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Gut Microbes and Its Physiological Role
in Fish: Adaptive Strategies for Climatic
Variability

Kavita Kumari and Sangeetha M. Nair

Abstract

The gut microbes of fish encompass various effects on the host such as the size of
the fish, their metabolism, food, feeding behavior, and immunity. The process is
mediated through interaction between microbes and the gut-brain axis. In fish
larvae, the microbes are introduced from the egg, surrounding water, and their
first feed. However, there is species-specific variation in the colonization of
microbial communities. The microbial composition of the gut varies; some
dominant microbes are Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria,
and Fusobacteria. The various environmental, ecological, and evolutionary
factors affect intestinal microbial communities and their functions. Various
intrinsic factors also influence the gut microbes such as phylogeny, sexual state,
life stages, trophic status, and genetics. The gut microbial community modulates
the host’s physiology and the host provides nutrients to the gut microbes. The gut
microbial activity depends on the composition and the diversity of gut microbes.
The feeding, digestion, and metabolism of the host can be affected by gut
microbes. In addition, it also influences stress response, reproduction, develop-
ment, and immune response. Food and feeding alteration can change the gut
microbial community. The inclusion of different proteins, lipids, probiotics,
prebiotics, etc. can alter the gut microbes and enhance the health status.
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1 Introduction

Microbes are different microorganisms, present in the environment. Microbiome
refers to the characteristic microbial community inhabiting a well-defined habitat
with distinct physicochemical parameters (Whipps et al. 1988). Microbes are ubiq-
uitous and present across all life-sustaining habitats on Earth; the differences exist in
the varied environment which carries different microbial communities. Microbes are
not only present in these external environments, but they are also found to be
associated with many eukaryotic hosts (Sullam et al. 2012). The impact of microbial
communities on the health of various types of the host such as plants, fish, and
terrestrial animals including humans has gained wide attention nowadays (Brugman
et al. 2018). The microbiota can offer various benefits to the host by supplementing
adequate nutrients, inducing host immune development and metabolism, and
protecting the host against invading pathogens (Brugman et al. 2018). Vertebrates’
gastrointestinal (GI) tract is a composite microbial ecosystem containing a complex
and dynamic association of microorganisms, which have crucial roles in the nutrition
and health of the host (Wang et al. 2018). The various environmental factors
influence the microbial community composition; at the same time microbes also
influence the host environment (Bletz et al. 2017).

2 Gut Microbiota

Gut microbiomes are the microbes present in the intestine. The gut microbiomes of
fish encompass various effects on the host such as the overall size of fish, their
metabolism, food and feeding behavior, and their immunity (Yukgehnaish et al.
2020). The gut microbes are dynamic. These microbiomes are either transient or
persistent, depending on the duration they live in the gut microbiota (Prasanth et al.
2018). The persistent microbiota lives in association with the gut wall and has a
symbiont relationship with the host (Zhang et al. 2016). The transient microbiota
comes through external sources such as food and does not live for a longer period in
the stomach (Yukgehnaish et al. 2020).

3 Origin and Sources of Gut Microbes

Various factors control the gut microbial content of an infant. In fishes, the origin of
gut microbes is still in the infant stage. In humans, it has been suggested that the gut
microbes might have been introduced through the birth canal, pass through the oral
cavity to the placenta, or subsequently introduced through the gastrointestinal tract



in infants during breastfeeding (Prince et al. 2014; Gueimonde et al. 2006). In fish
larvae, the entrance of microbes occurs from the egg, the adjacent water, and their
initial feed (Egerton et al. 2018). However, there is species-specific variation in the
colonization of microbial communities (Egerton et al. 2018). The species-specific
variation in the microbial community in the larvae represents the variation of egg
glycoprotein (Larsen 2014). The variation of these microbes depends on the varia-
tion of the surrounding environment from where the microbes are being attached to
the egg surface. The chorion-attached bacteria subsequently colonize the gut of the
newly developed larvae (Larsen 2014). The colonization of bacteria further
diversifies when the larvae take the water from the environment (Lauzon et al.
2010). The feeding habit of fish also influences their microbial diversity and changes
as the larvae develop into fry, fingerling, and adults (Ringø and Birkbeck 1999;
Egerton et al. 2018). It has been observed that this microbial population becomes
stable within the first 50 days in various species (Larsen 2014).
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4 Diversity of Gut Microbes

The variability is one of the remarkable features of GI microbiota in fishes. It is not
yet fully understood the complex process involved in the regulations of these
bacterial populations in the GI tract of fish. Few studies have been focused on fishes
such as Rainbow trout, Common carp, Atlantic cod, Atlantic salmon, Grass carp, and
Zebrafish (Wang et al. 2018). The microbial composition of the gut varies although
some dominant microbes are Actinobacteria, Bacteroidetes, Firmicutes,
Fusobacteria, and Proteobacteria (Eichmiller et al. 2016). The various environmen-
tal, ecological, and evolutionary factors affect intestinal microbial communities and
their functions. Various intrinsic factors also influence the gut microbes such as
phylogeny, sexual state, life stage, trophic status, and genetics (Egerton et al. 2018).
Closely related mammals having similar diets are found to harbor similar gut
microbes (Sullam et al. 2012). The diversity of gut microbes also varies between
fish species and within fish species. The composition of gut bacteria in fishes can be
determined by the habitat, trophic level, and possibly host phylogeny shape (Sullam
et al. 2012). Various research proved that the microbial flora composition varies
(Table 1) in different fish species owing to their nutrition, intestinal microenviron-
ment, age, geography, environmental factors, stress, etc. (Verschuere et al. 2000;
Skrodenyte-Arbaciauskiene et al. 2008). The variation of gut microbiota depends up
on the type of fish species and environmental conditions such as developmental
stage of fish, feeding regime, seasonal variation, temperature, pH, nutrients intake,
captive sate, and sexual state which allows the host to perform different functions
and enables the host to thrive in various conditions (Hansen and Olafsen 1999;
Dhanasiri et al. 2011; Hovda et al. 2012; Miyake et al. 2015; Apajalahti 2005;
Cordero et al. 2015). The most influencing factor to affect the diversity of fish is
trophic status, habitat of the fish, and host ancestry (Sullam et al. 2012).
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Table 1 Microbial diversity in different fish species

Fish species Dominant bacteria References

Freshwater

Salmo trutta fario Aeromonas, Buttiauxella agrestis, Budvicia
aquatica, Erwinia persicinus,
Obesumbacterium proteus

Skrodenyte-
Arbaciauskiene
et al. (2006)

Onchorhyncus mykiss Proteobacteria, Actinobacteria,
Fusobacteria

Navarrete et al.
(2012)

Bacteroidetes, Fusobacteria, Proteobacteria,
Firmicutes, and Actinobacteria

Michl et al. (2017)

Tenericutes, Firmicutes, Proteobacteria,
Bacteroidetes

Lyons et al.
(2017)

Silurus meridionalis Tenericutes, Fusobacteria, Proteobacteria,
and Bacteroidetes

Zhang et al.
(2018)

Aristichthys nobilis Firmicutes, Methylocaldum, and Bacillus Zeng et al. (2020)

Hypophthalmichthys
molitrix

Cyanobacteria, Proteobacteria,
Actinobacteria, Bacteroidetes

Ye et al. (2014)

Anaerospora Zeng et al. (2020)

Danio rerio Aeromonas, Pseudomonas Bates et al. (2006)

Lactobacillus plantarum, Lactobacillus
fermentum

Russo et al. (2015)

Planctomycetes, Fusobacteria,
Verrucomicrobia

Koo et al. (2017)

Ctenopharyngodon idella Proteobacteria, Firmicutes, Actinobacteria Han et al. (2010)

Proteobacteria and Cyanobacteria Zeng et al. (2020)

Gambusia affinis Proteobacteria and Flavobacteria Carlson et al.
(2017)

Carassius auratus Fusobacteria, Proteobacteria, Bacteriodetes Li et al. (2017)

Firmicutes, Methylocaldum, and Bacillus Zeng et al. (2020)

Silurus asotus Aeromonas, Flavobacterium, Bacteroides,
Pseudomonas

Di Maiuta et al.
(2013)

Lagodon rhomboides Clostridium, Mycoplasma, Photobacterium Ransom (2008)

Oreochromis niloticus Firmicutes, Actinobacteria, Proteobacteria Zhai et al. (2017)

Morone saxatilis Aeromonas, Pseudomonas, Vibrio MacFarlane et al.
(1986)

Paralichthys lethostigma Clostridium, Photobacterium Givens et al.
(2015)

Salmo salar Acinetobacter junii, Mycoplasma,
Lactobacillus

Holben et al.
(2002)

Escherichia, Propionibacterium Green et al. (2013)

Acipenser baerii Cetobacterium somerae Geraylou et al.
(2013)

Morone saxatilis Aeromonas, Pseudomonas, Vibrio MacFarlane et al.
(1986)

Ictalurus punctatus Bacteroidetes, Firmicutes, Fusobacteria,
Proteobacteria

Gatesoupe et al.
(2016)

Astyanax mexicanus Gammaproteobacteria, Firmicutes,
Bacteroidetes, and Betaproteobacteria

Ornelas-García
et al. (2018)
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Table 1 (continued)

Fish species Dominant bacteria References

Marine water

Odax pullus Clostridium, Eubacterium desmolans,
Papillibacter

Clements et al.
(2007)

Sardinella longiceps Achromobacter, Vibrio, Pseudomonas Karthiayani and
Mahadeva Iyer
(1967)

Scomber scombrus Psychrobacter, Vibrio, Shewanella Svanevik and
Lunestad (2011)

Trematomus bernacchii, Proteobacteria, Actinobacteria, Firmicutes,
Thermi, Bacteroidetes Tenericutes

Yan et al. (2016)

Gadus morhua Aeromonas, Cytophaga, Pseudomonas,
Lactobacillus

Strøm and Ringø
(1993)

Gillichthys mirabilis Mycoplasma Bano et al. (2007)

Clupea harengus Flavobacterium, Pseudomonas Hansen et al.
(1992)

Psychrobacter, Alteromonas Curson et al.
(2010)

Syngnathus scovelli Proteobacteria Ransom (2008)

Chanos chanos Vibrio, Pseudomonas Fernandez et al.
(1996)

Dicentrarchus labrax Moraxella, Vibrio, Acinetobacter Gatesoupe et al.
(1997)

Proteobacteria, Bacteroidetes,
Actinobacteria, Firmicutes

Gajardo et al.
(2017)

Sparus aurata Pseudomonas Floris et al. (2013)

Hippoglossus hippoglossus Photobacterium phosphoreum (adults) Verner-Jeffreys
et al. (2003)

Pagrus major Cytophaga, Aeromonas, Pseudomonas,
Vibrio

Muroga et al.
(1987)

Hermosilla azurea Faecalibacterium, Enterovibrio,
Bacteroides, Desulfovibrio

Fidopiastis et al.
(2006)

Solea solea Moraxella, Pseudomonas, Flavobacterium Campbell and
Buswell (1983)

Scophthalmus maximus Vibrio alginolyticus, Vibrio anguillarum,
Vibrio harveyii, Pseudomonas,
Acinetobacter

Munro et al.
(1994)

Vibrio, Acinetobacter, Moraxello Gatesoupe et al.
(1997)

Sebastes schlegeli Acinetobacter, V. alginolyticus,
V. anguillarum, Pseudomonas

Tanasomwang
and Muroga
(1989)

Acanthopagrus schlegeli Aeromonas, Pseudomonas, Vibrio Muroga et al.
(1987)

Cynoscion nebulosus Escherichia coli Ransom (2008)
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Table 1 (continued)

Fish species Dominant bacteria References

Gadus morhua Pseudoalteromonas, Microbacterium,
Roseobacter

Reid et al. (2009),
Aschfalk and
Muller (2002)

Clostridium perfringens, Vibrio sp. Star et al. (2013)

Sciaenops ocellatus Cetobacterium, Vibrio, Photobacterium Ransom (2008),
Givens et al.
(2015)

Paralichthys lethostigma Clostridium, Photobacterium Ransom (2008),
Givens et al.
(2015)

Acanthurus sp. Epulopiscium Miyake et al.
(2015)

Pomatomus saltatrix Vibrio sp., Pseudomonas Newman et al.
(1972)

Notothenia coriiceps,
Chaenocephalus aceratus

Vibrio sp., Photobacterium Ward et al. (2009)

Solea senegalensis Vibrio ichthyoenteri Martin-Antonio
et al. (2007)

Kyphosus sydneyanus Clostridium sp. Moran et al.
(2005)

Salmo trutta trutta Aeromonas sobria, Pseudomonas Skrodenyte-
Arbačiauskiene
et al. (2008)

Fugu niphobles Flavobacterium, Vibrio, Pseudomonas Sugita et al.
(1989)

Plecoglossus altivelis Gammaproteobacteria,
Alphaproteobacteria, Firmicutes, and
Bacteroides

Nie et al. (2017)

Andamia tetradactylus Spirochaetes and Tenericutes Yoshida et al.
(2022)

Reef associated

Acanthurus nigricans,
Chlorurus sordidus,
Lutjanus bohar

Proteobacterium, Vibrio ponticus, Vibrio
fortis

Smriga et al.
(2010)

Aplodactylus arctidens Clostridium, Eubacterium desmolans,
Papillibacter

Clements et al.
(2007)

Epinephelus coioides Pseudomonas, Bacillus, Acinetobacter,
Vibrio

Sun et al. (2009)

Pomacentrus moluccensis Vibrio harveyi, Shewanella,
Endozoicomonas

Parris et al. (2016)

P. amboinensis

P. wardii

P. bankanensis

P. nagasakiensis

P. chrysurus

Siganus fuscescens Proteobacteria, Cyanobacteria, and
Firmicutes

Nielsen et al.
(2017)
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4.1 Trophic Level

The gut microbes of the fishes change with the trophic status of the fish and correlate
it with the availability of natural food and their feeding behavior (Liu et al. 2016).
The understanding of fish gut microbiota and their role in the digestion of food is
vital (Wang et al. 2018). This will help to accelerate the digestion and health of fish
for the culture of various fish species. Various studies have been done to find the gut
microbial composition of fish with different feeding habits (Givens et al. 2015). It
has been found that the gut microbial content of herbivores is distinct from carnivo-
rous fish (Liu et al. 2016). The planktivorous and benthivorous showed unique
microbial content for different fish species in their gut (Uchii et al. 2006). However,
the bacterial diversity is found lesser in carnivores, and gradually increases in
omnivores and herbivores (Wang et al. 2018). The gut microbiota varies with species
belonging to the same trophic level as observed in herbivorous fishes like silver carp,
bighead, and grass carp (Li et al. 2018).

The digestive tract of herbivorous fish harbors anaerobic bacteria of the phylum
Firmicutes and class Clostridia (Mouchet et al. 2012). The dominance of Firmicutes
in the gastrointestinal tract has been observed in many fish species (Clements et al.
2007; Miyake et al. 2015). The microbes repeatedly occur in omnivores,
planktivores, and carnivores are Aeromonas, Pseudomonas, and Vibrionaceae
(Egerton et al. 2018). The microbes such as Pseudomonas spp., Aeromonas, and
Photobacterium spp. produce digestive enzymes such as proteases and chitinases
which help in digestion (MacDonald et al. 1986; Itoi et al. 2006). However, the
diversity of these microbes varies with habitat, season, feeding and sex, and age.

4.2 Genetic and Sex of the Host

The composition of microbes varies within and between species. The interspecies
variation in gut microbial diversity has been observed for snout bream, bighead carp,
grass carp, and silver carp (Li et al. 2018). The variation in gut microbes between sex
has also been observed for stickleback (Gasterosteus aculeatus), which might be due
to sex-specific microbial interaction of feed variation (Bolnick et al. 2014). But only
a few studies prevail in the area and its mechanism is poorly understood.

However, among the genetics and environment, the environment has more
influence on the diet composition of fishes. It has been observed that different fish
species (Channel catfish and blue catfish) even in the same environmental condition
may harbor the same gut microbial content (Lokesh et al. 2018).

4.3 Age of the Fish

The microbial diversity changes with the age of fish. The reason might be due to the
diet variation and hormonal changes in different life stages of fish (Cantas et al.
2012). The gut microbial diversity is increased with age in catfishes (Zhang et al.



2018). In Atlantic salmon also gut microbes vary between embryo and hatchlings,
and hatchings exhibited more microbial diversity (Lokesh et al. 2018).
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4.4 Season

The diversity and abundance of gut microbes change with the season (Hagi et al.
2004; Sullam et al. 2012). The variation might be for a short duration or a longer
period. The seasonal variation in gut microbes might have influenced due to temper-
ature variation or due to changes in food composition in the gut (Al-Harbi and Uddin
2004). The dominant taxa vary with season (Hagi et al. 2004), and the count of total
bacteria peaks during summer and autumn (Macmillan and Santucci 1990; Al-Harbi
and Uddin 2004). However Neuman et al. (2016) could not find any relationship
between season and change in gut microbial diversity.

4.5 Habitat

The change in habitat affects the gut microbial content. The salinity of water and
temperature influence the microbial community. In black molly dominant microbes
vary as the salinity increases, whereas in rainbow trout temperature changes the
dominant microbes (Schmidt et al. 2015; Huyben et al. 2018). It has been observed
that the microbial diversity varies between freshwater and marine habitat fishes
(Vatsos 2016). Vibrio is the common microbes occurring in marine habitat fishes
whereas in the freshwater fishes Aeromonas and Pseudomonas dominate (Vatsos
2016).

Various pollutants such as pesticides and heavy metals influence the gut micro-
bial composition. In common carp and zebrafish, it has been observed that polysty-
rene microparticles and waterborne copper influence the microbes associated with
the immunity (Meng et al. 2018; Jin et al. 2018).

In the captive state also, the gut microbes depend on many factors such as food
ingredients, environment, and social behavior (Egerton et al. 2018). The altered gut
microbiota in captive breeding has been reported in many freshwater and marine fish
species (Bucio et al. 2006; Nelson et al. 2013). Under captive management, various
factors such as stocking density, stress, feed, and use of antibiotics (Verschuere et al.
2000; Navarrete et al. 2008; Clements et al. 2014) can alter the gut microbiota. In the
zebrafish model, it has been shown that there are changes in gut microbiota in
captive and lab-reared fish; however, some microbes remained the same depending
on their historical correlation (Roeselers et al. 2011). Various others also reported
that although there are habitat-specific changes, there always exists some core
microbiota (Roeselers et al. 2011).
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5 Physiological Roles of Gut Microbiota

The gut microbial community modulates the host’s physiology, and the host
provides nutrients for the gut microbes (Rosenbaum et al. 2015). However, the gut
microbial activity depends on the composition and the diversity of gut microbes
(Vigneri 2014). The host physiology which can be affected by gut microbes is
feeding, digestion, and metabolism; it also influences stress response, reproduction,
growth, and immunity (Butt and Volkoff 2019).

5.1 Influence of Microbiota on Feeding and Metabolism

The gut microbes have a major role in the regulation of feeding, digestive process,
and metabolism (Duca et al. 2012). In fishes, limited studies have been conducted to
identify the effect of microbes on feeding and metabolism (Butt and Volkoff 2019).
These microbes secrete short-chain fatty acid, indoles and butyrate, etc. in the form
of metabolites and affect digestion and metabolism (Butt and Volkoff 2019). These
microbiotas also influence the gut neurotransmitter such as serotonin, dopamine,
etc., and affect the function of the gut such as motility, release of enzyme, and
feeding behavior (Yano et al. 2015; Strandwitz 2018). The gut neurotransmitter also
influences the microbes and modifies the discharge of cytokines (Mittal et al. 2017).

Some of the metabolites regulate the cells of the intestine and regulate their
uptake, absorption, etc., and thus affect various metabolism such as adipogenesis
(Bäckhed et al. 2004). The gut microbial release also modulates the secretion of gut
enzymes and thus gut motility (Cani and Knauf 2016). The released microbial
compounds may also circulate to reach the brain or may regulate the release of
appetite-regulating peptides which may stimulate the release of central
neuropeptides (Cussotto et al. 2018).

In fish also some studies have shown the influence of gut microbiota on metabo-
lism. The microbial community can alter the metabolism pathway of carbohydrate,
fat, and protein changes in grass carp (Ni et al. 2013). In zebrafish also it has been
observed that change in gut microbes changes the lipid metabolism (Semova et al.
2012).

5.2 Effect of Gut Microbial Activity on Stress Response

Fishes may get stressed due to many factors such as poor water quality, lack of
oxygen, temperature, and overcrowding. The stress affects the microbial community
composition and changes the gut mucus and adversely affects the nutrient absorption
and immunity of the host (Cantas et al. 2012). This may decrease the feeding rate and
increase the chances of pathogen infection (Sekirov and Finlay 2009) as observed in
goldfish and chinook salmon (Volkoff and Peter 2004; Bernier 2010). The microbes
influence the hypothalamic-pituitary-adrenal (HPA) axis which is subjected to
hormone control behavioral response such as feeding (Sudo 2014).
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5.3 Effect of Gut Microbial Activity on Reproduction

The exact mechanism of gut microbes on reproduction is not clear. Some studies
have shown that gut microbes help in gonadal development and reproduction (Butt
and Volkoff 2019). In larval fish, the supplementation of probiotics improves their
development and gonadal maturation as observed in zebrafish (Avella et al. 2012;
Carnevali et al. 2013). In adult zebrafish and goldfish, the probiotic microbes
improved gonadosomatic indexes (GSI), produced more eggs, higher reproductive
gene expression, and higher reproductive success (Ghosh et al. 2007; Carnevali et al.
2013).

5.4 Effect of Gut Microbial Activity on Development

The gut microbes vary with the developmental stages. It has been found that as the
fish grows their microbial diversity increases in grass carp (Wang et al. 2015). In
Zebrafish the lack of microbes impaired the development of the gastrointestinal tract
and the reversal of microbes may resume the function (Lescak and Milligan-Myhre
2017). The microbes may also influence neuronal development and affect the
movement and feeding and ultimately the development of fish (Phelps et al. 2017).

5.5 Effect of Gut Microbial Activity on Immunity

The gut microbes play a critical role in developing the immune response of the host
fish. The pathogens are defended by the intestinal microbes in host fishes (Kim et al.
2017). These pathogens could not interrupt the gut barrier and could not hamper the
brain and intestine function (Ribet and Cossart 2015). The microbes present in the
gut shows a competitive behavior for space with the pathogen, and they also secrete
the antimicrobial peptides to disrupt the pathogen (Kim et al. 2017). In rainbow
trout, it has been observed that supplementation of beneficial microbes enhances the
immunity of the host (Adel et al. 2017).

6 Adaptive Strategy for Climatic Variability

The gut microbiota is allied with the health condition of fish. These microbes can be
manipulated to enhance the health status of fish. Food and feeding alteration can
change the gut microbial community. The inclusion of different proteins, lipids,
probiotics, and prebiotics can alter the microbes of the gut and enhance health status
(Egerton et al. 2018). The variation in diet and gut microbiota has been reported by
various authors (Delcroix et al. 2015; Zarkasi et al. 2016), and it could be helpful as
an adaptive strategy for climatic variations.
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6.1 Protein

Protein acts as a source of energy in food. At the same time, the inclusion of different
protein diets can also alter the gut microbiota. The type of protein and its quantity
can affect the gut microbial structure (Desai et al. 2012; Geurden et al. 2014; Zarkasi
et al. 2016). Peptides and glycopeptides produced after protein hydrolysis can make
changes in the gut diversity (Swiatecka et al. 2012), and the supply of direct protein
hydrolysates can act as a substrate for microbes and enhance their growth (Delcroix
et al. 2015). The protein hydrolysate also helps to combat pathogenic bacteria,
certain peptides act as antimicrobials whereas some amino acids regulate the
immune pathway and synthesis of antibodies (Kiron 2012; Sila et al. 2014; Egerton
et al. 2018). Thus they assist to improve the health status of fish.

6.2 Lipids

Lipid is also the main energy basis in fish. It has been found that increasing the lipid
content enhances the gut microbial diversity (Lesel et al. 1989). Variation of lipid
diet alters the microbial diversity in arctic char (Ringø et al. 2002). It has been shown
that change of fish oil to plant-based oil improves the gut microbial community and
immunity of fish against pathogens (Lødemel et al. 2001; Ringø et al. 2002). Various
microbes isolated from the gut of fishes and invertebrates such as Shewanella sp. and
Vibrio sp. produce polyunsaturated fatty acids (Monroig et al. 2013). These
microbes can act as a potential probiotic (Egerton et al. 2018).

6.3 Probiotics

Probiotics are live microorganisms that supply health benefits to the host. These
microorganisms are used as a substitute for antibiotics in aquaculture (Abelli et al.
2009). Among microorganisms, the gram-negative bacteria, gram-positive bacteria,
bacteriophages, and yeasts could be used as probiotics (Akhter et al. 2015). Bacillus
and Lactobacillus are the most recurrently used probiotics in aquaculture (Merrifield
and Carnevali 2014). These microbes help to increase the growth rate and modulate
the immune reaction of the host (Lobo et al. 2014; Cordero et al. 2015). In the
aquaculture sector, these probiotics help to improve the health and nutritional status
and reduce the cost (El-Haroun et al. 2006). However it is difficult to process, store,
and feed the probiotics in aquaculture (Merrifield et al. 2010).

6.4 Prebiotic

Prebiotics are the substrates used to confer a health benefit in host fishes in a
selective mode (Cremon et al. 2018). The commonly used prebiotics are
fructooligosaccharides, mannan-oligosaccharides, inulin, and



trans-galactooligosaccharides (Ringø et al. 2016). The prebiotic also helps to
improve the growth, feed conversion, nutrient uptake, and immunity of fish
(Bongers and van den Heuvel 2003; Torrecillas et al. 2007; Adel et al. 2016).
However, the success of prebiotic administration depends on the age of the fish,
species of fish culture condition, and dose of prebiotics (Torrecillas et al. 2014).
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7 Next-Generation Sequencing Study of Gut Microbes

A detailed understanding between intestinal microbiota and their host fish can depict
the function and dysfunction of the host organism. Conventional culture-dependent
studies on fish intestinal microbiota were conducted over the last decades (Cahill
1990). However, these microbiotas only indicate <0.1% of the total microbial
community in the intestine of host fishes with low cultivability (Romero and
Navarrete 2006; Navarrete et al. 2009; Zhou et al. 2014; Ghanbari et al. 2015).
With the advancement in DNA sequencing and bioinformatics, extensive molecular
ecology-based methods on the 16S and 23S rRNA genes have become more
frequently used recently.

The next-generation sequencing (NGS) technology based on the 16S and 23S
rRNA and the development of various bioinformatics software has advanced the
knowledge of these microbial taxa. More efficient and budget-friendly approaches to
NGS technologies have gained wide attention for studying the high dense gut
microbiota composition and its genetic potential (Ghanbari et al. 2015). The
emerging rapid and reliable NGS techniques can enrich the knowledge of the fish
gut microbial community with promising results.

8 Conclusion

Fish gut microbes affect the physiology, immunity, and growth of fish. The gut
microbial composition of fish varies in different fish species and within fish species
differs in different life stages. The various intrinsic and extrinsic factors also
influence the gut microbes and their activity. Fish gut microbial composition differed
depending on species, sex, habitat, and feeding behavior. The gut microbial manip-
ulation through prebiotics has the potential to promote the growth and health
condition of fish.
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