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1 Introduction 

Humans and machines, including computers, may now communicate more quickly 
because of recent electronics and sensor technology improvements. For IoT and 
universal computing, this human–machine interface (HMI) system will become 
increasingly important [1]. In most circumstances, communication begins when a 
machine (or an object) receives and interprets a human’s purpose (or the user). As a 
result, the HMI requires an input device to record the user’s intent. 

Human gestures provide for a more natural approach to HMI input. Human body 
language is an intuitive communication technique for conveying, exchanging, inter-
preting, and understanding people’s thoughts, intentions, and emotions. As a result, 
physical language emphasizes or complements spoken language. It is a language 
in and of itself. Thus, human emotions, such as hand gestures, should be included 
for HMI input [2]. Gesture-based interactions are one of the most comfortable and 
straightforward ways to communicate. On the other hand, gesture recognition has 
various challenges before becoming widely recognized as an HMI input.
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Human hand motions are substantially less diversified than the tasks required by 
the HMI, which poses a considerable challenge. The functions of an (HMI) are more 
varied and complex. In the case of smartphones, this diversification tendency may 
be seen. Only a decade ago, a variety of handheld electronic devices, such as mp3 
players, cell phones, and calculators, coexisted to meet various human needs. On the 
other hand, almost all these tasks have now converged into a single mobile device: the 
smartphone. On the other hand, all human intentions are only conveyed by swiping 
or tapping fingers on a smartphone’s touch screen. 

When it comes to HMI inputs, one prevalent approach is gesture-based interac-
tion [3]. There are two hand gesture recognition techniques: vision-based recognition 
(VBR) and sensor-based recognition (SBR). There have been studies in gesture recog-
nition, but most rely on computer vision. The efficiency of vision-based approaches or 
the operation of such devices is highly dependent on lighting conditions and camera-
facing angles. It is inconvenient, and such limitations often limit the technology’s 
usage in specific environments or for certain users. 

Sensors include electromyography, touch, strain gages, flex, inertial, and ultra-
sonic sensors [4]. The most often utilized sensors are inertial sensors [5, 6]. Sensors 
with an accelerometer, gyroscopes, and magnetometers are inertial sensors. 

Sensor-fusion algorithms frequently combine many sensors. For example, a glove 
with several wearable sensors has been claimed to monitor hand motions [7]. A 3D 
printer was used to create the glove housing, which includes flex sensors (on fingers), 
pressure sensors (at fingertips), and an inertial sensor (on the back of one’s hand). 

Inertial sensors are used to track hand motions in numerous sensor-fusion algo-
rithms. Additional hand data, such as finger snapping, hand grabbing, or finger-
spelling, is detected by other sensors, such as EMG. [8, 9]. Inertial and EMG sensors 
are a popular combination. [8–13]. The inertial sensor determines the hand location, 
while the EMG sensors offer additional information to comprehend complex finger 
or hand gestures fully. Instead of EMG sensors, strain gages, tilt, and even vision 
sensors can be used. 

As a result, the amount of sensor data generated by these advanced gesture detec-
tion systems increases. Machine learning is being used to deal with the increasing 
data. Sensors are introduced to a variety of machine learning approaches. A sensor 
device processes a linear discriminant analysis or a support vector machine classifier. 
[9, 14]. In another study, a feedforward neural network (FNN) is used for digitizing, 
coding, and interpreting signals from a MEMS accelerometer [15]. 

In the meantime, inertial sensor-only techniques have been developed. This 
inertial-sensor-only technique may improve portability and mobility while mini-
mizing processing needs in cases involving numerous sensors or complicated algo-
rithms. The handwriting was rebuilt using the phone’s gyroscope and accelerometer 
after users used a smartphone as a pen to write words. [16]. English and Chinese 
characters, as well as emojis, were written in handwriting. Kinematics based on iner-
tial sensor inputs were employed in other studies to track the movement of hands 
and arms. [17–19]. Recognizing head or foot motions has also been described [20, 
21], but they have not been modified for hand gesture identification.
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Inertial sensors are unquestionably accurate and fast as HMI input devices. 
However, these two objectives are incompatible because increased accuracy typi-
cally increases computing load, resulting in sluggish speed. Furthermore, user move-
ments should be uncomplicated. Inertial-sensor-based gesture recognition systems, 
yet again, have substantial drawbacks. One limitation is the accumulation of iner-
tial sensor noise, which creates bias or drift in the system output [22]. The second 
disadvantage is that MEMS gyroscope and accelerometer signals can be jumbled 
[23]. 

From simple constructions (such as moving average filters) to the recently created 
outcomes, signal processing of inertial sensor outputs has been intensively researched 
to overcome these challenges (such as machine learning). Two recent approaches are 
digitizing sensor data to form codes and generating statistical measurements of the 
signs to describe their patterns. One method identified seven hand motions using a 
three-axis MEMS accelerometer. [24]. Hopfield network labels positive and negative 
symptoms on accelerometer signals, digitized, and restored. 

These accelerometer-only systems are good at capturing linear gestures (such 
as up/down or left/proper patterns) but not so good at capturing circular motions 
(e.g., clockwise rotation or hand waving). Recognizing linear and rotational gestures 
has been suggested using accelerometers and gyroscopes. Using accelerometer and 
gyroscope sensors mounted on the forearms, the researchers used the Markov chain 
method to track the movement of the arms. [25]. Continuous hand gestures (CHGs), a 
real-time gesture identification method, were disclosed in another recent work paper. 
[26]. The approach begins by defining six basic gestures, determining their statistical 
measurements, such as means and standard deviations (STDs), then generating a 
database for each motion’s actions. 

These accelerometer-gyroscope combos are highly accurate, but they are neither 
portable nor inexpensive instruments. If we want to reduce the system’s size and use 
and give numerous functions with a limited amount of hand motions, we need to 
find a solution. This research aimed to create a small gesture detection device and 
a modal HMI input device that could respond accurately and quickly to the user’s 
intention to solve these issues. 

The accelerometer, gyroscope, accelerometer-gyroscope fusion, ultrasonic, and 
combination accelerometer-gyroscope with electromyography approaches are used 
in reporting recent activities using sensor-based gestures as the HMI input. Rotational 
motions cannot be detected with merely an accelerometer. As a result, this paper 
opts for an accelerometer-gyroscope fusion system in the hopes of superior rotation 
sensing (than the accelerometer-only systems). We believe that the originality of this 
project is critical for portable HMI input devices, and it is demonstrated using an 
Arduino Nano 33 BLE board, a very light embedded device. It is one of the most 
suitable embedded devices for the project, with a weight of 5 g, a length of 45 mm, 
and a width of 18 mm. Although the Arduino Nano is one of the most portable and 
lightweight, it also poses a challenge, i.e., memory constraints. Due to its small size, 
it has only 1 MB of flash memory and 256 KB of static RAM, making working on 
it very difficult.
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2 Design of the Gesture Recognition System 

Our proposed system is set up to implement several essential features. First, we use a 
collection of simple hand motions, each with predefined functions for different appli-
cation applications. Our system will be aware of the program that is now running. As 
a result, the procedure carried out by each motion can vary depending on the appli-
cation, allowing for multifunction capabilities while reducing gesture complexity, 
resulting in a highly diverse HMI input device. 

The second feature is that the complete hardware used is an Arduino Nano 33 
BLE which is lightweight and quickly fitted on a stick. The Arduino Nano 33 BLE 
consists of an inbuilt IMU with one miniature three-axis gyroscope and one miniature 
three-axis accelerometer. The fusion of these two sensors provides us with a large 
amount of data about the object’s acceleration and rotational motion, i.e., the Arduino 
Nano 33 BLE. 

The third feature is hand gesture recognition in real time. To lessen the delay 
caused by computing load, we will train our model on a machine with a lot of 
processing capacity and then lower the model’s size using quantization, which 
reduces the model’s height to the extent that we can handle it. 

The last feature is system accuracy. Even though the complexity grows and 
numerous sensors are employed as input sensors to produce a single gesture, suffi-
cient accuracy should be ensured. We strive to apply a pre-processing approach of 
rasterization that turns the data from the accelerometer and gyroscope into a raster-
ized image. We train our model, which gives us a very high accuracy, to eliminate 
errors caused by hand tremors or inadvertent hand gestures. 

Our input device can be used in a variety of ways. This technology can benefit input 
devices such as computers, laptops, portable multimedia players, wireless remote 
controllers for presentation applications, and virtual reality modules. For example, a 
user might connect the input device to a laptop and give a presentation to an audience. 
Pause, play, or turn up the volume if he wants to view a video. 

Even if we want to interact with the computer in such situations, many input 
devices, such as a keyboard or mouse, may be required. However, all these can be 
replaced by a single input device, which is portable, accurate, and our approach’s 
primary target. 

An overview of the system design is shown in Fig. 1. The IMU containing 
accelerometer and gyroscope generates acceleration and angular velocity data from 
hand gestures. It feeds it to a process of rasterization, which converts this data feed to 
a rasterized image which is then given to a CNN machine learning model for training. 
This pre-processing of rasterization ensures that the model is free of sensor noise, 
limitations, or unwanted gestures. In addition, initially, while training, the machine 
“learns” the preferences and habits of users. The pattern is fitted according to the 
user’s gestures needs through the data of a single motion multiple times (Fig. 2).
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Fig. 1 Flowchart of the system design and data 

Fig. 2 Flowchart when the system is the indifferent process: a while training; b while predicting 
gesture 

3 Hand Gesture Recognition Algorithm 

The gesture recognition application accomplishes a reasonably complicated task by 
carefully crafting a 2D image from 3D IMU data. The dataflow is as follows: 

1. The accelerometer data is read and passed to the EstimateGravityDirection (), 
which is used to determine the orientation of the Arduino concerning the ground. 

2. The accelerometer data is passed to UpdateVelocity (), which is used to calculate 
the velocity of the Arduino. 

3. The direction of gravity is passed to UpdateVelocity () and is used to cancel out 
the acceleration due to gravity from the accelerometer data.
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4. The velocity is then passed to EstimateGyroscopeDrift (), determining if the 
Arduino is stationary or moving. 

5. The gyroscope data is passed to EstimateGyroscopeDrift (), which calculates 
the gyroscope’s sensor drift if the Arduino is not moving (velocity is 0). 

6. The gyroscope data is passed to UpdateOrientation (), where it is integrated to 
determine the angular orientation of the Arduino. 

7. The gyroscope drift is also passed to UpdateOrientation () and subtracted from 
the gyroscope reading to cancel the essence. 

8. The 3D angular orientation is passed to UpdateStroke () and transformed into 
2D positional coordinates. UpdateStroke () also handles whether the current 
gesture has ended, or a new motion has been started by analyzing the length of 
the gesture and testing whether the orientation data is still changing. 

9. The direction of gravity is also passed to UpdateStroke () to determine the roll 
orientation of the Arduino. 

10. The 2D positional coordinates are passed to RasterizeStroke (), which takes the 
2D coordinates and draws lines between them on a 2D image. The color of the 
lines shifts from red to green to blue to indicate the direction of motion during 
the gesture. 

11. The 2D image of the gesture is converted to ASCII art and printed on the serial 
monitor. 

12. The 2D image of the gesture is passed to the model. 
13. The model predicts the label of the gesture, and the title is printed on the serial 

monitor. Figure 3 depicts the above algorithm workflow.

4 Implementation 

There are two primary components: the initialization phase and the main loop (Fig. 4).

4.1 Initialization 

The initialization phase’s job is primarily to set up the IMU, and all the resources 
needed to run the TensorFlow lite macro-model (Fig. 5).

The first step of the initialization phase is the IMU initialization, which is done 
using this setup IMU routine. When you go into the setup IMU routine, you will 
find device-specific calls that tap into the IMU functions that the library provides 
(Fig. 6).

The second component is setting up all the resources needed to run the model. 
This might be the model’s pointer, the interpreter’s initialization using the Tensor 
arena, the model, the observer, etc.
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Fig. 3 Hand gesture recognition algorithm workflow

4.2 IMU Provider—Pre-processing 

Its job is to get data from the gyroscope and the accelerometer and then process it. 
Function calls readily available will allow us to read the data from the gyroscope and 
the accelerometer. So, if data is available from the IMU, we will process that data 
(Fig. 7).
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Fig. 4 Implementation of Arduino application

Fig. 5 Initialization of IMU

The gyroscope ends up having a little bit of drift, so we must compensate for 
that drift. And that is what this function estimating gyroscope drift is doing. When 
we determine that the IMU is not moving using the accelerometer, we can calculate 
the gyroscope’s importance and then account for it. Next, we want to integrate the 
gyroscope’s incremental angular changes that are coming in overtime because that 
will give us a part of the gesture in the spherical coordinate system, and that is how 
this function updates orientation. It is trying to capture that part that is coming in 
continuously. Next, we effectively want to project it into a two-dimensional plane 
inside this physical system. Well, that is because it is much easier to understand a 
2D gesture than a complex 3D gesture. And therefore, update stroke is going to do 
that flat mapping. 

Then comes the process of processing the accelerometer data. We want to estimate 
the gravity’s direction to control the sensor’s role in the gyroscope readings. Everyone
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Fig. 6 The model initialization. a Model variable and space allocation, b model interpreter variable 
allocation

is going to be holding the stick at a specific angular momentum. So, this means that 
you must neutralize or normalize for that effect. For example, you might have the 
bar with your right hand or hold the post with your left hand. However, the gesture 
that you are performing is the same thing. Either way, we have got the same number 
written, so we get to compensate for that. And the way we do that is by effectively 
trying to figure out the role of the gyroscopes reading. And then, we update the 
velocity to know when the sensor is still, and we can correct the sensor drift. 

4.3 Rasterize Stroke—Pre-processing 

After that, the step of effectively capturing the data is to rasterize that stroke. We pre-
process this because it is easy to feed an image into a convolutional neural network. 
And there is a function that helps us do that: rasterized stroke (Figs. 8 and 9).
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Fig. 7 Read the data of the gyroscope and accelerometer and estimate the drift of the gyroscope

Fig. 8 Flatten the three-dimensional coordinates to two-dimensional coordinates and then rasterize 
that into an image

4.4 Model 

After pre-processing, the next part is to hand that rasterized image directly to our 
convolutional neural net. In this case, we will pass in an RGB image, a red, green, and 
blue image. So, there are three challenges to the idea that we are giving into the net. 
And that input will then be run using a convolutional neural network, predicting the 
gesture. To invoke the model, we must set up the input buffers. Also, due to having
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Fig. 9 Rasterization process: flatten the three-dimensional coordinates to two-dimensional and 
convert an image into an RGB image for building a CNN model for classification

Table 1 Reduction in size of 
the model to fit our need for 
Arduino Nano 33 BLE 

Model Size 

TensorFlow 683,299 bytes 

TensorFlow lite 98,812 bytes (Reduced by 584,487 
bytes) 

TensorFlow lite 
quantized 

30,576 bytes (Reduced by 68,236 
bytes) 

memory constraints, we must quantize our model. Table 1 shows how quantization 
reduces the size of the model (Figs. 10, 11 and 12). 

Fig. 10 Calling the TensorFlow lite micro-model for learning and classification
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Fig. 11 Model flow

4.5 Output 

We get the output from the neural network to see what it has determined as an actual 
gesture, and in terms of processing the result, we print the work to the screen (Fig. 13).

5 Hand Gestures Recognized 

The input device for HMI must perform a wide range of operations, yet it can 
only recognize a limited amount of hand motions. The five gestures are depicted 
in Figs. 14, 15, 16, 17 and 18. We move our IMU consisting of an accelerometer and 
gyroscope in three-dimensional space.
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Fig. 12 Complex machine 
learning model workflow. It 
uses the CNN machine 
learning model for 
classification
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Fig. 13 Output of the gesture recognition

Fig. 14 C Alphabet 

Fig. 15 L Alphabet 

Fig. 16 I Alphabet 

Fig. 17 O Alphabet
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Fig. 18 Z Alphabet 

6 Experimental Demonstration Gesture Recognition Device 

Several critical approaches were previously discussed, such as rasterization, the 
model utilized for high-accuracy classification. These strategies created a varied 
HMI input device with easy, real-time, accurate, user-friendly, and multi-functional 
capabilities. These benefits were demonstrated in follow-up investigations. 

Figure 19 depicts our experimental setup. The sensor system consisted of a micro-
controller unit, inertial sensor IMU, and an inertial sensor system. An accelerometer, 
a gyroscope, and a magnetometer were all included in the inertial sensor, but only 
the three-axis accelerometer and three-axis gyroscope were used in this investiga-
tion. The sampling frequency was set to 25 Hz. The sensor system is constructed 
by mounting the microcontroller on a stick and interacting via USB. Using the BLE 
(Bluetooth) module, we may increase the usability.

6.1 Verification 

The constructed input device is used on multiple application programs controlled 
by the input device to test the suggested concept—the program aimed to transition 
between various programs and a media player for playing video and media files. 

Each experiment was carried out in a particular order. First, we tested the connec-
tivity and operation of the input and gesture recognition device. We execute the target 
program and assess the functions once the device is connected correctly. The five 
hand gestures in Figs. 15–19 and if necessary, simple variations of five movements 
match the activities. After the initial setup, the first volunteer in the experiment acti-
vated the device and performed a scenario involving a series of hand gestures that 
fulfilled all the fundamental operations. 

6.2 Verification of Media Player 

The opening of the media player is the initial feature. The current playing file can be 
played and paused with the second function. The third option is to mute the movie
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Fig. 19 Input device is used for the application program

and increase or decrease the volume. Figure 20 shows an experimental video file 
playback sequence. The following are the play, pause, and volume controls.

7 Conclusion 

This paper proposes a sensor-based gesture recognition system that can be used 
as an input device for the HMI system. Five gestures are being used for multiple 
different applications. The same device behaves differently at some point for other
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Fig. 20 Sequence of experiments uses gestures as input to a multimedia video player and plays 
and pauses the video

types of running on the device. If used to open an application for another application, 
it could mute the device, pause it, or play it. The project’s primary emphasis is on 
the project’s portability and fast and reliable recognition. For portability, we have 
used Arduino Nano 33 BLE. We use the rasterization process for fast and reliable 
recognition, which converts the three-dimensional spherical coordinates into two-
dimensional coordinates and then rasterizes the image. This image is easy to build a 
highly accurate and robust model, which ensures our gesture recognition is perfect. 
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