and b that is required
to compose the sampler is below.

4 The index \i indicates a set of the variables except for the i th variable.
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p(b(i), y(i)|X, Z , b(\i), y(\i), a, φ)

∝ p(x (i), b(i)|y(i), x (\i), y(\i), b(\i), a, φ)p(y(i)|y(\i))δS(z(i),y(i),b(i))

≈
K∏

k=1

P
y(i)
k

(x (i)

b(i)
k−1+1:b(i)

k

|z(i), x (\i), y(\i), b(\i), a, φ)

K∏

k=1

p(y(i)
k |y(i)

k−1, y
(\i))δS(z(i),y(i),b(i)) (6)

S(z(i), y(i), b(i)) is a proposition that checks if the labeled segment (y(i), b(i)) is
consistent with the supervision z(i). The approximation we applied above ignores the
non-Markov dependency between the local random variables in the i th sentence.5

Each factor in Eq. (6) can be calculated as follows.

P
y(i)
k

(x (i)

b(i)
k−1+1:b(i)

k

|x (\i), y(\i), b(\i), a, φ) = ppypsm(sN+1 = x (i)

b(i)
k−1+1:b(i)

k

|a, φ, ψ̂
y(i)
k

, ξ̂
y(i)
k

)

p(y(i)
k |y(i)

k−1, y
(\i)) = pcat (y

(i)
k |θ̂

y(i)
k−1

)

θ̂ , ψ̂y(i)
k

and ξ̂y(i)
k
are respectively the expected value of the variable with the poste-

rior distribution given x (\i), y(\i), b(\i).6 The sample from the distribution of Eq. (6)
can be obtained by using a sequence-structured sampling method called forward-
backward sampling [21] based on a lattice illustrated in Fig. 3 (Right). Unlike the
dynamic programming for HMMs, the proposed model requires restoring the range
that corresponds to the phrase for calculating the phrase probability. For this reason,
the state in the lattice retains the number of tokens contained in the current segment.

The nodes vt,τ,y in Fig. 3 (Right) such as v1,1,ns and v5,2,sbj indicate a combination
of position and label (t, τ, y) that means xt is the τ -th token of a segment having
label y. For example, v1,1,ns indicates x1 (“remind”) is interpreted as the first token
for ns (non-slot) segment, and v5,2,sbj indicates x5 (“john”) is considered the second
token for sbj (subject slot) segment. The node vt,ζ,y (τ = ζ ) indicates that a segment
with the label y is terminated at xt . Any possible labeled segmentation (b1:K , y1:K )

has a one-to-one relationship with a path from the node v0,ζ,BOS to a node vT,ζ,y .
Slot annotations in training data can be represented as a set L of nodes that a
path needs to visit. When we denote a slot annotation by a tuple of label and range
(y, i : j), L contains {vt,τ,y}i≤t≤ j,1≤τ≤ j−i and {v j,ζ,y}. For example, the elements
in L corresponding to a slot annotation (subject, 4 : 5) are the red nodes in Fig. 3
(Right).

For the forward-backward sampling, we first compute forward probabilities
α(vt,ζ,y) ≡ ∑

k p(x1:t , bk = t, yk = y) and α(vt,τ,y) ≡ ∑
k p(x1:t−τ , bk−1 = t − τ,

yk = y) by using the following recursive formulas with the base α(v1,ζ,BOS) = 1.

5 As described in [28], the effect of this approximation that ignores the local count is sufficiently
small when there are many short sentences. This case applies to the slot filling task.
6 We can substitute the variables with the expected values because the predictive distribution
of a Dirichlet-categorical distribution with pdir (θ |α) and pcat (x |θ) equals p(xN = k|x1:N−1) =
∫
p(xN = k|θ)p(θ |x1:N−1)dθ = αk+∑N−1

i=1 δ(xi=k)∑
k αk+N−1 = pcat (x |θ = Ep(θ |x1:N−1)[θ]).
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α(vt,τ,y) =
⎛

⎝δτ=1

∑

y′∈Y
α(vt−1,ζ,y′)p(y|θy′) + δτ>1α(vt−1,τ−1,y)

⎞

⎠ δ¬excluded(t,τ,y)

(7)

α(vt,ζ,y) =
t∑

τ=1

α(vt,τ,y)Py(xt−τ+1:t ) (8)

To exclude a path that does not follow the training annotations, we define a pred-
icate excluded(t, τ, y) ⇔ ∃τ ′, y′[vt,τ ′,y′ ∈ L ∧ (τ ′, y′) 
= (τ, y)] and use it in (7).
The backward sampling starts with drawing a sample of the label of the last seg-
ment denoted by ỹK . Then, the segment lengths τ̃κ and the segment labels ỹκ−1

are sampled recursively in a backward order for κ = K ,K − 1,K − 2, . . . . Let
b̃K = T and b̃κ−1 = b̃κ − τ̃κ . The sampling repeats until b̃κ−1 = 0 is obtained. The
conditional distributions that the sampler draws from are represented by using the
forward probabilities as a straightforward extension of the backward sampling for
HMMs [2].

After the sampling iterations, we obtain a sample of the latent variables for all
sentences. While Monte Carlo estimation generally takes an average of multiple
samples, we simply use a single sample of segmentation to estimate the posterior
of the model parameters [1]. The computational complexity of the algorithm that
processes one sentence is O(T L2

max ) because the dominant factor Eq. (8) requires
computations for t = 1 to T and τ = 1 to min(Lmax , t), and each computation of
Py(xt−τ+1:t ) involves the calculation of N-gram probability that requires τ iteration.

3.3 Finding the Most Likely Labeled Segmentation

To complete the slot filling task, we need to find the most likely labeled segmentation
regarding the trained PYPSMs. Such segmentation can be obtained by an algorithm
to find the shortest path on the lattice. We define a cost function f : E → R to
make the sum of the costs in a path to be equivalent to the negative log likelihood
of the corresponding labeled segmentation. For an initialization edge in EI , the
cost is the negative log probability of the corresponding label transition, f (vt,ζ,y →
vt+1,1,y′) = − log p(y′|θy). No cost is imposed to cross a continuation edge in EC ,
i.e., f (vt,τ,y → vt+1,τ+1,y) = 0. For a termination edge in ET , the cost is the negative
log probability of the phrase in the current segment, which is calculated by using
a PYPSM, f (vt,τ,y → vt,ζ,y) = − logPy(x(t−τ+1):t ). Under this definition of the
cost function, the shortest path that minimizes the sum of the costs is guaranteed to
correspond to the labeled segmentation that maximizes Eq. (1).
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4 Experiment

4.1 Datasets

Weuse two datasets calledDSTC corpus andweather corpus to evaluate the proposed
methods. The DSTC corpus is a collection of English utterances for restaurant search
provided at the dialog state tracking challenge 3 [5]. We extracted the first utterance
in each dialog session, which typically describes the preference of restaurant. The
sentences that contain no slot information are excluded. The corpus consists of 1,441
sentences with five possible slot types, area, food, price range, type, and children
allowed. We manually identified the substring that expresses the slot value if the slot
value does not match with any substring in the sentence.

The weather corpus is an in-house dataset of Japanese utterances that ask about
the weather (for example, “Tell me the amount of precipitation in Tokyo tomorrow.”
in Japanese). The utterances are collected from users who accessed to a prototype
dialog system that can reply about weather information. We manually annotated slot
information to all the utterance for three slot types, when, where, and what. The
weather corpus consists of 1,442 sentences.

For each dataset, we splitted the set of sentences into evaluation (90%) and valida-
tion (10%) subsets for hyperparameter search. From the evaluation set, we organized
train/test subsets in a 10-fold cross validation manner.

4.2 Settings

The proposed method has two variants: PYPSM presented in Section 3, and NGSM
that uses n-gram slot models instead of PYPSMs. By using the validation set, hyper-
parameter search is conducted for deciding the PYCRP parameters α, β, the number
of non-slot labels |U |, and the context length in N-gram N , for each dataset. The best
configuration was α = 1.0, β = 0.1, |U | = 3, and N = 4 for the DSTC dataset and
α = 1.0, β = 0.1, |U | = 5, and N = 3 for weather dataset. The Gibbs sampling and
Viterbi decoding are applied to both method for training and inference.We compared
the accuracy of the proposed method with the following existing methods:

• BiLSTM-CRF Neural network proposed in [10] with word and character embed-
dings and bidirectional LSTM. We set the hidden dimension of LSTM to 128 and
the number of LSTM layers to 2 based on the hyperparameter search.

• HMM Hidden Markov model, which is a generative model based on sequence
labeling formulation with IOB2 tagging scheme. The HMM is trained in a fully
supervised manner by associating the sequence labels to the hidden states.
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Fig. 4 Accuracy of slot estimation in DSTC corpus (Left) and weather corpus (Right)

We implemented the proposed method in Java and the BiLSTM-CRF in Python with
Anago library.7 We set Lmax = 32. We treat a word as a unit of token for the DSTC
corpus and a character as a token for the weather corpus. This is because Japanese
sentences do not contain whitespace letters that indicate word boundaries. The n-
gram models in the proposed method (NGSM and PYPSM) are based on characters
including the whitespace letters for both datasets.

We calculated the slot estimation accuracy with 10-fold cross validation. The
accuracy is defined as the ratio of the number of utterances that have the exactly
correct slot estimation against the number of all test utterances. For the experiment on
incomplete annotation,we simulate themissing annotation by dropping the annotated
slot information randomly in various missing ratio from 0.0 (complete annotation)
to 0.7 (highly incomplete annotation).

4.3 Results

Figure 4 shows the estimation accuracy. The horizontal axis indicates the missing
ratio of annotation and the vertical axis indicates the averaged accuracy of the 10-
fold cross validation. The accuracy of BiLSTM-CRF is the highest among all the
methods when the missing rate is low. However, the performance of BiLSTM-CRF
apparently degrades as themissing rate is higher. The generativemodels including the
proposedmethod andHMMseem to bemore tolerant against themissing annotation.
Comparedwith theHMM, the proposedmethod significantly improves the estimation
performance. This implies that the proposed segmentation-based formulation ismore
suitable than sequence labeling formulation for slot filling tasks.

Another advantage of the proposed method is the interpretability of model param-
eters. Figure 5 is a diagram representing the PYPSM model parameters we obtained
on DSTC dataset with missing ratio 0.0 (annotated completely). The left side of the
figure represents the transition parameters among labels. The values in the nodes

7 https://github.com/Hironsan/anago.

https://github.com/Hironsan/anago
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Fig. 5 Parameters of PYPSM obtained by training on DSTC dataset with missing ratio 0.0. (Left)
Transition parameters among slot labels and non-slot labels (ns0, . . . , ns4). The numbers by the
edges are the transition probability p(yk |yk−1). The numbers in the circles are the initial label
probability p(y1). (Right) Substrings recognized as a non-slot part in the test dataset. The numbers
in parentheses are the frequency

indicate the initial probability for the corresponding label. The right side of the
figure shows the list of top phrases assigned to the non-slot labels in the test data
(the parenthesized numbers are the frequency).We can reconstruct typical utterances
by examining this diagram. For example, one of the likely paths is ns2 (e.g., “I’m
looking for a”), food (e.g., “Italian”), type (e.g., “restaurant”), ns1 (e.g., “in the”),
area (e.g., “new chesterton”), ns4 (e.g., area).

The robustness of the proposed method against a high missing ratio can be
observed also in the invariance of the extracted pattern. A diagram for the model
trained on DSTC with missing ratio 0.7 is shown in Fig. 6. The structure of the
transition pattern resembles the diagram in Fig. 5, and the path we observed in Fig.
5 can be found in this diagram too. This indicates that the proposed model is capable
of capturing the structural pattern of utterances from the partial annotations.

Table 1 shows examples of the prediction by models trained on the DSTC dataset
with missing ratio 0.7. For the first example, the BiLSTM-CRF failed to detect the
area slot even though it is a typical way to mention area information. We believe the
area slot could be detected if the BiLSTM-CRF is trained on the perfectly annotated
dataset. Contrarily, the PYPSM could detect the slot information probably because
of the robust modeling of the non-slot segments.

The second example is the case that demonstrates the effectiveness of explicit
probabilistic modeling on the phrases. The PYPSM is less likely to misrecognize
phrases that are observed during the training because of the “memorizing” property
[4]. On the other hand, on imperfect training data, discriminative models tend to be
uncertain about the label for the phrase “chinese” should be food or not.
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Fig. 6 Parameters of PYPSM obtained by training on DSTC dataset with missing ratio 0.7

Table 1 Examples of the prediction by models trained on the DSTC dataset with missing ratio 0.7.
Asterisk (*) indicates misrecognition

Utterance BiLSTM-CRF PYPSM

Expensive restaurant in the
trumington area

pricerange: expensive, pricerange: expensive,

type: restaurant, type: restaurant,
area: (None) (*) area: trumington

I’m looking for a chinese and
it should be in the cherry
hinton area

type: chinese (*), food: chinese,

area: cherry hinton area: cherry hinton

I want to find a chinese take
away

food: chinese take away food: chinese (*),

food: take away (*)

The third example shows the downside of thememorizing property of the proposed
method. While “chinese take away” is another genre of food than “chinese”, the
PYPSM discretely assigns high probability to “chinese” and recognizes it as an
independent slot value. For this example, “take away” is also recognized as another
food slot value. This kind of generalization error might be mitigated by introducing
a constraint that prevents such a split recognition of the same slot values.
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5 Conclusion

In this study, we proposed a new formulation of slot filling tasks that is based on an
inference of the most likely labeled segmentation. The proposed method considers
the probabilities of both slot segments and non-slot segments by a Bayesian model
that produces the power-law distribution of phrases. The experimental results show
that the proposed method is more accurate than neural network methods when the
missing ratio of annotation is high. We empirically showed the proposed model
has good interpretability thanks to the formulation based on segment-wise pattern
recognition. Future work includes the exploration of more accurate models that are
based on the segmentation-based formulation.
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