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Abstract

Melon (Cucumis melo L.), belonging to the Cucurbitaceae family, is an economi-
cally important vegetable crop cultivated worldwide and highly valued for its fruit
quality. Unfortunately, this crop is affected by several biotic and abiotic stresses
that reduce yield and quality considerably. Melon breeding for fruit quality and
disease resistance gained great achievements through Next-Generation Sequenc-
ing (NGS) technology. During the last decade, a rapid and huge development of
genetic and genomics resources was achieved including draft genome assemblies,
and high-density genetic maps, making it possible to accelerate translational
research for melon breeding. The increasing availability of high-throughput
sequencing technology has the potential to develop innovative genome-based
strategies for the identification of loci involved in fruit quality and disease
resistance. Advancements in genomics provide new opportunities to accelerate
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classical breeding programs. We report here the major findings from these
investigations and future perspectives in melon-breeding programs. Genomic
tools used including genome editing, improvement of the melon genome assem-
bly, identification, and molecular mapping of important genes or quantitative trait
loci for disease resistance and fruit-quality traits are summarized, and the use of
such knowledge in melon breeding is reported.

Keywords

Genomic tools · Genome assembly · Melon · Molecular mapping · Marker-
assisted selection · Reference genome · Doubled haploids

2.1 Introduction

Melon (Cucumis melo L., 2n ¼ 2x ¼ 24) is a cross-pollinating crop with a small
diploid genome size of 450 Mb (Garcia-Mas et al. 2012). It is an important
horticultural crop worldwide, belonging to the Cucurbitaceae family, and exhibits
high levels of diversity in morphological, physiological, and biochemical properties
(Pitrat 2016). Based on ovary pubescence, the melon was classified into two
subspecies, melo and agrestis (Whitaker and Davis 1962), and then further divided
into 16 horticultural groups according to morphological variations of fruit (Pitrat
2016), with the flexuosus, cantalupensis, inodorus, and reticulatus being the most
economically important ones inMediterranean countries (Chikh-Rouhou et al. 2021a;
Pitrat 2016). All of these groups are intercrossable. C. melo subsp. melo is cultivated
worldwide, whereas C. melo subsp. agrestis is concentrated in East Asia (Liu et al.
2004).

Until a few years ago, the study of melon genome was limited to molecular
markers analysis including AFLP, RAPD, and SSR associated with some morpho-
logical and pathogen-resistance traits (Chikh-Rouhou et al. 2021a, b, c; Lakshmana
Reddy et al. 2016; Garcia-Mas et al. 2000). However, genetic and genomic informa-
tion for this crop has increased significantly and a broad range of genomic tools are
available nowadays (Grumet et al. 2021; Ezura and Fukino 2009). These tools are
generating a lot of information about genes involved in various biological processes,
such as plant resistance, fruit quality, and ripening (Zhang et al. 2022, Cao et al.
2021, Tamang et al. 2021; Branham et al. 2018; Argyris et al. 2017).

Several melon accessions have been sequenced and characterized using the
Illumina short-read Next-Generation Sequence (NGS) platform (Zhao et al. 2019;
Pavan et al. 2017). Third-generation sequencing technologies, such PacBio and
Oxford Nanopore, which can generate long reads have been also used (Yano et al.
2020). The importance of next-generation technology is increasing in melon
research, allowing several applications related to understanding genetic variation
and facilitating marker identification and characterization (Zhang et al. 2022; Pereira
et al. 2018; Pavan et al. 2017). Indeed, given the increasing genomic data availability
for breeders, genomics is playing an important role in all aspects of melon breeding,
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such as Quantitative Trait Loci (QTL) mapping and Genome-Wide Association
Studies (GWAS), where genomic sequencing can allow gene-level resolution of
agronomic variation (Wang et al. 2021; Liu et al. 2020; Zhao et al. 2019; Pereira
et al. 2018; Phan and Sim 2017; Gur et al. 2017; Zou et al. 2016; Grumet et al. 2020,
2021).

In melon improvement, conventional breeding plays an essential role to generate
superior genotypes through genetic recombination. It involves growing and examin-
ing large melon populations derived from cycles of phenotypic selection and cross-
ing which is a labor-intensive process and time consuming, as it needs several phases
of crossing, selection, and testing. Thus, the emergence of doubled-haploid
(DH) technology has reduced dramatically the time required to generate pure
homozygous lines which can be directly released as a new variety or used as parents
in breeding programs (Sari and Solmaz 2020; Fayos et al. 2015). In addition,
advances in genomics have provided new opportunities to accelerate classical
breeding programs. Indeed, the availability of melon genome sequence has made it
possible to identify genes and genetic variants that contribute to agronomic traits
(Yano et al. 2020). Likewise, the high-throughput sequencing technology is enabling
the development of innovative genome-based strategies for the identification of loci
involved in disease resistance and fruit quality (Branham et al. 2018, 2021; Lian
et al. 2021; Liu et al. 2020). For the rapid development of new cultivars to face
climate change and food scarcity, Marker-Assisted Selection (MAS), molecular
Marker-Assisted Breeding (MAB), and gene-editing are needed (Marsh et al.
2021; Veillet et al. 2019). Hence, novel molecular techniques, integrated with
predictions based on the genome, might provide new strategies to breed plants
more efficiently as reported in several vegetable crops (Bohra et al. 2019).

For crop improvement, Varshney et al. (2020) recommended the deployment of
5 Gs (Genome assembly, Germplasm characterization, Gene(s)/marker(s) associated
with breeding trait, Genomic Breeding and Gene editing). In the case of melon
breeding, whole-genome assemblies have become available, melon accessions/
germplasm characterization is ongoing in several countries. Similarly, gene/marker
identification was accelerated due to the genomic and genetic resources availability
and genotyping platforms. However, a precise phenotyping is important for the
germplasm used for trait mapping (Thudi et al. 2021). Comprehensive analyses of
genotyping and phenotyping data can provide genes/markers, haplotypes, genomic-
estimated breeding values that can be used in genomic breeding and gene-editing
approaches (Bohra et al. 2019).

The revolution in genetic and genomics research, genomic selection, computa-
tional biology and bioinformatics, genome editing, and other next-generation breed-
ing methodologies will accelerate melon breeding. The present chapter will
enumerate the latest applications of the doubled-haploid technology, genomics and
genome editing, bioinformatics, and genomic resources to tackle the challenges in
melon crop and its improvement in the post-genomics era.
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2.2 Doubled-Haploid Technology

Advanced biotechnological tools are being used to develop new varieties that meet
the consumers’ and the producers’ needs and preferences. DH technology is a
biotechnological method that can be successfully applied to melon. Commercial
melons are produced using open-pollinated (OP) and hybrid cultivars. Hybrid melon
cultivars are mainly developed by classical hybridization technique, obtaining a
stabilized line with the trait of interest is extremely labor and time-consuming
(Sari and Solmaz 2020). The development of inbred pure lines is the basic step in
hybrid melon breeding; however, many rounds of selfing are required. The DH
technology has several advantages such as reducing the period for generating inbred
pure lines and increasing breeding efficiency (Zhu et al. 2020). This technology
allows the development of completely homozygous lines from heterozygous plants,
which can be used either as parents in breeding programs or directly can be released
as homozygous varieties (Sari and Solmaz 2020; Germanà 2011; Solmaz et al. 2011;
Sari et al. 1999b).

Haploid plants contain a gametophytic chromosome number whereas DH plants
are haploid plants that are subjected to spontaneous or stimulated chromosome
duplication (Germanà 2011). The haploid plants provide considerable benefits to
conventional breeding studies which can be achieved by three different techniques:
androgenesis, gynogenesis, and parthenogenesis.

Although androgenesis is known as in vitro culture of anthers or isolated
microspores, used in several plant species, no successful results have been obtained
in melon. Likewise, gynogenesis, which is the in vitro culture of ovules or ovaries,
has been exploited in different plants. However, it has not been routinely applied in
melons and a quite few studies have been reported (Sari and Solmaz 2020; Koli and
Murthy 2013; Malik et al. 2011; Ficcadenti et al. 1999). Irradiated pollen technique
(parthenogenesis) is the most effective technique widely used in melon and provides
successful results (Hooghvorst et al. 2020; Godbole and Murthy 2012; Solmaz et al.
2011; Sari et al. 1992, 2010a, b; Lim and Earle 2009; Lotfi et al. 2003; Abak et al.
1996).

Melon is one of the species that responds best to haploidization studies. The most
effective method for haploid embryo induction in melon is the pollination of female
flowers with irradiated pollen one day before anthesis. Although different methods
such as ovule/ovary and anther culture have been used before, the most successful
method today is the development of haploid embryos by the parthenogenesis
method. The most commonly used irradiation source for this purpose is the Co60

of gamma rays (Sari et al. 1992). However, it has been reported that Cesium (Cs137)
and X-ray sources can also be used for irradiation (Dal et al. 2016).

Due to the wide diversity in melon, efficient DH protocols are variable for each
botanical group and genotype (Hooghvorst et al. 2021). One of the factors affecting
success in haploid plant production in melon is undoubtedly genotype selectivity.
Another important issue is that melon plants to be induced with irradiated pollen
should be grown in optimum environmental conditions and without stress. In the
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irradiated pollen technique, male and female flowers were used the day before
anthesis (Sari et al. 2010a, b).

After the first successful study by Sauton and Dumas de Vaulx (1987) on the
Charentais group melon, the most appropriate irradiation dose was determined as
300 gray in summer (Galia type) and winter (Kirkagac and Yuva type) melon
varieties (Sari et al. 1999a). Various methods are used to determine the level of
ploidy in the obtained melons, which can be divided into either direct (chromosome
counts) or indirect methods (flow cytometry, stomata size, chloroplast count, mor-
phological observations). The most classic among these is chromosome counts in
plant parts where cell growth is the fastest. Abak et al. (1996) reported that
morphological observations, pollen absence/presence check, a number of
chloroplasts in stomatal guard cells also were used for ploidy level determination.
Haploid plants have the feature of being miniature of the same plant with smaller
leaves (Fig. 2.1).

DH technology has been used in Galia-type melon breeding. Haploid plants were
obtained by irradiated pollen technique and then were duplicated by colchicine
treatment. New F1 DH melon cultivars belonging to C. melo var. cantalupensis
were developed, resistant to race 0 and 1 of Fusarium oxysporum f. sp. melonis
(Fom) and with high yield and quality (Sari et al. 2010a, b). After agronomic
performance tests for several years, the DH melon Sari F1, Yetisir F1, Solmaz F1,
Emin F1, and Yucel F1 were registered in the new varieties catalog of the Republic
Turkey Ministry of Agriculture and Forestry (Sari et al. 2010a, b). Besides, melon
French cv Isabelle was crossed to Italian landrace, and the resulting F1 was subjected
to parthenogenesis, haploid embryo rescue, and chromosome doubling. Two DH
homozygous lines, Nad-1 and Nad-2, with strong resistance to FOM race 1.2 were
obtained by Ficcadenti et al. (2002).

The parthenogenetic capacity of seven genotypes of C. melo var. inodorus ‘Piel
de Sapo’ type was evaluated to obtain DH lines which might be used in further F1
breeding studies. These lines were assessed for agronomic traits and diseases
(Fusarium wilt, powdery mildew, and MNSV). DH lines with high resistance to
the pathogens were produced from melon donor genotypes (six genotypes were

Fig. 2.1 Leaves and flowers of haploid and doubled-haploid melons
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inbred lines and one genotype was an open-pollinated cultivar) (Hooghvorst et al.
2020).

For genomic studies, the doubled-haploid homozygous line DHL92 was used in
the sequencing and assembly of the draft reference genome (Garcia-Mas et al.
2012). DHL92 line derived from the cross between the Korean accession PI
161375 (Songwhan Charmi, spp. agrestis) (SC) and the ‘Piel de Sapo’ T111 line
(ssp. inodorus) (PS).

2.3 Breeding in the Genomics Era

2.3.1 Genomic Resources

Advanced tools in genome sequencing, assembly, and bioinformatic fields were
recently and massively used (Bevan et al. 2017; Chakradhar et al. 2017; Brenton
et al. 2016; Martínez-Gómez et al. 2012; Pérez-de-Castro et al. 2012; Varshney et al.
2005). A burst of publications describing the draft genomes of important crops and
an important number of sources of large and complex plant genomes databases have
been published to date. These sources are available for public uses in online
platforms such as the Potato Genome Sequencing Consortium (PGSC) (spuddb.
uga.edu), the Tomato Genetic Resource Center (tgrc.ucdavis.edu), WheatGamp
which is a comprehensive platform for wheat gene mapping and genomic studies
(www.wheatgmap.org), and the CuGenDB platform for several Cucurbitaceae spe-
cies including melon crop (https://www.cucurbitgenomics.org/) containing assem-
bled genomes and annotations, genetic maps, transcriptomes, Expressed Sequence
Tags (ESTs), and Genotyping By Sequencing (GBS) data along with analysis and
visualization tools. Two other melon crop databases were developed: the
MELOGEAN (Gonzalez-Ibeas et al. 2007) and the Melonomics (www.
melonomics.net) platforms for melon functional genomics and the genome assembly
and annotation version of the reference genome, respectively.

Crop and wild relatives’ genomic analysis helps researchers to assess and to
characterize species genetic diversity and genomic evolution under natural selection
and domestication (Grumet et al. 2021; Coyne et al. 2020; Preece and Peñuelas
2019). Additionally, this analysis is a crucial step facing agriculture worldwide
challenges, essentially population increase and climate changes by crop improve-
ment and breeding programs releasing more resilient crops (Shivapriya et al. 2021;
Chikh-Rouhou et al. 2021a, b, c; González et al. 2020; Maleki et al. 2018).
Associated with the improved and automated phenotyping tools and functional
genomic studies, genomics is providing new foundations for crop-breeding and
improvement systems.

Melon is an attractive model for studying valuable biological characteristics, such
as fruit ripening (Pech et al. 2008), sex determination (Boualem et al. 2008), and
phloem physiology (Zhang et al. 2010). Compared to other Cucurbitaceae members,
the melon genome is quite larger than the genome of the watermelon and cucumber
but is relatively small in comparison to other crop species (Table 2.1).
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Recent research has increased the availability of genetic and genomic resources
for melon, such as (1) the sequencing of ESTs (The Cucurbit Genomics (CucCAP) n.
d.; Gonzalez-Ibeas et al. 2007); (2) the development of an oligonucleotide-based
microarray (Mascarell-Creus et al. 2009); (2) the construction of BAC libraries
(González et al. 2010a, b; Leeuwen et al. 2003; Luo et al. 2001); (4) the production
of mutant collections for TILLING analyses (Dahmani-Mardas et al. 2010; Tadmor
et al. 2007; Nieto et al. 2007); (5) the development of a collection of Near-Isogenic
Lines (NILs) (Eduardo et al. 2005); (6) the construction of several genetic maps (The
Cucurbit Genomics (CucCAP) n.d.; Harel-Beja et al. 2010, Deleu et al. 2009); and
(7) the development of a genetically anchored BAC-based physical map (González
et al. 2010a, b). High-density genetic maps have been also realized (Zhang et al.
2022; Pereira et al. 2018). The high-density genetic maps of melon were constructed
by GBS (Oren et al. 2020; Branham et al. 2018), resequencing (Hu et al. 2018), or
RNA-Seq. (Galpaz et al. 2018), which greatly improved the QTL mapping resolu-
tion for fruit-related traits and disease resistance (Sáez et al. 2022).

2.3.2 The Melon Genome

Since the development of next-generation sequencing technologies (NGS:
454, Illumina, SOLID), several draft genomes of important crops have been
published. These genomes have been sequenced mostly using NGS technologies,
sometimes complemented with Sanger sequencing. A high-quality reference
genome assembly of melon was released for the first time by Garcia-Mas et al.
(2012). However, EST’S, microarrays (Mascarell-Creus et al. 2009), genetic and
physical mapping (Diaz et al. 2011), Bac sequencing (González et al. 2010a, b), and
reverse genetic tools (González et al. 2011; Dahmani-Mardas et al. 2010) were early
investigated on the melon crop.

Draft genomes of nearly a dozen cucurbit crops are now available (https://www.
cucurbitgenomics.org/) and are constantly being revised using new technologies and
experimental data. Garcia-Mas et al. (2012) sequenced the melon genome using the
DHL92 line. The assembled genome organized in 12 chromosomes
(pseudomolecules) comprised 27,427 annotated protein-coding genes, with 17% of

Table 2.1 The genome size of different crops compared to melon (Cucumis melo L.)

Crop/species

Genome size
(megabases) and
Chromosome number Reference

Melon (Cucumis melo) 450 Mb (x ¼ 12) Garcia-Mas et al. (2012)

Watermelon (Citrullus lanatus) 425 Mb (x ¼ 11) Guo et al. (2019, 2013)

Cucumber (Cucumis sativus) 367 Mb (x ¼ 7) Yano et al. (2020)

Tomato (Solanum lycopersicum) 900 Mb (x ¼ 12) The Tomato Genome
Consortium (2012)

Pepper (Capsicum annum) 3480 Mb (x ¼ 12) Kim et al. (2014)

Wheat (Triticum aestivum) 17,000 Mb (x ¼ 7) Brenchley et al. (2012)
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the genome being transposable elements (TEs) (Garcia-Mas et al. 2012). The melon
reference genome v3.5.1 was obtained using 454 pyrosequencing technology. Based
on a shotgun sequencing approach, several DNA fragments were produced and
assembled in contigs which were grouped into larger portions (scaffolds). Shotgun
sequencing involves breaking up DNA sequences into small pieces and then
reassembling the sequence by looking for regions of overlap. The final sequence
assembly covered 83.3% of the genome (a total of 375 Mb) in 29,865 contigs and
1594 scaffolds, with a scaffold N50 of 4.68 Mb (Garcia-Mas et al. 2012). Further,
Ruggieri et al. (2018) improved the genome assembly using optical mapping to
produce v3.6.1, and a new comprehensive annotation was also built composed of
29,980 protein-coding loci. However, v3.6.1 still contained 19% of gaps and more
than 40 Mb unassigned sequences, probably missing complex repeat regions.
Castanera et al. (2020) using PacBio single-molecule real-time (SMRT) sequencing
produced an improved reference genome version v4.0. In that study, they used the
hierarchical genome-assembly process 4 (HGAP4) pipeline techniques with
concatenated steps to improve the assembly of the longest reads. DHL92 melon
assembly v4.0 had an increase of the melon genome pseudomolecule size by 40 Mb
with 90% of the v3.5.1 gaps being filled and transposable element (TE) coverage
improved from 19.7% (v3.5.1) to 45.2% (v.4.0) due to the progress in TE annotation
tools (Castanera et al. 2020). Specifically, 40% more full-length LTR
retrotransposons, which represented the largest fraction of TE, were identified in
the v4.0 assembly, mainly located in centromeric and pericentromeric regions, and a
burst of these repetitive elements was found to occur less than two million years ago
showing they are very young (Castanera et al. 2020). Young LTR retrotransposons
have an impact on gene expression. Some of these elements are polymorphic among
melon varieties and sit in the upstream regions of genes. Ito et al. (2016) evidenced
that the expression of plant LTR retrotransposons (subfamilies gypsy and copia)
exhibits stress-inducible transcription, i.e., up-regulated by abiotic and biotic stress
(Ito et al. 2016; Grandbastien 1998). Figure 2.2 summarizes the melon reference
genome assemblies and annotation analysis and the improved versions highlighting
the principal outputs from each study.

The DHL92 genome reference has been utilized for supporting transcriptome
analyses as well as QTL studies of important agricultural traits, including fruit
ripening, fruit morphology, and disease resistance (Branham et al. 2021; Tamang
et al. 2021; Lian et al. 2021; Liu et al. 2020; Argyris et al. 2017). Additionally,
assembled transcriptomes have been generated through the quantitative RNA
sequencing (RNA-Seq) for mapping transcribed regions, in which complementary
DNA fragments are subjected to high-throughput sequencing and mapped to the
genome. Assembled transcriptomes of Cucurbits species were made available on the
CuGenDB database (http://cucurbitgenomics.org/rnaseq/home) allowing explora-
tion of a Cucurbit Expression Atlas (Andolfo et al. 2021). The transcriptomes can
be used as a reference for gene expression analysis in different organs and tissues
and under different environmental conditions (Andolfo et al. 2016).

C. melo genome showed a high level of synteny with cucumber (C. sativus),
suggesting an ancestral fusion of five melon chromosome pairs in cucumber and
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several inter- and intra-chromosome rearrangements (Garcia-Mas et al. 2012). Same
authors showed that the melon genome increased size, compared to its relative
cucumber, may be attributed to TE amplification and that the melon genome did
not have any lineage-specific whole-genome duplication as in C. sativus (Huang
et al. 2009).

Other melon genomes have been also assembled and/or re-evaluated using newer
DNA-sequencing advanced technologies (Table 2.2), such the Chinese inodorus
melon genome, which was sequenced using a PacBio long molecule sequencing
(Zhang et al. 2019) and the genome of the Japanese semi climacteric reticulatus
cultivar using the Oxford nanopore technology (Yano et al. 2020). Information
regarding the Japanese ‘Harukei-3’ genome assembly, annotation, and transcriptome
dataset is available in the Melonet-DB database (https://melonet-db.dna.affrc.go.jp/).

Determination of the complete melon genome also includes sequencing of the
chloroplast (cpDNA) and mitochondrial (mtDNA) genomes (Cui et al. 2021). Few
studies were reported regarding sequence analysis of the cpDNA and mtDNA
genomes (Cui et al. 2021; Rodríguez-Moreno et al. 2011). The mitochondrial
genome of melon is eight times larger than other cucurbits (Rodríguez-Moreno
et al. 2011). The nucleotide sequences of chloroplast and mitochondrial genomes
of PIT92 melon were determined by Rodríguez-Moreno et al. (2011), showing that
the chloroplast genome of 156,017 bp included 132 genes, with 98 single-copy
genes and 17 duplicated genes in the inverted repeat regions (IRR). Moreover,
2.74 Mb of mitochondrial sequence, using Roche-454 sequencing technology,
were assembled into five scaffolds and four additional unscaffolded contigs
(Rodríguez-Moreno et al. 2011). These same authors showed that melon mitochon-
drial genome contained a high number of repetitive sequences and a high content of
DNA of nuclear origin. Indeed, DNA transfer from organellar genomes to nuclear
genome, and vice versa, seems a common phenomenon (Cui et al. 2021; Kleine et al.
2009; Martin 2003).

Table 2.2 Technologies used for the sequencing of the melon DHL92 reference genome and other
melon genomes

Sequencing technology
Genotype
used

Assembled
genome Reference

Shotgun strategy based on
454 pyrosequencing + Sanger reads

DHL92 375 Mb Garcia-Mas et al.
(2012)

Optical mapping approach DHL92 375.36 Mb Ruggieri et al.
(2018)

PacBio and Illumina sequencing DHL92 357.64 Mb Castanera et al.
(2020)

PacBio combined with the Hi-C interaction
analysis

Payzawat 386 Mb Zhang et al.
(2019)

Oxford nanopore Harukei-3 378 Mb Yano et al.
(2020)
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2.3.3 Genomic Tools for Melon Breeding

In recent years, efforts were dedicated to building genomic tools to be applied for
breeding programs in order to obtain better melon varieties. The use of genomic
resources to better understand disease resistance, fruit morphology, and quality has
been facilitated by the availability of a reference genome and the rapid advances in
Next-Generation Sequencing (NGS) technologies, such as Whole-Genome
Sequencing (WGS), Whole-Genome Resequencing (WGR), RNA-seq, and GBS
(Pereira et al. 2018). NGS has been used to extend insights in genomic research for
developing molecular markers, identification of genetic variation, and gene discov-
ery using sequencing approaches (Natarajan et al. 2016). Among these technologies,
WGS allows scientists and breeders with improved analysis based on bioinformatics;
therefore, discovering and identification of genes regulatory sequences, molecular
markers, and quantitative trait locus controlling fruit quality, biotic and abiotic
threats as well as other agronomic traits were performed (Pérez-de-Castro et al.
2012). Genome-wide SNP markers developed by sequencing enable high-density
genetic maps, greatly improving the QTL mapping resolution (Gur et al. 2017) as
well as the selection of core collections to capture the maximum genetic diversity
with minimal redundancy (Wang et al. 2021). Likewise, WGR is widely used to
discover the genetic diversity and molecular markers in a variety of plant populations
and to gain a better understanding of the relationship between genotypic and
phenotypic changes (Xu and Bai 2015). In addition to the identification of genetic
polymorphisms such as SNP and insertion/deletion polymorphism (InDel), WGR
permits the detection of Copy Number of Variation (CNV), presence/absence varia-
tion (PAV), and QTLs associated with disease resistance genes for the re-sequenced
variants based on available R-genes from the reference genome (Natarajan et al.
2016). The large-scale data generated by NGS, combined with powerful computa-
tional tools enabled a major technological leap from low-resolution to high-
resolution QTL mapping (Galpaz et al. 2018).

Transcriptome sequencing using RNA-seq technology allows exploring gene
expression changes in melon plants during fungal and viral infections (Sáez et al.
2022; Cao et al. 2021) and fruit-related traits (Zhang et al. 2022; Galpaz et al. 2018).
This tool offers a global view of expression changed during the defense response and
elucidates complex resistance mechanisms in plants through comparing gene expres-
sion upon infection in susceptible and resistant genotypes (Sáez et al. 2022) and also
to elucidate genetic factors that determine melon fruit-quality traits (Galpaz et al.
2018).

In addition, all these tools and resources also facilitate the melon genetic diversity
studies, which are important for the management, improvement, and enhancement of
germplasm.
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2.3.4 Genomic Selection

Creating a new melon cultivar might take 10–12 years, due to several stages of
crossing, selection, and testing required in the traditional production of new melon
varieties. Innovative molecular tools, marker-assisted selection (MAS) including
marker-assisted backcross selection, ‘breeding by design,’ or new strategies, like
genomic selection, molecular marker-assisted breeding (MAB), and gene-editing are
needed for the rapid development of new cultivars (Salgotra and Stewart 2020).

2.3.4.1 MAS and FMs for Precision Breeding
MAS is a powerful genomic tool that assists phenotypic selection for the develop-
ment of disease-resistant cultivars and allows breeders incorporate and pyramid
resistance genes into breeding material (Zhu et al. 2020). An example is ‘Carmen,’
a new Yellow Canary-breeding melon line obtained by introgression of powdery
mildew, CYSDV, and A. gossypii resistances of TGR-1551 into the genetic back-
ground of Bola de oro cultivar using molecular markers linked to P. xanthii races
1, 2, and 5 resistances and Vat gene (Palomares-Rius et al. 2018). MAS has also been
extensively applied to search for the molecular markers that are linked to a specific
trait during the development of disease-resistant cultivars (Teixeira et al. 2008), and
it has been successfully applied to melon breeding, to improve, disease resistance
and fruit quality, but these methods are not effective for detecting complex quantita-
tive traits with small-effect QTL (Xu et al. 2012). Important genes and QTLs for
disease resistance, fruit quality, and other traits in melon are listed in the Cucurbit
Genetics Cooperative (https://cucurbit.info/home/gene-lists/).

Identifying genes and functional markers (FMs) that are highly associated with
plant phenotypic variation is a challenge (Salgotra and Stewart 2020). Strategies to
identify FMs for breeding goals include functional genomics approaches such as
transcriptomics, targeting induced local lesions in genomes (TILLING), homolo-
gous recombinant (HR), association mapping, and allele mining (Salgotra and
Stewart 2020). In comparison to other markers used in plant breeding, FMs had
the advantage of the close genomic association with a phenotype, which may
facilitate the direct selection of genes associated with phenotypic traits, and there-
fore, increase the selection to develop new varieties (Salgotra and Stewart 2020).

Advances in sequencing techniques enable the identification of SNPs and indels
linked with various traits; FM development is, thus, enabled (Salgotra and Stewart
2020). Indels may cause phenotypic variation from extensive genomics, which are
accompanied by chances of elimination from natural selection (Andersen and
Lübberstedt 2003). Hence, SNP-derived FMs have advantages over indel-derived
markers because of the widely distributed nature of FMs throughout the genome (Liu
et al. 2012). Besides, the use of SNPs sets in high-throughput genotyping platforms
is a powerful approach (due to their low cost, high genomic abundance, locus
specificity, co-dominant inheritance, and low genotyping error rates (Cao et al.
2021)) for many genetic applications for breeding programs, such as germplasm
characterization, quality control (QC) analysis, linkage mapping, linkage-based, and
linkage disequilibrium-based QTL mapping, allele mining, marker-assisted
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backcrossing (MABC), genomic selection (GS), and MAS (Salgotra and Stewart
2020; Cao et al. 2021).

2.3.4.2 R-Genes
The large amount of generated data in melon sequencing projects can be useful to
promote the in silico identification of important classes of genes (Andolfo et al.
2021). In recent years, the identification of genome-wide resistance (R) gene
candidates has become a popular research aim in several species due to the develop-
ment of prediction tools based on the identification of distinctive structural domains
(Andolfo et al. 2013; Garcia-Mas et al. 2012). To date, more than 150 (R-genes) have
been cloned and characterized in plants (www.prgdb.org). In melon, only a handful
R-genes have been cloned, including Vat, which confers resistance to melon aphid
(Dogimont et al. 2014), Fom-2, conferring resistance to Fom races 0 and 1 (Joobeur
et al. 2004), and the head-to-head oriented pair of R-genes, Fom-1 and Prv, which
confer resistance to Fom races 0 and 2, and the potyvirus Papaya ring spot virus,
respectively (Brotman et al. 2013). In addition, recessive resistance genes were also
identified; nsv, controlling resistance to themelon necrotic spot virus, which encodes
a translation elongation factor (Nieto et al. 2007), downy mildew resistance genes
encoding photorespiratory amino transferases (Taler et al. 2004), and cmv1, which
encodes a vacuolar-sorting protein (Giner et al. 2017).

In the reference genome, 411 putative disease R-genes organized in clusters were
identified, among them, 81 may exert their disease resistance function as cytoplas-
mic proteins through canonical resistance domains, such as the NBS, the LRR, and
the TIR domains (Garcia-Mas et al. 2012). Besides, 15 homologs to the barley Mlo
(Büschges et al. 1997) and 25 homologs to the tomato Pto (Loh and Martin 1995)
genes were also identified.

To gain access to information and to facilitate the analysis of melon R-gene
repertoires, the exploration of resources could be an important starting point
(Andolfo et al. 2021). Several methodologies such as BLAST search, domain
matching, sequence alignment, and phylogenetic analysis methods can be employed
for R-proteins identification (Andolfo et al. 2013; Garcia-Mas et al. 2012). To search
for plant resistance genes in the plant genome, DRAGO (Disease Resistance Analy-
sis and Gene Orthology), a robust prediction tool, is available on the PRGdb
platform (Andolfo et al. 2021; Osuna-Cruz et al. 2018).

To accelerate R-gene discovery and localization, high-resolution genetic maps
can be combined with sequence data. Andolfo et al. (2021) reported that knowing the
location of a given R-gene locus is a great advantage for mining its nucleotide
sequences using both recombination analysis and protein-function prediction.

2.3.4.3 Trait Mapping and Discovery of Candidate Genes
Linkage analysis has been extensively conducted to identify QTL using segregating
populations derived from biparental crosses (Heffner et al. 2009). F2, backcross
(BC), DH, and recombinant inbred line (RIL) populations are used as biparental
mapping populations. However, Pérez-de-Castro et al. (2012) reported that low
mapping resolution is provided when using biparental populations due to the
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occurrence of only a few recombination events. In contrast, Pereira et al. (2018)
reported that the GBS approach applied in a biparental RIL population is highly
effective for QTL mapping studies highlighting that type and size of the population
and map density are the main limiting factors for detecting QTLs.

The association mapping approach is a powerful method that uses historical
recombination events for QTL detection in natural populations or germplasm
collections via GWAS (Phan and Sim 2017; Zhu et al. 2008; Gupta et al. 2005).
In comparison to linkage analysis, mapping approach is less time consuming, has a
higher mapping resolution and a greater number of alleles to mine (Yu and Buckler
2006). NGS technologies facilitated the development of genome-wide molecular
markers, especially SNPs, for high-throughput genotyping, providing the opportu-
nity for association mapping (Zhu et al. 2008).

Bulked segregant analysis (BSA) is an important technique used to map QTLs
and identify DNA markers. BSA provides a convenient and rapid method to identify
resistance genes by generating two DNA bulks with a contrasting traits (Nie et al.
2015; Abe et al. 2012; Michelmore et al. 1991). Recently, whole-genome
resequencing has been coupled with BSA to map the genes of interest that are
associated with a given phenotype (Zou et al. 2016). The combined application of
BSA with NGS (BSA-Seq) has accelerated the identification of tightly linked
markers for gene identification and QTL mapping (Zou et al. 2016).

Linkage maps are an effective tool to study the genetic architecture of both
monogenic and complex traits (Diaz et al. 2011). Recently, high-density maps
(using hundreds to thousands of markers) have been constructed for QTL mapping
of main traits (Pereira et al. 2018; Chang et al. 2017) demonstrating that a higher
SNP density substantially increases the QTL mapping potential which affects the
QTLs detection and resolution. These QTLs location in narrow genomic intervals
could facilitate genes cloning and use in breeding programs by MAS (Pereira et al.
2018).

Disease Resistance
Melon is susceptible to several pathogens. In breeding programs, identification of
disease resistances and associated molecular markers is a priority. We report here the
last molecular mapping of host resistances against the most important fungal and
viral pathogens in melon.

For QTL mapping of the genes involved in the resistance of powdery mildew,
caused by the airborne fungus Podosphaera xanthii (Px), Branham et al. (2021) used
a densely genotyped RIL population and identified two major QTLs associated with
resistance to Px race 1 in chromosomes 5 and 12 (qPx1-5 and qPx1-12) and two
minor QTLs (qPx1-4 and qPx1-10) in chromosomes 4 and 10. For marker develop-
ment across the major QTLs and functional annotation of SNPs for candidate gene
analysis, the authors used the WGR of the parents. Competitive allele-specific PCR
(KASP) markers were tightly linked to the QTL peaks of qPx1-5 and qPx1-12 in the
population which will enable efficient marker-assisted introgression of Px resistance
into improved germplasm. Candidate genes were identified in both major QTL
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intervals that encode putative R-genes with missense mutations between the parents.
These candidate genes provide targets for future breeding efforts.

Cao et al. (2021) identified, for resistance to powdery mildew (PM), a novel QTL
on chromosome 12 named qCmPMR-12. They used an F2 segregating population to
map major PM resistance genes using BSA-Seq analysis. Most likely candidate
genes were predicted from RNA-Seq analysis which indicated that the
MELO3C002434 gene encoding an ankyrin repeat-containing protein was the
most likely candidate gene that was associated with resistance. Moreover, they
successfully converted 15 polymorphic SNPs around the target area to KASP
markers. KASP is a high-throughput SNP-genotyping platform, which become a
global benchmark technology and has been widely used for genetic mapping and
trait-specific marker development, due to its low cost and genotyping error rates, and
its high reliability and reproducibility (Cao et al. 2021). So, the novel QTL and
candidate gene identified provide insights into the genetic mechanism of PM resis-
tance, and the tightly linked KASP markers developed to this disease resistance can
be used for MAS in melon-breeding programs.

Natarajan et al. (2016) investigated the genetic variation of 4 melon accessions to
PM. The whole-genome resequencing using the Illumina HiSeq 2000 platform was
done, to characterize the genotypic variation in terms of SNPs, InDels, and structure
variations (SVs). QTLs associated with PM resistance genes were detected. In
addition, 112 SNPs and 45 InDels, were identified, associated with defense genes
that will serve as candidate polymorphisms in the search for sources of resistance
against PM and could accelerate marker-assisted breeding in melon.

Fusarium wilt in melons is caused by Fusarium oxysporum f. sp. melonis (FOM)
and is considered one of the most devastating soil-borne diseases (Oumouloud et al.
2013; González et al. 2020). Two major genes Fom-1 and Fom-2 have been
genetically characterized (Risser et al. 1976) and tightly linked markers to these
genes are available (Oumouloud et al. 2012, 2015). Fom-1 confers resistance to races
0 and 2, whereas Fom-2 confers resistance to races 0 and 1 of Fom. Branham et al.
(2018) reported that four QTLs (a major QTL co-located with the previously
validated resistance gene Fom-2, and three minor QTLs) and an epistatic interaction
were associated with resistance to FOM race 1 in a RIL population of 172 lines
(MR-1 � susceptible AY).

The Cucurbit yellow stunting disorder virus (CYSDV) is a Crinivirus of the
family Closteroviridae (Martelli et al. 2000) that severely infects melon. Pérez-de-
Castro et al. (2020) reported two major QTLs to CYSDV resistance in melon line
TGR-1551, both located near each other in chromosome 5. A RIL population was
used, for mapping the gene/s responsible for this resistance. The RIL population was
evaluated for resistance to CYSDV and genotyped in a GBS analysis. SNP markers
were identified, which will be useful in MAS of CYSDV resistance introgression in
elite melon cultivars. Further, Tamang et al. (2021) reported the identification of two
QTLs to CYSDV resistance on chromosomes 3 and 5 for potential use in MAS.
Besides, 24,673 SNP markers were identified in GBS-SNP calls in F2:3
TM � PI313970 population. The identified QTL region that conferred resistance
to CYSDV in melon line PI 313970 by Tamang et al. (2021), confirmed the QTL
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regions on chromosome 5 of TGR-1551 that were previously identified by Pérez-de-
Castro et al. (2020). The tightly linked markers with the CYSDV resistance QTL in
TGR-1551 and PI313970 can be used to expedite the development of CYSDV-
resistant elite breeding lines and cultivars.

Tomato leaf curl New Delhi virus (ToLCNDV) is a severe disease on melon. Sáez
et al. (2022) performed an RNA-seq assay to identify associated genes that are
differentially expressed, during ToLCNDV infection, between resistant and suscep-
tible melon genotypes and transcript levels were also compared. Differentially
expressed genes (DEGs) were classified using gene ontology (GO) terms, and
genes of the categories transcription, DNA replication, and helicase activity were
down-regulated in the resistant genotype but up-regulated in the susceptible,
suggesting that reduced activity of these functions reduces ToLCNDV replication
and intercellular spread and thereby contributes to resistance. The expression levels
of selected candidate genes were validated by qRT-PCR in resistant and susceptible
genotypes and SNPs with an effect on structural functionality of DEGs linked to the
main QTLs for ToLCNDV resistance have been identified.

Fruit Quality
Fruit quality is the main target for melon-breeding improvement. Morphology
(external and internal color, shape, netting, sutures), aroma, nutritional content,
sweetness, acidity, ripening, and post-harvest storage are complex traits that con-
tribute to the final fruit quality in melon (Monforte et al. 2004). The availability of
genomic resources in melon is contributing to the understanding of the processes that
control fruit quality (Ramamurthy and Waters 2015; Monforte et al. 2004). In recent
years, many loci involved in the genetic control of these traits have been described
(Perpiña et al. 2016; Diaz et al. 2011; Fernandez-Silva et al. 2010). Once the genes
underlying these traits are identified, the use of natural variation found in germplasm
collections or induced variation through genome editing is a promising way for fruit-
quality improvement.

Tomason et al. (2013) used 87 melon accessions from different geographic
regions for association mapping study and identified 22 major QTLs for fruit
shape, fruit length, fruit diameter, soluble solid content, and rind pressure.

Ramamurthy andWaters (2015) used an F2 mapping population constructed from
a cantaloupe orange-fleshed melon and a green-fleshed snake melon and identified a
total of 31 QTLs associated with fruit quality and fruit morphological traits. They
showed that most of the phenotypic variation for yield is explained by a small
segment of LG8.

Argyris et al. (2017) reported that a valuable resource for QTL mapping is the
NILs, which contains a single homozygous introgression of a donor line in the
genetic background of a recipient line. NILs are a powerful tool that has advantages
over other types of mapping populations in making possible the detection and
estimation of QTL of small effect (Keurentjes et al. 2007). Dissection of QTL
identified in NILs through the development of subNILs has been utilized to effec-
tively map and clone QTL involved in melon fruit morphology (Fernandez-Silva
et al. 2010), and fruit ripening (Rios et al. 2017). Fine-mapping of QTL involved in
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sugar accumulation in melon has been reported (Argyris et al. 2017). Despite this,
there is a correspondence of positions of QTL in different mapping populations, with
clustering of QTL for SSC and soluble sugars identified on chromosomes 2, 3, and
5 (Diaz et al. 2011).

Sugar accumulation in melon flesh has been reported to have strong GxE
interactions and low heritability (Perpiña et al. 2016) which complicates breeding
of this trait. Argyris et al. (2017) identified a stable QTL, SUCQSC5.1, which
reduced SSC and sucrose content. Through fine mapping with the subNILs, the
authors accurately estimate its phenotypic effect and provide its function. Indeed,
expression analysis of the candidate genes in mature fruit showed differences
between the ‘high’ sugar and ‘low’ sugar phenotypes forMELO3C014519, encoding
a putative BEL1-like homeodomain protein. The molecular markers linked to the
QTL developed can be used in breeding programs with wild accessions to select
against those alleles reducing SSC.

Galpaz et al. (2018), to elucidate genetic factors that determine melon quality,
they used RNA-Seq-based QTL and eQTL mapping and identified Thiol
acyltransferase (CmThAT1) gene, within the QTL interval of its product, the S-
methyl-thioacetate which is a key component of melon fruit aroma, as well as a
candidate major gene CmPPR1 determining fruit white-flesh color in melon.

Zhao et al. (2019) reported a comprehensive map of the genomic variation in
melon derived from the resequencing of 1175 diverse accessions. Resequencing of
genomes is very useful for the genome-wide discovery of polymorphisms amenable
for high-throughput genotyping platforms (Galpaz et al. 2018). Zhao et al. (2019)
sheds light on the domestication history of melon suggesting that three independent
domestication events occurred, two in India and one in Africa. In addition, using
GWAS, 208 loci associated with fruit quality, and morphological characters were
identified.

Liu et al. (2020), using GWAS, identified eight fruit size and seven flesh
thickness signals overlapping with selective sweeps. CmCLV3 was detected in
most melon accessions, which has pleiotropic effects on carpel number and fruit
shape. They also detected 233 and 159 potential selective signals in ssp. agrestis and
spp. melo, respectively. Two alcohol acyltransferase genes (CmAATs) unique to the
melon genome may have undergone stronger selection in ssp. agrestis for the
characteristic aroma as compared with other cucurbits.

Amanullah et al. (2021) used an F2 population and SNP-derived CAPs markers to
map QTLs for seed traits (width, length, thickness, shape, and 100-seed weight), and
identified three QTLs for seed width, seed length, and seed thickness on
chromosomes 3 and 9. Besides, a major-effect QTL, SW3.1, was also detected on
chromosome 3. Fine mapping or cloning of QTLs for fruit-related traits is still rarely
reported in melon (Zhang et al. 2022)

The high-resolution genetic maps and QTLs analyses for fruit size described in
Lian et al. (2021) provided a better understanding of the genetic basis of domestica-
tion and differentiation. Indeed, two loci for fruit size were identified on
chromosomes 5 and 11. An auxin response factor and a YABBY transcription factor
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were inferred to be the candidate genes for both loci. These findings could provide a
valuable tool for map-based cloning and molecular marker-assisted breeding.

Zhang et al. (2022) illustrated the strength of a joint analysis combining
resequencing-based genetic map for QTL mapping and a combination of KASP
genotyping and RNA-seq analysis to facilitate QTL fine mapping. They reported a
high-density genetic map of melon and nine major QTLs. Based on RNA-seq,
EVM0009818, involved in cytokinin-activated signaling, was differentially
expressed in the young fruits. Selective sweep analysis identified 152 sweep signals
for seed size, including two seed-related QTLs and nine homologs that have been
verified to regulate seed size in Arabidopsis.

2.3.5 Genome Editing

Sequencing techniques are able to provide important details on the position of
functional elements of DNA, highlighting differences even of a few bases between
genotypes of the same species; at the same time, great progress has been achieved in
developing genomic engineering tools (Andolfo et al. 2016).

Genome-editing tools have the potential to modify genomic sequences with
accuracy (Veillet et al. 2019). Some of these tools are Homologous Recombination
(HR), Targeted Induced Local Lesions In the Genome (TILLING), Zinc Finger
Nucleases (ZFN), Transcriptional Activator-Like Effector Nucleases (TALENs), or
Clustered Regularly Interspaced Short Palindromic Repeats associated with nuclease
Cas9 (CRISPR/Cas9).

Efficient gene editing in melon presents the possibility to study new gene
functions for basic research, and new opportunities for melon productivity by
improving biotic stress resistance, melon production, and post-harvest utilization
(Bin et al. 2022; Hooghvorst et al. 2019; Dahmani-Mardas et al. 2010).

2.3.5.1 Tilling
The TILLING method is useful in identifying novel alleles in genes controlling
agronomic traits of interest in melon (Dahmani-Mardas et al. 2010). Indeed, a
TILLING platform generated from a monoecious climacteric cantalupensis geno-
type and andromonoecious non-climacteric inodorus genotype has become available
and has proven to be useful for improving the melon shelf life and represented a
useful resource for functional studies and melon breeding (González et al. 2011).

For ethylene biosynthesis, the conversion of aminocyclopropane-1-carboxylic
acid (ACC) to ethylene by the ACC oxidase (ACO) is required (Ayub et al. 1996).
In melon, CmACO1 silencing inhibits fruit ripening and extends fruit shelf life,
demonstrating that ACO is involved in ripening, growth, and development (Ayub
et al. 1996). Dahmani-Mardas et al. (2010) have developed a reference ethyl
methanesulfonate-mutagenized (EMS) mutant population and characterized
CmACO1 TILLING mutants that inhibit fruit ripening and extend fruit storage life.
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2.3.5.2 CRISPR/Cas9
The new CRISPR/Cas9 genome-editing technique was developed in 2013 and has
transformed genetic engineering, due to its efficiency, versatility, precision, and
reduced costs (Andolfo et al. 2016; Hooghvorst et al. 2019). Precise changes are
produced, at preselected genomic sites with no genetic footprints and no off-targets
(Hooghvorst et al. 2019; Chandrasekaran et al. 2016). Genes function studies by
knocking out genes that negatively affect fruit quality is also allowed using this
technique (Tian et al. 2016).

CRISPR knockout mutants in melon have been reported for the first time in 2019
by Hooghvorst et al. using CRISPR/Cas9-mediated genome editing. In plants, the
major uses of CRISPR/Cas9 have been gene knockouts to elucidate the function of a
target gene–by-gene mutation and transcriptional regulation (Hooghvorst et al.
2019).

Hooghvorst et al. (2019) using CRISPR/Cas9 generated multi-allelic mutations in
both genomic target sites of the phytoene desaturase gene (CmPDS), a key enzyme
for the carotenoids production in melon. Chimeric albino phenotypes have been
successfully regenerated.

Giordano et al. (2022), using CRISPR/Cas9, showed the generation of melon
knockout mutants CTR1 and ROS1 for fruit ripening and reported for the first time
the inheritance of the introduced mutations to the following generations. Two
functionally validated genes (CmROS1 and CmCTR1-like) are involved in the
regulation of fruit ripening and showed the role of the DNA demethylase ROS1 in
fruit ripening. The authors characterized the ETHQV6.3 QTL genomic interval, a
QTL involved in climacteric ripening regulation, which allowed the identification of
a negative regulator of ripening CTR1-like (MELO3C024518), and a demethylase
ROS1 (MELO3C024516) and evidenced the role of both genes in melon climacteric
ripening. Indeed, in the CRISPR mutants, the authors reported the formation of
abscission layer, aroma, and ethylene production. The CmROS1 knockout mutant
revealed that during fruit ripening, the balance of global DNA methylation/demeth-
ylation is altered, which is governed by DNA demethylases (Giordano et al. 2022).

Bin et al. (2022) provided new insight regarding CmNAC-NOR function in
melon fruit ripening. Two CRISPR/Cas9-mediated mutants nor-3 and nor-1 in the
climacteric Védrantais background were obtained. nor-3, containing a 3-bp deletion
altering the NAC domain A, resulted in the delay of ripening without affecting fruit
quality. In contrast, nor-1 containing a 1-bp deletion resulting in a fully disrupted
NAC domain, completely blocked climacteric ripening (ethylene was not produced,
abscission layer was not formed, and external color was not changed) suggesting it
as a potential target to modulate shelf life in climacteric melon.

In summary, gene-editing technology has great potential. To date, no edited
plants have been obtained for disease resistance in melon but such technology can
strongly contribute to making the melon more resistant to biotic/abiotic stress and
improving consequently yields. The use of CRISPR and genome-editing
technologies will open new opportunities, potentially circumventing restrictions on
Genetically Modified crops (Veillet et al. 2019).
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2.4 Conclusion

The increasing of high-throughput sequencing technology has made possible huge
progress through molecular, and genetic research on disease resistance, fruit devel-
opment, and ripening of melon. The high-quality reference genome of melon has
played a primary role in this advancement and has been used for the resequencing of
diverse germplasm to explore genome-wide sequence variations, especially SNPs.
Several QTLs with high mapping resolution have been discovered for disease
resistance, and fruit traits in melon; which have enabled the development of useful
resources, such as molecular markers for these QTLs, to improve selection efficiency
in melon-breeding programs.

Genomics allow the identification of polymorphic loci responsible for variation in
phenotypic traits. The release of a genome assembly and large-scale sequencing and
resequencing data improved knowledge of the evolution, selection footprint, genetic
architecture, and gene mapping and cloning of fruit-related traits. Besides,
advancements in transcriptomics, plant defense mechanisms, and genomics will
provide new opportunities to accelerate melon breeding programs. Indeed,
integrating genetic and genomic data will help breeders to obtain a more durable
resistance to diseases and a better fruit quality.

All the resultant data should be made available according to FAIR (findable,
accessible, interoperable, and reusable) principles, and linked phenotype data should
also be incorporated. Indeed, huge information from high-throughput phenotyping
and genomics technologies are provided which helps researchers to guide their
breeding programs to biotic and abiotic stresses. In this process, bioinformatics is
fundamental to exploit and integrate these data, through association studies to detect
genomic targets underlying key traits useful for melon breeders.
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