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Abstract. Most of the current methods for anomaly detection in time
series are unsupervised. However, unsupervised learning assumes the dis-
tribution of the data and cannot obtain satisfactory results in some sce-
narios. In this paper, we design a semisupervised time series anomaly
detection algorithm based on metric learning. The algorithm model
mines the features in the time series from the perspectives of the time
domain and frequency domain. Furthermore, we design a loss function
for anomaly detection. Different from the two-class loss function, in the
scenario of the loss function we designed, the normal data will be clus-
tered and distributed in the embedding space, and the abnormal data
will be far from the normal data distribution. Furthermore, we extend
our designed metric learning model to a semisupervised learning model,
extending the labeled dataset with the unlabeled dataset by setting
different confidence levels. We conduct experiments on different pub-
lic datasets and compare them with commonly used time series anomaly
detection algorithms. The results show that our model has a good effect.
At the same time the semisupervised setting does improve the accuracy
of model detection.

1 Introduction

In the scenario of anomaly detection of multivariate time series, many exist-
ing algorithms cannot achieve good results [8]. In particular, the distance-based
anomaly detection algorithm, usually considers that a location with a low dis-
tribution density of points is more likely to be an anomaly. However, this kind
of algorithm is very dependent on the definition of distance. The usual distance
definition methods include Euclidean distance and Editing distance. However,
this kind of distance definition method becomes inapplicable in the case of high-
dimensional time series data. Euclidean distance does not consider the relation-
ship between dimensions, and edit distance can only measure the distance of a
single dimension, and then expand to multiple dimensions. These methods have
poor performance in high-dimensional scenarios. Extending to high-dimensional
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time series data, the situation becomes more complicated. In addition to indi-
vidual data points, we also need to consider the temporary dependence that
exists between data points. Therefore, anomaly detection in multidimensional
time series is very challenging.

Today, popular anomaly detection models are usually unsupervised. In the
time series of real scenes, label data are more difficult to obtain [2]. However,
these unsupervised learning methods assume the distribution of the data and
consider those points in the data where the distribution gathers as normal points.
However, in practical scenarios, such a simple assumption can lead to many
misjudgments. For example, there may also be some clustered outliers in the
clustered distribution points. For example, in the data generated by wind tur-
bines, anomalies include sparse outliers and stacked outliers. Stacked outliers are
abnormal points in the aggregated distribution. Using traditional unsupervised
anomaly detection methods will misjudge these data as normal points. However,
at this time, we know the anomaly of this part of the point, and the unsupervised
learning method cannot use this knowledge to help detect the anomaly.

Supervised learning can solve problems where data labels cannot be
exploited. In real scenarios, prior knowledge can also be converted into labeled
data to utilize this knowledge. The supervised learning anomaly detection algo-
rithm has been researched in network intrusion detection, but less research has
been conducted in other fields. On the one hand, data labels are difficult to
obtain in real-world scenarios, and the cost of labeling datasets is too high; on
the other hand, even if we have labeled datasets, it is difficult for us to obtain
all types of anomalies and abnormal randomness. The label data required for
supervised learning anomaly detection algorithms can be very large. Therefore,
it is unrealistic to use supervised learning algorithms to solve the problem of
anomaly detection in real scenarios [3]. Therefore, in summary, the challenges
faced by anomaly detection in high-dimensional time series data are as follows:

• Currently, the dimension of time series is high and the number is large, and it
is difficult for traditional anomaly detection methods to obtain good detection
results.

• The unsupervised anomaly detection algorithm has a strong assumption
about the data distribution, and considers that the points of the cluster dis-
tribution are normal points. However, the actual situation may be more com-
plicated than this, and some abnormal points are not discretely distributed.

• Supervised learning anomaly detection algorithms can utilize knowledge in
different fields, but the reality is that we cannot obtain such a large and
complete data label, so supervised learning anomaly detection algorithms are
not practical.

Based on these challenges, we propose a time series anomaly detection model
based on metric learning, and propose a new loss function adapted to deep metric
learning anomaly detection. Combining the advantages of CNN and LSTM, our
model is a model that can effectively extract features from high-dimensional
time series data and embed them into low-dimensional space. The model uses
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random dimension permutation and short-time Fourier for feature extraction of
raw time series. Among them, random dimension permutation can effectively
mine feature associations between different dimensions, and add randomness to
improve the robustness of the model. Short-time Fourier techniques can mine
sequence-related information in the frequency domain. It also includes raw time
series input into the LSTM module to mine short-term dependencies in time
series data to form the final model. To better allocate the influence of the vectors
of the embedding space of different dimensions on the center, we add an attention
module to optimize the solution method of the category center in the place where
the model finds the normal category center. Moreover, we propose a metric
learning loss function suitable for anomaly detection, and experimentally verify
that it is superior to loss functions such as cross entropy.

Deep metric learning is generally used to solve classification tasks [11]. There
are many metric learning methods for classification tasks, but the basic idea is
to make the distance between the data of the same category in the metric space
as close as possible, and the distance between the data of different categories
as far as possible. Such as the use of the prototype network [10]. However, this
is not suitable for anomaly detection scenarios. Usually, anomaly detection can
be regarded as a binary classification problem. However, there may be many
types and causes of anomalies, so it is unreasonable to directly regard anomalies
as one category. A point of view we agree with is that anomaly detection is a
one-class classification problem [6], that is, judging whether the data are of a
normal category. If the data are not of a normal class then it is turned into an
anomaly. One-class SVM is an algorithm that thinks like this. Therefore, in the
process of anomaly detection by metric learning, we only need to save a “center”
of a normal category. The normal samples are as close as possible to this center,
and the anomalies are as close as possible to this center [1]. The loss function
we designed is based on this idea.

In addition, our model is also able to utilize a large amount of unlabeled
data, extending to a semisupervised learning model. We can use a small amount
of data to first learn the parameters of the model and the center of the class,
and then use the unlabeled data to augment our dataset. At the same time,
users can select different thresholds according to their needs to obtain data with
different confidence levels. The final model only needs to use a small amount of
data to achieve good results. In summary, the contributions of our paper can be
summarized as follows:

• We propose a model that can extract the features of high-dimensional time
series, and jointly mine data information from three perspectives: high-
dimensional, time-series, and frequency domains.

• Based on the proposed network model, we propose a metric learning loss
function suitable for anomaly detection. It can provide a low-dimensional
distance space representation for time series. In this distance space, normal
categories will be clustered together, and abnormal data will be far away from
normal data clusters.
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• We extend the model to semisupervised learning. The model can get good
performance using only a small amount of labeled data and some unlabeled
data.

• We conduct experiments on different public datasets and also compare super-
vised and semisupervised learning. The results show that both our model and
the semisupervised setting have good performance.

The content of the following article is summarized as follows. First, a basic
introduction and definition of some definitions, such as time series, anomaly
scoring, etc. Then we mainly introduce our high-dimensional time series feature
extraction model, which includes and processing modules, including segmenta-
tion, short-time Fourier transform on segments and random dimension permuta-
tion. Then the convolutional neural network, the recurrent neural network and
the attention mechanism added to the center are assembled to form the final net-
work model. Then we introduce the loss function of the model and the form of
anomaly scoring, and extend the model to the semisupervised learning module.
Finally, experiments are carried out on public datasets to verify the effectiveness
and accuracy of the model.

2 Preliminaries

Time Series

A time series Q = <q1,q2, . . . ,qn> is a chronologically organized sequence of
vectors, each of which qi = (s(1)i , s

(2)
i , . . . , s

(k)
i ) represents the data generated at

time ti, where 1 ≤ i ≤ n. And the vector sequence is arranged in chronological
order, that is, when i < j, we have ti < tj . When k = 1, the time series is
univarate, and when k > 1, the time series is multivariate. Here we mainly
study the challenges brought by the current high-dimensional time series data,
that is, the scenario of k > 1.

Anomalies and Anomaly Scoring in Time Series

Given a time series Q = <q1,q2, . . . ,qn>, our goal is to find those data points
that are incorrect. To achieve this, for each point qi in the sequence, we can
calculate the anomaly score OS(qj) of it. The higher OS(qj) is, the more likely
qi is an anomaly.

Semisupervised Time Series Anomaly Detection

The current mainstream anomaly detection algorithms are unsupervised learn-
ing, and there are also a small number of supervised learning anomaly detec-
tion examples. However, semisupervised learning anomaly detection [9] is more
suitable for use in real scenarios. In the context of semisupervised learning for
multidimensional time series anomaly detection, we believe that the labels used
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in training the model are not sufficient. That is, only a portion of the data
has labels. Therefore, we plan to use our model to label unlabeled data so that
these data can also be used in supervised learning multidimensional time series
anomaly detection algorithm. Therefore, the dataset used in the training process
is a set of tuples, ((Q,y), ˜Q)), where Q has the label set y, while ˜Q has no label.
In order to solve the problem of insufficient datasets, the usual semisupervised
learning multidimensional sequence anomaly detection problem first uses the
labeled dataset (Q,y) to train a classifier f̃Q �→ y, and then use this classifier to
label our unlabeled dataset ˜Q, and finally get an expanded dataset. The problem
can then be treated as a supervised learning task.

3 Proposed Model

This section introduces our model. The first is data preprocessing, including
segmentation, short-time Fourier transform and random dimension permuta-
tion. The preprocessing part allows the model to better extract features from
the data. Then there is our proposed network model, which combines different
inputs through convolution and LSTM and other structures to extract features
at different levels, and finally combines them to form the final embedding vector.
Then comes the loss function part of the model, in which we propose a loss func-
tion based on metric learning for anomaly detection. Then combined with the
loss function, it illustrates how the model scores anomalies. Finally, the model is
extended to the form of semisupervised learning, making it effective in detecting
anomalies even with a small number of samples. The overall flow of the model
is shown in Fig. 1.

3.1 Preprocessing

The first step is to segment the data. Using average segmentation similar to
PAA [4] will further reduce our limited data, and at the same time, it is not
good enough for continuous features of time series data. Therefore, to better
obtain data from small labeled samples, and at the same time to allow the
segmented data to retain the continuity in the data as much as possible, we
consider direct coverage between segments during segmentation. If the specified
segment size is s, we define a coverage rate of τ , and unlike the average segment,
we let two adjacent segments have �τ ×s� is identical. For example, the sequence
<1, 2, 3, 4, 5, 6, 7, 8>. If the segment size is 4, then the result of the segment is
<{1, 2, 3, 4}, {3, 4, 5, 6}, {5, 6, 7, 8}>. After segmenting, we obtain a matrix of
n × s × d, where n is the number of segments, s is the segment length, and d is
the dimension of the data point.
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Fig. 1. Overall flow

We preprocess the obtained sequence of data segments, we preprocess it to
extract features from the data. The ones used here include random dimension
permutation and short-time Fourier transform. Random dimension permuta-
tion is a method that can mine the correlation between different dimensions of
multi-dimensional time series. The short-time Fourier transform can obtain the
frequency domain signal corresponding to the data segment, which can provide
a new perspective for anomaly detection in many cases. The specific method is
as follows:

Random dimension permutation can mine the associations between different
dimensions in multi-dimensional time series, and can also effectively mine the
patterns contained in some dimensions. We extend it again so that it can accom-
modate time-series data segments. Assuming that our time series dimension is
k, we want to divide each data segment into g groups. Then we can calculate the
dimension size of the data in each group as ϕ =

⌊

m·α
g

⌋

, where ϕ is a parameter
that controls the size of the group, and �·� is the symbol for rounding down. Each
random dimension permutation process needs to randomly arrange the dimen-
sions of the data, and then select the first ϕ dimensions as the result obtained
this time. In the data segment scenario, we only need to randomly arrange each
dimension of the data segment according to the same arrangement rule, and
finally for each data segment, we can obtain a g × s×ϕ size matrix. An example
of random dimension permutation is shown in Fig. 2.
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Fig. 2. An example of random dimension permutation

When we deal with time series, the data we obtain may come from different
locations and types of sensors, which makes us obtain data that are not synchro-
nized. However, the resulting pattern will be embodied in a certain “shape”,
when we transform the data from the time domain to the frequency domain,
which will give the model a new perspective to mine the data. Here we use the
short-time Fourier transform [5]. The research of Li et al. shows that the short-
time Fourier transform can effectively extract the features of time series data in
the time domain, and then substitute it into the neural network as the prepro-
cessed data for the next step of training. For the time series segment obtained
by the previous processing, the mth data in the nth data can be converted into:

STFT (τ,s){x}(m,n) =
T

∑

t=1

x(t) · w(t − s · m) · e−j 2πn
τ (t−s·m)

where STFT (τ,s) represents our short-time Fourier transform function with
parameters τ and s. The difference between the Fourier transform and the short-
time Fourier transform is that the short-time Fourier transform performs the
Fourier transform on the local segments after the data are segmented. In our
data preprocessing process, the data has been segmented, so only the Fourier
transform on the segment is equivalent to the short-time Fourier transform.

The two preprocessing processes are from different aspects, one is to extract
features between different dimensions in high-dimensional data, and the other
is to mine more information in the frequency domain in single-dimensional time
series data, and consider substitute the original data into the model, and finally
form all the inputs of the model.
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3.2 Encoder for High-Dimensional Time Series Data

The main purpose of this part of the encoder is to make a low-dimensional rep-
resentation of a high-dimensional time series data segment for further processing
and use. TapNet is an effective high-dimensional time series feature extraction
method [12], unlike theirs, our model is calculated in segments, which is very
good for data scale expansion capability. Moreover, the short-time Fourier trans-
form module is added to our module, which can extract more information from
the frequency domain.

The network model is mainly divided into three parts, one of which is to
flatten the raw time series segments, and then the module for feature extraction
through LSTM. One part is to perform a short-time Fourier transform on time
series data and then perform a one-dimensional convolution to extract features.
The last part is a process of randomly extracting time series data, that is, random
dimension permutation, and then performing one-dimensional convolution in
different dimensions. Among them, the LSTM module is proposed to better
extract time series features in the time series. The purpose of flattening the
original time series segments is to make the data fit the input of the LSTM
module. In this part, our input is X ∈ Rs×d, and the size of the output is the
size of the latent space of the LSTM module, i.e. Xlstm ∈ Rs×hlstm .

Then, methods based on short-time Fourier transform and random dimen-
sion extraction are both based on convolutional neural networks. Because of
the particularity of time series, the convolutional neural networks we use are
all one-dimensional. Moreover, batch norm and ReLU activation functions are
added after each convolutional layer to better extract features, and finally a
maxpool module is used for pooling. The short-time Fourier module changes the
thinking and extracts the features of the time series in the frequency domain.
Research shows that such feature extraction is effective. Then, after perform-
ing the short-time Fourier transform module on the time series segment, the
convolution module can also obtain an output XSFTF ∈ Rs′×hsftfconv .

The random dimension permutation module is designed to randomly extract
some dimensions in the data multiple times, which can not only randomly learn
the information interaction between different dimensions, but also can improve
the robustness of the model. The specific operation process is similar to TapNet.
For each decimation, we obtain an output X(i)randomconv ∈ Rdf ×1. Finally, the
results of these three parts are expanded and spliced to obtain a synthetic long
vector. Then this long vector is merged and dimensionally reduced through a
fully connected layer to obtain the final embedding space vector. Then it can be
trained or predicted according to different scenarios (Fig. 3).
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Fig. 3. Model

3.3 Attentional Center Learning

The main goal of our learning is the parameters of the network model, and
the center of the normal data in the embedding space. Because we can only
work with limited data, there may be an inductive bias in the learning of the
network model [7]. Therefore, we added an attention module to the last center
learning, that is, attentional center learning. This attention mainly solves that
the normal data and abnormal data may focus on different embedding vectors
when calculating, that is, the contribution of different dimensions to the center
calculation in the embedding space may be different, and each dimension may
not be the same. Want to wait for the weight.

The idea of the attention module is as follows: when calculating the center c,
attention can be added to each dimension, which is formulated as c =

∑

i Ai ·Hi,
where A is the attention vector of the embedding dimension of the center, and H
is all datasets of the normal category. A is the parameter to be learned through
learning, A = softmax(wT tanh(V HT )), where w and V are both learned dur-
ing the learning process model parameters. If this attention module is added,
after the embedding vector is finally obtained, an attention operation must be
performed on the vector to obtain the final embedding vector.

3.4 Loss Function

Intuitively, the anomaly detection problem can be regarded as a binary classifi-
cation problem, but it is somewhat different from the traditional binary classifi-
cation problem. However, there are only two types of result labels for anomaly
detection, due to the randomness and diversity of outliers. Therefore, we do not
solve it as a binary classification problem, but an “either-or” single-class detec-
tion. We only need to learn the category features of normal data as much as
possible. If the data have a large deviation from the normal category, we can
treat it as an anomaly. Therefore, our loss function is formulated as follows:
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loss =
1

|Qp| + |Qo| [
∑

x∈Qp

d(fφ(x), cs) + α
∑

x∈Qo

(md(fφ(x), cs))]

where cs = 1
|Sp|

∑

(x,y)∈Sp
fφ(x), Sp is a sample; Qs is a query sample dataset

of normal data, Qo is a query sample dataset of abnormal data, fφ : RD → RM

is the embedding function learned by the neural network, φ is the parameter set
to be learned by the neural network; α is the parameter used to balance the two
distance weights, d : RM × RM → [0,+∞) is a distance method to measure
the similarity of two vectors. This is the Euclidean distance, because the specific
features are learned by the network model, so the form of the definition is not
important. The meaning of the final loss function definition is to make the normal
data as small as possible from the class center, and make the abnormal data as
large as possible from the class center. The parameters finally learned by the
model are the parameter set φ learned by the neural network and the category
center cs of the normal data.

In addition, the parameters of the model and the center of the embedding
space are updated. Because the data brought in by our method for each training
are the data segment at this moment, the data segment at the next moment
cannot be brought into the center of the data segment completely as the center
of the whole, which is easily destroyed due to anomalies. The stability of the
model. For the center ct−1 obtained at the previous moment, and the center c′

t

obtained from the normal data after the training of the current data segment, the
calculation method of the final center is: ct = ct−1 +βc′

t, that is, the calculation
of the center is incremental. Therefore, our model can also be easily extended
to the mode of online algorithms. This is also one of the strengths of our model.
The model training process can be shown as Algorithm 1.

Algorithm 1 . The process of training the model, where SUBSERIES
(Q, start, end) represents the subsequence of the sequence Q from start to end

Require: Training dataset Q =< (q1, y1), (q2, y2), . . . , (qn, yn) >, where yi ∈ 0, 1, 0
means normal data, 1 means abnormal data, window size s, coverage rate τ , class
center obtained in the previous round �t−1

Ensure: Backpropagate the result of the loss trained on the current t batch and obtain
the new class center ct

Qt ← SUBSERIES(Q, s + (1 − τ)s(t − 1), 2s + (1 − τ)s(t − 1))
J ← 0
for (x, y) ∈ Qt do

J = J + (1 − y)d(fφ(x), ct−1) + αy(m − d(fφ(x), ct−1))
end for
J ← J

|Qt|
Backpropagation J
for (x, y) ∈ Qtandy = 0 do

ct = ct−1 + βfφ(x)
end for
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During the detection process, we judge the degree of abnormality of the
data by scoring the abnormality of the data. The higher the abnormality score
of a data segment is, the higher the probability that the data are abnormal.
After training the neural network, we obtain the embedding function fφ we need
and the class center cs of the normal data. The logic of the model we finally
obtain is as follows: if the data segment is relatively close to the category center
cs after passing through the encoder, then the possibility of being abnormal
is relatively small, otherwise it means that the possibility of being abnormal is
relatively larger. Based on this, the final use of fφ to calculate the abnormal score
is mixed with the distance measurement method used in the previous training
d : RM × RM → [0,+∞), if the defined method is Euclidean distance d(x, y) =
||xy||22, then the abnormal score of data segment x is OS(x) = ||fφ(x) − ct||22.

3.5 Semisupervised Learning

If the number of labels provided is extremely low, our algorithm may repeat-
edly resample on small datasets, which may lead to overfitting problems. Some
methods to solve the problem of overfitting due to few samples, such as data aug-
mentation and adding noise to the data, have good results in the field of image
processing. However, the time series data we deal with are often relatively sim-
ple real-valued data. Although the dimension is high, the data between different
dimensions have their own unique meaning. These methods are often not appli-
cable to these data. However, considering that our data often come from sensor
networks, sensor networks will bring us much unlabeled data. We can generate
some pseudolabels on these data to enrich our training dataset to prevent over-
fitting. Purpose. At this time, the small sample problem is transferred from the
original only small sample data to a method similar to semisupervised learning.
Let us introduce our simple semisupervised learning method using self-training
based on the model learned from small samples.

For unlabeled datasets, the set U is obtained using the previous data prepro-
cessing method, and then we calculate a confidence value for each data through
the embedding function fφ that has been learned earlier. Because the size of
the anomaly score can reflect the probability that the test data are anomalous,
we can simply use confidnce(x) = 1

OS(x) as the confidence value of the data
segment. Then define a ratio γ, and add these data segments with high confi-
dence as normal data to the training dataset to continue training. The specific
algorithm for expanding the training dataset is shown in Algorithm 2.

Here, we consider that in the semisupervised setting in the anomaly detection
scenario, most of the labeled samples are normal samples, and because there are
more normal samples, the correct rate of identifying normal samples is higher
than that of abnormal samples, that is, the model is more sensitive to normal
categories. The sample recall is high, and the recall for anomalous categories is
low. Therefore, we have reason to believe that if we identify an unlabeled sample
as an anomaly in a semisupervised setting, then it should be an anomaly with
a high probability, because we have seen a lot of normal data during training,
in a sense, the judgment of normal data is in a state of “overfitting”. Therefore,
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Algorithm 2. Augment the dataset with self-training
getTopK(L, k) is to get the first k elements in the list L

Require: Unlabeled dataset U , confidence ratio γ
Ensure: The augmented dataset D

Confidence ← 1
OS(U)

Confidence ← sort(Confidence, order = descending)
threshod ← min(getTopK(confidence, γ|U |))
D ← D ∪ {x ∈ U | 1

OS(X)
< threshod}

the data obtained in such a scenario is still abnormal with a high probability
of being abnormal, so we can give it a higher weight in training. Because our
model is judged by anomaly scoring, and there is no clear boundary between
categories, this idea can be implemented in another way: set two thresholds, one
is the non-abnormal threshold, and the normalized range is 0−γnormal, the other
is the abnormal threshold, the range after normalization is γoutlier −1, where the
value of γnormal can be set to be harsher (as small as possible), because we have
enough normal data, so setting the threshold can ensure that the model learns
the correct normal data; γoutlier can be set looser, such as 0.6 and 0.7, because
we have learned enough The normal data can still obtain a large abnormal score
under the condition of such category imbalance, indicating that it is very likely
to be abnormal data. The overall improved process is shown in Algorithm 3.

Algorithm 3. Augment the dataset with improved self-training
getTopK(L, k) is to get the first k elements in the list L, getLastK(L, k) is to get
the last k elements in the list L

Require: Unlabeled dataset U , confidence ratios γnormal and γoutlier

Ensure: The augmented dataset D
Confidence ← 1

OS(U)

Confidence ← sort(Confidence, order = ascending)
threshodnormal ← min(getTopK(confidence, γnormal|U |))
threshodoutlier ← min(getLastK(confidence, γoutlier|U |))
D ← D ∪ {x ∈ U | 1

OS(X)
< threshodnormal} ∪ {x ∈ U | 1

OS(X)
> threshodoutlier}

4 Experiments

4.1 Dataset

The datasets used here are the oil chromatography datasets provided by the
State Grid and some public datasets. There is no abnormality in the oil chro-
matography data, only different data states, so here we consider inserting some
abnormal intervals into the data. These abnormal intervals increase or decrease
their values on the basis of the original data, and then mark them as abnormal.
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There are abnormal and normal data labels in public datasets. Here, some
high-dimensional and single-dimensional time series anomaly detection datasets
are mainly selected to suit the scenarios of our method. Included here are the
server machine dataset and the ECG Dataset. Among them, server machine
dataset is a high-dimensional time series dataset, which is the data collected by
the author in multiple scenarios. The ECG dataset is a dataset in the field of
electrocardiography, most of which are single-dimensional datasets, which are
also in the field of time series anomaly detection. Commonly used datasets.

4.2 Setup

Evaluation Metrics

A measure of the accuracy of the results was obtained by calculating the ROC-
AUC and PR-AUC. In the anomaly detection scenario, because the anomalies
in the data are usually few, the results obtained by directly using the accuracy
rate are meaningless. Using the AUC value can comprehensively consider the
precision and recall rate, which is more practical. This measurement method
comprehensively considers TP, FP, TN, FN in the binary classification problem,
and sets various thresholds.

Hyperparameter Settings

The settings of hyperparameters are mainly distributed on the related settings of
the neural network and the related settings of preprocessing. First, in our exper-
imental setting, the coverage rate τ = 0.5, the random dimension permutation is
set to three groups, and each group randomly selects half of the currently used
dataset dimensions. The window size is set to 20. In the settings related to the
neural network, the vector dimension of the finally obtained embedding space
is 64.

4.3 Result

Accuracy

First, the experimental results on the dataset provided by the grid are presented.
Because there are no anomalies in the dataset, we insert a certain percentage of
anomalies into the dataset to conduct experiments. Detect one or more of these
segments as anomalies by numerically increasing them. The first experiment is
the effect of different modules on the experimental results. We remove different
modules to test the accuracy. The results of ROC-AUC are shown in Table 1,
and the results of PR-AUC are shown in Table 2.
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Table 1. ROC-AUC results on the grid dataset

Abnormal
increase
rate

ROC-AUC

Our model No preprocessing Use CNN only Use LSTM only

12% 1.00 1.00 1.00 1.00

10% 1.00 0.972 0.987 0.982

7% 0.999 0.953 0.954 0.962

5% 0.995 0.948 0.940 0.953

2% 0.550 0.562 0.463 0.623

Table 2. PR-AUC results on the grid dataset

Abnormal
increase
rate

PR-AUC

Our model No preprocessing Use CNN only Use LSTM only

12% 0.999 0.999 0.999 0.999

10% 0.999 0.955 0.967 0.962

7% 0.996 0.932 0.962 0.982

5% 0.958 0.962 0.951 0.942

2% 0.149 0.253 0.213 0.153

In addition, we also verified the effect of our loss function, which is mainly
compared with cross entropy. As a classic binary classification loss function, cross
entropy is well represented. The results are shown in Table 3.

Table 3. Comparison of loss functions on power grid data

Abnormal increase rate ROC-AUC PR-AUC

Our model Cross entropy Our model Cross entropy

12% 1.00 0.999 0.999 0.999

10% 1.00 0.983 0.999 0.965

7% 0.999 0.981 0.996 0.921

5% 0.995 0.965 0.958 0.915

2% 0.550 0.532 0.149 0.135

Then, we also validate the effectiveness of our method on public datasets.
The datasets used are server machine Dataset and ECG Dataset. Similarly, we
first verify the effectiveness of different modules on public datasets for different
modules, and the results are shown in Table 4 and Table 5.



108 H. Wang et al.

Table 4. ROC-AUC results on the public dataset

Dataset Our model No preprocessing Use CNN only Use LSTM only

SMD 1 0.862 0.832 0.852 0.823

SMD 2 0.936 0.895 0.871 0.891

ECG1 0.968 0.952 0.912 0.935

ECG2 0.996 0.992 0.992 0.996

Table 5. ROC-AUC results on the public dataset

Dataset Our model No preprocessing Use CNN only Use LSTM only

SMD 1 0.776 0.786 0.723 0.767

SMD 2 0.852 0.811 0.843 0.821

ECG1 0.891 0.812 0.863 0.827

ECG2 0.683 0.694 0.563 0.593

In addition, we compare our method with other methods on public datasets,
including the deep learning time series anomaly detection model LSTM autoen-
coder, the classic anomaly detection method isolation forest and one-class SVM.
The results are shown in Table 6 and Table 7.

Table 6. Comparative experiments on public datasets(ROC-AUC)

Dataset Our model Isolated forest LSTM-AE oc-SVM

SMD 1 0.862 0.847 0.842 0.755

SMD 2 0.936 0.863 0.925 0.879

ECG1 0.968 0.935 0.963 0.924

ECG2 0.996 0.912 0.872 0.885

Table 7. Comparative experiments on public datasets(PR-AUC)

Dataset Our model Isolated forest LSTM-AE oc-SVM

SMD 1 0.776 0.426 0.538 0.688

SMD 2 0.852 0.723 0.785 0.256

ECG1 0.891 0.912 0.852 0.798

ECG2 0.683 0.523 0.292 0.463

As mentioned earlier, semisupervised learning algorithms can effectively use
unlabeled data in the data to improve the ability of the model. Here we mainly
discuss whether the use of semisupervised learning algorithms has a positive
impact on the results. Because labeled data are a small part of the data, we
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use a 2:8 ratio to divide labeled data and unlabeled data, and then compare
the metric learning using only labeled data with our semisupervised learning
algorithm using unlabeled data, respectively. The results are shown in Table 8.

Table 8. Comparative experiments on public datasets(PR-AUC), where SL indicates
supervised learning and UL indicates unsupervised learning

Abnormal increase rate ROC-AUC PR-AUC

SL UL SL UL

12% 1.00 1.00 0.999 0.999

10% 0.992 1.00 0.999 0.999

7% 0.972 0.999 0.954 0.996

5% 0.952 0.995 0.921 0.958

2% 0.425 0.550 0.135 0.149

5 Conclusion

For the high-dimensional time series anomaly detection scenario, our paper
designs a semisupervised time series anomaly detection algorithm based on met-
ric learning. First, unique preprocessing is performed for high-dimensional time
series. It includes feature extraction of time series data, correlation extraction
before different dimensions of high-dimensional data, and conversion to fre-
quency domain mining of time series data features. Then, different from binary
classification, we design a new loss function suitable for anomaly detection. In
the feature space trained by this loss function, normal samples will be clustered
and distributed, and abnormal data will be scattered and distributed far away
from normal samples. We also extended the model to semisupervised learning.
Only a small number of labeled and unlabeled samples are required to obtain
good results. We have conducted experiments on power grid datasets and public
datasets, including the comparison of the functions of different modules within
the model and the comparison of different methods. The results show that our
method can achieve good anomaly detection results.

Future work may continue to use metric learning models, extending the mod-
els to online learning. Additionally, research on anomaly detection algorithms
for small sample time series will be considered. The data augmentation method
mentioned in the paper is a solution, but few-shot learning encounters more
problems.
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