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Abstract The application of gene therapy in the field of molecular medicine is an 
extremely promising approach to curing distinct varieties of illnesses and disorders 
of the human race. Currently, challenges of the gene therapy are to find secure and 
effective vectors which might be capable of delivering genes to the specific cells 
and getting them to express inside the cells. Because of safety concerns, artificial 
delivery systems are desired in comparison to viral vectors for gene delivery so 
numerous attention has been centered on the development of the effective vectors. 
However, Researchers are confronted with numerous problems consisting of low 
gene transfer efficiency, cytotoxicity, and lack of cell-targeting capability for the 
usage of these synthetic vectors. Chitosan, which is the biodegradable and non-toxic 
cationic polysaccharide, is generally preferred to the other cationic polymers as a 
non-viral vector mainly due to its properties of chemical versatility, excellence in 
transcellular transport, effectiveness as a DNA-condensing agent, and efficient and 
permanent transfection. The objective of this chapter is to indicate the importance 
and give an overview of the applications of chitosan and its derivatives as novel 
non-viral vectors for gene delivery. 
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PEG Polyethylene glycol 
PEI Polyethylenimine 
PEI Poly(L-lysine) 
pHPMA Poly[N-(2-hydroxypropyl methacrylamide] 
p-NIPAM Poly(N-isopropylacrylamide) 
RNA Ribonucleic acid 

1 Introduction 

Since the discovery of DNA’s structure, its functions, and gene transfer applications 
have gotten a lot of interest, from cell transfection to the manufacture of trans-
genic animals by getting transgenic embryos to gene therapy. Several studies were 
conducted, as follows:

• Changing the gene code and looking into the roles of genes.
• Transfer of DNA to the organism or its cells (transgenesis).
• Gene therapy is used to treat gene mutations or deficiencies.
• Therapeutics are produced using transgenic prokaryotes and eukaryotes, particu-

larly pharmaceutical animals such as goats and cattle (bio-pharming of therapeu-
tics).

• Model laboratory animals are created to study genetic illnesses caused by genetic 
damage or mutations.

• Farm animals, particularly pigs, are being studied for use as a tissue bank for 
human transplants (xenotransplantation). 

In these investigations, many successful outcomes have been obtained, as well 
as innovative methodologies. Apart from in vitro experiments, in vivo applications 
have also been carried out, but due to some unsolved problems and restrictions or 
difficulties, such as targeting of gene carrier particles, undesirable acute or late side 
effects of genes, and their carrier systems, obstacles relating to human applications 
have yet to be overcome. Transfection (gene transfer) is a process in which a gene is 
transferred to the nucleus of another cell and implanted in its DNA. Many approaches 
and protocols for transgenesis applications have been created by researchers. The 
gene is transferred to the tissue/cells using a variety of ways.

• Electroporation.
• Direct injection of genes into the nucleus or pronucleus.
• Using viral vectors to transfer genes.
• Non-viral vectors are used to deliver genes. 

Because the electroporation technique is only utilized in cell suspension, 
it has limited use. Furthermore, microinjection of the gene directly into the 
nucleus/pronucleus necessitates specialized and costly equipment, and this technique 
can be utilized in cell culture systems and after egg fertilization. The reliability of
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viral vectors in vivo experiments is still an open question, and the results of these 
studies are generally poor. As a result, researchers created a novel targeted gene 
carrier system, and non-viral gene carrier systems have become more commonly 
used in transgenesis and gene therapy applications. However, these methods have 
issues such as difficulty in targeting the gene carrier system, early cytoplasmic enzy-
matic activity degradation of the particles and the gene in the cells, and non-viral 
agent cytotoxicity. Currently, research is focused on resolving these issues. By deliv-
ering genetic material to the patient, gene therapy has been utilized to prevent genetic 
abnormalities. With this technique, the patient’s therapy, which is the regeneration 
of damaged biological activities or the restoration of homeostasis, is carried out at 
the molecular level. The basic goal is to overcome biological barriers that prevent 
therapeutic genes from reaching the desired location. Preclinical and clinical gene 
therapy research has advanced considerably in the last 15 years. Gene therapy has 
recently gained popularity as a promising treatment option for genetic illnesses, 
cancer, cardiovascular disease, and viral infection. Gene therapy not only tries to 
treat diseases but also to transfer recombinant genetic material to the nucleus, where 
gene expression, which activates or deactivates protein synthesis, occurs. It is clear 
that well-targeted, non-toxic gene carrier mechanisms are required to transport the 
gene to the nucleus. Chitosan is a non-viral gene carrier that is commonly used in 
gene therapy. 

2 Chitosan as a Gene Carrier 

The carrier system that delivers a gene for gene expression is called a vector. Vectors 
are mainly divided into two groups: non-viral vectors and viral vectors. Effective 
transfection and gene expression of viral vector therapy genes are of great clinical 
importance for gene therapy. Due to its structure, the virus performs gene transfection 
very effectively. Due to this property of viral vectors, the required carrier system is 
preserved and improved. Recently, viral vectors with different genomic characteris-
tics such as retrovirus, adenovirus, adeno-associated virus, herpesvirus, and poxvirus 
have been commonly used for the efficient provision of gene transport capacity and 
gene expression. Retroviruses are the most popular of these viral vectors because of 
their highest gene transfection efficiency and highest expression of therapeutic genes. 
While these functions emphasize the importance of safe RNA and DNA viral carrier 
systems, the same report reveals the difficulty of using clinical viral vectors [1, 2]. For 
example, adenovirus provides the highest gene expression and can infect dividing 
and non-dividing cells, but it elicits an immune response through viral protein and 
transient gene expression [3–5]. Similarly, retroviruses facilitate the manipulation of 
the viral genome. Although easy to combine with DNA, their advantages are difficult 
to target, complex combinations within the genome, and instability [5]. The first clin-
ical study deals with viral vector compliance and reliability. There are numerous viral 
vector systems that have been tested in ex vivo and in vivo studies. In recent years, 
studies have focused on virus targeting, cell type expression, and time of expression
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to enhance existing effects [5]. Researchers prefer viral vectors for their effective-
ness in transfection studies, but the use of these vectors has characteristics such as 
cytotoxicity, immunosensitivity to viral antigens, and possible viral combinations. Is 
limited because it is low. Because of these negative features, researchers have been 
drawn to non-viral vectors. Today, gene therapy is clinically effective in treating 
many illnesses. Since 1989, when gene therapy was first introduced, this approach 
has been used in more than 3000 patients with approximately 600 interventions, but 
no gene therapy product raises toxicity concerns. In addition, there are significant 
usage differences between viral and non-viral vectors. Viral vectors are used in about 
75% of clinical treatment cases, while non-viral vectors are used in less than 25% 
[6, 7]. Some highlights of the gene transfer application are shown in chronological 
order in Fig. 5.1 [8–15]. Due to these instabilities, researchers not only compared 
viral vectors with non-viral vectors but also sought to understand the potential and 
limitations of non-viral systems. In many of these studies, the researchers of gene 
therapy and pharmaceutic technologies recognize that viral vectors are merged with 
the genome and the cell is mutated, so cancer occurs in vivo. Besides that, the 
immune response is activated, and that’s why the treatment becomes more difficult 
[7, 16]. Especially, although the numerous non-viral vectors are synthesized and their 
features designed, these systems are not effective enough for gene transfer, so there 
are not any commercial products. The non-viral vectors are divided into two groups 
lipophilic vectors and polymeric vectors. 

Non-viral vectors containing cationic liposomes are commonly used before and 
during clinical trials, but an important part of non-viral lipophilic vectors has the 
same toxicity as viral vectors. And although there are clinical problems, the main 
advantage of these polymers is that they can create various modified cations in the 
structure of the polymer to enhance their potency. As a result, plasmid DNA is 
released in a controlled manner, increasing stability to enzymes in the blood such as 
nucleases, reducing non-specific uptake, regulating interactions with cells and plasma 
molecules, and simultaneously eliminating the immunizing of the system. These 
modifications are applied to improve the release properties of the polymer, allowing 
the genetic material to be released in a controlled manner at the target site [17]. On 
the other hand, non-viral gene transfer systems with different polymer structures are

Fig. 5.1 The Continuous growth of gene transfer applications 
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safe and economical gene transfer systems with improved various synthetic vectors, 
some of which are commercially available. In addition, non-viral vectors are not as 
efficient as viral vectors and generally solve as some of the cationic carrier systems 
used with anionic genes to generate ion complexes capable of exhibiting cytotoxic 
effects [18, 19]. The common goal of these studies is the synthesis of polymer carrier 
systems that are as effective and less toxic as viral vectors. 

3 Application of Polymers in Gene Delivery 

3.1 Artificial Polymers 

There are several non-viral gene delivery systems for transferring genetic mate-
rial to the cell nucleus. The non-viral gene delivery system consists of polymers 
and lipids or liposomes. Cationic polymers have many advantages for use in gene 
delivery such as low toxicity and immune response, being easy to handle, and 
being stable [20, 21]. However, some issues need to be resolved, including toxi-
city, reduced transfection efficiency, and lack of biodegradability. These properties 
of the polymer need to be modified in different ways. These biodegradable non-viral 
polymer gene delivery systems are called transgenic polymers. Transgenic polymers 
can be divided into two groups: natural transgenic polymers and synthetic transgenic 
polymers. Synthetic transgenic polymers are generally preferred for gene delivery 
because of their ease of modification. According to Amiji [6], synthetic transgenic 
polymers include non-biodegradable transgenic synthetic polymers [polyethylen-
imine (PEI), polyethylene glycol (PEG) conjugates, etc.], biodegradable transgenic 
synthetic polymers (poly-β-aminoesters, polyamido amines, poly-imidazoles, etc.), 
polyethylene oxide/polypropylene oxide copolymers and polymeric polyethylene 
oxide, polyalkylcyanoacrylate nanomicrospheres. However, the main drawbacks 
of these polymers are their high toxicity. The main reasons for toxicity are the 
polymer skeleton and the density and distribution of positive charges along with 
the molecular weight. PEI’s with a molecular weight of 22–25 kDa are used for 
gene therapy because of their reduced cytotoxicity and high transfection efficiency 
[22, 23]. Other non-biodegradable transgenic polymers are used to deliver genetic 
material such as DNA, oligonucleotides, and small interfering RNAs. Some of these 
polymers are poly[2-(dimethylamino) ethyl methacrylate] (PDMAEMA), poly[2-
(dimethylamino) ethyl acrylate] (PDMAEA), and N-vinyl pyrrolidone. They show 
high transfection efficiency like PEI, but due to their negative properties that reduce 
stability in blood, high interaction with serum components, etc., these polymers are 
PEG and poly[N-(2-hydroxypropyl methacrylamide)] (pHPMA) is bound [24]. PEG 
and pHPMA materials mask the instability of nanoparticles in serum due to the pres-
ence of nanoparticles in the hydrophilic layer on the polyplex. However, the PEG and 
pHPMA groups interfere with complex: DNA complex formation, thereby reducing
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the efficiency of polyplex transfection. Researchers are working on improving various 
ways to solve these problems [24–26]. 

3.2 Natural Polymers 

Cationic polymers (polycations) are one of the most commonly used carrier systems 
in molecular gene transfer systems. The polyelectrolyte complex (PEC) obtained 
by the interaction of DNA and polycations protects DNA from enzymes such as 
DNAse. In addition, transgenic polycations interact with serum DNA due to their 
cationic properties at physiological pH.PEC systems are easier to manufacture and 
have a lower immune response than viral vectors, but researchers are pursuing further 
research due to negative properties such as biodegradability problems and reduced 
transfection efficiency. The main transgenic polycations are PEI, poly(L-lysine), 
dendrimers, gelatin, and chitosan, a natural cationic polysaccharide. As mentioned 
above, one of these polycations, chitosan, is natural, biodegradable, biocompatible, 
non-toxic, and does not contain negative charges in the PEC system [6], so it is used 
in transfection studies. It is attracting the attention of researchers. Natural polymers 
commonly used in gene delivery are poly (amino acids) such as poly-L-lysine (PLL), 
polyornithine, polyarginine, chitosan, dextran, collagen, gelatin, and their modified 
derivatives. PLLs and other polys (amino acids) are important polymers for use in 
gene delivery systems due to their biodegradability, but these polymers are highly 
toxic [22]. Other polycations, namely, dextran [27], collagen [28], gelatin [29, 30], 
and their modified derivatives are used in gene delivery systems, but researchers have 
observed sufficient transfection efficiency so did not do it. Therefore, chitosan has 
been widely used in many studies due to its characteristic properties. 

4 General Characteristics of Chitosan 

Chitosan is a linear polysaccharide composed of glucosamine and N-acetyl-
glucosamine units bound by β (1–4) glycosidic bonds and a partially deacetylated 
product of the natural polysaccharide chitin. Chitin, a biopolymer, is the most abun-
dant organic compound in nature and is an important component of the exoskeleton 
of animals, mainly found in the shells of crustaceans such as crabs, shrimp, and 
krill. Since chitosan is an N-deacetylated derivative of chitin, the degree of acety-
lation determines whether the biopolymer is chitin or chitosan. When the degree of 
deacetylation of chitin, which is the content of glucosamine, exceeds about 50%, it 
dissolves in acidic aqueous solutions such as acetic acid, lactic acid, hydrochloric 
acid, and aspartic acid, and is called chitosan [31, 32]. Chitosan does not dissolve 
at basic pH values. Chitosan exhibits varying degrees of solubility in dilute aqueous 
media, depending on the free amine content of the chain. The molar ratio of acety-
lated amine groups to deacetylated amine groups in chitosan also determines the
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sensitivity or biodegradability of the enzyme. Chitosan is an inexpensive, biocompat-
ible, animal/human biodegradable, non-toxic cationic polymer. In addition to these 
properties, it exhibits other excellent biological properties such as immunological, 
antibacterial, and wound healing activity. Chitosan degradation products are also 
non-toxic, non-immunogenic, and non-carcinogenic. The chemical modification of 
chitosan that results in a variety of derivatives is easy to apply. A variety of possible 
modification reactions can be applied, including nitration, phosphorylation, sulfa-
tion, thiolation, acylation, hydroxyalkylation, graft polymerization, amination, and 
combinations of chitosan derivatives with cyclodextrin. In particular, the physical, 
mechanical, chemical, bioactive properties, and commercial availability of chitosan 
make chitosan a very attractive biomaterial in biomedicine. Therefore, since the 
nineteenth century [33–35], chitosan derivatives have found widespread use in many 
areas, including biotechnology (especially biomedicine) and environmental applica-
tions. For example, a future and important use of chitosan in biomedicine for gene 
delivery. Chitosan has a high positive charge density due to the D-glucosamine unit in 
the structure. It exhibits polycationic properties at acidic and neutral pH. The amine 
group of chitosan is protonated and chitosan forms a PEC with negatively charged 
DNA [6, 36, 37]. Currently, positively charged groups (amino groups) and negatively 
charged ones, nucleic acids that form stable complexes or biological membranes and 
in vivo targets (e.g., PEI or polyamide amine dendrimers) due to their low toxicity and 
immunogenicity [33, 34]. Therefore, chitosan and its derivatives have recently been 
recognized as safe and efficient cationic carriers for gene delivery [6, 33, 34, 38–41]. 

5 Factors Affecting Gene Transfer in Chitosan Delivery 
System 

Many delivery systems have been developed to maximize transfection efficiency and 
minimize side effects. For this purpose, Kasyua and Karudahave been used in vivo, 
versatile payload acceptability, low toxicity or non-toxicity, low immunogenicity, 
stealth, active targeting, proper size, and proper surface charge. It provided informa-
tion on the optimized properties of these carrier systems for efficient cellular penetra-
tion: activity, intracellular targeting mechanism and high productivity [42]. Bhavsar 
and Amiji pointed out other properties like reactivity, biocompatibility, non-heat 
resistance, impurities, availability in medicinal grade, load capacity, permeability, 
swelling, viscoelasticity, and local environment sensitivity [43]. As defined above, 
we have looked at these two classifications for rectification of the non-viral vectors 
compared to viral vectors. Size and charge density are very playing a crucial role 
in vitro and in vivo overall performance of polymeric gene delivery systems. The 
polymeric gene delivery systems have a positive charge which is complex with the 
DNA having a negative charge. These cationic densities boom the encapsulation 
performance and enhance the uptake of DNA into the cells through the interplay of 
the negatively charged cell membrane [18, 44–46].
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5.1 Surface Charge and Zeta Potential 

The polymeric gene delivery systems that are complexed with DNA are called poly-
plex. The positive charge density of the polymer increases the DNA encapsulation 
efficiency and stability as well as immunity. Therefore, in various studies, PEG or 
the same other molecule forms a complex with the polymer carrier to provide charge 
balance, and these modifications make these carriers safe [47, 48]. Charges are also 
important for cell penetration. Cationic nanoparticles enter cells via endocytosis. 
Positively charged particles react with the negatively charged sugar coating on the 
outside of the cell membrane (on the extracellular polymer material on the surface 
of the cell membrane) and are taken up by cells by various intracellular mechanisms. 
When particles (which did not invade cells by passive and active transport) are taken 
up by endocytosis, multiple acidic groups cause endosome destabilization at low pKa 
values, resulting in a proton sponge effect. The polymer is then protected by moving 
protons to the endosome and increasing the ion charge density until the endosome 
becomes unstable [10]. From the formation of polymer support-DNA complexes to 
cell invasion and gene transfer to the nucleus, the required surface charge is called 
the zeta potential [49, 50]. Expressed as colloidal stability of particles distributed in 
a liquid (usually water) and when an electric field is applied to the liquid, it moves 
to the negative or positive electrode according to the surface charge ratio. As is well-
known, in the case of colloidal systems, when a net surface charge is formed, a reverse 
charge begins to be generated in the outer layer, thereby forming an electric double 
layer. The innermost layer that surrounds the opposite layer for each surface charge 
of a particle is called the star layer. Each particle acts as a single entity consisting 
of this bilayer whose positive charge is equal to its negative charge. The potential 
difference between this field and the surface charge of the particle is called the zeta 
potential (ζ). The unit is millivolts (mV) and is measured with a zeta meter [51]. 
Particles are stable below −30 mV and above +30 mV. For stable nanoparticles used 
in gene delivery applications, the average zeta potential is up to +30 mV. The ioniza-
tion of the terminal groups of the non-viral polymer carrier depends on the degree of 
surface ionization proportional to the pH of the dispersion. For zwitterionic particles, 
the surface charge is positive at low pH and the surface charge is negative at high 
pH. These charges equilibrate at a zero point called the isoelectric point [51]. 

5.2 Particle Size 

In 1860, nanoparticle technology was born from nanoscale or nanometer (nm) scale 
materials. Currently, the nanoscale concept is described as a material with a particle 
size of 1–1000 nm. The scope of nanotechnology lies in the manufacture of nanoscale 
materials with various properties and the study of these properties. While chemistry, 
physics, molecular biology, and materials science are related to nanotechnology,
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many areas of science are beginning to associate nanotechnology with the devel-
opment of technological methods [52, 53]. The evolution of nanotechnology is not 
limited to the position of atoms in the structure of materials as they are transported 
from one location to another. Moreover, nanomaterials, which have a high surface 
area due to their nanosize, are synthesized with exclusive properties throughout their 
controlled size. Therefore, nanomaterials are widely used in many fields such as elec-
tronic equipment, automobiles, military, medical, manufacturing of conductive and 
semi-conductive materials, ceramics, surface coating materials, ink manufacturing, 
and so on. This technological revolution is seen by scientists as the starting point 
for more development over the next 10–15 years. The concept of nanotechnology 
in gene therapy began in 1930 with the discovery of the intracellular nanoscale 
structure. Today, nanotechnology approaches in gene therapy are known for devel-
oping nanoparticle systems below 200 nm. The size of the polyplex is important 
for functionality. The diameter limit of the polyplex is about 10 nm at the first 
uptake in the liver. In addition, the upper limit size of the polyplex should be less 
than 200 nm. The size of the polyplex is changed by changing the DNA: polymer 
ratio [54, 55]. In particular, factors that influence the transfection efficiency of the 
chitosan-DNA complex are the degree of deacetylation and the molecular weight 
of chitosan, pH, serum, chitosan charge ratio to DNA, and viscosity, and cell type 
[6, 38, 56, 57]. Transfection efficiency and DNA loading capacity increase with the 
degree of deacetylation, and extracellular DNA protection and intracellular DNA 
release increase with molecular weight. The optimum pH for transfection media is 
6.8–7.0 [56]. 

5.3 Chitosan Modification Reactions 

Chitosan is insoluble in physiological pH and has low transfection efficiency, so 
modification studies are needed. For this purpose, several modification reactions 
are performed on chitosan such as modified with PEG or glycol [58], synthesized 
quaternized chitosan [59], low molecular weight chitosan [60], and reducing or thio-
lated chitosan (Fig. 5.2) [61]. Generally, PEG, glycol, or pHPMA is used to mask 
the instability of nanoparticles in serum and the formation of the hydrophilic layer 
onto the polyplex. The introduction of grafted PEG units onto the galactosylated 
chitosan was investigated by Parket al. which increases stability in water and cellper-
meability [62]. Mao et al. have been studied grafted methoxyPEG (mPEG) units 
of different molecular weights onto the trimethylchitosan [63] to produce modi-
fied chitosan such as PEG-aldehyde [64, 65], PEGcarboxylicacid [66, 67], PEG-
carbonate [68], PEG-iodide [69], PEG-epoxide [70], PEG-diacrylate [71], PEG-NHS 
ester [72], and PEG-sulfonate [73–75]. The introduction of colloidal stabilities of 
polyplexes with a pHPMAlinker was studied by Luten et al. [76] which enhanced 
the stability in serum for in vitro transfection with low cytotoxicity. Later on, a 
lot of studies based on this concept have been carried out to date [72, 77–84].
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This modification is preferred over the others because of improvement in trans-
fection efficiency and solubility in water. Numerous quaternized chitosans such 
as N-(4-pyridinylmethyl)chitosans [38], N-trimethylated chitosan oligomers [85], 
methylated N-(4-N,N-dimethylaminobenzyl) chitosan [86], octadecyl quaternized 
carboxymethyl chitosans [87], PEGgraft-quaternized chitosan [88], and other low 
molecular weight chitosan have been studied in non-viral gene delivery. Richardson 
et al. studied the effect of molecular weight of chitosan on the cytotoxicity, complex-
ation with DNA, and relation to the protection of DNA from nuclease degradation. 
He found that the low molecular weight of chitosan is more effective than poly(L-
lysine) for complexation with DNA, and there is no cytotoxic effect for use in gene 
delivery [89]. Various research articles related to the modification reactions of the low 
molecular weight chitosans appeared in the literature [90–102]. Reducing or thiolated 
chitosan is commonly used to dissociate DNA and vectors. In addition, modifications 
containing ester bonds [103–105] or biological macromolecules [106, 107] such as 
heparin and proteoglycans are used but not generally preferred by the researchers. 
The disulfide bonds are delivered to the gene switch through diverse strategies. One 
of those strategies is the cationic ligands, which can be coiled at the polymer segments 
with the disulfide bonds, then DNA is bonded through the electrostatic interaction, 
and so DNA is added into the cytosol via the dissociation of disulfide bonds from the 
polyplex. Alternatively, other methods are the formation of cross-linking points via 
disulfide bonds and the reaction with disulfide bonds via polymer segments. These 
bonds present in the polymer segment not only release DNA but also reduce cyto-
toxicity through the degradation of small molecule components [24, 25]. Lee et al. 
stated the thiol modification of chitosan for sustained gene transport. In this study, 
the thiolated chitosan/DNA nanocomplexes exhibited significantly stepped forward 
gene transport in vitro and in vivo via way of means of the oxidation of thiol groups 
to crosslink the thiolated chitosan [108]. Numerous reducible chitosan research had 
been stated so far [109–113]. 

Fig. 5.2 Scheme for representation of chitosan-modified nanoparticles
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6 Application of Chitosan-Based Nanocomposites in Gene 
Therapy 

Chitosan is the most studied natural macromolecule for gene delivery. It has a posi-
tive charge, binds to negatively charged cell membranes with high affinity, and forms 
a complex with DNA via electrostatic interaction [22, 114]. Mumper et al. [15, 115] 
have introduced firstly the role of chitosan in gene therapy. Afterward, in 1996–1997, 
Murata et al. synthesized the chitosan gene carrier systems having galactose residues 
for the transportation of the DNA molecule [116, 117]. Although gene transport 
mechanisms of cationic nanoparticles had now no longer been absolutely under-
stood in those years, numerous reports related to the chitosan gene carrier systems 
were reported in the literature. Polymeric gene transport applications are quite tough 
to classify. In well-known, classification is performed further to the polymer type 
as natural and artificial polymeric gene transport structures. However, researchers 
understood that this type does not explain all the gene delivery applications so, 
in place of making the classifications, they realized that the gene shipping mech-
anisms want to be understood in aggregate with polymer-DNA out of the mobile 
to the occurrence of the related proteins into the mobile nucleus. Despite the fact 
that these mechanisms have now not been completely defined yet, the modification 
reactions are done in step with the diagnosed mechanisms. Wong et al. described 
seven essential steps for the transport of a gene to the nucleus: (1) healing genes 
packaging; (2) entry to the cellular; (3) endolysosomal getaway; (4) the impact of 
DNA/provider system release; (5) progression throughout the cytoplasm and tran-
sition into the nucleus; (6) gene expression; and (7) biocompatibility [24]. Gene 
packaging strategies are very critical for gene delivery structures. For the prevention 
of the same charge impact on the cell membrane resulting from the phosphate corpo-
rations of DNA, the condensation of the cumbersome shape of DNA, and the safety 
of DNA from the degradation extracellularly or intracellularly, researchers stepped 
forward with two packaging strategies for chitosan gene transport: (1) electrostatic 
interplay and a couple of encapsulation [24, 118, 119]. Usually, electrostatic inter-
action strategies are desired for the chitosan gene transport systems. Erbacher et al. 
used the electrostatic interplay methods for growing chitosan/DNA complexes and 
they located that this complicated required some feature modifications for strong 
and small complexes [107]. Chitosan has amino businesses that are protonated in 
impartial pH and have interaction with DNA spontaneously. Due to those features of 
chitosan, Lee et al. studied the hydrophobically modified chitosan complexes with 
plasmid DNA to put together self-aggregated nanoparticles in aqueous media with 
adjusted pH [120]. Aside from this examination, there are various articles reported 
relating to those capabilities of chitosan [121–128]. Especially because the encapsu-
lation strategies are explored, the researchers have not generally favored the electro-
static interaction techniques. The encapsulation methods are used for the protection 
of genes from enzymatic degradation and offer the controlled launch of DNA via 
the biodegradable groups of chitosan [24]. Buddy et al. classified the techniques 
of obtaining the encapsulated chitosan-based totally on the nanoparticle systems;
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those are covalently connected nanoparticles, ionically pass-linked nanoparticles, 
and desolvated nanoparticles [129]. The covalently pass-related method is carried 
out with a chemical cross-linking agent, including glutaraldehyde, for cross-linking 
of chitosan [130]. The ionically cross-connected nanoparticles method or ionotropic 
gelation approach is the most famous technique for the use of polyanions, such as 
tripolyphosphate, for forming cross-connected chitosan [131–134]. In the desolvated 
nanoparticles approach, the desolvating agent is used for the precipitation of chitosan 
to extract water from chitosan polymeric chains. The complex coacervation approach 
is one of the desolvated strategies [129]. Bozkır and Saka studied the complicated 
formation of chitosan and plasmid DNA with the use of complicated coacervation 
and solvent evaporation techniques. In addition, they investigated the crucial param-
eters which include encapsulation efficiency, molecular weight, and deacetylation 
degree of chitosan [135]. The restrictions of the encapsulation techniques are that 
the polymeric provider systems are uncovered the natural solvents and high tempera-
tures, which disrupt the genetic materials, much less encapsulation efficiency, much 
less DNA biocompatibility because of inadequate launch from the polymeric carrier 
structures, and the degradation of DNA due to the hydrolysis of ester bonds in low 
pH [24]. The polymer-DNA complexes as polyplexes come upon the primary barrier 
on the mobile, and it is far referred to as the plasma membrane. Polyplexes do not 
undergo passive diffusion because the transition membrane’s pores and canals are 
very constrained dimensionally. Various strategies have been employed to overcome 
bodily obstacles. Endocytic uptake of the molecules, which are not handed from 
the cell membrane via the easy diffusion or active delivery, is passed essentially 
from the mobile membrane through 3 approaches: (1) phagocytosis; (2) pinocytosis; 
(3) receptor-mediated endocytosis. In general, the particles which are bigger than 
250 nm pass via phagocytosis, and the smaller ones skip through endocytosis on the 
mobile membrane [136]. Polyplexes are uptaken in the mobile by means of receptor-
mediated endocytosis. The focus on the agent in the provider structures is used for 
specific uptake of the gene in a mobile as for reaching endocytosis. The endogenous 
ligands, inclusive of folate and transferrin, are widely utilized in phrases of growing 
the biocompabilities and transfection efficiencies. However, the exogenous ligands 
have very constrained utilization in terms of generated immune reaction because 
of their overseas structures [24, 78, 114, 137–145]. The endolysosomal getaway of 
chitosan polyplexes is explained while after the endocytic uptake of polyplexes, they 
go back to the mobile floor, which is facilitated by means of lysosomes, intracell 
organelle, etc. This concept is expressed with the pKa value of polycations, which 
is stricken by a trade-in buffer capability. For chitosan polyplexes, which have a 
pKa value of approximately 6.5, the amino organizations are protonated within the 
cellular cytoplasm, but this function is applied for the endolysosomal break out of 
chitosan polyplexes [146]. In line with the effectiveness of molecular weight and 
degree of deacetylation, Huang et al. studied the transfection efficiency of chitosan. 
They said that chitosan has 2.5 times higher proton absorption ability than PLL [147]. 
However, Höggard et al. studied the connection between ultrapure chitosan and PEI 
and studied their characteristics. Consistent with their experimental consequences, 
the ultrapure chitosan does now not offer a sponge effect due to its primary amine
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groups as compared with PEI. In addition, its buffering capacity is lower than PEI 
on the acid endosomal pH interval of 4.5–5.5 [148]. due to these disadvantages, 
researchers have carried out a few modification reactions on chitosan. Moreira et al. 
studied to improve the transfection performance of chitosan with the aid of promoting 
the endosomal break out potential and buffer capability of chitosan polyplexes. For 
this cause, the chitosan backbone is modified with imidazole moieties with a view 
to escape endolysosomal degradation, much like PEI [149]. In another study, Chang 
et al. modified chitosan with histidine as buffering potential of histidine might help 
the escape of DNA inside the endosomal pH variety [150]. Comparable research 
was finished with the aid of others as well [151–154]. The most important steps for 
the transport of a gene to the nucleus are DNA/carrier device dissociation, cytosolic 
carrier, launch into the nucleus, and gene expression. The maximum crucial step 
for chitosan carrier systems is the DNA/vector dissociation among those primary 
steps because green gene transfer is completed with a minimum retention time of 
non-protective DNA in the cytosol. Efforts had been made to enhance the modifi-
cation of the chitosan backbone, and charge reduction or modification of chitosan 
is done by modifying it with thermoresponsive groups, ester bonds, or disulfide 
bonds (reducible polymers). Among them, the most critical and typically desired 
strategies are modification with thermoresponsive groups and disulfide bonds. The 
thermoresponsive polymers are transformed to reversible frizz-circular form relying 
upon the temperature. Thus, the degree of DNA condensation is decided by the 
change in temperature. The frizz phase has the flexible, hydrophilic, the long-wide 
chain conformation, whereas the circular form has the collapse, hydrophobic, small 
stretched conformation. If the carrier system is circular up to the transition tempera-
ture, and frizz forms below the transition temperature, this transition temperature is 
called lower critical solution temperature (LCST) [155]. In fact, the thermorespon-
sive provider device that has an LCST value underneath the frame temperature is 
used for the condensation DNA with stretching form into the cell. In this regard, 
poly(N-isopropylacrylamide) (p-NIPAM), with an LCST value of 32 °C, is exten-
sively utilized in transfection studies. This polymer offers excessive transfection 
efficiency, endosomal escape, cationic character, and hydrophobicity and NIPAM 
has been used for chitosan modification in many studies [156–159]. The thiolated 
polymers are commonly desired in gene transfer systems as a promising tool [160]. 
The disulfide linkages are modified to shape the gene carrier systems by the usage of 
various strategies; (1) electrostatic interactions, (2) reversible cross-linking, and (3) 
direct affiliation of the disulfide linkages at the polymer backbone. As cited above, 
those linkages preserve the polymer structure solid inside the cytosol, launch DNA 
into the cytosol, and furthermore the cytotoxicity of the carrier system is decreased 
with the dissociation of the carrier system to lower molecular weight components [24, 
25, 160]. The thiolated chitosan carrier systems that enable gene transfection effi-
ciency were developed by Schmitz et al. [161]. Jia et al. advanced a redox-responsive 
chitosan carrier system by using the PEG, PEI, and disulfide bonds for greater effec-
tive gene transfection in HeLa cells [162]. Targeted gene delivery is a significant step 
in chitosan carrier systems for obtaining selective and enhanced gene delivery to the
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Fig. 5.3 Schematic Pathway for Chitosan nanoparticles in targeted gene delivery. Reproduced from 
M. Junaid Dar et. al. with permission from Elsevier 2019 

target site. By using the in vivo approaches, the chitosan polyplex is administered to 
the body, it must be targeted to the specific sites as shown in Fig. 5.3. 

Numerous reports are reported in the literature relating to targeting these specific 
sites, such as tumors [163], liver [164, 165], lung [166, 167], and brain [168, 169]. 
In most of these studies, chitosan is conjugated with the protein, transferrin, peptide, 
antibody, etc. [170]. A peptide functionalized chitosan-DNA nanoparticles were 
reported by Talvitie et al. for cellular targeting which is targeted to the required cell 
receptors in a specific and time-dependent manner [171]. In addition, Wang et al. 
synthesized the pH-sensitive gene delivery system for cancer cell-targeting which 
improved gene delivery by the introduction of pDNA nanocomplexes in the core 
and a pH-sensitive anionic polymer folic acid-modified PEG tethered carboxylated 
chitosan coating on the surface [172]. Numerous studies focused on targeted chitosan 
carrier systems have been reported in the literature [62, 173–180]. Currently, a combi-
nation of both the viral vectors and chitosan is used for efficient and permanent trans-
fection [181]. Lameiro et al. coupled the adenovirus into the chitosan microparticle 
for mucosal vaccination. The main reason behind this study was to defend viruses, 
lower the immune response, and prolonged release. However, there are some bound-
aries including the difficulty of controlled release, loss of viral activity, and less 
loading efficiency. More studies are needed to triumph over these shortcomings 
[181, 182].
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7 Conclusion 

The idea of gene delivery was introduced in 1963, and viral vectors have been most 
effectively utilized in the gene therapy area. Because early 2000, these vectors were 
in the main abandoned because of the adverse side effects of viral-based gene thera-
pies. Researchers have targeted the synthesis and applications of non-viral vectors, 
which are lipophilic or polymer-primarily based gene delivery systems. Cationic 
polymers are desired as a non-viral vector inside the field of gene transport. Chitosan 
and chitosan derivatives are commonly desired by the other cationic polymers due to 
their superior properties. Chitosan and chitosan derivatives are especially biodegrad-
able and biocompatible polysaccharides. These are chemically versatile for under-
going varieties of reactions having different physicochemical properties which were 
tuned through modification having lower cytotoxicity, and high transfection proper-
ties. They are also called effective DNA-condensing agents and provide protection 
against DNAase-degradation. In connection with this fact that polymer-based gene 
delivery systems are yet to gain a massive presence in medical trials. Chitosan and its 
derivatives have been utilized in gene delivery studies after numerous modifications. 
A number of in vitro and in vivo studies confirm that chitosan and its derivatives 
are suitable and promising materials for efficient non-viral gene and DNA vaccine 
delivery. It is evident that chitosan and its derivatives are strong candidates to be used 
as the most preferred non-viral vector for gene delivery clinical trials in the future. 
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