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Abstract. Most current deep convolutional neural networks can achieve excellent
results on a single image superresolution and are trained using corresponding
high-resolution (HR) images and low-resolution (LR) images. Conversely, their
superresolution performance in real-world superresolution tests is reducedbecause
thesemethods create paired LR images by simply interpolating and downsampling
HR images, which is very different from natural degradation. In this article, we
design a new unsupervised framework conditioned by degradation representations
of real-world hyperresolution problems. The approach presented in this paper
consists of three stages: we first learn the implicit degradation representation from
real-world LR images and then acquire LR images by shrinking the network,
which will share similar degradation with real-world images. Finally, we make
paired data of the generated real LR images and HR images for training the SR
network. Our approach can obtain better results than the recent SR approach on
the NTIRE2020 real-world SR challenge Track1 dataset.
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1 Introduction

Image superresolution is a problem that attempts to obtain a higher resolution image from
a low-resolution quality image. In the last few years, DNN-basedmethods have achieved
remarkable results of impressive visual quality, which mainly concentrate on building
complicated network architectures to enhance various metrics in existing datasets. Most
methods use simple interpolation operations to downsample HR images to construct
paired training data. Despite the effectiveness and convenience of this operation, these
methods havenot considered the uncertainty of real-world degradation. Someapproaches
model the degradation by the ideal downsampling method:

Ylr = (Xhr ⊗ k) ↓s +n (1)
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where Ylr and Xhr indicate the LR image and HR image, respectively Xhr ⊗ k means
the HR image is blurred with the kernel k,↓s means the image will be downsampled
by scale factor s times, and the parameter n indicates the natural noise. According to
this degradation model, we can easily obtain paired training data. Alternatively, it is
also difficult to predict the real-world complicated blur kernel. Some recent studies have
proposed GAN-based kernel estimation methods to generate realistic images. Based on
paired data, the goal of the SR model is to minimize the average cost of images in the
dataset:

argmin
F

1

N

N∑

i=1

Losssr(F(yi), xi) (2)

where F(.) refers to an SR model and Losssr is a total loss function. If we valid the SISR
model with the same downsampling dataset, the results are not unexpected. Once testing
themodel with the real-world image, the SR images are of poor quality. It is clear that the
image downscaled by the bicubic operation does not have the same degradation as the
real-world images. Therefore, creating an LR image similar to real-world degradation is
a very useful problem that must be addressed. To this end, enlightened by the popular-
ity of contrastive learning in computer vision, we promote a novel unsupervised-based
superresolution approach that uses degradation representations to assist the downsam-
pling network in generating realistic LR images and constructing paired input data for
the superresolution network. Specifically, we assume that the images in the same dataset
have approximate degradation. Consequently, the degradation of a real-world low reso-
lution imagewill be approximate to other images in a dataset and far from high resolution
images, as shown in Fig. 1.

Fig. 1. The overview map of our proposed method in this paper. First, we train the degradation
learning network, as shown by the yellow arrows. Given a trained encoder, the downscaling
network is trained by employing adversarial and color losses, depicted by blue arrows. The SR
network is optimized to obtain the high-resolution images in the third step, assisted by paired data(
x̂, y

)
created in our downscaling network. (Color figure online)

Additionally, we develop an LR image generator to create realistic and paired LR
images, which are the input of the superresolution network. By this means, our model
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is available for real-world degradation patterns instead of interpolations (e.g., nearest
neighbor). To test the validity of our approach, we perform many experiments on the
NTIRE2020 real-world SR challenge Track1 dataset. The results of experiments show
that ourmethod outperformsmost of the currentmethods. Finally,we performan ablation
study to show the significance of the degradation learning module and downsampling
network.

2 Related Work

2.1 Real-World Superresolution

In most previous superresolution studies, datasets with paired images are usually
obtained by downsampling HR images with fixed operations. The SRCNN [1] was
the first to apply a convolutional neural network to superresolution, and then various
LR-to-HR reconstruction networks were developed to enhance SR performance. How-
ever, these models can only achieve good results on clean datasets because the model
has not been trained with blurry or noisy image data. This is obviously different from
real-world images, which often carry serious noise and blur. Cai et al. [2, 3] collected
paired photos from the real world with a special camera directly. However, making such
a dataset requires considerable manpower and material resources. To solve the problem
of real-world superresolution, some research attempts to solve the SR problem without
using paired training datasets. Lugmayr et al. [4] designed a downsample network to
generate imageswith degradation and then used them to train an upsample network.Yuan
et al. [5] developed a cycle framework to train degradation and superresolution networks
concurrently. Since these aforementioned methods regard degradation as input, a grow-
ing number of studies have started relying on predicting degradation for real-world SR.
Hence, incorrect degradation estimation can lead to poor SR performance with respect
to fidelity. To address this issue, Gu et al. [6] optimized the estimated degradation by
iteratively comparing the SR image with the ground truth.

2.2 Contrastive Learning

Currently, there are two unsupervised representation learningmethods, generative learn-
ing and contrastive learning. Generative learning methods usually rely on autoencoding
of images and conduct representation learning to minimize the similarity of the output
images and the ground truth images in the pixel features. As a result, most of them require
expensive calculation costs. Instead, contrastive learning aims to make the output repre-
sentations closer to the positive images and farther away from those negative ones. Chen
et al. [7] proposed a novel framework, named SimCLR, which extracts representations
using a variety of data augmentations and contrastive learning. After that, He et al. [8]
developed MoCo and MoCo v2, using a momentum encoder and a memory bank to
maintain consistent representations. In this paper, images in datasets that seem to take
the same degradation are considered positive counterparts, and contrastive learning will
learn to draw content-invariance degradation features.
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3 PurPosed Method

3.1 Overview of the Unsupervised Framework

Our real-world SR framework component is shown in Fig. 1, which contains three parts:
a degradation learning network, an LR image generator and a reconstruction model. The
degradation learning network aims to train an encoder that can extract degradation fea-
tures from real-world images and assist generators in obtainingmore realistic LR images.
Motivated by kernelGAN [9], our LR image generator is a linear network without any
nonlinear activation, which downscales images only by convolution and subsampling.
The generated LR image will be extracted representation by the degradation encoder to
enable the degradation feature in it to be as similar as the real world. Specifically, given
real-world images x as LR and unpaired high-resolution images y as input, the first stage
of our framework is to obtain the real-world degradation representation q, k+, k− from
two groups of images by contrastive learning, as the yellow arrow pointed out in Fig. 1.
Once the initial degradation learning is finished, we use a linear network to generate
paired LR images x̂ by downsampling y. Then, we encode x̂ to ensure that it should have
the same degradation as x. This process is marked by the blue arrow in Fig. 1. Our final
goal is to use the generated samples that are used to train SR models. The constructed
method tries to recover corresponding HR images ŷ andmake it approximate y, as shown
by the green arrow in Fig. 1. In the testing phase, we only use the SR network to obtain
the SR image and evaluate their quality by calculating the PSNR and SSIM. Different
from previous work [10], our real-world degradation is learned from the LR and HR
datasets and the LR image generated by our downscaling network instead of a fixed
operator.

3.2 Degradation Model

Thedegradationmodel is the secondpart,which learns to obtainmore realisticLR images
by an unsupervised method. We extract the degradation representations from LR images
using a contrastive learning framework. We assume that the degradation representation
in real-world domain images is similar and is distinguished from high-resolution domain
images. We randomly select patches from real-world images as the query patch, and the
positive patches come from the same dataset. Other patches extracted from HR images
are regarded as the negative patches. Then, all the query, positive and negative patches
are encoded as degradation representations by a convolutional network model, which is
shown in Fig. 2(a). SimCLR [11] pointed out that the representations need to go through
a three-layer fully connected network to obtain q, k+, and k−. Contrastive learning aims
to make q and k+ more similar and keep q away from k−. Following MoCo [8], we use
InfoNCE loss to measure the similarity, which can be formulated as follows:

Lossq = − log
eq·k+/τ

∑k
i=0 e

q·k−
1 /τ

(3)

in which K is the number of negative samples, · is the dot product and τ is a hyper-
parameter. Previous contrastive learning methods [6] mentioned that a large number of
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negative samples is essential for the model to obtain a good representation. A queue
with negative samples is maintained for learning in the degradation model. During the
training phase, we first randomly extract N patches from real-world datasets and divide
two patches per group. Then, these N patches are encoded into qi, k

+
i by the degradation

encoder. For negative samples, we also encode the HR images into k−
i to update the

queue, where i denotes the position of the i-th image. We define the total loss as follows:

Fig. 2. Architecture of Encoder and Generator Network. The ‘k’, ‘n’ and ‘s’ in each layer indicate
the kernel size, number of channels and stride size, respectively.

Loss deg =
N/2∑

i=0

−log
eqt−k+

i /τ

∑k
j=0 e

qi−k−
t /τ

(4)

where S is the size of the queue. Figure 2(a) shows the architecture of the degradation
encoder. We adapt a similar encoder as the work of DASR [10]. Specifically, we assem-
ble the convolutional layer with 3 filters, batch normalization (BN) [12] and LeakyReLU
[13] layers with a negative slope of 0.1. Note that the average pooling output is embed-
ding. The final multilayer perceptron consists of two fully connected networks and one
LeakyReLU layer. The characters ‘k’, ‘n’ and ‘s’ indicate the parameters of kernel size,
numbers of different channels and the size of each stride. For instance, k7n128s2 means
that there are 128 filters in the convolutional layer, the kernel size is 7, and the stride
is 2. For the LR image generator, inspired by kernelGAN [9], we also design a linear
model that does not contain any activation layer that is more in line with the degradation
equation. This is consistent with the degradationmodel equationmentioned before, since
downscaling by blur kernel is a linear operation applied to LR images. The generator
architecture is shown in Fig. 2(b). There are eight convolutional layers with 64 channels
each. The first three kernel sizes are 7, 5, and 3, and the rest are 1. The last two layers
refer to the downscaling operator, whose scale factor is 4. The whole network can be
regarded as a single convolutional layer with a 15 × 15 receptive field. The reason why
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we design a multilayer network instead of one convolutional layer is that gradient-based
optimization is more efficient for deep linear networks than only one layer, as kernel-
GAN [9] mentioned. We fine tune the pretrained encoder as a discriminator to ensure
that the generated LR image can obtain the same degradation as the real-world image.
The color loss and the adversarial loss aim to maintain the basic structure information
of the original image.

3.3 Reconstruction Model

Based on SRGAN, we implement an SR model trained by paired data x̂, y. The network
adopts the architecture of the generator network in SRGAN, and the resolution of the
SR image will be enlarged 4 times. We apply pixel loss and perceptual loss [14] during
training. The pixel loss uses the L1 distance, which is calculated as:

Loss1 = 1

S2WH

sW∑

i=0

sH∑

j=0

∥∥∥X hr
i,j − F

(
Y lr
i,j

)∥∥∥ (5)

in which s is the scale factor, W , H is the width and height of the HR image and IHRi,j
describes the pixel value of the image. This is the most widely used loss function for
image SR. However, there is the problem that solutions of the L1 regularized method
often tend to lack high-frequency content, so we add a perceptual loss to obtain a sharper
texture. The perceptual loss uses the inactive features of VGG-19 [15], which benefits
the image vision quality:

Lossper = 1

Wi,jHi,j

Wi,j∑

m=0

Hi,j∑

n=0

(
φi,j

(
IHR

)

m,n
− φi,j

(
F

(
ILR

))

m,n

)2

(6)

whereφi,j,Wi,j, andHi,j indicates the featuremap created by the j-convolution before the
i-maxpooling of the VGG-19 network. The total loss can be calculated as the weighted
sum of these two different losses as follows:

Losstotal = λ1 · Loss1 + λ2 · Lossper (7)

where λ1 and λ2 are set as 1 and 0.1.

4 Experiments

4.1 Training Data

We train the proposed model in the NTIRE-2020 dataset. There are 2650 degraded
images that can be regarded as real-world images, 800 high-resolution images, and 100
paired validation images in Track 1. The 2650 degraded images are not paired with the
800 high-quality images and do not exist in the same image. We randomly select 800
images from the degraded image and 800 unpaired high-resolution images as training
data during the degradation learning phase.
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Fig. 3. Qualitative comparisonwith state-of-the-art blindmethods on theNTIRE2020RealWorld
SR challenge Track 1 validation set (SR scale ×4).

4.2 Training Details

As in Fig. 1, we split our training phase of the superresolution process into three parts.
We first train the degradation learning network. During training, 64 h patches of size
192 × 192 and size 48 × 45 are images that are cropped from high-resolution images.
Sixty-four LRpatches of size 48× 48 are randomly cropped from low-resolution images.
In detail, we set τ and S in Eq. 4 to 0.06 and 8192. The model is optimized by the Adam
optimizer, in which β1 = 0.5 and β2 = 0.999 without weight decay for 600 epochs. The
learning rate is initialized as 1 × 10–3. It will decrease 0.1 every 500 epochs. Given a
trained encoder, we train the downscaling network with the same optimizer parameters
for 100 epochs. Then, we train the reconstruction model and pretrained dowscaling
network using generated paired LR-HR images for 300 epochs. The learning rates of
the downscaling network and SRmodel are initialized to 1× 10−4 and decreased by 0.5
every 100 epochs. The minibatch size of all networks is set to 32. Note that the patch
size of the image and the network layers depend on the scale parameter, which is 4 in
our experiments. We implement the proposed method on NVIDIA TITAN XP GPUs in
the PyTorch platform, and it takes approximately two days and a half to train our model.

4.3 Training Details

We prove the effectiveness of our approach with current good methods in the same
field: SRFBN [16], ESRGAN [17], EDSR [18], Impressionism [19] and DBPN [20].
Table 1 displays different parameters, such as the average PSNR, and SSIM values of
the NTIRE2020 real-world SR Track1 validation set with different methods trained with
clean LR images downscaled from HR images. Our methods outperform the previous
methods. This shows that EDSR and SRFBN do not achieve good performance if the
degradation is unknown in the training phase. The unsupervised ESRGAN enhances the
noise and degradation, leading to poor quality of the SR image. Note that the Impression-
ismmethod makes more effort on so that the PSNR is lower than others. Our approach is
much better than those other methods in both PSNR and SSIM, which may be because
the model is trained on paired degradation image data. Several subjective results are
illustrated in Fig. 3.

To validate the advantages of our model in solving real-world SR tasks, we apply
the ESRGAN generator in our SR model, which is named RRDB.
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Table 1. Quantitative results for the NTIRE 2020 real world SR challenge Track 1 validation
dataset

Methods PSNR SSIM

Bicubic 25.48 0.680

EDSR 25.36 0.640

SRFBN 25.37 0.642

ESRGAN (Unsupervised) 19.04 0.242

Impressionism 24.82 0.662

DBPN 24.51 0.701

Ours 25.50 0.738

Table 2. Quantitative results for the NTIRE 2020 Real World SR challenge Track 1 validation
dataset, comparing the ESRGAN (Supervised) and ours (RRDB)

Methods ESRGAN (Supervised) Ours (RRDB)

PSNR/SSIM 24.74/0.695 24.98/0.6873

Fig. 4. Qualitative comparison between ESRGAN (Supervised) and our method (RRDB) for
Track 1 (SR scale ×4).

Table 2 shows a comparisonwith the supervisedESRGAN.The supervisedESRGAN
is trained with real paired data provided by the NTIRE 2020 official baseline.We change
the SR network into the RRDB but keep the same setting of the loss functions. The whole
training process is also the same. As shown by the experimental results, our framework
outperforms the supervised ESRGAN in PSNR and makes the SSIM value close to it.
The quality results are illustrated in Fig. 4.
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5 Conclusion

We propose a novel framework assisted by image degradation learning. In contrast to
existing methods that downscale HR images to obtain LR images by a fixed operation,
we acquire degradation representations of real-world LR images that assist the down-
sampling network in generating LR images with the consistent domain using contrastive
learning. This assists us in obtaining more realistic and paired image data for the later
reconstruction network. Experiments on NTIRE2020 datasets show the effectiveness of
our approach.
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