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Abstract Because of the widespread use of nondestructive measurement tech-
niques, such as spectroscopy, spectral imaging, which allow scientists to swiftly
obtain a complete spectrum for a single sample. The datasets nowadays tend to have
a smaller number of samples and a larger number of variables. In order to extract
information from these high-dimensional and high-volume data, traditional univar-
iate analysis is widely considered to be inadequate. Effective data preprocessing and
applying the appropriate chemometric methods are required to gain insights and
obtain essential information from these datasets. In this way, chemometrics has
made substantial advancements and recognition in nondestructive quality assess-
ment of foods. The purpose of this chapter is to introduce an understanding of the
latest ideas, methodologies, techniques, and fundamental processes used during
nondestructive analysis of fruits and vegetables, where chemometrics and/or multi-
variate analytical approaches were performed.

Keywords Principal component analysis (PCA) · Partial least squares regression
(PLSR) · Partial least squares discriminant analysis (PLS-DA)

1 Introduction

Analytical techniques used in laboratories are frequently insufficient since they
necessitate a large number of samples, a longer time to receive results, and highly
technical personnel (Zou & Zhao, 2015). In an environment where speed is critical,
engineering advances must require fewer samples or, at the very least, no one
(nondestructive techniques): a) they must provide prompt, if not immediate,
responses in order for the operator to make an informed decision on the next steps
to regulate or release the product to the market; b) they must be simple to use in order
to encourage their use across the manufacturing chain, where analytical laboratories
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are not always available. As a result, technology needs to be adjusted to a new
strategy of production: the use of sensors and the necessarily associated information
extraction system, which allows “measurement,” to meet the demands of the agri-
food stakeholders. Moreover, the manufacturers of technologies often provide
devices that require calibration phases not always easy to perform but that are
often the subject of actual researches. These are particularly complex when similar
processes need to run repeatedly (Eriksson et al., 2013).
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Hence, chemometrics techniques in nondestructive quality evaluation aim to
produce an empirical or semi-empirical model from data that may be used to predict
one or more chemical properties of a system from observations (Cocchi, 2017).
Chemometrics employs mathematical and statistical methodologies to optimize
experimental processes through the scientific design of experiments, to treat the
experimental data and to extract as much relevant chemical information as possible
from generated data (Guidetti et al., 2012). Chemical systems are often multivariate,
which means that numerous information are obtained at the same time. As a result,
the majority of chemometric procedures fall within the category of analytical
methods known as multivariate statistical analysis, which contains many measure-
ments on a number of individuals, objects, or data samples. Therefore, multiple
measurements and analyses of the variable dependence are central to chemometrics
(Marini, 2013). This chapter aims to present an overview and to provide a clear
understanding of the chemometric methods with their advantages and disadvantages
used in the nondestructive quality evaluation of fruits and vegetables.

2 Major Chemometric Tools in Food Analysis

Chemometric approaches are used to optimize the experimental process and extract
relevant chemical information from massive quantities of data, identify hidden
relationships, and provide a visual approach. There are several chemometric
approaches: design of experiment (DoE), preprocessing, explorative analysis, clas-
sification, regression, validation, feature selection, multiway analysis, etc. These
methods are utilized for nondestructive quality analysis of fruits and vegetables, as
well as in other areas of food science and technology. The chosen method is
determined by the challenge, type of experimental data, as well as by considering
the pros and cons of that particular chemometric approach (Martens & Martens,
2001).

2.1 Design of Experiment

DoE technique ensures representativeness of the sample, allows for the evaluation of
the primary sources of variability, and is the most effective way to optimize
analytical measurement processes (Lawson, 2014). Experimental designs are



frequently neglected or undervalued; however, in order to illustrate the need for
variable optimization as well as the development of adequate methods for carrying
out the tests, a correct experimental design must be established in advance (Granato
and de Araújo Calado, 2013; Leardi, 2009; Wold et al., 2004). It is essentially
decided how to carry out scientific research. When developing new detection
systems, the optimization protocol is especially important. A well-defined DoE not
only allows scientists to investigate different factors and their interactions, but it also
saves money (Granato and de Araújo Calado, 2013; Leardi, 2006, 2009; Wold et al.,
2004). Figure 1 illustrates various methods of experimental designs used in
chemometrics.
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Fig. 1 Common experimental design methods in chemometrics

The use of a specific design depends on the specific problem statement. For
example, some methods are used in optimization while some methods are used in
screening experiments. The advantages and disadvantages of some common exper-
imental designs are presented in Table 1.

2.2 Preprocessing of Data

After collecting data, data preprocessing is frequently the deciding factor between
excellent and poor chemometric models (Rinnan, 2014). Preprocessing is used to
reduce variation that is not connected to the topic of interest, allowing the variation



Advantages Disadvantages References

of interest to stand out more and be more easily modeled (Islam et al., 2018b). There
are some situations where enhancing spectral features is essential; for example, in a
situation where intriguing spectral characteristics differ slightly from the global
intensity, where small peaks are difficult to see in the presence of a large one and
due to overlapped peaks. According to Roger et al. (2020), there are several types of
systematic variations that are not related to topics of interest, for example, the shift of
the baseline due to light scattering effects as a result of various particle sizes, offsets
of baseline due to differences in instrumentation, and variations in the signal
intensities due to size, shape, and volume of the sample. Figure 2 illustrates the
available data preprocessing methods in chemometrics.
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Table 1 Advantages and disadvantages of some common experimental designs

Experimental
designs

Full factorial
designs

Allows scientists to look at the
effect of treatment

Difficult to ensure the elimina-
tion of in-group variations

(Ebrahimi-
Najafabadi
et al.
(2014)

Good for experiments with
more than five factors

Need to report experiments in
the standard order to avoid
systematic error.

Bad for more than five factors

Randomized
block designs

Opportunity to block nuisance
factors inside the block.

Need to eliminate the contri-
bution of nuisance factors.

Huynh and
Feldt
(1976)

Plackett
Burman
designs

Good for more factors. These designs have run num-
bers that are a multiple of four.

Vanaja and
Shobha
Rani
(2007)

Fractional
factorial
design

Possible to give a first interpre-
tation just looking at the highly
informative data.

Require many runs. Rakić et al.
(2014)

Use low-resolution designs for
screening among main effects
and use higher resolution
designs when interaction
effects and response surfaces
need to be investigated.

Response sur-
face
methodology

Quadratic models are almost
always sufficient for industrial
applications.

Response surface models may
involve just main effects and
interactions, or they may also
have quadratic and possibly
cubic terms to account for the
curvature.

Bezerra
et al.
(2008)

Central com-
posite design

Start with factorial or fractional
factorial design (with center
points) and add “star” points to
estimate curvature.

The position of the star points
is important.

Asghar
et al.
(2014)

Among all the preprocessing methods, mean centering, standard normal variate
(SNV) normalization, baseline correction, orthogonal signal correction (OSC),



Savitzky–Golay (SAV-GOL) smoothing and derivatization, and multiplicative sig-
nal correction (MSC) are the most common data preprocessing methods used in
chemometrics (Vidal and Amigo 2012). The visualization of the data and the
removal of severe bands that are driven by noise are the first steps in near-infrared
(NIR) spectroscopic preprocessing. Then, to reduce any high-frequency noise,
window-based smoothing techniques can be performed. The SAV-GOL algorithm
is a widely used approach for reducing high-frequency noise. It includes fitting a
polynomial of chosen order into a band of the defined size that is moved throughout
the entire spectrum (Rinnan et al., 2009). In an ideal circumstance, the smoothed
spectra should be ready for regression or classification modeling in the presence of
just absorption features. The smoothing stage is frequently followed by scattering
correction methods due to the prominence of scattering effects. The estimation of the
second derivative of the spectra is the most frequent method since it can quickly
remove first-order additive (baseline shift) effects and also show underlying peaks
that would otherwise be invisible (Rinnan et al., 2009). Another widely used method
is SNV, which includes subtracting each spectrum’s mean spectral intensity from
each intensity response and then dividing by its spectral-domain standard deviation
(Barnes et al., 1989). SNV can be used to eliminate additive and multiplicative
effects. In NIR modeling, both the second derivative and SNV are quite useful and
usually increase model prediction performance. Another prominent method is MSC,
which assumes the spectrum has a multiplicative, additive, and residual component
(Isaksson & Næs, 1988). In order to describe these impacts, the Extended MSC
(EMSC) model incorporates higher-order complex relations (Martens et al., 2003).
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Fig. 2 Available preprocessing methods in chemometrics
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Table 2 Some common preprocessing methods with their pros and cons

Preprocessing
methods

Mean
centering

It may reduce model com-
plexity by reducing factors.
Provide better calibration
model.

Risk of uncertainty. Poor predic-
tion model outside of calibration
space.

Enders and
Tofighi
(2007)

Autoscaling All variables become equally
important.

Inflation of the measurement
errors.

van den
Berg et al.
(2006)

Variance
scaling

A weak signal may provide
information.

Noisy parts get weight. Noda
(2008)Difficult to interpret loading and

beta coefficient.

Pareto scaling Isolated weak signal provides
information.

Difficult to interpret loading and
beta coefficient.

Kasprzak
and Lewis
(2001)Does not give much weights

to noisy part as variance
scaling.

Logarithmic
transformation

Transform multiplicative
effect to additive effects.

Not applicable to data containing
negative or zero values.

Bartlett
and Ken-
dall (1946)

SAV-GOL Derivation may enhance less
apparent spectral features.

A wide window may remove
important information, while a
narrow window keeps lots of
noises.

Press and
Teukolsky
(1990)

MSC Good at NIR reflectance
measurement of fruits and
vegetables.

Not good at predicting physical
properties.

Isaksson
and Næs
(1988)Depends on the reference

spectral data.

SNV Effective in correcting sys-
tematic effects, and NIR
scattering effects.

Contains negative value in the
processed data.

Barnes
et al.
(1989)

Detrending Can deal with data collected
over time where baseline/
background may have drift.

Processed spectra have a nega-
tive value.

Tanabe
et al.
(2002)

MSC multiplicative scatter correction, SNV standard normal variate, SAV-GOL Savitzky–Golay

In many cases, the scattering effect is also important to perfectly describe the
quality of fresh fruits and vegetables. Therefore, the removal of the scattering effect
in those cases may lead to the wrong chemometric model (Mishra et al., 2021).
Robust normal variate (RNV) (Guo et al., 1999), probabilistic quotient normaliza-
tion (PQN) (Dieterle et al., 2006), and variable sorting for normalization (VSN)
(Rabatel et al., 2020) have all been offered as improvements and alternatives to
SNV. To summarize, there are numerous chemometric preprocessing approaches for
removing/reducing scattering effects from spectral data. Table 2 summarizes the
advantages and disadvantages of the common data preprocessing methods used in
chemometrics.
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3 Principal Component Analysis (PCA)

Principal component analysis (PCA) is one of the most important and powerful
methods in chemometrics (Bro & Smilde, 2014). PCA is a bilinear reduction
approach that may condense enormous amounts of data into a few parameters
known as principal components (PCs) or latent variables, which reflect the levels,
differences, and similarities among the samples and variables that make up the
modeled data. A linear transformation is used to accomplish this goal, with the
constraints of conserving data variance and imposing orthogonality on the latent
variables (Smilde et al., 2005).

3.1 PCA Data Analysis

PCA can be used to visualize the X data matrix in the multivariate space, cluster
identification and detection of outliers, reducing the dimensionality of the data and
removing the noise. The starting point for PCA is a matrix of data with N rows
(observations) and M columns (variables), here denoted by X. Technically, PCA
seeks lines, planes, and hyperplanes in K-dimensional space that best approximate
the data in terms of least squares. It is obvious that a line or plane that is the least
squares approximation of a set of data points minimizes the variance of the coordi-
nates on the line or plane (Wold et al., 1987).

The first PC is the line in K-dimensional space that best approximates the data in
terms of least squares. The line intersects the mean point. Hence, each observation
can be projected onto this line to obtain a coordinate value along the PC line. This
new coordinate value is referred to as a score. A second PC is a line in K-dimensional
variable space that is orthogonal to the first PC. This line likewise crosses through
the average point and enhances the X-data approximation as much as feasible. If X is
a data matrix with N rows and M columns, and with each variable being a column
and each sample a row, PCA decomposes X as the sum of r ti and pi, and where r is
the rank of the matrix X (Eq. 1).

The amount of variance captured by ti, pi pairs are ordered. The scores are vectors
that include information about how the samples relate to one another. The vectors are
called loadings and they provide information on how the variables interact. In
general, after m components, the PCA model is usually truncated, and the small
variance factors are consolidated into a residual matrix E (Eq. 2).

The basic premise is that the investigated systems are “indirectly observable,”
meaning that the relevant phenomena that cause data variation/patterns are



concealed and not directly measurable/observable. This is where the phrase “latent
variables” comes from. Latent variables (PCs) can be expressed as scatter plots in the
Euclidean plane once they have been discovered. A loading plot can be discussed in
conjunction with the associated score plot, which is generated for the same pair of
PCs, or it can be directly shown in the same figure, which is called a biplot. It
becomes easier to explain the groups or patterns observed in the PC space in terms of
the original variables in this way. Although the biplot format for spectral data is
difficult to visualize, specific spectral regions that are responsible for the separation
of process phases can be highlighted.
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3.2 Outlier Detection

Q residuals are the sum of squared residuals for each sample. In other words, Q is a
measure of the distance of a sample from the PCA model. Therefore, a higher
Q value means a lower model fit. Hotelling’s T2 is the sum of normalized squared
scores (Hotelling, 1947). T2 is a measure of the variation in each sample within the
PCA model (Fig. 3). Figure 4 presents Q residuals versus Hotelling’s T2 plot, which
is very useful to determine the outlier sample.

The region of extreme samples (bottom right) exhibits unusual behavior since
they adhere to the variable correlation structure recorded by the PCA model while
achieving high scores in the scores space. Because they pull the PC axes toward
them, these samples with high Hotelling’s T2 values are said to have strong leverage.
The region far from model samples (top left): these samples, with high Q residuals
values, appear to be “well behaving” when projected onto model space because they

Fig. 3 Graphical representation of the principal components space for a two-component model



share some characteristics with the modeled category, but they are not well modeled
because part of their variation is not accounted for by the model. The anomalous,
extreme, and non-modeled samples that have both T2 and Q high values belong in
the outliers region (top right) (Westerhuis et al., 2000).
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Fig. 4 Q residuals versus Hotelling’s T2 plot

4 Partial Least Squares Regression

Partial least squares regression (PLSR) is a regression extension of PCA, which is
used to connect the information in two blocks of variables, X and Y, to each other
(Wold et al., 2001). PLSR is a method of relating two data matrices, X and Y, to each
other by a linear multivariate model. PLSR stands for projections to latent structures
by means of partial least squares. It derives its usefulness from its ability to analyze
data with many noisy, collinear, and even incomplete variables in both X and Y. For
parameters related to the observations (samples, compounds, objects, items), the
precision of a PLSR model improves with the increasing number of relevant X-
variables. This corresponds to the intuition of most chemists, technicians, and
engineers that many variables provide more information about the observations
than just a few variables do (Martens & Naes, 1991).



340 M. N. Islam

PLSR can be seen as a particular regression technique for modeling the associ-
ation between X and Y, but it can be seen as a philosophy of how to deal with
complicated and approximate relationships (Geladi & Kowalski, 1986). Because
PLSR considers not just the correlation between two variables but also the amount of
variation in each, the criterion for defining the PLS latent variables is formulated
using covariance, which is a good metric of interrelation, component-based criterion
because converting it to a global loss function is quite challenging. As a result, PLSR
is a sequential algorithm: PLS latent variables are computed in such a way that the
first PLS component is the dependent variables’ direction of maximum covariance.
The second PLS component, for example, is orthogonal to the first and has the
highest residual covariance, and so on (Wold et al., 1983).

Outlier samples that are far from the center within the space given by the PLS
model can be detected using plots of leverage or Hotelling’s T2. The critical limit for
Hotelling’s T2 statistics is based on an F-test (Hotelling, 1992), while the critical
limit for Leverage is based on ad hoc knowledge (Martens & Naes, 1991). A
predicted versus measured plot should, in a good PLS model, display a straight-
line relationship between predicted and measured values, ideally with a slope of one
and a correlation close to one. A residual plot may be plotted against the value of the
y-variable to check that the residuals are not depending on the value of Y. Outliers of
various types, such as samples with significant residuals and influential samples, are
commonly detected using F residuals versus Hotelling’s T2 plot. Outliers are samples
with high residual variance or those that lie at the top of the plot. Influential samples
are those that have high leverage, that is, those that lie to the right of the plot
(Rousseeuw & Leroy, 1987). This indicates that they are attracting the model in
order for it to better describe them. Influential samples are not always risky if the
variables follow the same pattern as the more “average” samples. A sample with
significant residual variance and leverage is referred to as a “potential outlier,” and in
the presence of these outliers, the model focuses on the differences between that
sample and the outlier rather than defining more general traits common to all
samples.

5 Classification

Datasets are frequently made up of samples from various groups or “classes.”
Groups may differ for a variety of reasons, including variations in sample prepara-
tion, chemical constituent types such as aromatic, aliphatic, etc., or process condi-
tions. A number of approaches for classifying samples based on measured responses
have been developed, as shown in Fig. 5. Cluster analysis and unsupervised pattern
recognition are methods for attempting to find groups or classes without the use of
prior knowledge regarding class memberships. On the other hand, classification or
supervised pattern recognition are terms used to describe methods that leverage
known class memberships (Ballabio & Consonni, 2013).
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Fig. 5 Overview of the classification techniques in chemometrics

Most cluster analysis approaches are based on the concept that samples that are
close together in the measurement space are comparable and so likely to belong to
the same class. However, there are other ways to define the distance between
samples. The most popular is the simple Euclidean distance. AMahalanobis distance
accounts for the fact that variance in some directions is substantially greater in some
datasets than in others. As a result, distance in some directions is more relevant than
the distance in others (De Maesschalck et al., 2000).

Soft Independent Modeling of Class Analogy (SIMCA) makes use of the model
features and incorporates information about the calibration data types. A SIMCA
model is made up of a set of PCA models, one for each class in the dataset (Wold,
1976). The number of major components in each class can vary. The number is
determined by the data in the class. Each PCA sub-model includes all of the standard
components of a PCA model, such as the mean vector, scaling information,
preprocessing such as smoothing and derivatizing, and so on. The oldest and most
studied supervised pattern recognition approach is linear discriminant analysis
(LDA) (Fisher, 1936). It is a linear approach in the sense that the decision boundaries
dividing the classes of variables in their multidimensional space are linear surfaces
(hyperplanes). The purpose of LDA is to identify the ideal linear surface in a
multidimensional space that corresponds to the best two-dimensional straight line.
Partial least squares discriminant analysis (PLS-DA) is quite similar to LDA, another
common discriminating approach. Indeed, Barker and Rayens (2003) demonstrated
that PLS-DA is simply the inverse-least squares method to LDA, producing essen-
tially the same result but with the noise reduction and variable selection benefits of
PLS. PLS is used in PLS-DA to create a model that predicts the class number for
each sample (Næs et al., 2002). Table 3 summarizes the advantages and



Advantages Disadvantages

disadvantages of the most common chemometric methods used in nondestructive
quality evaluation.
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Table 3 Advantages and disadvantages of some common chemometric methods

Chemometric
tools

PCA PCA shows the similarities and differ-
ences between the samples as well as
the relationships between the variables
quickly and easily.

It does not allow for the classification
of samples and the assignment of a
class to each one.

PLSR The ability to handle more descriptor
variables than compounds,
nonorthogonal descriptors, and multi-
ple biological outcomes with more
predictability and a considerably
reduced probability of chance
correlation.

Increased risk of missing “real” cor-
relations and sensitivity to the relative
scaling of the descriptor variables.

PLS-DA The categorization model may be cre-
ated quickly and easily, and the results
are usually extremely good.

Classification errors might occur if the
distinction between the areas of the
various classes is not clear enough.

SIMCA It can train a binary classification
model exclusively with the target class
since it defines an acceptance region
that contains all of the target class’s
objects/samples.

There may be overlapping between
acceptance areas that contain samples
from distinct classes in models trained
with two or more classes. As a result,
some samples may be assigned to one
or more classes.

OPLS-DA To improve classification, increase the
difference in means as well as the dif-
ference in within-class variance
between the two classes.

It is impossible to see different treat-
ment effects among the participants in
the community.

KNN Method of application that is simple to
use.

Because the dominant class affects the
classification, if there are more sam-
ples of one class than the other
(skewed distribution of classes), the
samples may be incorrectly classified.

SVM When the demarcation between the
regions of the different classes of sam-
ples is not sufficiently obvious, this can
be used to get around the technical
challenge.

Alternative kernel functions must be
utilized for non-linear SVM models.
As a result, the model’s development
is complex, and a lot of informatics
resources are required.

Random
forest

Because the variance is reduced, this is
an excellent choice for unstable models
or class imbalance issues. Overfitting is
avoided as much as possible.

Because the classification is not
displayed as a graphical tree, under-
standing the results is difficult.

PCA principal component analysis, PLSR partial least squares regression, PLS-DA partial least
squares discriminant analysis, SIMCA soft independent modeling of class analogy, OPLS-DA
orthogonal partial least squares discriminant analysis, KNN K-nearest neighbors, SVM support
vector machines
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6 Model Validation

The most conservative validation method is to run the model on a sufficiently large
representative independent test set. Several methodologies can be used to quantify
sources of variation that are in principle unknown for future objects in order to make
a model more robust to changes in the sample matrix, raw materials, chemical
reagents, and so on (Westad & Marini, 2015). Though the goal is to have enough
items to set aside a decent amount as a test set, this is not always practicable due to
factors such as sample costs or reference testing. Cross-validation is the best
alternative to using an independent test set for validation (Westad & Kermit, 2003).

Cross-validation is a practical and reliable way to test the significance of a PLS
model. This procedure has become standard in chemometric analysis and is incor-
porated in one form or another in most commercial software. With CV, the basic idea
is to keep a portion of the data out of the model development, develop a number of
parallel models from the reduced data, predict the omitted data by different models,
and finally compare the predicted values with the actual ones. The square differences
between predicted and observed values are summed to form the predictive residual
sum of squares, which is a measure of the predictive power of the tested model
(Stone, 1974). Various ways of cross-validation is available, for example, full cross-
validation, segmented cross-validation, systematic segmented cross-validation, and
validating across categorical information about the objects (Kos et al., 2003).

7 Model Performances

The number of latent variables in a PLSR model is determined by minimizing the
root mean square error of cross-validation (RMSECV). Given the data and number
of latent variables, overfitting is a possibility, but the purely data-driven strategy is
the best option. The root mean square error of prediction (RMSEP) is a direct
estimate of the model’s prediction error in PLSR modeling. The RMSEP can be
calculated using Eq. (3). Alternatively, the PLSR model’s accuracy and precision are
represented by the bias and standard error of performance (SEP), respectively.
Equations (4) and (5) can be used to compute the SEP and bias, respectively,
where, and are the predicted and measured values of the ith observation in the test
set and n is the size of the validation set (Amigo, 2021).

The accuracy, precision, and linearity of the models can be used to assess their
performance. The root mean square error of calibration (RMSEC), RMSECV,
RMSEP, and bias can all be used to express the model’s correctness. The SEP can
be used to examine the PLSR model’s precision, and R2 can be used to assess
linearity using a linear fit of predicted versus measured values. Low RMSEC,
RMSECV, RMSEP, and SEP values, as well as a high R2 value, indicate a good
model (Islam et al., 2018a).
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Fig. 6 Receiver operating characteristic (ROC) curve

The receiver operating characteristic (ROC) curve demonstrates the trade-off
between sensitivity (or TPR) and specificity (1 � FPR). Classifiers that produce
curves closer to the top-left corner perform better. A random classifier is expected to
give points along the diagonal as a baseline (FPR ¼ TPR). The test becomes less
accurate when the curve approaches the ROC space’s 45-degree diagonal. The class
distribution has no bearing on the ROC. This makes it ideal for testing classifiers that
anticipate infrequent events like rotten products. Using accuracy (TP + TN)/
(TP + TN + FN + FP) to evaluate performance, on the other hand, would favor
classifiers that always predict a negative outcome for uncommon events (Fig. 6).
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The confusion matrix and ROC curves can also be used to measure a classifier’s
error rate. To understand the confusion matrix, consider a classification problem
where there are two classes, X is the negative class, and Y is the positive class. And
four possible outcomes: sample from class X is assigned to class X, the sample from
class Y is assigned to class Y, the sample from class X is assigned to class Y (false
positive), and sample from class Y is assigned to class X (false negative).

To keep track of these various outcomes, a confusion matrix (or contingency
table) is utilized. The confusion matrix’s columns correspond to the samples’ actual
classes, while the rows correspond to the assigned classes. The main diagonal of
the matrix shows the number of correctly categorized samples in each class, while
the off-diagonal elements show the number of wrongly classified samples. The
off-diagonal members of the matrix are zero if the data is perfectly classified. The
accuracy, sensitivity (also known as precision, recall, hit rate, or true-positive rate),
false-positive rate (also known as false alarm rate), and specificity of the classifica-
tion can all be determined using the confusion matrix.

Equation (6) gives the accuracy of the classification, where m is the
number of samples from class X that are assigned to class X by the classifier, p is
the number of samples from class Y that are assigned to class Y by the classifier, n is
the number of samples from class Y assigned to class X by the classifier, and o is the
number of samples from class X assigned to class Y by the classifier. The sensitivity
of the classification is given by Eq. (7), and the false-positive rate is given by Eq. (8).
The specificity of the classification is given by Eq. (9) (Islam et al., 2018b).
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8 Variable Selection Methods

Amodel that uses the entire spectral range may be at threat of overfitting, resulting in
decreased predictive performance. Furthermore, a spectrum contains a significant
quantity of data, most of which is unnecessary. Given the large redundancy in
spectroscopic data, variable selection can typically improve chemometric models
(Fig. 7).

The advantages of variable selection have been concluded in the following three
aspects: (a) improve the prediction accuracy of the model because of the elimination
of uninformative variables that must lead to less precision as proved theoretically;
(b) selecting wavelengths probably responsible for the property of interest makes the
model more interpretative; and (c) enhance the computational efficiency for model-
ing with a small number of variables. The advantages and disadvantages of the most
common variable selection methods are presented in Table 4.

9 Multiway Analysis

In some cases, data structures are more complex than typical. Most multivariate
methods are designed to work with matrices, which can be thought of as data tables.
If, on the other hand, the measurements for each sample are stored in a matrix, the
structure of the data is then more effectively stored in a data “box.” Such data is
referred to as multiway data. If each sample produces a matrix of size M � N and
there are L samples, then an L � M � N three-way array is produced. There are
several methods available to deal with these kinds of three-way data (Bro, 1998).

The Generalized Rank Annihilation Method (GRAM) is a simple method with
various applications; many second-order analytical procedures, such as GC-MS, are
bilinear, meaning that the data may be described as the outer product of concentra-
tion profiles and pure component spectra. The main issue with GRAM is that the
concentration profiles in many systems alter due to drift in the analytical apparatus

Fig. 7 Common variable selection methods in chemometrics



(continued)
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Table 4 Advantages and disadvantages of available variable selection methods

Advantages Disadvantages References

Ad hoc Models of causation. Expert knowledge is required,
and there are no indirect mea-
surements (firmness, digestibil-
ity, obesity).

Mehmood
et al.
(2012)

Back/for-
ward
selection

Straightforward and simple. Defining the limit is
challenging.

Marcucci
(1997)

iPLS Simple procedure. Autocorrelated data is required
(i.e., spectra, chromatograms,
process variables)

Nørgaard
et al.
(2000)

Slow (particularly backward
iPLS).

rPLS Quick. Rinnan
et al.
(2014)

Converges to a small number of
variables, which is very useful
for interpretation.

VIP Select essential variables in the
PLSR model quickly.

Combines information that is
associated with the parameter of
interest with information that is
orthogonal to it.

Wold et al.
(1998)

SR Select important variables for
predicting Y quickly.

A bit too sensitive to small
changes in Y pred.

Kvalheim
(2010)

sMC The sMC approach highlights
variables that have little bias
(in terms of parameter estima-
tion) and are statistically signifi-
cant in the model.

For noisy data, it is dependable. Tran et al.
(2014)

The F-values of the variables
are used to rank them.

Jack-knifing Fast-paced. Data must be resampled (nor-
mally cross-validation, but
Monte Carlo and bootstrap also
works).

Martens
and Mar-
tens (2000)

It focuses on the ambiguity in
the X/Y relationship.

CARS Takes into account the interac-
tions between factors.

It is possible that critical vari-
ables will be removed forcibly.

Li et al.
(2009)

The calibration model’s stabil-
ity may be harmed by very
collinear variables.

VISSA VISSA theoretically optimizes
the variable space at each phase.
The variable space’s statistical
data is highlighted.

Deng et al.
(2014)

It decreases the variable space
smoothly, lowering the danger
of omitting informative vari-
ables and ignoring variable
combination effects.

It results are indifferent to
parameters like sample number



and model ratio, and the soft-
ware stops immediately without
further requirements.

(changes in the GC column in a GC-MS, for example). These changes have the
potential to rapidly damage GRAM solutions. GRAM’s early implementations
resulted in nonsensical fictitious solutions.
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Table 4 (continued)

Advantages Disadvantages References

IVSO Eliminate uninformative vari-
ables gradually, considering
their interactions.

Wang et al.
(2015)

BOSS Reduces the chance of missing
vital variables. Compensates for
collinearity’s influence.

Ignores high correlation
between variables.

Al-Kaf
et al.
(2020)Pick fewer options.

PLS-UVE Quickly (fast compared to back-
ward iPLS, which does
the same).

It is not a variable selection
method but rather a variable
elimination method.

Centner
et al.
(1996)

Removes irrelevant variables
(useful for large datasets).

Genetic
algorithm

It looks into variable combina-
tions that none of the “tradi-
tional” approaches looks into.

There are numerous parameters.
Prone to overfitting.

Leardi
(2000)

Best to combine with intervals
or dimension reduction.

Ant Colony
optimization

Investigates variable combina-
tions that none of the “tradi-
tional” approaches has
looked into.

Prevent overfitting by combin-
ing intervals or reducing
dimensions.

Shamsipur
et al.
(2006)

Particle
swarm
optimization

Investigates variable combina-
tions which do not seek “stan-
dard” techniques

Numerous parameters. Lin et al.
(2008)Prone to overfitting, preferable

to be combined with intervals
or reduced dimensions.

Simulated
annealing

Looks into variable combina-
tions that none of the “normal”
methods look into.

Lots of variables. Meiri and
Zahavi
(2006)

Risk of overfitting, hence
intervals or dimension reduc-
tion should be used in
conjunction.

iPLS interval partial least squares, rPLS recursive weighted partial least squares, VIP variable
importance projection, SR selectivity ratio, sMC significance multivariate correlation, CARS com-
petitive adaptive reweighted sampling, VISSA variable iterative space shrinkage approach, IVSO
iteratively variable subset optimization, BOSS bootstrapping soft shrinkage, PLS-UVE partial least
squares uninformative variable elimination

The most remarkable difference between Parallel Factor Analysis (PARAFAC)
and PCA is that PARAFAC is unique in terms of scaling and permutation. Scaling
ambiguity means that a column of A can be scaled by any value α as long as the
corresponding column of B or C is scaled inversely i.e., by 1/α. Component one,
component two, and vice versa can be called as results of permutation ambiguity.
Aside from these minor uncertainties, the PARAFAC model is special in that it has



only one solution. When compared to the non-uniqueness of a bilinear model, this
uniqueness is the direct cause of much of PARAFAC’s popularity (Bro, 1997). If the
measured data fit a PARAFAC model, the model’s underlying parameters can be
calculated without rotational ambiguity.
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The Tucker3 model, also known as the three-way PCA model, is among the most
fundamental three-way models used in chemometrics (Tucker, 1966). The number
three in the name Tucker3 refers to the fact that all three modes have been reduced. If
the Tucker model is applied to a four-way dataset and all modes are decreased, the
model will be called a Tucker4 model.

The so-called PARAFAC2 model, designed by Harshman (1972), is a more
exotic yet extremely useful model. However, a workable method was not developed
until 1999 (Kiers et al., 1999). A dataset may be ideally trilinear but not correspond
to the PARAFAC model in some instances. It could be due to sampling issues or
physical artifacts. Another issue arises when the array’s slabs do not have the same
row (or column) dimension. It turns out that the PARAFAC2 model can be used to
solve both the problem of axis shifts and the problem of shifting axis diameters in
some circumstances. (Amigo et al., 2008). One of the essential features of the
PARAFAC2 model is that, like PARAFAC, it is unique in some situations. The
PARAFAC2 model conditions for uniqueness have received far less attention than
the PARAFAC model.

10 Tools for Chemometric Analysis

To perform chemometric analyses, several MATLAB toolboxes, R packages and
software’s are available. Different tools offer different functionalities. Common
chemometric tools with their functionalities are listed in Table 5.

11 Conclusion

The growth in instrumentation is causing a data overload, and as a result, a large
portion of the data is “wasted,”meaning that no usable information is collected from
it. The issue occurs with data compression as well as extraction. In general, labora-
tory and process measurements contain a lot of correlated or redundant data. This
data must be gathered in such a way that keeps the relevant information while
making it easier to show than each variable individually. Furthermore, crucial
information is frequently found not in any particular element but in how the
parameters vary in relation to each other; that is, the manner in which they
co-vary. The information must be taken from the data in this scenario. Furthermore,
in the presence of a lot of noise, it is always preferable to use some type of data
processing. Therefore, a proper chemometric tool is essential for data cleaning,



Available methods Website

preprocessing, and extracting the most relevant chemical information from the
experimental data.
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Table 5 Available tools for Chemometrics

Software
package

MATLAB environment

PLS_toolbox PCA, PLS, PLS-DA, SIMCA, SVM,
HCA, PARAFAC, MLR, CLS, ANN,
MCR DoE, preprocessing

https://eigenvector.com/software/pls-
toolbox/

iToolbox Interval PLS (iPLS), backward interval
PLS (biPLS), moving window PLS
(mwPLS), synergy interval PLS
(siPLS), and interval PCA (iPCA)

http://www.models.life.ku.dk/
itoolbox

GAPLS
toolbox

Genetic algorithm PLS http://www.models.kvl.dk/GAPLS

SPA toolbox Successive projections algorithm http://www.ele.ita.br/~kawakami/spa/

LS-SVM lab Kernel PCA, kernel CCA, and kernel
PLS

https://www.esat.kuleuven.be/sista/
lssvmlab/

Hypertools Multispectral and hyperspectral image
analysis

https://www.hypertools.org

A good number of essential source code/toolbox for chemometric analysis are freely available at
http://www.models.life.ku.dk/algorithms

R environment

mdatools Preprocessing, exploring data https://mdatools.com

Chemometrics PCA, PLSR https://rdrr.io/cran/chemometrics/

ChemoSpec Chemometrics for spectroscopy https://cran.r-project.org/web/pack
ages/ChemoSpec/index.html

prospectr Preprocessing of data https://cran.r-project.org/web/pack
ages/prospectr/index.html

The
Unscrambler

Mostly cover all chemometrics
methods

https://www.aspentech.com/en/prod
ucts/msc/aspen-unscrambler

SIMCA Multivariate tools, data visualizations,
and process intelligence

https://www.sartorius.com/en/prod
ucts/process-analytical-technology/
data-analytics-software/mvda-soft
ware/simca

Latentix Preprocessing https://www.latentix.com

Pirouette Multivariate calibration and prediction https://infometrix.com/pirouette/

PerClass Spectral image analysis https://www.perclass.com

OriginLab PCA, DoE, logistic regression https://www.originlab.com

DesignExpert Experimental design https://www.statease.com/software/
design-expert/
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