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Abstract. The Heating, Ventilation and Air-Conditioning (HVAC) systems in
public buildings typically operate on fixed schedules without considering changes
in actual indoor occupancy. Significant energy savings can be achieved by adap-
tively adjusting HVAC operating conditions to meet indoor cooling demands.
Obtaining indoor occupancy through conventional devices, such as video cameras
and personal bracelets,may impose negative impacts on human privacy. To address
such challenge, this study proposes a non-intrusive method to accurately predict
indoor occupancy using environmental data and machine learning techniques.
Two-month experiment has been designed to obtain high-frequency data on envi-
ronmental conditions and indoor occupancy of a conference room. A variety of
environmental data, including temperature, relative humidity, CO2 concentration,
light intensity and noise level, have been collected and used as modeling inputs.
Four state-of-the-art machine learning techniques, together with over-sampling
and under-sampling techniques, have been used for indoor occupancy detec-
tion and occupant number prediction. The model performance has been carefully
analyzed to investigate the potential of the non-intrusive method proposed. The
research results validate the usefulness of environmental data in predicting indoor
occupancy. The research outcomes are helpful for devising occupancy-centric
measures for building energy conservations.

Keywords: Indoor occupancy · Non-intrusive detection · Machine learning ·
Data sampling · Building energy conservations

1 Introduction

Buildings account for 40% of global energy consumptions and 60% of global electricity
uses [1–3]. The Heating, Ventilation and Air-Conditioning (HVAC) system consumes
around 40% of the building energy consumptions and is closely related to indoor thermal
comforts [4].
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Researchers in recent years have found that the acquisition of occupancy information
may be the key to make HVAC system more energy-efficient. Balaji et al. found that
billions of dollars can be saved in building operations if HVAC systems were operated
according to actual indoor occupancy patterns [5]. Researchers showed that by inte-
grating indoor occupancy into the controls of HVAC systems can greatly enhance the
energy efficiency and indoor thermal comforts [6–8]. To ensure building energy effi-
ciency, it is essential to obtain accurate information on indoor occupancy and integrate
such information for building system controls.

Studies related to indoor occupancy estimations can be divided into two groups. The
first is to predict whether the room is occupied or not, which is in essence a binary clas-
sification task. The second is to predict the actual occupant numbers. Previous studies
typically adopted two types of devices for prediction, i.e., devices with or without termi-
nals. Devices with terminals include smart bracelets, wireless transmitters which support
different communication technologies such as Wi-Fi, Bluetooth and Radio-Frequency
Identification. Devices without terminals refer to video surveillance, occupant number
counter and smart meters and so on. Despite the high prediction accuracy, such devices
may impose negative impacts on human privacy, especially for personal devices and
video surveillance.

To address such challenges, studies are being conducted to adopt environmental data
for indoor occupancy estimations. Such solutions are particularly attractive due to their
low implementation costs and non-intrusive nature [9]. Candanedo et al. collected data
on light intensity, temperature, relative humidity and CO2 concentration and used them
as inputs for indoor occupant number predictions [10]. Pedersen et al. adopted volatile
organic compound sensors to predict whether a room is occupied or not [11]. The results
indicated the CO2 and volatile organic compounds almost had the same importance
in predictive models. Diaz and Jimenez conducted an experiment to show that CO2
measurements were useful in predicting indoor occupancy status, but not in occupant
numbers [12].Wang et al. enhanced the accuracy of indoor occupant numbers prediction
to 91% and proposed an energy saving control strategy for buildings [13]. Despite the
encouraging results obtained, there is still a lack of studies to systematically investigate
the usefulness of different environmental data and machine learning techniques for both
indoor occupancy classification and regression tasks.

This study proposes a non-intrusive method to accurately predict indoor occupancy
using environmental data and machine learning techniques. Two-month experiment has
been designed to obtain high-frequency data on environmental conditions of a conference
room. Five environmental data, including temperature, relative humidity, CO2 concen-
tration, light intensity and noise level, have been collected and used as model inputs.
Four machine learning techniques, including fully connected neural networks (FCNN),
extreme gradient boosting trees (XGB), long short-term memory (LSTM) networks and
support vector machines (SVM) have been used to predict indoor occupancy status and
occupant numbers together with over-sampling and under-sampling techniques.

This paper is organized as follows. The second part introduces the research method-
ology. The third part describes the experiment settings and data obtained. The fourth
part illustrates the results on the binary classification and regression tasks of indoor
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occupancy estimations. The conclusions are drawn in Sect. 5. The main contributions
are summarized as follows:

(1) A thorough investigation on the impacts of different environmental variables and
their collection frequencies for occupancy estimations.

(2) Quantify the performance ofmachine learning techniques in occupancy estimations.
(3) Quantify the value of data sampling techniques, especially for imbalancedmodeling

tasks.

2 Methodology

2.1 Data Collection

Human body ismetabolizing all the time, giving off heat to the surrounding environment.
A healthy adult radiates 100 Watts of heat at rest and up to 1000 Watts during exercise
[14]. At the same time, CO2 and water are produced by metabolism. Occupants is the
main source of indoor CO2 increment [15]. Even in the daytime, people often turn on
the lamps for the sufficient light when they enter the room. Driven by the awareness of
energy conservation, people usually turn off the lamps when they leave the room. People
will inevitably produce sound due to conversation or interaction with objects. Therefore,
the indoor temperature, relative humidity, CO2 concentration, light intensity, noise level
will be affected by the numbers of occupant in the room, which makes it possible to
detect the indoor occupancy through these environmental data.

The occupant positions may vary case by case. To reduce the data fluctuations and
variations caused by occupants in different positions, various sensors should be evenly
placed in each direction of the room. These environmental variables will also fluctuate
naturally in daily cycle without the interference of occupants. In indoor environment,
temperature, relative humidity and CO2 concentration are the variables fluctuating most
obviously. Therefore, in the detection of indoor occupancy, we also need to collect the
corresponding outdoor environmental data as a reference.

2.2 Data Preprocessing

Raw data collected by sensors often contain outliers and missing values. If the raw data
is input into the model directly for indoor occupancy detection, it will often produce
unsatisfactory results. The data preprocessing steps for raw data are as follows:

(1) Find out the abnormal value and treat them as missing values. For example, noise
level of 0 dB is an abnormal value, because it is impossible in a normal environment.

(2) Apply different methods to deal with the missing values according to their types.
(3) Performdata standardization to ensure the validity of predictivemodeling. Different

environmental data may have different ranges. For example, the normal range of
CO2 concentration is 300–3000 ppm, while the absolute value for temperatures is
typically less than 50 ◦C. As shown in Eq. 1, the Z-score standardization is usually
used for data standardization.

x∗ = x − x

σ
(1)
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where x and σ are the mean and standard deviation of the raw data respectively.

2.3 Prediction Model Development

This study aims to study the relationships between indoor occupancy and environmental
variables. It contains two types of prediction models. The first focuses on indoor occu-
pancy detection, which is in essence a binary classification model. The second focuses
on predicting the actual occupant numbers, which is in essence a regression model.

For each type of prediction, four state-of-the-art supervised machine learning tech-
niques are used in this study: (1) fully connected neural networks (FCNN); (2) support
vector machine or support vector regression (SVMor SVR); (3) long short-termmemory
networks (LSTM); (4) extreme gradient boosting trees (XGB).

Model parameters should be fine-tuned to ensure the overall model performance. In
this study, the hidden unit number, learning rate, dropout ratio are optimized for FCNN
and LSTMmodels. For SVM and SVRmodels, the penalty cost is optimized. For XGB,
the max depth of the decision tree, learning rate, and the data sampling ratio for each
iteration are considered. The grid-search method is adopted for parameter optimization.

2.4 Prediction Model Evaluation

2.4.1 Evaluation Metrics for Binary Classification Tasks

As shown in Table 1, a two-dimensional confusion matrix can be used to evaluate the
binary classification performance of indoor occupancy detection, i.e., occupied or unoc-
cupied. Each element in the confusion matrix represents the number of test observations.
Each row represents actual values while each column represents predicted values. The
diagonal elements are correct predictions, while the non-diagonal elements represent
incorrect predictions.

As shown in Eq. 2 and Eq. 3, evaluation metrics such as accuracy and F1-score
can be calculated based on true positive (TP), true negative (TN), false positive (FP)
and false negative (FN), where N represents the number of observations in the test data
set. Accuracy is often used as a simple indicator to evaluate the overall performance of
classificationmodels. F1 score considers both the precision and recall of the classification
models.

Table 1. An illustrative confusion matrix of occupancy detection.

Actual Predicted

Occupied Unoccupied

Occupied TP FN

Unoccupied FP TN

Accuracy = TP + TN

TP + TN + FP + TN
= TP + TN

N
(2)
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F1 = 2TP

2TP + FN + FP
(3)

2.4.2 Evaluation Metrics for Regression Tasks

The mean absolute error (MAE) is adopted in this study to evaluate the regression model
performance. The MAE refers to the average value of the absolute errors between the
actual and predicted occupant numbers. The equation for MAE is shown in Eq. 4, where
m is the number of observations, h(xi) and yi are the predicted and actual occupant
numbers for the ith observation respectively.

MAE = 1

m

m∑

i=1

∣∣∣h
(
xi

)
− yi

∣∣∣ (4)

3 Experimental Settings

The experiment was conducted in a conference room in Shenzhen University. The exper-
iment lasted from March 16, 2021 to May 17, 2021, resulting in data measurements
collected from 62 days. The meeting room has an area of 8× 5 m2 and a height of 3.5 m.
The indoor occupancy does not follow fixed schedules, e.g., there may be meetings in
midnight. People entering the meeting room can freely control parameters of the HVAC
equipment.

3.1 Experimental Equipment

As shown in Fig. 1, five kinds of sensors have been used to collect various environ-
mental data in and out of the conference room, i.e., temperature, relative humidity, light
intensity, noise level, CO2 concentrations. The wireless information collection terminal
in the upper left corner of Fig. 1 records data from temperature, CO2 concentrations,
temperature and relative humidity sensors. The wired environmental monitoring host in
the upper right corner of Fig. 1 is used to record data from noise level and light intensity
sensors. All data were collected at 1 min interval. The sensor specifications are shown
in Table 2. In addition, a counting device was installed on the ceiling above the door of
the conference room as the ground truth. The instrument can detect the entry and exit of
occupants, based on which the indoor occupant numbers is calculated at 5 min interval.
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Fig. 1. Hosts for communication and environmental sensors

As shown in Fig. 2, sensors are evenly arranged across the conference room. Data
collected by similar sensors are integrated to ensure data quality. The sensors detecting
the indoor noise were placed close to seats for better sensitivity. By blocking out the
sun, ensure that the main light source for sensors measuring indoor illuminance is the
indoor lamps. Several sensors are also deployed outside the room to collect outdoor
environmental data.

Table 2. Sensors specifications.

Sensor Parameter Resolution Range Number Collect frequency

RS-GZ-N01-2 Light 1 lx 0 ~ 65535 lx 4 1-min

RS-ZS-N01-2 Noise 0.1 dB 30 ~ 120 dB 4

WWEZY-1 CO2 1 ppm 0 ~ 5000 ppm 3

WWZY-1C Temperature 0.1 °C −50 ~ 100 °C 4

WWSZY-1B Temperature and
Humidity

0.1 °C −40 ~ 100 °C 4

0.1 %RH 1 ~ 99 %RH

3.2 Data Description

In this experiment, 87591 validl observations of environmental data were collected with
a collection interval of 1 min. 17519 valid observations of occupant numbers were col-
lected (the interval of each observation is 5 min). Figure 3 shows the data distributions of
indoor and outdoor environmental variables. Figure 4 shows the distribution of occupant
numbers during experiments.
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Fig. 2. The conference room layout and sensor placements.

Fig. 3. Density diagram of temperature, relative humidity, CO2 concentration, noise level and
light intensity across the entire data set.
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Fig. 4. Histogram of occupant numbers during the experiment period.

As shown in Fig. 2, in addition to the CO2 concentration, the indoor environmental
data aremore concentrated than the outdoor, which indicates that the indoor environment
is more stable. It is noteworthy that the x-axis of the light intensity density map is log-
transformed. In the daytime, outdoor light intensity is usually more than 10000 lx, while
in the night, outdoor light intensity is concentrated around 1 lx. As mentioned above, the
main light source for sensors indoor is the lamps, so the range of indoor light intensity is
relatively small compared with outdoor. In Table 3, there are some statistical descriptors
of the input variables of the total data set.

Table 3. The statistics of the variables of the total data set.

Variable Unit Minimum Mean Median Maximum Standard deviation

Indoor noise dB 40.20 43.23 41.57 78.83 4.33

Outdoor noise dB 43.60 53.61 53.70 73.60 4.18

Indoor light Lux 0.00 28.96 8.00 151.33 37.20

Outdoor light Lux 0.00 5046.73 510.00 28094.00 6441.85

Indoor temperature °C 19.90 25.58 25.75 28.70 1.34

Outdoor temperature °C 16.80 26.96 26.80 35.90 3.35

Indoor humidity %RH 39.85 66.02 66.80 84.65 7.12

Outdoor humidity %RH 37.20 67.89 69.50 91.30 9.33

Indoor CO2 ppm 222.00 418.77 357.50 1842.00 179.75

Outdoor CO2 ppm 164.00 358.85 358.00 839.00 66.52
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After preliminary exploring the data set, it is found that outdoor noise level, outdoor
light intensity, outdoor relative humidity and outdoorCO2 concentration have little effect
on detecting the indoor occupancy. Therefore, in the rest of this paper, only the remaining
environmental variables e.g. indoor temperature, outdoor temperature, indoor relative
humidity, indoor CO2 concentration, indoor noise level, indoor light intensity and hour
are taken as the input variables of machine learning models.

Fig. 5. Pairs plot of input variables

Figure 5 is a pairs plot showing the relationship for input variables. In Fig. 5, the blue
dots indicate that the room is occupied, while the red dots indicate that the meeting room
is unoccupied. “Hour” refers to the time when environmental data is collected. When
there is a clear separation boundary between the red dots and the blue dots in the row
and column of an input variable, it shows that this input variable has a great potential in
detecting occupancy. Otherwise, this input variable has little effect in detection indoor
occupancy.

For example, there is a clear separation boundary between the red dots and the
blue dots in the indoor light intensity’s row and column. It shows that the indoor light
intensity as an input variable, has a great potential in detecting the indoor occupancy.
This phenomenon also appears in the pair plot of row and columns where the indoor
noise level is located.

When studying the effect of two input variables on detecting indoor occupancy,
we can observe the pair plot in which two variables intersect. For example, in the pair
plot of indoor temperature and indoor relative humidity, there is no clear boundary
between the red dots and the blue dots, which indicates that it is difficult to establish
a model that can accurately detecting indoor occupancy only based on the two input
variables. This phenomenon also appears in the pair plots of the combinations of indoor
temperature and outdoor temperature, outdoor temperature and indoor relative humidity,
indoor temperature and indoor CO2 concentration, outdoor temperature and indoor CO2
concentration, and indoor relative humidity and CO2 concentration.
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4 Discussions

4.1 Results on Occupancy Detection

In this section, by applying four machine learning methods, we intend to work out three
important questions: Firstly, which machine learning method is the most effective in
detecting indoor occupancy? Secondly, when the performance of the models is bad in
that the proportion of occupied and unoccupied data in the training data set is highly
imbalanced, what method can be adopted to effectively solve this problem? Thirdly,
whether the accuracy of the models can be improved by increasing the frequency of data
collection?

We divided the 17519 observations into two parts, a training data set (12263 obser-
vations) containing 70% of the total data set, and a test data set containing the remaining
5256 observations. In general, the prediction accuracy ofmachine learningmodels based
on the training set is not important. Instead, we are focus on how well the model predicts
based on the test set. The best model is the one for which the test accuracy is largest.

To ensure the accuracy obtained on the test data set can reflect the real performance
of the model, we set the ratio of occupied and unoccupied data in the test set as 1:1.
Table 4 details the amount of occupied and unoccupied data in the training set and test
set. It is noteworthy that there are only 1561 occupied observations in the training data
set (accounting for 12.73% of the whole training data set) under this data segmentation
pattens. In general, the performance of models based on such imbalanced data set is not
satisfactory.

Table 4. Summary on data partitioning.

Data set Number of
observations

0 (Unoccupied) 1 (Occupied)

Training data 12263 10702 1561

Test data 5256 2628 2628

Total data 17519 13330 4189

Figure 6 shows the input patterns corresponding to the two environmental data col-
lection frequencies. When the data collection frequency is 1 min, it means that the
environmental data average value of the current time and the previous 4 min is used to
predict the current indoor occupancy. When the data collection frequency is 5 min, it
means that the environmental data at the current moment is used to predict the indoor
occupancy at the current moment.
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Fig. 6. Data entry patterns for different data collection frequencies.

Figure 7 shows the accuracy of different machine learning methods at two data
collection frequencies. Tominimize the influence caused by random factors on themodel
performance, all the accuracy are the average accuracy obtained after model repeated
running for 10 times.

When the training data set is highly imbalanced (the number of occupied observations
only account for 12.73%, and the rest are unoccupied observations), only LSTM among
the four classification methods shows a good performance, with the accuracy of 92.67%
and 91.41% respectively (the data collection frequencies is 1 min and 5min). XGB is the
worst classification method with accuracy of 62.84% and 64.39% respectively. Given
the powerful classification capabilities of machine learning methods, it is obviously not
a satisfactory result.

Fig. 7. Accuracy of different classification methods with different data collection frequencies.

The reason for this low performance is that our training data set is highly imbalanced.
This phenomenon clearly illustrates the influence of class distribution on the learning of
classification models.

To alleviate the problem of class imbalance in our training data set, we used the
over-sampling and under-sampling respectively to balance the class ratio. We used the
synthetic minority over-sampling technique (SMOTE) to achieve the over-sampling. In
this over-sampling methods, new samples of the minority class (occupied class) are
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artificially generated using the K nearest neighbors of each minority class sample. The
minority class is oversampled by using the SMOTE function in theR package smote fam-
ily with the setting of K = 5. As shown in Table 3, the number of occupied observations
in the original training data set was only 1561. After using the SMOTE technology, 7805
new occupied observations (500% of the original size) were generated. Table 5 shows
the composition’s change of the training data set before and after over-sampling. After
over-sampling, the ratio of occupied observations increased from 12.73% to 46.67%. It
alleviates the imbalanced problem of training data set.

Under-sampling makes the number of positive and negative observations consistent
by removing someof themajority class (unoccupied class) observations from the original
data set.

For this data set, by removing 9141 unoccupied observations, the number of occupied
and unoccupied observations in the data set is equal. It solves the problem of imbalanced
class in this data set.

Table 5. Comparison of training data set before and after over-sampling and under-sampling.

Data set Number of
observations

0 (Unoccupied) Proportion of
unoccupied

1 (Occupied) Proportion of
occupied

Original training
data

12263 10702 82.27% 1561 12.73%

Training data
after SMOTE

20068 10702 53.33% 1561
(Original
data)

46.67%

7805
(Artificially
data)

Training data
after
under-sampling

8378 2932 50% 2932 50%

Figure 8 shows the accuracy of each classification method before and after applying
the over-sampling and under-sampling techniques. Because the input data of LSTM
algorithm emphasizes continuity, LSTM is not suitable for the over-sampling technique.
After applying over-sampling, the accuracy of the three classification methods (FCNN,
XGB, SVM) is greatly improved. For XGB with the best performance, its accuracy is
97.11% and 95.86% (data collection frequencies are 1 min and 5 min respectively),
while its accuracy was only 62.84% and 64.39% before applying the over-sampling.

For the LSTM whose classification performance is excellent before applying under-
sampling, the under-sampling technique can also improve its performance. Its accuracy
increases from 92.67% and 91.41% to 95.04% and 94.46% when the data collection fre-
quencies is 1min and 5min respectively. These results indicate that the four classification
methods’ performance can be improved by applying under-sampling or over-sampling
techniques to alleviate the imbalance of the training data set.
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As shown in Fig. 8, the accuracies of model built up by over-sampling dataset (20068
samples) and under-sampling dataset (8378 samples) is very close, which indicates the
number of data samples has little effect on the accuracy of the model.

Fig. 8. Accuracy of different classification methods before and after over-sampling and under-
sampling.

Fig. 9. Accuracy of classification methods in different data collection frequencies.

As shown in Fig. 9, for the four machine learning methods applied in this study, the
accuracy with collection frequencies of 1 min is higher than that of 5 min. This indicates
that after solving the imbalance of original data set, increasing the collection frequency
of data can slightly improve the machine learning models’ performance in detecting
indoor occupancy.

4.2 Results on Occupant Numbers Predictions

Predicting indoor occupant numbers can be regarded as a regression problem. The nega-
tive influence of imbalanced data to machine learning techniques in regression problems
is not as great as that in classification problems. In such a case, there is no need to perform
over-sampling or under-sampling. To summarize, 17,519 observations were randomly
divided into two parts, of which the training set accounted for 70% (containing 12,263
observations) and the testing set accounted for 30% (containing 5,226 observations). It is
noteworthy that there is no deliberate control over the ratio of various occupant numbers
in the training set and the test set when dividing the data.
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Figure 10 shows the MAE of four machine learning models when predicting the
numbers of occupant at two data collection frequencies. The results shows that XGB
is the best model and the MAEs are 0.32 and 0.39 considering 1-min and 5-min data
collection intervals respectively. LSTM is the worst model with MAEs of 0.47 and 0.51
considering two different time collection intervals. Figure 11 shows the MAE across
different hours. It is evident that the prediction errors are relatively high during office
hour, especially from 12p.m. to 2p.m. and 8p.m.–10p.m. One possible explanation is that
the data variations during such time periods are relatively large due to irregular meeting
events.

Fig. 10. MAEsvalues of the numbers of occupant predicted by the fourmachine learningmethods.

Fig. 11. MAEs values predicted by four machine learning methods at different time.



1200 W. He et al.

5 Conclusions

In this study, non-intrusive solutions are proposed for indoor occupancy detection using
environmental sensors including temperature, relative humidity, noise level, CO2 con-
centration and light intensity. Four state-of-the-art machine learning techniques together
with data sampling techniques have been adopted for both binary classification and
regression tasks. The methods proposed have been validated through experimental data.
The main findings are summarized as below:

(1) For the occupancy detection task (i.e., a binary classification problem), the main
data challenge is the potential data imbalance issue, e.g., the room is unoccupied
for most of the time. In such a case, the XGB, FCNN and SVM models do not
perform well with an accuracy of around 70%. By contrast, the LSTM model has
rather good consistency and the classification accuracy can be as high as 92%.

(2) Data sampling techniques can be applied to enhance the performance of binary clas-
sification tasks. For instance, the accuracy of FCNN model can be enhanced from
71.6% to 95.3% and 96.2% respectively when over-sampling and under-sampling
techniques are used.

(3) For the occupant numbers prediction task (i.e., a regression problem), the XGB
model performs the best with MAEs of 0.32 and 0.39 considering 1-min and 5-min
data collection intervals respectively. The LSTMmodel performs the worst with an
averaged MAE of around 0.49.

(4) The higher the data collection frequency, the better the prediction performance. For
instance, compared with 5-min collection interval, the use of 1-min data helps to
decrease the MAE of SVM models in occupant numbers prediction from 0.44 to
0.36.

The results obtained validated the usefulness of non-intrusive methods in indoor
occupancy estimations. The research outcomes are helpful for devising occupancy-
centric measures for building energy conservations.
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