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Abstract. Traditional CTR recommendationmodels have concentrated on how to
learn low-order and high-order characteristics. The majority of them make many
efforts at combining low-order and high-order functions. However, they ignore the
importance of the attentionmechanism for learning input features. The ECABiNet
model is proposed in this article to enhance the performance of CTR. On the one
hand, the ECABiNet model can learn the importance of features dynamically via
the LayerNorm and ECANET layers. On the other hand, through the use of a bi-
interaction layer and a DNN layer, it is capable of effectively learning the feature
interactions. According to the experimental results on two public datasets, the
ECABiNet model is more effective than the previous CTR model.
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1 Introduction

Currently, the online advertising business has gradually become popular, and improv-
ing the CTR of advertisements has become a critical issue. Current CTR models main-
ly include shallow models and deep models. The article [1] proposes a factorization
machine (FM)model that is capable of not only solving problemswith enormous sparsity
in linear timebut alsoworkingwith any real-valued eigenvectors. This is a typical shallow
model, and it is incapable of learning the relationship between higher-order features.
Paper [2] proposed the FFM model on the basis of the FM model, which focuses on
discrete classification features and enhances the factorization machine algorithm. The
classic deep models include the wide and deep model, the DeepFM model, and the
FiBiNET model, among others. To achieve memory and generalization capabilities, the
wide and deep model [3] combines the linear and deep models. The wide part generates
memory for feature interaction through feature intersection, whereas the deep part uses
low-dimensional dense features as input to generalize cross-features that do not appear
in the training samples. The wide part, on the other hand, necessitates artificial feature
engineering, resulting in increased workload.

As a result, the DeepFM model [4] is suggested. Its wide section makes use of the
FM model to automatically learn feature intersection, while the deep section contin-
ues to make use of the deep neural network DNN, which not only reduces the work-
load associated with manual feature engineering but also improves recommendation
efficiency.
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While the preceding models emphasize feature intersection, paper [5] proposes the
FiBiNET model, which places a premium on feature importance learning. It employs a
SENET layer to determine the relative importance of various features and then generates
recommendation results by feeding a bilinear layer into a deep neural network; however,
the SENET layer requires a dimensionality reduction operation and is quite complex.
By combining the aforementioned issues, this article proposes the ECABiNet model.

Fig. 1. ECABiNet Model.

2 ECABiNet Model

At first, attention models were applied to machine translation [6] and then to neural
network models. The paper [7] proposes the AFM model, which uses an attention
mechanism, allowing the model to learn the weights of second-order feature items
effectively.

The majority of these established models of attention place a premium on the com-
ponent of feature intersection. As illustrated in Fig. 1, the ECABiNet model empha-
sizes the feature embedding portion. The sparse vector input is converted to a feature
embedding vector and then normalized before being passed to the ECANET layer via
the LayerNorm layer. After pooling the output of the ECANET layer and the feature
embedding vector, it is passed to the DNN layer for recommendation.



Focusing on the Importance of Features for CTR Prediction 43

2.1 Sparse Input and Embedding Layer

The ECABiNet model uses an embedding layer to map the features of the original input
into a low-dimensional space and converts discrete variables into continuous vectors.
By using an embedding layer, the model not only has the ability to reduce the spatial
dimension of discrete variables but also meaningfully represents the features of these
original inputs. The output of the embedding layer is E = [e1, . . . , en].

2.2 Layer Norm

Normalization [8] plays a crucial role in neural networks and can normalize the distri-
bution of data. If the data were not normalized, their distribution would be different, and
the distribution of data in each network layer would be constantly changing, which is
likely to result in the neural network failing to converge. After training, the eigenvalues
of each dimension of the sample are found to be unequal after the traditional machine
learning algorithm SVM [9] performs uneven scaling (for example, the eigenvalues of
each dimension are multiplied by different coefficients). At the scaling level, we assert
that such an algorithm is not immutable. Unless the distribution range of each dimension
feature is relatively close, it must be normalized for this type of algorithm.

As illustrated in the following equation, the ECABiNet model performs layer
normalization on the feature embedding vector [e1, . . . , en]:

y = x − E[x]√
Var[x] + ε

∗ γ + β (1)

where E and Var denote the mean and variance of all samples in this batch on the k-th
feature, respectively. β and γ are used to control the ability of the network to express
direct mappings that restore the features previously learned by the LN. The final result
is the new feature embedding vector:

LN (E) = concat
(
LN (e1), . . . ,LN

(
ef

))
(2)

where LN denotes the LayerNorm layer and E, ef denotes the embedding vector.

2.3 ECANET Layer

Since the introduction of SENet [10], the channel attention mechanism has demon-
strated considerable promise, and this approach has been shown to be a viable method
for improving the overall efficiency of deep convolutional neural networks. SENet is
dedicated to developing more complex attention modules to improve performance. For
instance, the SENet model makes use of two fully connected layers to enhance its non-
linear capability and fit capability. However, it introduces additional parameters and
increases the complexity of the model. To resolve the conflict between complexity and
performance, a more efficient channel attention (ECANET) module is proposed in [11],
as shown in Fig. 2, which not only reduces the complexity of the model but also main-
tains the performance by avoiding the dimensionality reduction operation of SENet and
proper cross-channel interaction.
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Fig. 2. ECANET model.

The ECANET layer first compresses the embedding vector by the global average
pooling method. It compresses the corresponding spatial information on each channel
into one value in the corresponding channel; at this time, a pixel represents a channel,
and the final dimension becomes 1×1×C. The global average pooling method is shown
in the following equation:

e
′
i = FGAP(ei) = 1

k

k∑

d=1

eid (3)

where k denotes the dimension of the embedding vector and ei denotes the embedding
vector.

After that, the ECANET layer inputs the ei vector obtained in the previous step into
the equation:

we = σ
(
conv1dk

(
e′)) (4)

The difference of this method is that the size of the convolution kernel used is k, and
then to obtain better results, one-dimensional convolution is used to realize the infor-
mation interaction between channels. conv1dk denotes one-dimensional convolution,
which requires only k parameters, and σ denotes the activation function. The ECANET
layer can adaptively select an appropriate value of k, which is proportional to the channel
dimension.

The final step is to update the weights. The new embedding vector is obtained by
calculating the previously calculated weight factor and the initial embedding vector. The
precise formula is depicted by the equation:

Z = Fupdate (We,E)

= [
we1 · e1,we2 · e2, . . . ,wef · ef

]

= [
v1, v2, . . . , vf

] (5)

where E denotes the embedding vector processed by the LayerNorm layer, wf denotes
the corresponding weight embedding vector, and vf denotes the new embedding vector.



Focusing on the Importance of Features for CTR Prediction 45

In summary, the ECANET layer has a thorough understanding of the SENet model.
TheSENetmodel can learn significant featureswithout adding a large number of parame-
ters and is improved on the basis of the SENet model, which not only reduces complexity
but also improves the effect.

2.4 Feature Cross Layer

The ECANET layer learns the new feature embedding vector computed by layerNorm
and then computes the weighted feature embedding vector, which is then passed to the
bilinear-interaction layer.

Rather thanusing the conventional inner product (Eq. 6) orHadamardproduct (Eq. 7),
the bilinear-interaction layer employs a novel bilinear interaction method that combines
the two and introduces a new parametermatrixW to learn the feature intersection (Eq. 8).

[a1, a2, · · · , an] · [b1, b2, · · · , bn]

=
n∑

i=1
aibi

(6)

[a1, a2, · · · , an] � [b1, b2, · · · , bn]
= [a1b1, a2b2, · · · , anbn]

(7)

pi,j = vi · W � vj, pi,j ∈ Rk (8)

The intersection vector pi,j can be obtained in three ways:

– All feature groups share a parameter matrix when they are crossed two by two, and
the number of extra parameters is k × k, as shown in Eq. 8.

– Each feature group i maintains a parameter matrix Wi with an additional number of
parameters f × k × k, as shown in the following equation:

pi,j = vi · Wi � vj, pi,j ∈ Rk (9)

– Each pair of interaction features pi,j has a parameter matrix Wij with the number of

extra parameters f ×(f −1)
2 × k × k, as shown in the following equation:

pi,j = vi · Wij � vj, pi,j ∈ Rk (10)

2.5 DNN Layer

The DNN layer is composed of multiple fully connected layers that are capable of
capturing higher-order combinatorial features. Unlike the traditional DeepFM recom-
mendation model, DNN utilizes the output of the combination layer as an embedding
vector, which efficiently captures features. As shown in the following equation, the com-
bination layer is primarily responsible for stitching the original embedding vector pwith
the weight embedding vector q obtained after the ECANET layer:

c = Fconcat (p, q) = [
p1, · · · , pn, q1, · · · , qn

]

= [c1, · · · , c2n]
(11)
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2.6 Output

The overall formulation of ECABiNet is:

ŷ = σ

(

w0 +
k∑

i=0

wixi + yd

)

(12)

where σ represents the sigmoid function, ŷ is the predicted result of the ECABiNet, k is
the feature size, x is an input and wi is the i-th weight of the linear part.

3 Experiment

3.1 Experimental Setup

DatasetsThis experiment uses two publicly available datasets, andwe randomly divided
the two datasets into two parts: 90% for training and 10% for testing.

– Criteo. Criteo [12] is one of the most commonly used datasets in the CTR field, and
it has 13 continuous characteristics and 26 categorical characteristics. It also has data
of more than 40 million user clicks on ads.

– Avazu. Like Criteo, the Avazu [13] dataset is also the most common dataset in the
CTR field. It contains more than 40 million user clicks on ads over several days, and
it is sorted by time.

Evaluation Criteria AUC and LOGLOSSAre used in this paper to evaluate the model.
The AUC value is between 0.5 and 1, with a value closer to 1.0 indicating that the
detection method is more authentic. Logloss is the most important probability-based
classification metric; the lower the loss score is, the better.

Model Comparison In the experiments, a total of six models are selected for com-
parison in this paper, namely, FM, AFM, Wide&Deep, DeepFM, FiBiNET and
ECABiNet.

Parameter Setting To conduct experiments reasonably, as shown in Table 1, some
default hyperparameters are set in this paper.

Table 1. Experimental Hyperparameters.

Parameter name Parameter value

Dropout 0.5

Optimizer Adam

Hidden units (256,128)

Activation
l2_reg_linear
l2_reg_embedding

Relu
0.00001
0.00001
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3.2 LayerNorm Effect Comparison

To demonstrate the performance improvement brought by normalizing the embedded
feature vector and then performing the feature crossover operation, we will conduct
a comparative experiment with the ECABiNet model using LayerNorm and without
LayerNorm, where the hyperparameters are as shown in Table 1. The LayerNorm layer
is set to the same hidden layer dimension as the ECABiNet model, and the dimension
is set to 6 in this experiment. The specific comparison is shown in Fig. 3.

Fig. 3. Comparison of whether to use LayerNorm on the Criteo and Avazu datasets.

From the comparison of AUC and LOGLOSS scores given in Fig. 3, it can be seen
that using the LayerNorm layer to perform layer normalization on the feature vector can
bring better experimental results.

3.3 Comparison of the Effects of Different Attention Modules

In this part, we compare the effectiveness of the model that uses the ECANET layer as
the model to calculate the importance of features and the model that uses the SENET
layer to calculate the importance of features through experiments. The results are shown
in Fig. 4.

Fig. 4. Comparison of the ECANET and SENET effects on the Criteo and Avazu datasets.

It can be seen from Fig. 4 that the CTRmodel using the ECANET layer outperforms
the SENET layer in both AUC and LOGLOSS.
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3.4 Comparison of the Classic Model

To demonstrate the effectiveness of the ECABiNet model, this article compares mul-
tiple groups of models using the publicly available Criteo and Avazu datasets. Table 2
illustrates the comparison results:

Table 2. Comparison of forecast results.

Criteo Avazu

AUC LOGLOSS AUC LOGLOSS

FM 0.7681 0.47831 0.7432 0.41012

AFM 0.7722 0.46217 0.7511 0.39551

Wide&Deep 0.7796 0.46011 0.7545 0.39425

FiBiNet 0.7802 0.45628 0.7598 0.39334

DeepFM 0.7891 0.45243 0.7621 0.39021

ECABiNet 0.7988 0.45102 0.7753 0.38432

Being good at using attention modules can sometimes bring good results for CTR
models. Comparing the AFM model and the FM model in Table 2, it can be found that
the effect of the model can be improved by adding an attention module during feature
intersection.

Effectively combining shallow and deepmodels, that is, learning both high-order and
low-order features concurrently, can significantly improve the CTR model. As demon-
strated in Table 2, the performance of the deep DeepFM and FiBiNETmodels is superior
to that of the shallow AFM and FM models.

Traditional attention models add attention modules when features intersect, and
sometimes adding attentionmechanisms to embedded feature vectors works surprisingly
well. As shown inTable 2, both ECABiNet and FiBiNEToutperformAFMandDeepFM.

3.5 Study HyperParameter

To find suitable hyperparameters for the ECABiNet model, we conduct compara-
tive experiments from different hyperparameters (activation function, dropout, and the
number of hidden layers).

– Activation Function
To select the appropriate activation function more accurately, this paper compares
the prediction results of the ECABiNet model using different activation functions on
the two datasets. As illustrated in Fig. 5, the relu function is more suitable for deep
models.



Focusing on the Importance of Features for CTR Prediction 49

Fig. 5. Comparison of different activation functions on the Criteo and Avazu datasets.

– Dropout
To improve model performance, dropout randomly drops neural units. To improve the
performance of the ECABiNet model, this paper studies the performance of dropout
from 0-1, as shown in Fig. 6. The model works best when dropout is 0.9.

Fig. 6. Comparison of different dropout effects on the Criteo and Avazu datasets.

– Number of hidden layer
In the DNN layer, the number of different hidden layers also affects the performance
of the model. This paper compares the effect of the number of hidden layers from
layers 1–7 on two public datasets. As shown in Fig. 7, the results show that ECABiNet
works best when the number of hidden layers is 5 or 6.
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Fig. 7. Comparison of different numbers of hidden layers on the Criteo and Avazu datasets.

4 Related Work

Currently, many CTRmodels have been proposed in the field of recommender sys-tems.
Thanks to the proposal of ResNet [14], paper [15] proposed the deep crossing model,
which converts sparse features into low-dimensional dense features by adding an embed-
ding layer and uses a stacking layer, or concat layer, to connect the segment-ed feature
vectors. Then, the combination and transformation of features are complet-ed through
the multilayer neural network, and finally, the calculation of CTR is com-pleted with
the scoring layer. On the basis of the Deep Crossing model, the FNN model [16] uses
the hidden layer vector of FM as the embedding of user and item, which avoids training
the embedding from random state completely, thereby improving the recommendation
effect. The traditional DNN directly completes the intersection and combination of fea-
tures through multilayer fully connected layers, but this method lacks a certain ‘target’,
so the paper in [17] proposed the PNNmodel. To balance thememory ability and general-
ization ability, Google proposed theWide&Deepmodel. However, the wide part requires
artificial feature engineering,which leads to increasedworkload. Therefore, theDeepFM
model is proposed. To address the issue of the insufficient expression capability of the
wide part, Google published the DCNmodel [18] in the following year. The main idea is
to use the cross network to replace the original wide part, which increases the interaction
between features. Considering the possibility of improvement in the DNN part, paper
[19] proposes the NFM model. From the perspective of modifying the second-order
part of the FM, the NFM model replaces the feature intersection part of the FM with a
DNN with a Bi-interaction Pooling layer, forming the unique Wide&Deep architecture
improves the recommendation effect. User characteristics are important, but introducing
the interests of users into the model often brings unexpected effects. Paper [20] proposed
the DIENmodel, which is not only a further ‘evolution’ of the DINmodel [21], but more
importantly, DIEN simulates the process of user interest evolution by introducing the
sequence model AUGRU.

5 Conclusions

In the CTR field, new models are constantly being introduced, but few have considered
the importance of embedding vector layers. The ECANET network layer is used in
this paper to teach the CTR model about the importance of embedding vectors, which
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improves the performance of the model. Additionally, this paper introduces LayerNorm
in the embedded feature vector layer to normalize the features and improve accuracy. Our
experimental results also show that the ECABiNet model outperforms existing models
on both datasets.
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