
Deep Reinforcement Learning with Fuse
Adaptive Weighted Demonstration Data

Baofu Fang and Taifeng Guo(B)

School of Computer Science and Information Engineering, Hefei University of Technology,
Hefei, China

1136062482@qq.com

Abstract. Traditional multi-agent deep reinforcement learning has difficulty
obtaining rewards, slow convergence, and effective cooperation among agents
in the pretraining period due to the large joint state space and sparse rewards for
action. Therefore, this paper discusses the role of demonstration data inmultiagent
systems and proposes a multi-agent deep reinforcement learning algorithm from
fuse adaptive weight fusion demonstration data. The algorithm sets the weights
according to the performance and uses the importance sampling method to bridge
the deviation in the mixed sampled data to combine the expert data obtained in
the simulation environment with the distributed multi-agent reinforcement learn-
ing algorithm to solve the difficult problem. The problem of global exploration
improves the convergence speed of the algorithm. The results in the RoboCup2D
soccer simulation environment show that the algorithm improves the ability of the
agent to hold and shoot the ball, enabling the agent to achieve a higher goal scor-
ing rate and convergence speed relative to demonstration policies and mainstream
multi-agent reinforcement learning algorithms.

Keywords: Multiagent deep reinforcement learning · Exploration · Offline
reinforcement learning · Importance sampling

1 Introduction

Reinforcement learning improves by interacting with the environment through rewards
and punishments to solve sequential decisions for optimal returns to produce a general-
purpose agent that solves complex problems [1]. Reinforcement learning has been com-
binedwith deep learning in recent years and, combinedwith the representational power of
deep learning, is used to solve many challenging problems, such as IoT security [2], traf-
fic control [3], and resource scheduling [4], reaching and exceeding human capabilities
on these tasks.

Multi-Agent Reinforcement Learning (MARL) [5] is a new field formed by com-
bining reinforcement learning with multi-agent systems, which divide the system into
several self-consistent and agent subsystems, each of which can perform tasks inde-
pendently while communicating and coordinating with each other to accomplish tasks
together. Multiagent reinforcement learning has already solved many problems that

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
Y. Wang et al. (Eds.): ICPCSEE 2022, CCIS 1628, pp. 163–177, 2022.
https://doi.org/10.1007/978-981-19-5194-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-5194-7_13&domain=pdf
https://doi.org/10.1007/978-981-19-5194-7_13

164 B. Fang and T. Guo

cannot be solved by single agents in areas such as fleet scheduling management prob-
lems [6] and massively multiplayer online role-playing games [7]. However, multiagent
reinforcement learning explores potential policies through iterative trials, requiring the
agents to continuously interact with the simulation environment and learn from their col-
lective traces, leading to low sample efficiency of these multi-agent deep reinforcement
learningmethods. Due to the huge state space and action space, this random initialization
algorithm makes it difficult to obtain rewards in the early stages of training due to the
high cost of global exploration, and its slow boosting policy is not suitable for complex
environments such as RoboCup2D.

Offline reinforcement learning is inspired by deep learning in large datasets to learn
policies from fixed datasets [8], which can use large amounts of existing recorded inter-
action data to solve real-world decision problems. In offline reinforcement learning, the
agent does not receive feedback from the online environment, improving the sample
utilization. However, because the policy generating the sample is different from the
optimized policy (off-policy), there is a bias in the sampling of the two policies, which
makes it difficult for ordinary reinforcement learning methods to cope with the new state
space and can even harm the performance of the reinforcement learning algorithm. The
policies in the collected demonstration dataset are often suboptimal. It also limits the
upper limit of offline reinforcement learning.

The main contributions of this paper are as follows:

1. We propose the distributed combining of demands actor-critic (DCDAC) algorithm.
using a scalable distributed actor-critic architecture, which can accelerate the data
throughput and improve the learning speed while using policy gradients for learning
on demonstration data to give a good initial guide to the policy network.

2. We propose adaptive weighting parameters generated based on the evaluation of
performance in the training environment to adjust the weights of the demonstration
data to eliminate the detrimental effects of the demonstration data on the policies of
the agents.

2 Related Work

2.1 Deep Reinforcement Learning

Reinforcement learning means learning by interacting with the environment and receiv-
ing feedback. The balance between exploration and exploitation is a major issue with
reinforcement learning [1]. Exploration means that the agent tries some new actions that
may result in higher rewards or nothing; exploitation means that the agent repeatedly
adopts actions that are known tomaximize rewards because the agent already knows that
a certain number of rewards can be obtained. Some of the commonly used methods for
exploration include ε− greedymethodswith decay (1–0) values to return randomactions
(exploration if the random number is less than ε) or greedy actions (exploitation if the
random number is greater than ε). Stochastic samplingmodels output random samples of
action distributions (e.g., actions and variances) for exploration based on Gaussian dis-
tributions and OU (Ornstein-Uhlenbeck) noise to add noise to the model output actions.
In real environments, the above methods of exploration are difficult to exploit because

Deep Reinforcement Learning 165

in real environments, exploration can damage expensive objects such as robotic arms
and cars, while offline reinforcement learning only uses demonstration data for learning,
improving the applicability of deep reinforcement learning in many real-world tasks. Its
representative method is imitation learning, where successful demonstration trajectories
are provided to the agent and the agent learns accordingly [9], and a simple approach to
imitation learning is behavior cloning (BC) [10], which uses data from demonstrations
as labels and trains the agent using supervised learning. Thus, pure imitation learning
methods cannot go beyond the capabilities of demonstration data.

2.2 Multiagent Reinforcement Learning

Multiagent reinforcement learning is an emerging field where deep reinforcement learn-
ing (DRL) andmultiagent systems are combined. There are problemswith nonstationary
environments, global exploration, and relative generalization caused by the increase in
the number of agents [11]. Learning in a multiagent environment is fundamentally more
difficult than in a single-agent environment.

The current methods commonly used for multiagent can be divided into three cat-
egories: decentralized methods, centralized methods, and value decomposition meth-
ods. The decentralized approach, also called independent learning (IL) [13], is an early
method of multiagent reinforcement learning in which each agent learns only the indi-
vidual action-value function and considers other agents as part of the environment,
avoiding the curse of dimensionality. However, because the policies of other agents
are constantly changing, the policies learned by the agents will also constantly change,
resulting in nonstationary problems. The centralized approach learns the joint action-
value function directly by considering all the agents’ information, which can mitigate
the adverse effects of nonstationarity. However, as the number of agents increases, the
parameter space grows exponentially, and the joint action-value function is difficult to
use in an environment with a large number of agents due to the problem of scalability.
The value decomposition method [12] first “decentralizes” the learning of the individual
action-value function of each agent and then “centralizes” the fitting of the joint action-
value function using the individual action-values. In this approach, the computational
complexity of the joint action-value function grows linearly with the number of agents,
and the information of all agents is taken into account. However, the value decomposi-
tion approach is prone to the problem of relative overgeneralization [14], which means
that the policy network incorrectly converges to suboptimal joint actions. Relative over-
generalization occurs when multiple agents must coordinate their actions but receive
negative rewards if only some of them adopt the wrong behavior. The academic com-
munity then turned its attention back to decentralized learning approaches. Recently,
there has also been independent proximal policy optimization (IPPO) [15] combined
with proximal policy optimization (PPO) [16], which states the use of gradient clipping
to control the magnitude of differences between old and new policies, thus mitigating
nonstationarity in a multiagent environment, and experimental results also show that the
use of independent learning in multiple agents can also achieve better results than value
decomposition methods. However, the high cost of global exploration due to the huge
state and action space leads to its slow convergence in complex environments.

166 B. Fang and T. Guo

Several approaches have combined reinforcement learning with demonstrative data
to achieve faster learning, hopefully with good results in terms of obtaining policies that
outperform demonstrators. For example, DeepQ-learning fromDemonstrations (DQfD)
[17], which combines behavioral cloning from imitation learning with deep q-learning,
learns a policy for Atari games by using a loss function that combines a large number of
supervised learning loss functions with an n-step Q-learning loss function, which helps
ensure that the network satisfies the Bellman equation. However, its training speed is too
slow, and in practice, behavioral cloning does not guarantee that the cloned policy will
be effective due to the distribution bias between the states in the demonstration data and
the policy’s states [9]. It is also mentioned in some recent studies that using behavioral
cloning on demonstration data does not show better results than using the policy gradient
directly [18].

3 Methods

The framework of a distributed actor-critic algorithm with joint demonstration data is
shown in Fig. 1, which includes a learner and multiple workers for a given agent i. The
workers synchronize their parameters with the learner at regular intervals and interact
with the environment to generate trajectories. Multiple workers can greatly increase

Fig. 1. Distributed actor critic algorithm for joint demonstration data

Deep Reinforcement Learning 167

the sample generation speed and improve learning efficiency. The learner decides to
use interaction-generated trajectories or demonstration data for learning based on the
parameter β, which is generated by the performance metric of the training environment
on the current worker.

The learner uses a fully connected (FC) layer to map the raw data to the hidden
feature space, as shown in Fig. 1, and uses the ReLU activation function to improve
the model representation. Both actors and critics use states as input, so we make actors
and critics share the representation of states, and one head outputs action probabilities
(n action types output n-dimensional vectors), and the other head outputs the value of
the state. Whereas in workers, the neural network is similar to the learner but only
uses the actor function, the trajectories for each learner’s training are collected from
many workers. In the case of a worker, for example, it updates its local policy μ to the
latest learning policy π at the beginning of the trajectory generated by interacting with
the environment and runs n steps in its environment. After running n-steps, the worker
puts the trajectories tracei = (s0, a0, r0, s1, a1, r1, , . . . , sT , aT , rT) ∈ TRACE of
state, action, and reward. After running n-steps, the trajectory generator saves the state,
action, and reward trajectories along with the corresponding policy distribution μ(at |st)
and puts them in a queue, while the demonstration data need to be collected in advance
and sent to the learner with the trajectories in the trajectory generator according to the
weight in learning. Then, the learner continuously updates the trajectory of its policy
batches. However, when parameters are updated, the learner’s policy π may be updated
several times earlier than the worker’s policy μ, so there is a policy lag between the
worker and the learner. For this reason, we use V-trace to relieve this lag.

We consider the infinite discount reward model optimization problem in a Markov
decision process (MDP) [1], where the objective is to find a policy that maximizes

the expected sum of future discount rewards: argmaxπV
π (s) = Eπ

[∑
t≥0

γ trt

]
, where

γ ∈ [0, 1) is the discount factor, rt = r(st, at) is the reward at time t, s is the state at time
t (initialized s = s0), and at ∼ π(st) is the action generated by following some policy.

The goal of the off-policy reinforcement learning algorithm is to use the trajectory
generated by a certain policy μ, called the behavioral policy, to learn the value function
Vπ of another policy π (which may be different from μ), called the target policy. In the
trajectory (st, at, rt)

t=s+n
t=s generated by the agent according to the given policy μ, the

n-step V-trace goal is defined as follows:

vt = V (s) +
t0+n−1∑
t=t0

γ t−t0

⎛
⎝ t−1∏

i=t0

ci

⎞
⎠δtV (1)

where δtV = min
(
ρ,

π(at |st)
μ(at |st)

)
∗ (rt + γV (st+1) − V (st)) is the TD-target of the value

function, ci = min
(
c, π(ai|si)

μ(ai|si)
)
is the truncated importance sampling, and ρ and c are

the truncation parameters. Using this approach can effectively reduce the variance in the
evaluation of the value function.

168 B. Fang and T. Guo

There is a policy lag between worker and learner. We update the gradient parameters
using importance sampling for the behavioral policy μ and the target policy π:

lpg = ρt logπθ(at, st)(rt + γ vt+1 − Vθ (st)) (2)

Similar to PPO, where ρt = min
(
ρ,

π(at |st)
μ(at |st)

)
is truncated importance sampling,

limiting the difference between the old and new policies both safeguards the results of
importance sampling and reduces the influence of other agents on the optimal policy of
the current agent because the agent has fewer differences between the new and original
policies. vs+1 is the value of the next state.

Define the set of demonstration data D for successive states sD and actions aD and
returns rD generated over time steps during task execution according to a fixed rule of
demonstration policy:

D =
{
sD0 , aD0 , rD0 , sD1 , aD1 , rD1 , , . . . , sDT , aDT , rDT

}
(3)

Using the policy gradient to train on the demonstration data, the loss function of the
demonstration data can be defined as:

lD = −[
logπθ (at |st)A(st, at)

]
(4)

The actor network is initialized by θ and fed with a given state st . The output action
distribution logπθ (at |st) represents the direction of the policy gradient. A(st, at) is the
advantage function, which represents the difference between the performance of the
current action at and the mean of the performance of all possible actions and is used to
determine the direction of the policy update—apositive value increases the probability of
this action, while a negative value decreases the probability of this action. The advantage
of using the policy gradient for training the demonstration data is that it is similar to the
way the collected trajectories are trained. This makes it possible to make the best use of
the demonstration data.

The V-trace objective is defined by (1). Gradient descent is used to reduce the value
parameter θ to the target value of V(s) during training.

lV (s) = 1

2
(vt − Vθ (st))

2 (5)

To prevent premature convergence, add an entropy reward to the loss function:

lc = −πθ (a|st) logπθ(a|st) (6)

However, the demonstration data are not valid for all training phases because the
demonstration data are not perfect, and there is room for improvement and a negative
impact on reinforcement learning in the second stage of training. Therefore, we introduce
β to reduce the impact of the demo data when the performance reaches a stable level.
Connect the above loss function as follows:

lDCD = β(lD) + (1 − β)
(
lpg + lvs + lc

)
(7)

Deep Reinforcement Learning 169

In the selection of the weight parameter, we found that it is not the higher weight
(0.5) of demonstration data that is more beneficial to the performance. Instead, higher
weighted demonstration data can negatively affect reinforcement learning due to large
policy differences. We experimentally observe that using a β value of 0.1 minimizes the
negative impact of large policy differences on the offline data. When the performance
of the demonstration data with 0.1 weight is unimproved, the β value is corrected to 0,
and the next stage of training is performed entirely using reinforcement learning.

Algorithm 1 Distributed Actor Critic Algorithm for Combined Demonstration

Input: training count T, demonstration data D ,maximum trajectory length tarceL ,
paramter β , batch size N.
Output: Neural network of actors and critics after training.

Randomly initialize the parameters of the actors and critics network.
1: def worker:
2: for episode = 0 to T do
3: Initialize the environment and get the initial state s0
4: Synchronize neural network parameters from the learner
5: for t = 1 to tarceL do
6: select action according to current policy ()|t ta s ππ θ=

7: Execution of action ta yields a return tr and the next state 1ts +

8: Storage Status, action, distribution of action, next action
9: if end of current trajectory then
10: Quit the current for loop and proceed to the next epsiode.
11: end if
12: end for
13: Send data to trainer
14: end for

1: def learner:
2: for episode = 1 to T do
3: Randomly select sampling from the demonstration data and the worker’s data

according β Calculate the loss function based on the sampled data
4: Generate the gradient update model according to Equation (7).
5: end for

4 Experimental Results and Analysis

4.1 Experimental Environment and Data

In this paper, the RoboCup2D multiagent soccer environment Fig. 2 is used as the
simulation experiment environment, and the opponent is an agent2d standard soccer
player, which has been used as the base for the RoboCup2D World Cup championship
for the last 5 years. The task scenario is described in detail as follows: The abstract

170 B. Fang and T. Guo

concept of soccer is used on a two-dimensional plane, where the players, the ball, and
the field are all two-dimensional objects. In this, each agent receives its state perception
and must independently choose its actions. At the beginning of each episode, the agents
and the ball are randomly placed in the attacking half of the field. The episode ends
when a goal is scored, when the ball leaves the field, at 500 steps, or when the ball is
intercepted by the goalkeeper. We use the state space relative to the agent itself. This
includes the agent’s position, position relative to the ball, goal, penalty area, opponents,
teammates, and angle, and whether one can kick the ball or not. Constitute a vector of
58 + 9 * n dimensions.

Fig. 2. RoboCup2D standard opponent platform

As opposed to HFO [19], a half-field offensive soccer environment, we added some
mid-level action to make it more similar to gamepad controls. The game is a very
successful and mature approach in RL. The action space used in the experiment is
shown in Table 1. Action spaces.

Table 1. Action spaces

TORIGHT TOPLEFT

BOTTOMRIGHT TOP

BOTTOM TOPRIGHT

BOTTOMLEFT TOLEFT

AUTOPASS AUTOTACKLE

MOVE SHOOT

GO_TO_BALL NOOP

The movement space is shown in Table 1. Action spaces, which first includes eight
movement actions: left, top left, top, top right, right, bottom right, bottom, and bottom
left. When holding the ball, the movement becomes a ball-carrying action. AUTOPASS
is a passing movement that automatically selects the target and passes the ball based on
the angle and distance between teammates and yourself, as well as whether an opponent
player is on the passing route; MOVE is moving to the formation point (a preset catch
point according to the ball’s position); GO_TO_BALL is running to the ball; SHOOT

Deep Reinforcement Learning 171

is a shot action, which selects the optimal shot angle based on the goalkeeper and the
enemy player. For the current reinforcement learning task, it is easier to use the above
action space for effective control of the agent. It is also possible to obtain good results
after experiments. The reward uses the HFO setting.

In this paper, we collect consecutive trajectories from the demonstration policy
according to fixed rules. The goal sequence of the left demonstration policy is shown in
Fig. 3, and the state of the current moment, including the relative position coordinates,
velocity, body angle, and head facing angle of each agent; the position and velocity
of the ball; and the position coordinates, velocity, body angle, current action, and next
action of all teammates and opponents, sorted according to the distance from the current
agent state at the next step, and combined with the rewards generated by our reward
function. As demonstrated by the different agents listed in the dictionary. At the begin-
ning of the sampling process, adding higher weight to the demonstration, the data gives
some guidance to the policy of the agents and stabilizes the transition from demonstra-
tion learning to the policy of reinforcement learning. After the training reaches stability
(no further improvement for a long time), the adaptive weights β are adjusted, and the
demonstration data are stopped to prevent the negative impact of the demonstration data
on reinforcement learning.

Fig. 3. Collection of demonstration policy trajectories.

To verify the performance of the method in this paper, the convergence speed is
reflected in a 2 vs. 2 offensive environment where the adversary is the agent2d base [20],
all World Cup teams currently use agent2d for their base, and the agent of agent2d is
compared in a 4 vs. 5 scenario to further verify the ability of the algorithm to converge
in a large-scale scenario, and the impact of different β is compared in a 2 vs. 5 scenario.

For comparison, the following algorithms are used: IMPALA [21], which uses dis-
tributed data collectors to explore in parallel in the environment, improving exploration
capabilities also used to solve multiagent problems; Behavioral Cloning [9], which uses
supervised learning to exactly imitate demonstration policies; and IPPO [15], which
extends PPO to multiagent tasks where each agent runs a set of PPO [16] algorithms
independently, with good results in the StarCraft environment. The deep reinforcement
learning network framework in the experimental scenario of this paper is implemented

172 B. Fang and T. Guo

by torch with a Core i7-10700 processor, 16 GB RAM, GeForce RTX 1060 GPU, and
Adam as the optimizer with a learning rate of 0.0006.

4.2 Results and Analysis

4.2.1 2 vs. 2 Experiment

In the 2 vs. 2 experiment, the number of offensive players is set to 2, the number of
defensive players to 1, and a goalkeeper is added. A 2 vs. 2 offensive scenario is set.
At each time step, the agent observes their own and their teammates’ positions in the
environment, as well as the positions of the opposing defensive players. Each iteration is
3,000 steps, and the number of rounds in each iteration is different because the length of
each training trajectory is different. The number of goals scored in the current iteration
divided by all the rounds is the goal rate.

Fig. 4. 2 offensive agents vs. 2 defensive NPC scenarios with goal tracks. (Color figure online)

To illustrate the training effect of successful DCDAC, we take one of the goal tra-
jectory graphs as an example. As shown in Fig. 4, yellow is the trained agent, red is
the agent2d standard soccer agent, and white is the ball. Where the light color is the
initial position and the brighter color is the later position, the yellow No. 7 player agent
learns to move upward first after getting the ball, to lure the goalkeeper upward to make
a defensive hole, and then shoot with the ball afterward.

The goal rate comparison of the algorithm is shown in Fig. 5. Comparison of goal
rate under 2 offensive agents vs 2 defensive player scenarios. As the number of iterations
increases, the behavioral clone remains stable after 300 iterations, and the goal rate of
the agents in the other methods also increases, meaning that the agents have gradually
learned the policies for successful goals. The addition of demonstration data will make
the agents obtain the reward of scoring goals and the demonstration of behavior earlier,
thus helping the agent learn the optimal policy faster and better. The IMPALA algorithm,
on the other hand, shows better results relative to other algorithms because of its use
of parallel workers, which can explore different states in parallel. When the number
of iterations reaches 1500, the success rate of the IMPALA algorithm and DCDAC

Deep Reinforcement Learning 173

Fig. 5. Comparison of goal rate under 2 offensive agents vs 2 defensive player scenarios.

algorithm stabilizes. When the number of iterations reaches 2000, the goal rate of the
DCDAC algorithm stabilizes at approximately 0.6, which can achieve better results than
IMPALA but is still inferior to the algorithm proposed in this paper. It can be seen that in
the complex multiagent environment, the method proposed in this paper makes a great
contribution to the training of the agents.

4.2.2 4 vs. 5 Large-Scale Experiments

In this experiment, the difficulty is increased in terms of the number of agents. Set the
number of offensive agents to 4 and the number of defensive players to 5, a scenario with
4 defensive players and one goalkeeper. Compared with the abovementioned 2 vs. 2 half-
court offensive experiment, at this time, the agents need to cooperate to break through the
defense of the opposing defender to score a goal. The increase in the number of agents
also increases the amount of information that the neural network needs to process, which
increases the burden on the deep neural network. The perfect NPC that the enemy has
won the World Cup also makes it more difficult for the agent to score goals, and the
agent’s training becomes more difficult.

The algorithm success rate comparison is shown in Fig. 6. Due to the increased
difficulty of the experiment, the success rate of all four groups of algorithms has been
decreased due to the lack of effective rewards in the huge action space, and state-space
IMPALA and PPO algorithms have failed with a goal rate of only 1% after 5000 iter-
ations. The BC algorithm directly through the demonstration data on the imitation in
500 iterations after the goal success rate was maintained at approximately 2%, due to
the demonstration data containing only part of the policy, does not contain all cases.
In the environment, the agent will encounter states that never occur, which leads to the
BC approach being far below the example policy. Since the starting β was set to 0.1 in
this experiment, the DCDAC algorithm did not converge as fast as the behavioral clone
in the early stage, but because it was able to obtain many goal trajectories in the early
stage, it was able to use them to learn and have a good initialization of the policy, which
effectively reduced the cost of global exploration. Then, getting rid of the demonstration
data to explore on its own after 2000 iterations also had some degree of performance
decrease in the early stage but eventually far outperformed the other algorithms in the

174 B. Fang and T. Guo

Fig. 6. Comparison of goal rate under 4 offensive agents vs 5 defensive NPC scenarios.

later stages of training. It can be seen that in the 4 vs. 5 attack environment, compared
to 2 vs. 2, although the state space is larger, the task is more difficult and convergence is
more difficult, the method proposed in this paper is still effective and adaptable.

The policy with a fixed rule that provides demonstration data versus the goal rate
after the completion of DCDAC training is shown in Table 2.

Table 2. Comparison of goal rates between the demonstration policy and the DCDAC method

Scenes Demonstration policy DCDAC

2 vs. 2 52% 63%

4 vs. 5 20.5% 35%

The goal rate comparison between the DCDAC algorithm and the demonstration
policy is shown in Table 2, where ourmethod can produce better policies than the demon-
stration policy after training stabilization. Since policies generated based on complex
rules (decision trees, evaluation of states under complex conditions, dynamic formation
changes) are difficult to characterize directly with neural networks, we also do not obtain
demonstration policies using BC. For methods such as IPPO, it is difficult to generate
goal-scoring behavior in a huge space of states and actions, indicating that reinforce-
ment learning without good demonstration has difficulty surpassing policies for which
humans already have complex rules through pure exploration.

4.2.3 Impact of β Weighting on Performance

Finally, we study the effects of different β on the performance of the algorithm in an
experimental scenario of 2 vs. 5, with two offensive agents and five defensive players.
The goal-scoring rate is shown in Fig. 7. During the training process, when β is 0, there
is no demonstration guideline, which leads to no good policy emerging from the agents.
When β is 0.1, giving a little demonstration to the agents will make the agents’ policies

Deep Reinforcement Learning 175

improve. When β is 0.2, it produces some improvement in the early training period
when the performance of the agent is weak, but the negative effect brought by too many
off-policy samples in the second half of the training period is more obvious, and the
negative effect in the second half of the training period is more obvious when β is 0.5.
Therefore, demonstration data that are too high will not be better.

Fig. 7. Comparison of different parameters in 2 offensive agents vs 5 defensive NPC scenarios.

5 Discussion

In this paper, the role of demonstration data in multiagent systems is studied to solve
the problem of difficult convergence in large-scale multiagent reinforcement learning
due to the difficulty of emerging effective rewards from initial policies. A multiagent
deep reinforcement learning algorithmwith adaptiveweight fusion demonstration data is
proposed. The algorithmcombines demonstration datawith a distributedmultiagent rein-
forcement learning algorithm and experiments in a RoboCup2D simulation environment
for comparison, which can make full use of the respective advantages of demonstration
data and reinforcement learning and improve the convergence speed and robustness of
the algorithm. The experimental results also verify the effectiveness of the algorithm
in this paper. The algorithm in this paper is a discrete action space, which leads to the
inability to produce more accurate and reasonable actions, and further research on the
hybrid action space will also be conducted. In addition, it is found that the cooperation
level is still low in the case of multiagents in the experiments. Future research will also
be conducted on these aspects of planning to improve them through course learning and
self-play.

176 B. Fang and T. Guo

References

1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge
(2018)

2. Li, Y., Liu, T., Zhu, J., Wang, X.: IoT security situational awareness based on Q-learning
and Bayesian game. In: Zeng, J., Qin, P., Jing, W., Song, X., Lu, Z. (eds.) ICPCSEE 2021.
CCIS, vol. 1452, pp. 190–203. Springer, Singapore (2021). https://doi.org/10.1007/978-981-
16-5943-0_16

3. Chu, T., Wang, J., Codeca, L., Li, Z.: Multi-agent deep reinforcement learning for large-scale
traffic signal control. IEEE Trans. Intell. Transp. Syst. 21(3), 1086–1095 (2019)

4. Hausknecht, M., Mupparaju, P., Subramanian, S., Kalyanakrishnan, S., Stone, P.: Half field
offense: an environment for multiagent learning and ad hoc teamwork. In: AAMAS Adaptive
Learning Agents (ALA) Workshop (2016)

5. Chang-Yin, S., Chao-Xu,M.: Important scientific problems ofmulti-agent deep reinforcement
learning. Acta Automatica Sinica 46(7), 71–79 (2020)

6. Nguyen, D.T., Kumar, A., Lau, H.C.: Policy gradient with value function approximation
for collective multiagent planning. In: Advances in Neural Information Processing Systems:
Proceedings of NIPS, pp. 4–9 (2017)

7. Peng, P., et al.: Multiagent bidirectionally-coordinated nets: emergence of human-level
coordination in learning to play starcraft combat games. arXiv preprint arXiv:1703.10069
(2017)

8. Fujimoto, S., Meger, D., Precup, D.: Off-policy deep reinforcement learning without
exploration. In: International Conference on Machine Learning, pp. 2052–2062. PMLR
(2019)

9. Levine, S., Kumar, A., Tucker, G., Fu, J.: Offline reinforcement learning: tutorial, review, and
perspectives on open problems. arXiv preprint arXiv:2005.01643 (2020)

10. Zhan, E., Zheng, S., Yue, Y., Sha, L., Lucey, P.: Generative multi-agent behavioral cloning.
arXiv (2018)

11. Hernandez-Leal, P., Kartal, B., Taylor, M.E.: A very condensed survey and critique of multi-
agent deep reinforcement learning. In: Proceedings of the 19th International Conference on
Autonomous Agents and MultiAgent Systems, pp. 2146–2148 (2020)

12. Sunehag, P., et al.: Value-decomposition networks for cooperative multi-agent learning. arXiv
preprint arXiv:1706.05296 (2017)

13. Matignon, L., Laurent, G.J., Le Fort-Piat, N.: Independent reinforcement learners in coop-
erative Markov games: a survey regarding coordination problems. Knowl. Eng. Rev. 27(1),
1–31 (2012)

14. Yu, C., Velu, A., Vinitsky, E., Wang, Y., Bayen, A., Wu, Y.: The surprising effectiveness of
MAPPO in cooperative, multi-agent games. arXiv preprint arXiv:2103.01955 (2021)

15. de Witt, C.S., et al.: Is independent learning all you need in the StarCraft multi-agent
challenge? arXiv preprint arXiv:2011.09533 (2020)

16. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347 (2017)

17. Hester, T., et al.: Deep Q-learning from demonstrations. In: Thirty-Second AAAI Conference
on Artificial Intelligence (2018)

18. Wang, Q., Xiong, J., Han, L., Sun, P., Liu, H., Zhang, T.: Exponentially weighted imitation
learning for batched historical data. In: NeurIPS, pp. 6291–6300 (2018)

19. Hausknecht, M., Mupparaju, P., Subramanian, S., et al.: Half field offense: an environment
for multiagent learning and ad hoc teamwork. In: AAMASAdaptive Learning Agents (ALA)
Workshop (2016)

https://doi.org/10.1007/978-981-16-5943-0_16
http://arxiv.org/abs/1703.10069
http://arxiv.org/abs/2005.01643
http://arxiv.org/abs/1706.05296
http://arxiv.org/abs/2103.01955
http://arxiv.org/abs/2011.09533
http://arxiv.org/abs/1707.06347

Deep Reinforcement Learning 177

20. Akiyama, H., Nakashima, T.: Helios base: an open source package for the RoboCup soccer
2D simulation. In: Behnke, S., Veloso, M., Visser, A., Xiong, R. (eds.) RoboCup 2013. LNCS
(LNAI), vol. 8371, pp. 528–535. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44468-9_46

21. Espeholt, L., et al.: IMPALA: scalable distributed Deep-RL with importance weighted actor-
learner architectures. In International Conference on Machine Learning, pp. 1407–1416.
PMLR (2018)

https://doi.org/10.1007/978-3-662-44468-9_46

	Deep Reinforcement Learning with Fuse Adaptive Weighted Demonstration Data
	1 Introduction
	2 Related Work
	2.1 Deep Reinforcement Learning
	2.2 Multiagent Reinforcement Learning

	3 Methods
	4 Experimental Results and Analysis
	4.1 Experimental Environment and Data
	4.2 Results and Analysis

	5 Discussion
	References

