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Abstracts Sex has been traditionally considered to be classified into two categories,
male and female. However, numerous reports have shown examples of insects
unfamiliar to this traditional binary sex view. Recently, the view of the sex spectrum
has been proposed as a revised version. In this view, sex is recognised as a
continuum from male to female (or female to male), and maleness or femaleness
of any sexual traits is quantitatively interpreted as ‘a position on the continuum of
sex’. This chapter discusses the molecular genetic mechanism defining a position on
the continuum of sex based on the knowledge about the Japanese rhinoceros beetle
Trypoxylus dichotomus.
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1.1 Introduction

Most insect species show sexual dimorphism, and their appearances are distinctively
different between males and females. For example, in some beetles, males have
magnificently developed mandibles, while females do not develop well. Based on
the facts like this, sex has been traditionally considered to be classified into two
categories, male and female. However, to date, numerous individuals cannot be
classified as male or female by their appearances. For example, in damselflies, some
females show male-like coloration though they produce typical female traits except
for the coloration (Gossum and Sherratt 2008). Other examples are the sexually
mosaic phenotypes (gynandromorph) and sexually intermediate phenotypes (inter-
sex) accidentally produced by developmental abnormalities (Narita et al. 2010).
These examples are not included in the traditionally binary view of sex, which
needs to be revised (Nong et al. 2020).

The sex spectrum is a view of recognising sex as a continuum from male to
female (or from female to male) (Nong et al. 2020; Preface). In this view, the
gynandromorph and the intersex are interpreted to be placed between male and
female in the sex spectrum. Furthermore, male-like female coloration in damselflies
may be placed between midpoint and female. Thus, almost all differences among
sexual traits in insects can be explained as differences in the location on the sex
spectrum.

How is the location of the sex spectrum defined in insects? In the fruit fly
Drosophila melanogaster, a major sex-determining gene doublesex (dsx) mutation
yields the gynandromorph and the intersex in both females and males (Hildreth
1965). It is well known that dsx is essential for sexual differentiation not only in
D. melanogaster but also in other holometabolous insects. These facts indicate that
genetic mechanisms for sex determination have a considerable effect on determining
insects’ location on the sex spectrum.

Here, we first overview the sex-determining mechanism in holometabolous
insects. Then, based on an example of the Japanese rhinoceros beetle, we discuss a
molecular mechanism to determine the location in the sex spectrum.

1.2 Sex-Determining Molecular Mechanism
in Holometabolous Insects

This subsection first introduces a sex-determining molecular mechanism in the
D. melanogaster, the most investigated model insect. Moreover, we also show the
commonality of the sex-determining mechanism.

The primary signal for sex determination is the number of the X chromosome
(Erickson and Quintero 2007). The sex of an individual with two X chromosomes,
i.e., an XX individual, is finally determined as female; on the other hand, the sex of



1 Spectrum of Sex in a Horn of the Japanese Rhinoceros Beetle 5

an individual with a single X chromosome (i.e., XY individual) is finally determined
as male as a default state.

The initial signals from X chromosomes produce the sex-lethal (SxI) protein only
in XX early embryos (Cline 1978, 1986, 1988; Kramer et al. 1999; Sefton et al.
2000; Penalva and Sanchez 2003; Salz 2007). SxI autoregulates and maintains the
expression of another Sxl isoform (Cline 1984; Bell et al. 1988, 1991; Penalva
and Sanchez 2003). The functional SxI protein controls the RNA splicing of tra, and
functional Tra protein is translated (Boggs et al. 1987; Bell et al. 1988; Penalva and
Sanchez 2003). Then, Tra protein yields female-specific Dsx (DsxF) by regulating
alternative splicing of dsx mRNA, which leads to female differentiation (Hoshijima
et al. 1991).

On the other hand, in XY embryos, a non-functional Sxl protein is produced
because of the lack of the initial signal from the X chromosome (Bell et al. 1988;
Samuels et al. 1991; Keyes et al. 1992; Penalva and Sanchez 2003). Lack of
functional SxI leads to expression of non-functional Tra protein, and a male-specific
Dsx (DsxM) is translated through lack of Tra-dependent splicing regulation, which
leads to male differentiation (Bell et al. 1988).

Whether the sex-determining mechanism in Drosophila is conserved in other
holometabolous insects has been recently studied by focusing on non-Drosophila
insects. Sx/ is a ‘master switch’ gene for sex determination in D. melanogaster. Sxl
orthologues have been found in many holometabolous insects, including Diptera,
Lepidoptera, Hymenoptera and Coleoptera (Traut et al. 2006). However, some
dipteran species’ research revealed that Sx/ orthologues are not responsible for sex
determination (Meise et al. 1998; Saccone et al. 1998; Sievert et al. 2000). Further-
more, the Sx/ orthologue in the silkworm Bombyx mori does not contribute to sex
determination but regulates spermatogenesis (Niimi et al. 2006; Sakai et al. 2019).
Therefore, Sx/ is not a broadly conserved sex determination gene in holometabolous
insects.

tra is an intermediate factor in the sex determination cascade of D. melanogaster.
Tra orthologues are identified in holometabolous insects such as some species in
Diptera, Coleoptera and Hymenoptera (O'Neil and Belote 1992; Pane et al. 2002;
Kulathinal et al. 2003; Lagos et al. 2007; Ruiz et al. 2007; Hasselmann et al. 2008;
Concha and Scott 2009; Schmieder et al. 2012; Shukla and Palli 2012; Geuverink
and Beukeboom 2014; Morita et al. 2019). Furthermore, in some of these species, tra
orthologues regulate female determination (Pane et al. 2002; Hasselmann et al. 2008;
Concha and Scott 2009; Hediger et al. 2010; Shukla and Palli 2012; Morita et al.
2019). On the other hand, tra orthologues seem to have been lost in Lepidoptera and
in some species in Strepsiptera and Diptera (Salvemini et al. 2013; Geuverink and
Beukeboom 2014). These findings indicated that although #ra orthologues are not
found in some species, the sex-determining function of tra is conserved in a much
more comprehensive range of holometabolous insect species than that of Sx/.

dsx is a bottom factor in the sex determination cascade of D. melanogaster, which
directly regulates the transcription of a battery of genes responsible for sex differ-
entiation. dsx orthologues are conserved in all of the insects investigated so far (Price
et al. 2015). Furthermore, the dsx has sex-specific transcripts and contributes to sex
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determination in the various holometabolous insects such as Diptera, Lepidoptera,
Hymenoptera and Coleoptera (Schiitt and Nothiger 2000; Ohbayashi et al. 2001;
Cho et al. 2007; Chen et al. 2008; Oliveira et al. 2009; Shukla and Palli 2012; Ito
et al. 2013; Mine et al. 2017; Taracena et al. 2019). Therefore, dsx is the conserved
regulatory factor in the sex determination cascade among holometabolous insects.

The above comparative analysis focusing on the conserved genes associated with
the insect sex determination pathway suggests that downstream genes tra and dsx are
the core regulatory genes conserved among holometabolous insects. Therefore, to
understand the determination mechanism of position in the sex spectrum in holo-
metabolous insects, we focus on the role of tra and dsx in sexual traits. In the next
section, we discuss the role of fra and dsx in the sex spectrum using the Japanese
rhinoceros beetle, in which we can manipulate the location in the sex spectrum by
controlling the expression level of sex-determining genes using RNA interference
(RNAi) methods.

1.3 Sex Spectrum in 7. dichotomus Horn Visualised by
Manipulating the Sex Determination Pathway

The horn of the Japanese rhinoceros beetle Trypoxylus dichotomus (Coleoptera,
Scarabaeoidea, Scarabaeidae) exhibits sexual dimorphism (Fig. 1.1a, EGFP). A
male has an exaggerated long horn on the head and a short horn on the first thoracic
segment (pronotum). On the other hand, a female has no horn neither on the head nor
on the pronotum but has three small projections in the rostral region of the head
(clypeolabral region).

As described in the previous sections, sex-specific tra and dsx isoforms are essential
genes to a sex-differentiating mechanism in holometabolous insects. In 7. dichotomus,
downregulation of dsx expression by RNAI results in short head horns in both males
and females, while thoracic horns form in neither males nor females (Fig. 1.1a) (Ito
et al. 2013). tra RNAi males showed no morphological changes, while females
developed ectopic male-like horns on both the head and pronotum (Fig. 1.1a) (Morita
et al. 2019). These facts indicated that in 7. dichotomus, Tra and Dsx regulate sexual
dimorphism in a horn (Fig. 1.1) (Morita et al. 2019).

Next, Morita et al. (2019) insufficiently suppressed fra expression levels in females.
As a result, female-like and male-like traits coexist in a single fra RNAi female
(Fig. 1.2) because tra regulates sex-specific splicing of dsx like other holometabolous
insects (Fig. 1.1b) (Morita et al. 2019), and insufficient suppression of tra expression
in tra RNAI females leads to incomplete switching from dsxF to dsxM.

Detailed observation of the fra RNAi phenotypes in Fig. 1.2 revealed that the
degree of similarity to males is different between head and pronotum regions. This
suggests that the location on the sex spectrum at the tissue level is different between
head and pronotum regions. For example, in the head region, tra RNAi individuals
show female-specific traits (three small projections) and male-specific traits (head
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Fig. 1.1 RNAi-mediated loss of function of sex-determining genes and morphological change of
horn primordia. (a) Representative individuals in dsx and tra RNAI treatment in males and females.
EGFP RNAI treatment (negative control) showed no morphological defects. The upper row, the
dorsal views of adults. The second row, the lateral views of adults. Scale bars are 1 cm. (b)
Sex-specific splicing of dsx in RNAI treatments targeting tra. RpL32 was used as an internal
control for RT-PCR. Blue arrowheads, male-specific splicing patterns (dsxM). Magenta arrow-
heads, female-specific splicing patterns (dsxF). Black arrowheads, RpL32. (Adapted from Morita
et al. PLOS Genet., 15: 1008063, 2019)

horns) (Fig. 1.2b, c). However, in one individual (Fig. 1.2b), the ectopic head horn
branched twice, forming a short stalk of head horns. On the other hand, the ectopic
head horn branched only once in the other individual (Fig. 1.2¢), and no stalk was
formed. This suggests that the former phenotype was more similar to male-specific
traits than the latter phenotype. Therefore, the locations on the sex spectrum of these
tra RNAI phenotypes in the head region can be explained as shown in Fig. 1.3a.

Next, in the pronotum region, only the tra RNAi phenotype in Fig. 1.2b was that
the ectopic thoracic horn was apparently like a male thoracic horn (Fig. 1.2d). The
thoracic horn length is similar to that of a fra RNAi female injected with a sufficient
amount of dsRNA (Fig. 1.2d). In contrast to the head horn in tra RNAi females, the
incomplete formation of the thoracic horn has not been observed so far. This
observation suggests that the thoracic horn phenotype is located closely at either
endpoint on the sex spectrum (Fig. 1.3b).
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Fig. 1.2 tra RNAIi phenotype induced by injection of small amounts of tra dsSRNA. (a—c¢) Compar-
ison of a wild-type female and ectopic intermediate sexual transformation of horns in females induced
by tra RNAI treatments. (a) A wild-type female. (b, ¢) Small ectopic horn formation in fra RNAi
females. Magenta arrowheads, three small protrusions formed in clypeolabrum. Green arrowheads,
ectopic head horns formed in the region anterior to the three small protrusions in ra RNAI treatments.
Scale bars are 5 mm. (d) Relationship between the head horn (left) and thoracic horn (right) length
and body size in RNAi-treated individuals. The head and thoracic horn lengths and body sizes of
control males (EGFP, blue dots), dsx RNAi-treated females (grey dots), and fra RNAi-treated
females (green dots: b magenta diamond, ¢ magenta hexagon) are plotted. HH, head horn; TH,
thoracic horn. (Adapted from Morita et al. PLOS Genet., 15: e1008063, 2019)

tra 2

These observations indicate that even within a single individual, the locations on
the sex spectrums at the tissue level are tissue-dependent. Then, what mechanisms
produce these differences? One possibility is a difference in the role of the
sex-specific dsx isoforms among tissues. In the head region, male and female traits
(the head horn and the three small projections, respectively) coexist in a single tra
RNAIi female (Fig. 1.2). In T. dichotomus, the dsx RNAi phenotype in both males
and females showed the head horn was formed, albeit short (Fig. 1.1a). This head
horn phenotype suggests that dsxM promotes the expression of the horn formation
genes and dsxF represses (Ito et al. 2013). In Fig. 1.2, it is considered that dsxF and
dsxM coexist in a single individual due to the insufficient suppression of tra
expression. The antagonistic effects of dsxM and dsxF on the expression of horn
formation genes might define the degree of similarity to males in the head region. In
a region of the clypeolabrum where dsxF and dsxM coexist (Fig. 1.2b and c), dsxM
functions to promote head horn formation, whereas dsxF functions to suppress head
horn formation; therefore, this antagonistic effect would define the location on the
sex spectrum at the tissue level in the head region. Conversely, male and female traits
did not coexist in a tra RNAIi female’s thoracic horn (Fig. 1.2). In the dsx RNAi
phenotype, the thoracic horn was not formed in either males or females. These
phenotypes indicate that dsxM promotes thoracic horn formation, while dsxF does
not contribute to thoracic horn formation. This fact means that thoracic horn
formation is regulated depending on the only dsxM. In other words, in fra RNAi
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Fig. 1.3 Sex spectrum of 7. dichotomus estimated from tra RNAi phenotypes. (a) The sex spectrum
at the tissue level in the head region. (b) The sex spectrum at the tissue level in the pronotum region.
The shorter head and thoracic horns in tra RNAi females than in control males may be due to
differences in body size between males and females at the timing of injection. (¢) The individual-level
sex spectrum is understood from the sum of tissue-level sex spectrums. Blue dots, GFP RNAi male;
magenta dots, GFP RNAI female; green diamond, tra RNAi female 1 (Fig. 1.2b); green square, tra
RNAI female 2 (Fig. 1.2c). (Adapted from Morita et al. PLOS Genet., 15: €1008063, 2019)

females with insufficiently suppressed fra expression, when the expression level of
dsxM exceeds a certain threshold, thoracic horn formation is promoted; otherwise, the
horn is not formed. Therefore, the phenotype of the thoracic horn by fra RNAi
(Fig. 1.2) is considered to be located at either endpoint on the sex spectrum (Fig. 1.3b).

This section described how sex is interpreted as a spectrum of continuous
phenotypes in 7. dichotomus, using the horn as an indicator of sex by manipulating
the expression level of a sex-determining gene fra. In addition, the sex spectrum at
the tissue level showed different locations in the head and pronotum regions. In the
concept of sex spectrum, the sum of the sex spectrum at the tissue level can be
understood as the sex spectrum at the individual level (Preface). Therefore, the
location of the sex spectrum at the individual level for tra RNAI in T. dichotomus
could be shown as in Fig. 1.3c. From the view of the sex spectrum, rather than the
traditional binary sex view, it can be uniformly explained for individuals that cannot
be classified by their appearance, as in Fig. 1.2.
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